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Abstract

This paper provides a solution of a generalized eigenvalue problem for in-

tegrated processes of order 2 in a nonparametric framework. Our analysis

focuses on a pair of random matrices related to such integrated process.

The matrices are constructed considering some weight functions. Under

asymptotic conditions on such weights, convergence results in distribution

are obtained and the generalized eigenvalue problem is solved. Differential

equations and stochastic calculus theory are used.

Keywords: Generalized eigenvalue problem, Differential Equations, Asymp-
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1 Introduction

Nonparametric approaches have been recently proposed to study integrated pro-

cesses of order one (Bierens, 1997, Breitung, 2002 and Garćıa and Sansó, 2006).

The prominent case of system integrated of higher order is the one of systems

integrated of order two, I(2). The aim of this paper is to provide a nonpara-

metric theoretical analysis of a multivariate integrated process of order two via

asymptotic solution of a generalized eigenvalue problem. Many multivariate

techniques such as principal component analysis (Cadima and Jolliffe, 1995,

Sun, 2000, Schott, 2006, Fujikoshi et al., 2007 and Boente et al., 2008), corre-

spondence analysis (Leeuw, 1982, Van de Velden and Neudecker, 2000) canonical

correlation (Nielsen, 2001), discriminant analysis (Bensmail and Celeux, 1996,

Demira and Ozmehmetb, 2005) and factor analysis (Forni et al., 2005) can be

formulated as eigenvalue problems, including generalized eigenvalue problems.

In this paper the generalized eigenvalue problem involves two random matrices

that take into account the stationary and nonstationary properties of a p-variate

integrated process of order 2, i.e.

Yt = ∆−2εt = (1− L)−2εt, (1)

where p ∈ N, Yt = (Y 1
t , . . . , Y p

t ), εt = (ε1t , . . . , ε
p
t ) is a zero-mean stationary

process, L is the lag operator, i.e. Lεt := εt−1, and ∆ := 1 − L. If Yt ∼ I(2),

then Yt − Y0 ∼ I(2). Without loss of generality, we assume that Y0 = 0.

The random matrices are weighted with functions belonging to certain func-

tional spaces. Under some regularity conditions on the weights, we obtain the

convergence of the ordered generalized eigenvalues to random numbers indepen-

dent on the integrated process. Such random quantities are the ordered solution
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of a nonparametric generalized eigenvalue problem.

The paper is organized as follows. Section 2 describes the data generating

process. In section 3 the weight functions and the random matrices are defined.

In section 4, convergence results for the generalized eigenvalue problem are

derived. Section 5 concludes.

2 Data generating process

If Yt in (1) satisfies the hypotheses of the Wold Decomposition Theorem, then

there exists a p-squared matrix of lag polynomials in the lag operator L such

that

εt =
∞∑

j=0

Cjvt−j =: C(L)vt, t = 1, . . . , n, (2)

where vt is a p-variate stationary white noise process.

Assumption 1

The process εt can be written as in (2), where vt are i.i.d. zero-mean p-variate

gaussian variables with variance equals to the identity matrix of order p, Ip,

and there exist C1(L) and C2(L) p-squared matrices of lag polynomials in the

lag operator L such that all the roots of detC1(L) are outside the complex unit

circle and C(L) = C1(L)−1C2(L).

The lag polynomial C(L) − C(1) attains value zero at L = 1 with algebraic

multiplicity equals to 2. Thus, there exists a lag polynomial

D(L) =
∞∑

k=0

DkLk

such that C(L)− C(1) = (1− L)2D(L). Therefore, we can write

εt = C(L)vt = C(1)vt + [C(L)− C(1)]vt = C(1)vt + D(L)(1− L)2vt. (3)
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Let us define wt := D(L)vt. Then, substituting wt into (3), we get

εt = C(1)vt + (1− L)2wt. (4)

(4) implies that, given Yt ∼ I(2), we can write recursively

∆Yt = ∆Yt−1 + εt = ∆Y0 + (1− L)wt − w0 + C(1)
t∑

j=1

vj (5)

where rank(C(1)) = p− r < p.

Remark 1. By Assumption 1, we have that C(L)vt and D(L)vt are well-defined

stationary processes.

Assumption 2

Let us consider Rr the matrix of the eigenvectors of C(1)C(1)T corresponding

to the r zero eigenvalues. Then the matrix RT
r D(1)D(1)T Rr is nonsingular.

Remark 2. Assumption 2 implies that Yt cannot be integrated of order d̄, with

d̄ > 2. In fact, if there exists d̄ > 2 such that Yt ∼ I(d̄), then the lag polynomial

D(L) admits a unit root with algebraic multiplicity d̄−2, and so D(1) is singular.

Therefore RT
r D(1)D(1)T Rr is singular, and Assumption 2 does not hold.

3 Weighted random matrices

In order to address the solution of the generalized eigenvalues problem, a couple

of random matrices are constructed. These matrices are associated with the

stationary and nonstationary part of the process I(2).

If Yt satisfies (1), then ∆kYt is a nonstationary process, for k = 0, 1 and ∆2Yt

is a stationary process.
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The random matrices are assumed to be dependent on an integer number m ≥ p.

Let us fix k = 1, . . . , m. We define

Am :=
m∑

k=1

an,kaT
n,k; (6)

Bm :=
m∑

k=1

bn,kbT
n,k, (7)

where

an,k :=
MY,∆Y

n /
√

n√∫ 1

0

∫ 1

0
Fk(x)Fk(y)min{x, y}dxdy

; (8)

bn,k :=
√

nM∆2Y
n√∫ 1

0
Fk(x)2dx

, (9)

with

MY,∆Y
n =

1
n

n∑
t=1

[(
Gk(t/n) +

Hk(t/n)
n3

)
· Yt

]
+

1
n

n∑
t=1

Fk(t/n)∆Yt; (10)

M∆2Y
n =

1
n

n∑
t=1

Fk(t/n)∆2Yt, (11)

where

Fk : [0, 1] → R, Fk ∈ C1[0, 1];

Gk : [0, 1] → R;

Hk : [0, 1] → R.

The weights Fk, Gk and Hk can be chosen in order to obtain convergence results

for the random matrices Am and Bm. We give the following definition.

Definition 3. Let us fix m ∈ N, k = 1, . . . m. Consider the following condi-

tions:

lim
n→+∞

n · max
1≤t≤n

∣∣∣ t(t + 1)
2

Gk(t/n)− tFk(t/n)
∣∣∣ = 0; (12)

lim
n→+∞

1
n

9
2

n∑
t=1

t(t + 1)Hk(t/n) = 0; (13)
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lim
n→+∞

1√
n

n∑
t=1

Fk(t/n) = 0; (14)

lim
n→+∞

1
n
√

n

n∑
t=1

tFk(t/n) = 0; (15)

∫ 1

0

∫ 1

0

Fi(x)Fj(y)min{x, y}dxdy = 0, i 6= j; (16)

∫ 1

0

Fi(x)
∫ x

0

Fj(y)dxdy = 0, i 6= j; (17)

∫ 1

0

Fi(x)Fj(x)dx = 0, i 6= j. (18)

The functional classes Fm, Gm and Hm are

Fm :=
{

Fk : [0, 1] → R, Fk ∈ C1(0, 1) | (14) − (18) hold, k = 1 . . . , m
}

; (19)

Gm :=
{

Gk : [0, 1] → R | (12) holds, k = 1 . . . ,m
}

; (20)

Hm :=
{

Hk : [0, 1] → R | (13) holds, k = 1 . . . , m
}

. (21)

(Bierens, 1997) shows that the functional class Fm is not empty. He pointed

out that, if one defines

F̄k : R → R

such that

F̄k(x) = cos(2kπx), (22)

and taking the restriction

Fk := F̄k|[0,1],

then Fk ∈ Fm.

The functional classes Gm and Hm are also not empty. In fact, the following

result holds.

Proposition 4. Fix k = 1, . . . , m. Define the following subset of R:

A :=
⋃

n∈N

{
x ∈ R |x = − 1

n

}
,

8



and the functions

Ḡk : R−A → R,

γ : N → R,

such that

Ḡk(x) =
kπx + 1
nx + 1

+ γ(n). (23)

Moreover, define

H̄k : R → R

such that

H̄k(x) =
N∑

j=1

ajx
αj , (24)

for each N ∈ N, aj , a, αj ∈ R, ∀ j ∈ {1, . . . , N}.

Assume that:

• the function

f : R− {−1} → R

such that

f(t) :=
t(t + 1)

2
Ḡk(t/n)− tcos(

2kπt

n
) (25)

is increasing with respect to t;

• the function γ satisfies the following condition:

n ·max
{∣∣∣1

2
Ḡk(1/n)− cos(

2kπ

n
)
∣∣∣,

∣∣∣n(n + 1)
2

Ḡk(1)− n
∣∣∣
}

= o(
1
n

). (26)

Then

Gk := Ḡk|[0,1], Hk := H̄k|[0,1]

belong to Gm and Hm, respectively.
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Proof. A direct computation gives that Hk ∈ Hm. So we have to prove that

Gk ∈ Gm.

Since Fk defined in (22) belongs to Fm (see Bierens, 1997), we can replace in

(12) the functions Fk with (22). We get

lim
n→+∞

n · max
1≤t≤n

∣∣∣ t(t + 1)
2

Gk(t/n)− tcos(
2kπt

n
)
∣∣∣ = 0. (27)

Then there exists ε > 0 such that

max
1≤t≤n

∣∣∣ t(t + 1)
2

Gk(t/n)− tcos(
2kπt

n
)
∣∣∣ ∼ 1

n1+ε
. (28)

Let us consider f defined as in (25). Since f is increasing, a simple estimate

gives

f ′(t) :=
2t + 1

2
Gk(t/n) +

t(t + 1)
2n

∂

∂t
Gk(t/n)− cos(

2kπt

n
) +

2kπt

n
sin(

2kπt

n
) >

>
2t + 1

2
Gk(t/n) +

t(t + 1)
2n

∂

∂t
Gk(t/n)− 1− 2kπt

n
≥ 0.

Thus, the weight functions Gk can be obtained by solving the differential equa-

tion

2t + 1
2

Gk(t/n) +
t(t + 1)

2n

∂

∂t
Gk(t/n)− 1− 2kπt

n
= 0. (29)

The solution of (29) is

Gk(t/n) =
1
n
· kπ(t/n) + 1

t/n + 1/n
+ γ(n),

where γ is independent on t. Due to the fact that f is increasing with respect

to t, the condition (26) implies that (12) holds.
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4 Generalized eigenvalues and nonparametric re-

sults

In this section the generalized eigenvalue problem is solved. Consider a p-variate

standard Wiener process W and denote with fk the derivative of Fk. We define

the following p-variate standard normally distributed random vectors:

Xk :=

∫ 1

0
Fk(x)W (x)dx

(∫ 1

0

∫ 1

0
Fk(x)Fk(y)min{x, y}dxdy

) 1
2
,

Yk :=
Fk(1)W (1)− ∫ 1

0
fk(x)W (x)dx∫ 1

0
Fk(x)2dx

,

X∗
k :=

(
RT

p−rC(1)C(1)T Rp−r

) 1
2
RT

p−rC(1)Xk ∼ Np−r(0, Ip−r),

Y ∗
k :=

(
RT

p−rC(1)C(1)T Rp−r

) 1
2
RT

p−rC(1)Yk,

Y ∗∗
k := (RT

r D(1)D(1)T Rr)−
1
2 RT

r D(1)Yk ∼ Nr(0, Ir).

Furthermore, we construct the matrix Vr,m as

Vr,m := (RT
r D(1)D(1)T Rr)

1
2 V ∗

r,m(RT
r D(1)D(1)T Rr)

1
2 ,

where

V ∗
r,m =

( m∑

k=1

γ2
kY ∗∗

k Y ∗∗T
k

)
−

( m∑

k=1

γkY ∗∗
k X∗T

k

)( m∑

k=1

X∗
kX∗T

k

)−1( m∑

k=1

γkX∗
kY ∗∗T

k

)
.

Theorem 5. Assume that Fk ∈ Fm, Gk ∈ Gm, Hk ∈ Hm and Assumptions 1

and 2 hold.

• Let us consider λ̂1,m ≥ · · · ≥ λ̂p,m the ordered solutions of the generalized

eigenvalue problem

det
[
Am − λ(Bm + n−2A−1

m )
]

= 0, (30)
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and let us consider λ1,m ≥ · · · ≥ λp−r,m the ordered solutions of the

generalized eigenvalue problem

det
[ M∑

k=1

X∗
kX∗T

k − λ

M∑

k=1

Y ∗
k Y ∗T

k

]
= 0, (31)

where the X∗
i ’s and Y ∗

j ’s are i.i.d. random variables following a Np−r(0, Ip−r)

distribution.

Then we have the following convergence in distribution

(λ̂1,m, . . . , λ̂p,m) → (λ1,m, . . . , λp−r,m, 0, . . . , 0).

• Let us consider λ∗1,m ≥ · · · ≥ λ∗r,m the ordered solutions of the generalized

eigenvalue problem

det
[
V ∗

r,m − λ(RT
r D(1)D(1)T Rr)−1

]
= 0. (32)

We have the following convergence in distribution

n2(λ̂p−r+1,m, . . . , λ̂p,m) → (λ∗21,m, . . . , λ∗2r,m).

Proof. Due to (Anderson et al., 1983), then Lemmas 1, 2 and 4 in (Bierens,

1997), it is sufficient to prove that

MY,∆Y
n√

n
→ C(1)

∫ 1

0

Fk(x)W (x)dx, as n → +∞. (33)

By definition of data generating process, we can write

MY,∆Y
n =

1
n

n∑
t=1

(
Gk(t/n) +

Hk(t/n)
n3

) [ t−1∑

j=0

∆Yt−j

]
+

1
n

n∑
t=1

Fk(t/n)∆Yt. (34)

We get recursively

t−1∑

j=0

∆Yt−j =
t−1∑

j=0

(j + 1)εt−j ∼ N(0, Σ∗), (35)
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where

Σ∗ :=




∑t−1
j=0(j + 1)2σ2

1 0 . . . 0

0
∑t−1

j=0(j + 1)2σ2
2 . . . 0

. . . . . . . . . . . .

0 . . . 0
∑t−1

j=0(j + 1)2σ2
p




By (35) and (36) we can write

MY,∆Y
n =

1
n

n∑
t=1

(
Gk(t/n) +

Hk(t/n)
n3

) [ t−1∑

j=0

(j + 1)εt−j

]
+

1
n

n∑
t=1

Fk(t/n)∆Yt.

(36)

Thus, (36) can be rewritten. Using the definition of the p-variate normal random

variable εt and the i.i.d. property, we get

Mn
Y,∆Y

√
n

=
ε1

n4
√

n

n∑
t=1

Hk(t/n)
t(t + 1)

2
+

+
ε1

n
√

n
·
[ n∑

t=1

(
Gk(t/n)

t(t + 1)
2

+ tFk(t/n)
)]

(37)

By hypothesis (13), the first addend in the right-hand term of (37) vanishes as

n → +∞.

Moreover, since Gk ∈ Gm it results, for each t = 1, . . . , n,

Gk(t/n)
t(t + 1)

2
∼ tFk(t/n), (38)

as n → +∞.

Therefore, since Fk ∈ Fm, by (38) and theorems 1 and 2 in (Bierens, 1997), we

get the thesis.

5 Conclusions

This paper provides a nonparametric analysis of multivariate integrated pro-

cesses of order two via the asymptotic behavior of a generalized eigenvalue
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problem. Two involved random matrices associated with the stationary and

nonstationary parts of the process are constructed. To obtain asymptotic re-

sults, some weights regarding the matrices are considered. The ordered gener-

alized eigenvalues converge to some random numbers. Such random quantities

are the ordered solution of a generalized eigenvalue problem independent on the

data generating process.
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