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Abstract  22 

 23 

Background: 24 

Muscle strength loss following immobilisation has been predominantly attributed to rapid 25 

muscle atrophy. However, this cannot fully explain the magnitude of muscle strength loss, so 26 

changes in neuromuscular function (NMF) may be involved.  27 

Objectives: 28 

We systematically reviewed literature that quantified changes in muscle strength, size, and 29 

NMF following periods of limb immobilisation in-vivo in humans.  30 

Methods: 31 

Studies were identified following systematic searches, assessed for inclusion, data extracted 32 

and quality appraised by two reviewers. Data were tabulated and reported narratively.  33 

Results: 34 

Forty eligible studies were included; 22 immobilised lower and 18 upper limb. Limb 35 

immobilisation ranged from 12h to 56 days. Isometric muscle strength and muscle size 36 

declined following immobilisation, however change magnitude was greater for strength than 37 

size. Evoked resting twitch force decreased for lower but increased for upper limb. Rate of 38 

force development either remained unchanged or slowed for lower and typically slowed for 39 

upper limb. Twitch relaxation rate slowed for both lower and upper limb. Central motor drive 40 

typically decreased for both locations while electromyography amplitude during maximum 41 

voluntary contractions decreased for the lower and presented mixed findings for the upper 42 

limb. Trends imply faster rates of NMF loss relative to size earlier in immobilisation periods 43 

for all outcomes. 44 

Conclusions: 45 

Limb immobilisation results in non-uniform loss of isometric muscle strength, size and NMF 46 

over time. Different outcomes between upper and lower limb could be attributed to higher 47 
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degrees of central neural control of upper limb musculature. Future research should focus on 48 

muscle function losses and mechanisms following acute immobilisation. 49 

Registration: PROSPERO reference: CRD42016033692 50 

Key Points: 51 

 Following periods of immobilisation, muscular strength, muscle size and neuromuscular 52 

function decrease. 53 

 Strength declined similarly irrespective of immobilisation location; however, there were 54 

differences in the change to neuromuscular function between the upper and lower limb. 55 

 Fixed joint methods of immobilisation incur greater changes in strength and neuromuscular 56 

function than methods allowing free joint movements. 57 

  58 
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1 Background 59 

1.1 Rationale 60 

Single-limb or whole body immobilisation can occur as a consequence of injury, illness, 61 

frailty or surgery [1-3], in highly specific circumstances such as spaceflight [4], or merely 62 

due to reduced physical activity [5]. Such periods of immobilisation can be of different 63 

duration and occur at multiple time points across the lifespan. Regardless of the reason for 64 

immobilisation, it results in a decrease in muscle function and muscle volume resultant from 65 

mechanical unloading of the immobilised musculature, and as consequence results in 66 

impaired capacity for activities of daily living and quality of life. The immobilisation studies 67 

reviewed within this paper therefore provide important insights into the functional, 68 

biochemical and physiological consequences of periods of inactivity that are commonly 69 

experienced after musculoskeletal injuries and during illness especially where hospitalisation 70 

occurs. The improved understanding of the mechanisms and processes that contribute to the 71 

deterioration in function observed, can then be used to develop evidence based strategies to 72 

counteract these detrimental effects.  73 

Significant muscle atrophy, evidenced by a decrease in muscle size at the whole muscle or 74 

single fibre level [6-8], occurs in response to immobilisation. Concomitantly, a reduction in 75 

muscle function is shown, most commonly quantified by a decrease in strength or the ability 76 

to volitionally produce force [9]. The loss in muscle strength during immobilisation is 77 

typically greater and occurs faster compared to the loss of muscle volume [9]. As such, 78 

muscle atrophy cannot fully explain the immobilisation-induced loss in muscle strength. 79 

Whilst muscle fibre cross-sectional area is a key factor in determining maximal force 80 

generating capacity, muscle function and strength are also strongly influenced by neural 81 

mechanisms [10]. Therefore, it is plausible that changes in neural processes or neuromuscular 82 

function (NMF) may be responsible for the disproportionately higher loss in muscle strength 83 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



Effects of immobilisation on neuromuscular function 
 

5 
 

relative to the reduction in muscle size (muscle mass or muscle volume) with immobilisation. 84 

Neuromuscular function is dependent on both peripheral and central processes, from the 85 

generation and transmission of neural activation signals within the central nervous system to 86 

the transmission to and action of the contractile apparatus. Therefore, changes in muscle 87 

excitability and contractility, as well as in central neural drive, may be important factors 88 

underlying the deterioration of muscle function and strength following limb immobilisation.  89 

Improved understanding of the magnitude and rate of immobilisation-induced changes in 90 

strength, muscle size and NMF may inform treatment and rehabilitation strategies for injured 91 

athletes as well as clinical, ageing and inactive populations.  92 

 93 

1.2 Objectives 94 

The primary aim of this study was to systematically review the literature and quantify 95 

changes in isometric muscular strength, muscle size and NMF (e.g. muscle excitability and 96 

contractility, and central motor drive) following periods of enforced limb immobilisation in 97 

healthy adults. Secondary aims were to quantify the effect of: 1) the duration of 98 

immobilisation (short vs. long); 2) the method of immobilisation (fixed joint vs. freely 99 

moving joint); and 3) the location of immobilisation (lower vs. upper limb) on the induced 100 

muscle morphological, physiological and functional changes. 101 

2 Methods 102 

2.1 Protocol 103 

The systematic review was undertaken in accordance with a predefined protocol 104 

(PROSPERO reference: CRD42016033692) and is reported in accordance with PRISMA 105 

reporting guidelines [11]. 106 
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2.2 Study identification 107 

A systematic literature search was performed in Medline, EMBASE, CINAHL, HMIC, 108 

SPORTDiscus and Web of Science.  Forward (using Web of Science) and backward 109 

supplementary searching was also performed on all included studies.  All citations from the 110 

literature searching were collated and de-duplicated in EndNote (Thomson Reuters V8). 111 

Searches were conducted to include all studies published from the date of database inception 112 

to 13/12/2018. Terms for ‘human population’ were not included in the search strategy to limit 113 

the number of studies inadvertently missed due to title and abstract nomenclature.  The search 114 

strategy took the following form:   115 

(terms for immobilisation) AND (terms for methods of immobilisation) AND (terms for 116 

neuromuscular outcomes) 117 

The full search strategy is provided in Electronic Supplementary Material Appendix S1. 118 

2.3 Study Selection 119 

Two reviewers (MC and JVC) independently screened titles and abstracts of the retrieved 120 

citations according to predefined inclusion criteria (see section 2.4). The inclusion criteria 121 

were piloted against 10% of the retrieved citations and following agreement the remainder 122 

of the titles and abstracts were screened in duplicate. Full texts of included titles/abstracts 123 

were obtained and screened. A third author (JB) reviewed full-text articles when consensus 124 

on suitability was not met. 125 

2.4 Inclusion Criteria 126 

Studies were included if measures of NMF and isometric strength made before and after a 127 

period of enforced immobilisation were reported in healthy adult (18+ years) humans. 128 

Included studies were not limited to randomised controlled trials as a large portion of the 129 

available literature used convenience sampling. Systematic reviews that met the inclusion 130 

criteria were also retained and their reference lists screened for studies meeting the inclusion 131 

criteria. 132 
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2.5 Exclusion Criteria 133 

Studies were excluded if the experiments used animal models or the human population was 134 

described as injured or not-healthy to avoid extraneous influence of illness upon the 135 

immobilisation effects. Studies that used bed rest or whole-body immobilisation as their 136 

method of immobilisation were initially included due to the comparable loss of muscle size as 137 

presented by Dirks and colleagues [12]. However, these studies were later removed following 138 

a protocol amendment due to the potential interference of systemic changes and resultant 139 

effects on NMF. Studies were also excluded if the immobilisation was interrupted by any 140 

means such as removing the brace to test strength mid-way through the immobilisation 141 

period. If, however, these mid-point data were reported then the study was included with 142 

these mid-point data extracted and the duration of immobilisation was adjusted accordingly. 143 

Studies were also excluded if there was no measure of isometric strength since we used this 144 

outcome to evaluate the effectiveness of the immobilisation protocol used.  A summary of the 145 

inclusion and exclusion criteria is presented in Table 1. 146 

Table 1 Summary of inclusion and exclusion criteria 147 

 Inclusion Exclusion 

Population Healthy adult humans Animal models or human populations 

described as injured or non-healthy  

Intervention Immobilisation by any means e.g. 

brace, cast, ULLS, sling or any 

isolated body part  

Bed rest or whole body 

immobilisation, interference with 

immobilisation e.g. interruptions  

Comparator n/a  

Outcomes NMF, Isometric strength  

Study 

Design 

Pre and post measures of NMF and 

isometric muscle strength following a 

period of enforced immobilisation 

 

Key: n/a, not applicable; NMF, neuromuscular function; ULLS, unilateral lower limb suspension; 148 

 149 

2.6 Data Extraction 150 

Data from studies meeting the inclusion criteria were extracted by one (MC) and checked by 151 

a second reviewer (JVC). Data pertaining to the main outcome measures, namely NMF, 152 

isometric strength and, if available, muscle size from before and after immobilisation were 153 
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extracted using a standardised data extraction form.  Only data pertaining to the immobilised 154 

limb were extracted; no data for the contralateral limb were extracted. Participant 155 

anthropometric and demographic characteristics, information on the method(s) of 156 

immobilisation, and data collection procedures were also extracted. When numerical data 157 

were not reported in the text but reported in figures, extraction was conducted using InkScape 158 

0.91 and GIMP2.0 using vector graphic principles.  159 

Where multiple publications are identified that present data from the same study (i.e. same 160 

group of participants and same intervention), the publication with the most relevant data will 161 

be used as the main reference, with additional details extracted from the other publications as 162 

necessary.  163 

2.7 Assessment of Methodological Quality 164 

Quality of the included studies was assessed by two authors (MC and JVC) and in the case of 165 

disagreement was resolved by a third author (JB). The methodological quality assessment 166 

was based on the Effective Public Health Practice Project (EPHPP) quality assessment tool 167 

[13] and adapted for use in this review. The subsections relating to confounders, intervention 168 

integrity, and analysis (Sections C, G, H in the EPHPP) were removed as not relevant to this 169 

research question. The evaluation of study design and selection bias was adapted for 170 

relevance to this research question. Each section was scored as either weak (=1), moderate 171 

(=2) or strong (=3). Overall study mark was calculated by summation of the section scores 172 

and used to categorise its methodological quality as being weak (=4-6), moderate (=7-9), or 173 

strong (=10-12). 174 

2.8 Statistical Analysis and Data Synthesis 175 

The studies were narratively synthesised. Data were ordered by the three main outcome 176 

measures (isometric muscle strength, muscle size and NMF) and sub-sectioned by location 177 

and method of immobilisation.  178 
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Published raw data were used to calculate the percentage change in the outcome measures 179 

from pre to post immobilisation ({post score – pre score)/ (pre score} *100%) unless 180 

percentage changes were stated in the paper and therefore included as stated. The daily rate of 181 

change in isometric muscle strength, muscle size and NMF was calculated as the ratio 182 

between the percentage change and the number days of immobilisation to generate 183 

comparative data across studies. 184 

Pearson’s correlation coefficient was calculated to evaluate the strength of the relationships 185 

between changes in isometric muscle strength and the other extracted variables of interest. 186 

Scatterplots and tables of all raw data extracted from the included studies are provided in 187 

Electronic Supplementary Material Appendix S1-S9 and Tables S2-S10. Data are presented 188 

as ranges with medians unless otherwise stated.   189 
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3 Results 190 

3.1 Search Results 191 

In total 1744 studies were identified via the database and supplementary searches. After the 192 

removal of duplicates, 1152 unique references were entered for title and abstract screening. 193 

Of them, 273 studies underwent full text screening for eligibility. A total of 40 unique 194 

studies (49 citations [14-62]) met the inclusion criteria and were included in the final 195 

review (Figure 1).  196 

Figure 1 PRISMA Diagram 197 

  198 
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3.2 Study Characteristics 199 

A total of 431 participants were involved across the 40 included studies, comprised of 71% 200 

males (n= 308), 24% females (n= 102) and 5% sex not reported (n= 21). Across the studies, 201 

age ranged between 18.8 to 68.5 years (median 23 years). Four studies specifically recruited 202 

older participant groups for comparison to younger groups [25, 35, 38, 59]. The duration of 203 

immobilisation ranged from 0.5 to 35d. In 93% of the studies, the duration of immobilisation 204 

was ≥ 7 d. A portion of the lower limb was partially immobilised in 22 studies and a portion 205 

of an upper limb was immobilised in 18 studies. 206 

 Across the 40 studies, the following locations were immobilised: knee, ankle, elbow, wrist 207 

and finger. Immobilisation was achieved using cast, brace, sling, unilateral limb suspension 208 

(ULLS), strapping or splint. Some studies randomised the immobilised side (n= 4) whilst 209 

some specifically used non-dominant (n= 16) or predetermined to right (n= 11) or left (n= 8); 210 

one study did not report what side of the body was immobilised. A summary of the 211 

characteristics of all included studies is presented in Table 2. A dissection of immobilisation 212 

locations and methods used across the included studies is shown in Figure 2.213 
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Table 2 Summary of the characteristics of the included studies 214 

Location 
Immobilisation 

method 
Study 

Group no 

(Total no) 

Male/ 

female 

(young/old) 

Age in years 

(SD) or  [Range]  

Height in 

centimetres 

(SD) 

 

Weight in 

kilograms 

(SD) 

Body part 

(left/r 

ight) 

 

 

Duration of 

immobilisation in 

days (total days in 

study if 

interrupted) 

Lower Limb          

 Brace         

  
Hvid et al. 2014 [63] (Hvid et al. 2013 [37],Suetta et al. 2012 [55]) 

11 11M(O) 67.2(1.0) 178.8(1.7) 87.7(3.0) 
Knee** 4 

  11 11M(Y) 24.3(0.9) 180.4(2.7) 74.3(2.4) 

  
Deschenes et al.2008 [25] 

10 10M(O) 68.5(1.6) 176.7(1.3) 88.0(2.2) 
Leg(R) 7 

  10 10M(Y) 21.7(1.1) 175.8(2.8) 74.4(4.2) 

  
Deschenes et al. 2009 [27] 20 

10M 21.4(0.8) 175.8(2.8) 74.4(4.2) 
Leg (R) 7 

  10F 20.9(0.2) 168.7(1.3) 65(3.6) 

  Deschenes et al. 2009 [26] 10 10M 20.9(1.3) 175.9(5.4) 80.5(19.2) Leg(R) 7 

  
Deschenes et al. 2012 [28] 24 

12M 20.7(0.3) 176.5(2.0) 72.4(2.5) 
Leg(R) 7 

  12F 20.3(0.3) 167.1(2.3) 62.9(1.3) 

  Davies et al. 1987 [21] 11 11F 19.4(0.9) 165.6(6.4) 54.9(5.1) Leg(R) 7(21) 

  White et al. 1984 [61] 4 4M 25(7) NR NR Leg(L) * 7(14) 

  Deschenes et al. 2002 [24] 10 6M/4F 21(0.4) 174(2.3) 78.7 (7.3) Leg(R) 14 

  Hvid et al. 2010 [35] (Suetta et al. 2009 [57], Suetta et al. 2013 [56], Hvid 

et al. 2011 [36]) 

9 9M(O) 67.3(1.3) 178.7(2.6) 84.8(3.4) 
Leg** 14 

  11 11M(Y) 24.4(0.5) 181.4(1.8) 72.2(2.3) 

  Oates et al. 2010 [45] 5 2M/3F 23.9(2.2) 176(6) 73(8) Knee ** 14 

          

 ULLS         

  Berg & Tesch 1996 [14] 10 10M 24(3) 186(7) 75.0(5.0) Leg** 10 

  de Boer et al. 2007 [22] (de Boer et al. 2007) [23] 9(17) 9M 19.1(0.6) 179.3(4.7) 72.4(8.6) Leg* 14 (23) 

  Seynnes et al. 2008 [53 ], (Seynnes et al. 2008 [54]) 8(16) 8M 19(0.2) 179(2) 70.3(2.1) Leg(R) 14(23) 

  Hotta et al. 2011[34] 5(11) 5M 21.6(3.4) n=11 170.2(5.7) n=11 60.8(9.4) n=11 Leg 20 

  Campbell et al. 2013 [15] 8(16) 8M 23(2.2) NR NR Leg(R) 21 

  Horstman et al. 2012 [33] 6 6M 21(1) 187(6) 79.0(9.0) Leg(R) 21 

  Schulze et al. 2002 [48] 8(32) 8M 27.1(3) 181(2) 77.3(5.3) Leg(L) 21 

  Seynnes et al. 2010 [52] 6 6M 23(2) 187(7) 79(9) Leg(R) 24 
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  Cook et al. 2014 [19] (Cook et al. 2010 [20]) 8(16) 4M/4F 18.8(1.0) 168.3(12.2) 63.9(14.2) Leg(L) 30 

  Tesch et al. 2004 [58] 11(21) 7M/4F 40(9) 176(9) 80(14) Leg (L) ~35 

          

Ankle          

 Brace/Cast         

  Lundbye-Jensen & Nielsen 2008 [42] 12 9M/3F 25(6) NR NR Foot (L) 14 

  Gondin et al. 2004 [32] 8(17) 8M 25.8(1.6) 176.4(2.0) 70.0(2.6) Foot (R) ~14 

          

Upper Limb          

 Brace/Cast         

  Inada et al. 2016 [39] 10(30) 10M 29.5(4.2) n=30 171.1(4.4) n=30 66.5(6.8) n=30 Hand (L) 0.5 

  Ngomo et al.2012 [44] 11 NR 26.5(4.3) NR NR 
Wrist and 

Fingers* 
4 

  Clark et al. 2008 [16] 10 (19) 5M/5F 21.9(0.5) 169.4(3.2) 77.7(5.0) Forearm* 7 (21) 

  Fuglevand et al. 1995 [31] 11 8M/3F [22-38] NR NR Hand (L)* 7(21) 

  Lundbye-Jensen & Nielsen 2008 [41] 10 6M/4F 24(6) NR NR Forearm(L)* 7 

  Seki et al. 2007 [49] 5 5M [22-29] NR NR Hand(L) 7 

  Karolczak et al. 2009 [40] 7(18) 7M 30.43(7.66) 179.50(6.24) 78.92(3.54) Upper Limb* 14 

  
Urso et al. 2006 [59] 28 

20M(O) 67 (4) 175.9 (1.8) 88.3(3.8) 
Hand* 14 

  8M(Y) 21 (2) 177.8(2.5) 81.9 (5.5) 

  Vaughan 1989 [60] 6 4M/2F 31.2 [25-37] NR NR Upper Limb* 14 

  Clark et al. 2010 [18] 11(20) 6M/5F 20.5(0.4) 173.9(3.5) 69.9(4.3) Forearm* 21 

  Farthing et al. 2009 [29] 10(30) 2M/8F 22.2(2.8) 169.7(8.8) 72.5(24.4) Forearm(L)* 21 

  Farthing et al. 2011 [30] 7(14) 1M/6F 22.7(4.4) 162.5(9.3) 65.8(13) Forearm(L)* 21 

  Seki et al. 2001 [50], (Seki et al. 2001[51]) 7(9) 7M [21-22] NR NR Hand (L)* 21(42) 

  Clark et al. 2014 [17] 15(44) 8M/7F 21.2(3.5) 170.8(10.9) 70.1(10.8) Forearm* 28 

  Yue et al. 1997 [62] 10 NR [19-27] NR NR Arm (L) 28 

  Sale et al. 1982 [47] 11 11M [19-22] NR NR Arm* 35 

          

 Sling         

  Pearce et al. 2013 [46] 9(28) 4M/5F 25.3 (8.7) 173.6(9.1) 62.5(10.1) Arm(L)* 21 

  Magnus et al. 2010 [43] 8(25) 2M/6F 20.3(1.8) 170.6(10.3) 83.2(28.4) Arm(L)* 27.8 ± 2.3 
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Key:  F, female; L, left; LB, leg brace/cast; LU, leg ULLS; M, male; NR, not reported; O, old people; R, right; UL, upper limb; ULLS, unilateral limb suspension; Y, young people; ~, approximately stated or mean value given; * non-dominant limb, ** randomised limb215 
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 216 
Figure 2 – Summary of immobilisation methods and body segments 217 

3.3 Methodological Characteristics 218 

3.3.1 Neuromuscular Function 219 

A summary of the methods and measures used to assess NMF is presented in Figure 3. A 220 

more in-depth explanation can be found in supplementary material  (Electronic 221 

Supplementary Material Table S11). 222 

 223 

Figure 3 – Summary of methods used in the studies to evaluate neuromuscular function  224 

3.3.2 Muscle Strength 225 

All included studies measured isometric muscle strength as per the inclusion criteria. 226 

Isometric muscle strength during maximal voluntary contractions (MVC) was measured 227 

using: i) a commercially available dynamometer (23 studies); ii) hydraulic recording systems 228 

(two studies); iii) load cells (one study); iv) strain gauges (eight studies); and v) force 229 

transducers (six studies). One study did not report the method used to evaluate muscle 230 

strength.  When quantifying muscle strength, 20 studies reported the “peak” or “max”, 231 

“highest”, “greatest”, “best”, or “largest” force value, three studies reported the “plateau” 232 

force level, and the remaining studies (n= 26) did not state how muscle strength was 233 

quantified.  234 

3.3.3 Muscle Size 235 

A total of 22 studies measured changes in muscle size from before to after immobilisation. 236 

Three studies quantified alterations in muscle fibre cross sectional area, two studies applied 237 

an anthropometric model using skinfolds combined with limb circumference measures, four 238 

studies used an ultrasound measurement of muscle thickness, one used dual-energy x-ray 239 

absorptiometry (DXA) to measure lean muscle mass , one used X-ray computerised axial 240 
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tomography for whole muscle cross sectional area, and eleven used magnetic resonance 241 

imaging (MRI). The MRI studies used different combinations of MR field strength, slice 242 

thickness and slice-to-slice intervals (see Electronic Supplementary Material Table S1).  243 

3.4 Methodological Quality 244 

Full results from the methodological assessment can be found in Table 3. Overall, the 245 

methodological quality of the studies included was evaluated as ‘moderate’. No included 246 

study was rated as ‘strong’, while four studies were classified as ‘weak’ according to our 247 

methodological quality assessment. Common sources of weakness were: i) poor reporting of 248 

participant inclusion criteria (n= 22); ii) no randomisation of the immobilised limb (n= 36); 249 

and iii) the participant (n= 40) or outcome assessors (n= 40) were not blinded to the research 250 

question. 251 
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Table 3 Methodological quality assessment 252 

Location Immobilisation 

method Study Selection 

bias 

Study 

design 
Blinding 

Withdrawals/ 

dropouts 

Overall 

rating 

Lower 

limb 
Brace       

 
Hvid et al. 2014 [63] (Hvid et al. 2013 

[37], Suetta et al. 2012 [55]) 
     

  Deschenes et al. 2008[25]      

  Deschenes et al. 2009[27]      

  Deschenes et al. 2009[26]      

  Deschenes et al. 2012[28]      

  Davies et al. 1987[21]      

  White et al. 1984[61]      

  Deschenes et al. 2002[24]      

  
Hvid et al. 2010 [35] (Suetta et al. 

2009 [57], Suetta et al. 2013 [56], Hvid 
et al. 2011 [36]) 

     

  Oates et al. 2010[45]      

 ULLS       

  Berg & Tesch 1996[14]      

  
de Boer et al. 2007 [22] (de Boer et al. 

2007 [23]) 
     

  
Seynnes et al. 2008 [53 ], (Seynnes et 
al. 2008 [54]) 

     

  Hotta et al. 2011[34]      

  Campbell et al. 2013[15]      

  Horstman et al. 2012[33]      

  Schulze et al. 2002[48]      

  Seynnes et al. 2010[52]      

  
Cook et al. 2014 [19] (Cook et al. 2010 

[20]) 
     

  Tesch et al. 2004[58]      

Ankle 
Brace/ Cast 

      

 Lundbye-Jensen & Nielsen 2008[42]      

  Gondin et al. 2004[32]      

Upper 

limb 
Brace/ Cast 

      

Inada et al. 2016[39]      

  Ngomo et al.2012[44]      

  Clark et al. 2008[16]      

  Fuglevand et al. 1995[31]      

  Lundbye-Jensen & Nielsen 2008b[41]      

  Seki et al. 2007[49]      

  Karolczak et al. 2009[40]      

  Urso et al. 2006[59]      

  Vaughan 1989[60]      

  Clark et al. 2010[18]      

  Farthing et al. 2009[29]      

  Farthing et al. 2011[30]      

  
Seki et al. 2001 [50], (Seki et al. 

2001[51]) 
      

  Clark et al. 2014[17]      

  Yue et al. 1997[62]      

    Sale et al. 1982[47]      

 Sling       

  Pearce et al. 2013[46]       

  Magnus et al. 2010[43]       

Key: ULLS, unilateral limb suspension;  = weak,  = moderate,  = strong253 
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3.5 Synthesis 254 

All outcome measure data are reported separately by limb, immobilisation method and, where 255 

possible, muscle action. The relationship between isometric muscle strength changes and the 256 

remaining variables of interest are presented in the accompanying scatterplots (Figures 4, 5, 257 

6, 7, 8) in which only data from those studies with both variables are displayed. 258 

3.5.1 Muscle Strength  259 

3.5.1.1 Lower limb 260 

Knee extensor strength was reduced post immobilisation using a brace (n= 14: range -1.1 to -261 

4.0%d-1; median -2.0%d-1) and ULLS (n= 7: range -0.5 to -1.3%d-1; median -1.0%d-1). 262 

Plantar flexor strength declined following the use of casts (n= 3: range -1.6 to -2.0%d-1; 263 

median -1.8%d-1) and using ULLS (n= 6: range -0.3 to -0.9%d-1; median -0.7%d-1). In the 264 

studies that specifically cast the ankle, both observed plantar flexor strength decline (n=2: -265 

1.1%d-1 and -1.2%d-1). Dorsiflexor strength was only measured in one study, which showed 266 

an overall decline (-1.6%d-1). 267 

3.5.1.2 Upper limb 268 

Upper limb immobilisation caused a loss in strength of the elbow flexors (n=3: -0.9 to -269 

1.3%d-1; median -1.2%d-1). By contrast, the loss of elbow flexor strength when 270 

immobilisation was achieved using a sling was variable across studies (n=2: +0.1%d-1 271 

increase and -0.3%d-1 decrease). Elbow extensor strength declined across all studies using 272 

both brace (n=3, -0.6 to -1.3%d-1; median -1.1%d-1) and sling (n=1, -0.2%d-1) 273 

immobilisation methods.  274 

Wrist flexor strength decreased across all studies (n=6: range -0.5 to -3.9%d-1; median -275 

1.8%d-1) while a single study measured a decrease in wrist extensor strength (-3.5%d-1) 276 

following use of casts. 277 
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Immobilisation of the finger and thumb muscles via brace or cast resulted in both increases 278 

and decreases (n=11: range +0.6%d-1 increase to -26.5%d-1 decrease; median -1.6%d-1). 279 

3.5.2 Muscle Size 280 

3.5.2.1 Lower limb 281 

Studies using a fixed angle brace model observed a decline in muscle size in the muscles 282 

above the knee (n= 5: range -0.2 to -0.6%d-1; median -0.4%d-1) and below the knee (n=4: 283 

range -0.4 to -0.7d-1; median -0.6%d-1).  284 

Following lower limb suspension, muscle size decreased above the knee (n=5: range -0.3 to -285 

0.5%d-1; median -0.3%d-1) and below the knee (n=6: range -0.3 to -0.4%d-1; median -286 

0.4%d-1). 287 

3.5.2.2 Upper limb 288 

Declines in upper limb muscle size were established after brace (n= 9: range -0.1 to -0.7%d-289 

1; median -0.2%d-1) and sling (n= 3: range -0.1 to -0.3%d-1; median -0.2%d-1) 290 

immobilisation. 291 

The rate of strength loss was greater than the rate of muscle size loss across all studies, where 292 

both parameters were available (Figure 4).  293 

 294 

Figure 4. Muscle strength and muscle size change per day. Muscle strength changes in open circles, muscle size changes in 295 
closed diamonds. 296 

3.5.3 Neuromuscular Function  297 

3.5.3.1 Muscle Contractility 298 

Resting Twitch Force 299 

Lower Limb 300 

Knee extensor twitch force (Figure 5) decreased following bracing (n=2: -1.6 and -2.0%d-1) 301 

but the rate of change both increased and decreased following ULLS (n=3: range +0.2%d-1 302 

increase to -0.6%d-1 decrease; median -0.5%d-1). 303 
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Plantar flexor twitch force increased following knee (n=2: +0.4 and +1.5%d-1) and ankle 304 

(n=2: +0.8 and +4.1%d-1) bracing and exhibited both an increase and decrease following 305 

ULLS (n= 2, +0.1%d-1 increase and -0.1%d-1 decrease). 306 

3.5.3.2 Upper Limb 307 

The amplitude of resting twitch force evoked in wrist flexor muscles declined (n=2: -0.4 and 308 

-0.5%d-1) but increased in the hand musculature (n=5: range +0.1%d-1 to +69.8%d-1; 309 

median +1.2%d-1). Elbow flexor twitch force increased in one study (+0.81%d-1). All upper 310 

limb measures utilised brace or cast immobilisation (Figure 5).  311 

 312 
Figure 5. Muscle strength and resting twitch force change per day. Muscle strength changes in open circles, resting twitch 313 
force changes in closed diamonds. 314 

Force Development and Relaxation  315 

Measures of resting twitch force development and relaxation were reported either as duration 316 

or as a rate of change. For the purposes of data summary, all duration data were inverted so 317 

that an increase in duration, indicating an impaired response, was expressed as a negative and 318 

therefore a decrease in % change per day indicates an “impaired” response. 319 

Force Development 320 

Lower Limb 321 

Knee extensor force development time (Figure 6a) either remained unchanged or slowed 322 

down following bracing (n=4: range 0 to -4.4%d-1, median -0.7%d-1) and ULLS (n= 3: 323 

range -0.3 to -3.0%d-1, median -0.8%d-1). The time for plantar flexor force development 324 

was also slower following knee bracing (n=2: -1.5 and -1.9%d-1), ULLS (-0.1%d-1) and 325 

ankle brace (n=2, -0.1 and -1.2%d-1).  326 

Upper Limb 327 

Immobilisation resulted in slower resting twitch force development time (Figure 6a) in the 328 

wrist flexors (n=2: -0.1 and -1.0%d-1) and finger and thumb muscles (n=4: range -0.3 to -329 

1.1%d-1, median -0.4%d-1). One study measured a slowing of elbow extensor force 330 

development (-0.5%d-1) whilst elbow flexor force development displayed both increase and 331 

decreases (n=3: range +0.04%d-1 increase to -0.6%d-1 decrease, median -0.4%d-1). 332 
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Force Relaxation 333 

Lower Limb 334 

The studies reported a wide range of change across the lower limb (Figure 6b) while one 335 

study showed an increase in knee extension relaxation time following ULLS (-0.5%d-1). 336 

Two studies showing an increase in plantar flexor relaxation time following brace 337 

immobilisation (n=2: -0.8 and -1.5%d-1), while a single study observed a decrease following 338 

ULLS (+0.1%d-1). Ankle immobilisation also slowed relaxation (n=2: -0.9 and -1.5%d-1). 339 

Upper Limb 340 

Force relaxation (Figure 6b) increased in the wrist flexors (-0.2%d-1), while finger and 341 

thumb relaxation was also prolonged (n=3: range -0.2 to -0.3%d-1; median -0.3%d-1).  342 

 343 

Figure 6. Muscle strength and rate of force development change per day (a) and muscle strength and rate of force 344 
relaxation change per day (b). Muscle strength changes in open circles, force development or relaxation changes in closed 345 
diamonds. 346 

Central Motor Drive 347 

Lower Limb 348 

Central drive (Figure 7) of the knee extensors decreased following bracing (n=2: -0.1 and -349 

0.7%d-1). Comparable decreases in the knee extensors were observed following ULLS 350 

although one of five studies observed an increase (n=5: range +0.1%d-1 increase to -0.2%d-1 351 

decrease; median -0.2%d-1). Similarly, the change following ULLS in the plantar flexors 352 

displayed both increased and decreased values (n=4: range +0.02%d-1 increase to -0.3%d-1 353 

decrease; median -0.1%d-1). Following ankle immobilisation central drive decreased (n=2: -354 

0.3 and -0.6%d-1). 355 

Upper Limb 356 

Central drive (Figure 7) to the wrist flexors decreased following bracing (n=3: range -0.8 to -357 

1.2%d-1; median -1.1%d-1). Central drive to elbow flexors decreased (-0.1%d-1) but 358 

increased in elbow extensors (+0.1%d-1) following a sling protocol. 359 

Figure 7. Muscle strength and central drive change per day. Muscle strength changes in open circles, central drive changes 360 
in closed diamonds. 361 
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Volitional Surface EMG Activity  362 

Lower Limb 363 

The amplitude of knee extensor EMG activity (Figure 8a) during a maximal manoeuvre 364 

declined following bracing in all but one study (n=9: range +0.8%d-1 increase to -5.2%d-1 365 

decrease; median -1.1%d-1) and ULLS altered EMG similarly with decreased activity (n=4: 366 

range -0.1 to -1.0%d-1; median -0.5%d-1). 367 

Plantar flexor EMG activity declined following knee bracing (-0.4%d-1), ULLS (n=3: range 368 

-0.1 to 1.7%d-1; median 1.4%d-1) and ankle immobilisation (-1.3%d-1). 369 

Upper Limb 370 

EMG activity (Figure 8a) following bracing declined in the elbow flexors (n=3: range -1.6 to 371 

-3.2%d-1; median -1.6%d-1), elbow extensors (n=2: -0.8 and -4.3%d-1), wrist flexors (-372 

3.4%d-1), and wrist extensors (-2.7%d-1). Sling immobilisation also induced a decrease in 373 

EMG activity of elbow flexors (-0.6%d-1) and elbow extensors (-6.6%d-1). EMG activity of 374 

finger and thumb muscles exhibited both increased and decreased findings (n= 3: range 375 

+3.3%d-1 increase to -3.6%d-1 decrease; median -0.6%d-1). 376 

Muscle and Corticospinal Excitability  377 

Compound Muscle Action Potential 378 

Lower limb 379 

The amplitude of the compound muscle action potential (Mwave) evoked post-380 

immobilisation (Figure 8b) exhibited an increase in the plantar flexors following ULLS (n= 381 

3: range +0.2 to +1.3%d-1; median +0.6%d-1) and both increases and decreases following 382 

ankle immobilisation (n= 3: range +0.2%d-1 increase to -0.4%d-1 decrease; median -0.3%d-383 

1).  384 

Upper Limb 385 

Across the seven studies measuring the Mwave evoked in upper limb muscles (Figure 8b) 386 

there were amplitude decreases in both wrist flexors (-1%d-1) and elbow flexors (-3.2%d-1) 387 
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with both increases and decreases in the finger and thumb muscles (n= 5: range +1.6%d-1 388 

increase to -2.7%d-1 decrease; median +0.1%d-1). All studies utilised the brace/cast method. 389 

Motor Evoked Potential 390 

Changes in motor evoked potential (MEP) amplitudes were only measured in upper limb 391 

muscles (Figure 8c). Elbow flexor MEP amplitude decreased following a sling protocol (-392 

0.1%d-1) and finger muscles exhibited a decrease following casting (-13.5%d-1). MEP 393 

amplitudes registered in wrist flexors increased following brace/cast protocols (n= 2: +5.3 394 

and +12.8%d-1).  395 

Hoffmann Reflex 396 

Lower limb 397 

The amplitude of the maximal Hoffman reflex (Hmax) evoked in plantar flexors increased 398 

following ULLS (n= 2: +1.0 and +2.5%d-1; Figure 8d). 399 

Upper limb 400 

Hmax measured from wrist flexors increased after cast immobilisation (n= 3: range +3.4 to 401 

+10.9%d-1; median +3.7%d-1; Figure 8d). 402 

 403 

Figure 8. Muscle strength and EMG change per day (a), muscle strength and Mwave amplitude change per day (b), muscle 404 
strength and motor evoked potential change per day (c), muscle strength and maximal Hoffman reflex amplitude change 405 
per day (d). Muscle strength changes are in open circles, other variables are in closed diamonds; EMG – electromyography. 406 

 407 

3.5.4 Correlation 408 

There was no significant relationship between the rate of change in muscle strength and 409 

muscle size in response to either upper or lower limb immobilisation (Table 4, Figure 9a). 410 

There was, however, a significant positive relationship between the change in upper limb 411 

muscle strength and the change in voluntary activation of these muscles (r=0.96, p = 0.04); 412 

no such relationship was found for the lower limb (Figure 9b). Similarly, there was a positive 413 

and significant relationship between the rate of change in muscle strength and evoked twitch 414 

force with immobilisation for the upper (r=0.88, p = 0.02) but not the lower limb (Figure 9c). 415 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



Effects of immobilisation on neuromuscular function 
 

24 
 

Finally, the rate of decline in muscle strength with immobilisation was significantly 416 

positively related to changes in EMG amplitude during maximal volitional isometric efforts 417 

in both the upper and lower limbs (upper r=0.64, p = 0.03; lower (r=0.76, p < 0.001; Figure 418 

9d). Full graphical results from the correlation analysis can be found in Electronic 419 

Supplementary Material Figures S1-S9.. 420 

 421 

Figure 9. Correlation between muscle strength and size change per day (a), muscle strength and central drive (b), muscle 422 
strength and resting twitch force (c), muscle strength and EMG (d). Lower limb values are in circles with solid line, upper 423 
limb are in squares with dotted line. Significant correlations are indicated with an asterisk (*); EMG - electromyography 424 

   425 
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Table 4. Relationship between muscle strength loss and other parameters in the upper and lower limbs. 426 

Experimental measure [%d-1] Pearson’s correlation coefficient 

 Lower limb Upper limb 

Strength per day vs   

Size per day 0.08 0.23 

Twitch force per day -0.03 0.88* 

Force development per day 0.45 -0.81* 

Relaxation per day 0.80 -0.57 

Voluntary activation per day 0.01 0.96* 

EMG per day 0.76* 0.64* 

Hmax per day -- -0.31 

Mwave amplitude per day 0.72 -0.36 

MEP amplitude per day  -- 0.53 

Key: * - p < 0.05; EMG – electromyography; Hmax – Hoffman reflex; MEP – motor evoked potential 427 

3.5.5 Summary 428 

A full overview of the changes per day for strength, muscle size and NMF split by location of 429 

immobilisation is presented in Figure 10.  430 
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 431 
Figure 10. Box plot graph showing the minimum, first quartile, median, third quartile, and maximum of the immobilisation induced changes per day of the investigated measures for strength, 432 
muscle size and neuromuscular function presented individually for lower (bottom panel) and upper (top panel) limb. Values shown are median /range. 433 

Key: Amp, amplitude; EMG, electromyography; Hmax, Hoffman reflex; MEP, motor evoked potential; n, number  434 

 435 
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4 Discussion 436 

4.1 Summary of Evidence 437 

This is the first systematic review to consider the contribution of both muscle atrophy and 438 

deterioration in NMF to the loss of isometric muscle strength following immobilisation. The 439 

extracted data present strong evidence that the decrease of muscle size (i.e. muscle atrophy) 440 

cannot fully explain the functional loss, especially in the early phase of immobilisation.  441 

Periods of segmental human body immobilisation do result in decreased isometric muscular 442 

strength and size, but these changes occur alongside changes in both peripheral and central 443 

NMF, quantified by decreased muscle fibre excitability (Mwave amplitude) and contractility 444 

(decreased rate of force development and relaxation), decreased spinal (Hmax) and 445 

corticospinal excitability (MEP amplitude), and reduced central motor drive (increased 446 

resting twitch force amplitude, decreased voluntary activation) to the muscles. Changes in 447 

NMF appear to differ depending on immobilisation location, with upper limb immobilisation 448 

resulting in greater central changes and lower limb immobilisation in greater peripheral 449 

adaptations. While location of immobilisation appears to modulate the effects of 450 

immobilisation, the impact of joint action (extension versus flexion) remains unclear due to a 451 

lack of evidence in the extensor muscles.  Below, specific findings in relation to the aims of 452 

the systematic review are summarised and discussed individually. 453 

4.1.1 Neuromuscular factors contribute to decline in muscle strength 454 

Muscle strength declined from before to after immobilisation in all but one study while 455 

muscle size declined in all studies across both the lower and upper limbs. The weak, non-456 

significant relationship between changes in muscle size and strength corroborate the notion 457 

that muscle atrophy contributes only partially to the functional loss.  A strong positive 458 

correlation between the loss in muscle strength and decreases in central drive, increased 459 
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resting twitch amplitude and decreased volitional EMG indicate greater influence of central 460 

NMF changes during upper limb than lower limb immobilisation.  461 

In 22 of the 40 analysed studies, resting twitch force amplitude increased following periods 462 

of immobilisation. Interestingly, greater twitch force amplitude increases were observed in 463 

those studies where a greater reduction in central drive was also evident, suggesting 464 

maintenance of contractile function in the periphery alongside a clear attenuation in the 465 

central processes.  A decrease in resting twitch amplitude was reported in the remaining 42% 466 

of studies, accompanied by lower rates of twitch force development and relaxation 467 

highlighting the detrimental effects of immobilisation on muscle contractility. Potential 468 

myofibrillar mechanisms underlying these functional changes may have included increases in 469 

intracellular calcium concentration [64], reductions in Ca2+-ATPase activity and Ca2+ uptake; 470 

decrease in protein synthesis rates [65], and increased dysfunction of myofibrillar and 471 

sarcoplasmic proteins [66]. Further investigation of the effect of immobilisation on calcium 472 

kinetics is warranted to improve understanding of the implicated cellular mechanisms. 473 

The decline in contractile function must also be considered alongside the observation across 474 

the majority of studies that central motor drive was decreased following periods of 475 

immobilisation (-0.2%d-1 pooled median value). The current analysis pointed to differential 476 

effects of immobilisation on central neural drive modulation to muscles of the upper and 477 

lower limb; the pooled lower limb median value was 0.2%d-1 loss of voluntary drive in 478 

comparison to 0.8%d-1 loss in the upper limb. The decline in central drive was also observed 479 

in parallel with decreased volitional EMG amplitude during post-immobilisation maximal 480 

contractions.  Central neural mechanisms appear to be a key component in the decline in 481 

NMF during and after limb immobilisation, especially in the upper limb. This conclusion is 482 

further corroborated by previous observations of no change or a decrease in resting 483 

membrane potential and no change in acetylcholinesterase activity in neuromuscular 484 
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junctions after 4 weeks of immobilisation [65]. As highlighted within the results section, 485 

there appears to be a wide variation in the effects of limb immobilisation on Mwave 486 

amplitude (an increase of +1.64%/d to a decrease of -3.21%/d) which is indicative of 487 

peripheral muscle excitability, which seems at least in part to be related to the different 488 

immobilisation locations and techniques employed in these studies. This makes it difficult to 489 

generate a clear conclusion or to speculate about possible underlying mechanism. Although, 490 

in line with present analysis, recent evidence of neuromuscular plasticity during 491 

immobilisation [16] and of cross-education during retraining after immobilisation [67], point 492 

to decreased corticospinal drive as a primary mechanism in the reduction in muscular 493 

function and performance. Mechanisms implicated in the degenerative effects of short term 494 

immobilisation include increased excitability of corticospinal networks (MEP and H-reflex 495 

amplitudes), intracortical inhibition (prolonged silent period) as well as interhemispheric 496 

interactions (motor irradiation).  497 

 A key finding of this review is that the greatest changes in all variables are occurring in the 498 

earliest stages of immobilisation, a finding similar to previous work investigating the effects 499 

of immobilisation on muscle protein synthesis [68]. When the relative changes in the 500 

measures of strength and NMF were plotted against the number of days of immobilisation, 501 

similar trends were found with the greatest change occurring within the first week of 502 

immobilisation.  It is important to note that this finding does not suggest that less 503 

immobilisation time elicits a greater change but that potentially the greatest rate of change is 504 

happening during the initial period of immobilisation after which the rate of change plateaus. 505 

These data also suggest a greater contribution of NMF loss to declines in strength in the 506 

initial stages of immobilisation whilst changes in muscle size dominate in the later stages. 507 

Analogously, it is well-accepted that strength gains in the early stages of resistance training 508 

are predominantly related to neural factors  as well as intracellular ionic changes (Ca2+ 509 
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accumulation; [69]) rather than muscle hypertrophy. Further investigation of the mechanisms 510 

underlying the immobilisation-induced changes in muscle size, muscle strength and NMF is 511 

warranted.   On the basis of this review and the identified magnitude and rate of change, short 512 

duration <7 day immobilisation protocols can be used to investigate strategies for attenuating 513 

the loss of strength, muscle size and NMF during and following a period of immobilisation.  514 

4.1.2 Differential Changes in Lower vs. Upper Limb 515 

Several key findings can be extracted from the comparison of immobilisation induced 516 

changes between upper and lower limbs. Firstly, strength declined in all but one study, and 517 

comparable relative change of 1.3%d-1 was found in both the lower and upper limbs. On the 518 

other hand, the rate of size loss in lower limb muscles was double that in the in the upper 519 

limbs with all methods combined (0.4 %d-1 vs. 0.2%d-1) in parallel with greater 520 

deterioration in contractile function of the lower limb muscles (decline in rate of twitch force 521 

development and relaxation changes).  In contrast, the decrease in voluntary activation and 522 

the increase in resting twitch force were higher following upper limb immobilisation. In 523 

summary, the similar declines in strength in upper and lower limb muscles were accompanied 524 

by greater reduction in central motor drive to the upper limb muscles, perhaps reflecting the 525 

greater degree of supraspinal control in the upper limbs [70]; whereas the strength loss of 526 

lower limb muscles was accompanied by greater muscle atrophy and impaired contractility, 527 

suggesting stronger impact of immobilisation on peripheral mechanisms, potentially due to 528 

the previously observed [71] anti-gravity or postural muscles i.e. the lower limb musculature 529 

with low frequency but long duration activation patterns appear to be more susceptible to 530 

unloading than the upper. 531 

 532 

4.1.3 Effect of Immobilisation Method 533 

Differential effects due to variation in methods of immobilisation can be inferred from 534 

examination of the lower limb immobilisation studies assessing fixed angle vs free joint angle 535 
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immobilisation techniques e.g. brace and cast vs. ULLS.  Immobilisation involving joint 536 

fixation resulted in a greater strength loss. Muscle strength declines in both knee extensors 537 

and plantar flexors were almost two-fold higher in studies using a fixed knee angle 538 

immobilisation method than those which used the ULLS method preserving a freely moving 539 

knee. This twofold difference in strength change was not however proportional to the 540 

differences in muscle size alterations (fixed model: -0.4%d-1 and -0.6%d-1 medians vs. free 541 

model: -0.3%d-1 and -0.4%d-1 median, upper and lower limb respectively ), which may be 542 

due to measuring the size loss across the whole group of muscles within the immobilised 543 

limb segment and disregarding the potential for differential effect size of immobilisation on 544 

muscles depending on fibre types [64] and muscle function. In a study using the ULLS 545 

method the biarticular rectus femoris muscle size loss was found to be ~50% less than that of 546 

the other monoarticular muscles of the thigh [15]. Previous work has also observed 547 

differential changes dependent on muscle length during immobilisation where muscles that 548 

are shortened degraded faster than when lengthened [66]. The choice of joint angle for 549 

immobilisation using the brace or cast method therefore appears likely to play a large role in 550 

outcomes. 551 

The choice of method and location of immobilisation significantly impacts the magnitude of 552 

muscle function but not muscle size change. Multiple joint immobilisation is likely to 553 

produce largest change in the NMF of segments consisting of both mono and biarticular 554 

muscles. The changes in individual mono and biarticular musculature within the immobilised 555 

muscle group should ideally be considered independently rather than pooled, due to the 556 

likelihood of differential change. 557 

4.1.4 Effect of participant characteristics 558 

Of the studies included, four compared outcomes in both old and young participants. For the 559 

NMF outcomes, the older participants had a greater percentage change between pre to post 560 
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immobilisation compared to the younger participants indicating a greater NMF decline. 561 

However, the data were equivocal with the differences in magnitude of strength and muscle 562 

size loss between older and young participants with both larger [35], smaller [25, 63] and 563 

identical change per day [59] in these parameters between young and old. 564 

From the studies included, two studies [27, 28] recruited and compared outcomes in both 565 

males and females, a further 15 studies recruited both males and females but did not report 566 

their findings separately for sex. The following studies recruited a mixed sex population but 567 

did not report outcome by sex. Typically, females lost more muscle strength, lost almost four 568 

times as much NMF (EMG) but lost less muscle size when compared to males.  569 

Given the paucity of literature available on the differences between young and older 570 

participants and between the sexes we would encourage future research in this area. 571 

 572 

4.2 Risk of Bias 573 

 574 

Since some aspects of immobilisation studies cannot be blinded to the participant, inevitably 575 

all studies scored poorly on this aspect of the risk of bias assessment. However, the risk of 576 

bias could have been minimised more consistently throughout all the studies had the choice 577 

of limb immobilised been randomised and the outcome analysis blinded. This latter approach 578 

may have been used but was not reported explicitly by any of the included studies.  579 

 580 

4.2.1 Data Heterogeneity  581 

An important factor with potential to influence the size of reported changes is the choice of 582 

measurement technique for NMF, especially with regard to measures based on evoked 583 

responses such as twitch force and voluntary activation. Evoked resting twitch force was 584 

reported in 15 studies, but in these studies electrical stimuli were delivered to either nerve (n= 585 

10) or muscle (n= 5) in single, doublet and triplet formats. Despite utilising the traditional 586 

twitch interpolation method for quantification of central motor drive/voluntary activation 587 
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throughout the extracted literature, some studies utilised singlet rather than doublet stimuli 588 

for eliciting twitch responses during maximal contractions. The present analysis highlighted a 589 

lack of consensus for the best evaluation technique. This methodological heterogeneity 590 

prevented a meta-analysis of the included studies being performed.  591 

The approach for measurement of muscle size also varied between studies and appears to be 592 

due mostly to techniques available to different research groups. Three different modalities 593 

were mainly employed - cross sectional muscle fibre area, imaging techniques, and 594 

anthropometric techniques. While this does not necessarily guarantee large disparities in the 595 

results, there were large differences in the application of each imaging technique. MRI was 596 

the most prevalent measurement technique within the included studies, but within this 597 

subsection (n= 11) different measurement parameters were used, such as slice thickness, 598 

number of slices and distance between slices. In some studies these parameters were simply 599 

not reported, and many authors did not provide justifiable reasoning to clarify why choices 600 

were made. The lack of reporting could be considered a cause for concern as data can be 601 

easily manipulated to suit the outcome of choice by for example reducing the number of 602 

slices. Presentation of reliability data would have alleviated some aspects of risk of bias and 603 

would be encouraged for future research in this area. It was also not clear whether the method 604 

chosen to analyse the MRI data took account of intramuscular fat and connective tissue changes 605 

which are expected to occur during immobilisation and if unaccounted for will lead to error in the 606 

estimation of muscle size. 607 

Additionally, different parameters of the outcome measurements were extracted across the 608 

included studies for data presentation. For example, some citations presented the rate of 609 

twitch force development changes as absolute values while others presented only data 610 

normalised to body weight or as %MVC without the respective pre-normalised data. This 611 

approach can elevate the risk for potential bias. Therefore, to enhance the quality of future 612 
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studies it is recommended to improve the transparency of methodological choices of 613 

measured parameters, grouping variables and normalisation procedures, in addition to 614 

reporting of absolute values and participant characteristics.  615 

4.3 Strengths and Weakness of the Review 616 

This the first systematic review of the literature on immobilisation which analyses its effects 617 

on muscle atrophy, strength and function in parallel. There is a particular focus on the role of 618 

NMF and atrophy for the resultant loss in muscle strength, and variation across immobilised 619 

limb segments and immobilisation methods. All citations were independently screened by 620 

two reviewers.  621 

Whilst the original search strategy captured most of the included citations the remainder were 622 

found in forwards and backwards citation chasing. Studies found from supplementary 623 

searching were mostly those which used the term ‘unloading/unloaded’ or did not report the 624 

method of immobilisation within their title, abstract or keywords.  625 

Studies that interrupted the immobilisation for taking measurements and those in which post 626 

intervention measures were taken 24 hours after the removal of immobilisation method were 627 

excluded from the analysis. Where available, the earliest non-interrupted results were 628 

extracted and reported. This approach of excluding a number of studies completely or using 629 

only partial data from immobilisation interruptions was undertaken to minimise potential for 630 

skewing the presented findings. 631 

Decisions regarding study or data inclusion and exclusion were, in some instances, extremely 632 

challenging and it was not always possible to separate groups or participants within each 633 

study. Studies that involved control groups were often poorly reported, making it difficult to 634 

exclude their results from those of the intervention group. Future studies should explicitly 635 

report the methods, grouping variables (including clear participant characteristics for each 636 

sub group), and data manipulation procedures and clearly state any previously published links 637 
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between papers, particularly if the data reported are utilising the same participants for 638 

example in the case of the group of studies represented by Hvid et al. 2014 [63]. 639 

A limitation, as with all systematic reviews, is publication bias or the selective publication of 640 

studies with positive findings. This may result in a distortion of the overall conclusions of any 641 

systematic review due to lack of access to data from non-published studies that typically 642 

report non-significant or dissentient findings.  643 

5 Conclusions and Implications 644 

In conclusion, following periods of segmental limb immobilisation, isometric muscular 645 

strength, muscle size and NMF decrease. The magnitude of muscle strength loss is greater 646 

than muscle atrophy in the first few days of immobilisation, and loss of contractility (lower 647 

limb) and voluntary activation (upper limb) are important contributing factors especially in 648 

early stages of immobilisation. Strength loss is similar between the upper and lower limbs 649 

while size loss is twice as great in the lower limbs. Fixed joint methods of immobilisation are 650 

associated with greater changes in strength and NMF than methods allowing free joint 651 

movements. Only 10% of the included studies investigated the effects of immobilisation for 652 

less than 7 days although the results indicate that this is the period in which the largest rate of 653 

change in all outcome measures occurs. Models using shorter durations would allow better 654 

understanding of the adaptations to immobilisation and of the role that different mechanisms, 655 

in particular that underlying NMF, play in the rapid decline in muscle strength during 656 

immobilisation.  657 
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Figure 2- Summary of immobilisation methods and body segments; NR = not reported 
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Figure 3 Summary of methods used in the studies to evaluate neuromuscular function; EMG – electromyography; NR – Not reported 
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