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Abstract

Based on an expert systems approach, the issue of community detection can be

conceptualized as a clustering model for networks. Building upon this further, com-

munity structure can be measured through a clustering coefficient, which is generated

from the number of existing triangles around the nodes over the number of triangles

that can be hypothetically constructed. This paper provides a new definition of the

clustering coefficient for weighted networks under a generalized definition of triangles.

Specifically, a novel concept of triangles is introduced, based on the assumption that,

should the aggregate weight of two arcs be strong enough, a link between the uncom-

mon nodes can be induced. Beyond the intuitive meaning of such generalized triangles

in the social context, we also explore the usefulness of them for gaining insights into

the topological structure of the underlying network. Empirical experiments on the

standard networks of 500 commercial US airports and on the nervous system of the

Caenorhabditis elegans support the theoretical framework and allow a comparison

between our proposal and the standard definition of clustering coefficient.

∗Corresponding author.
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1 Introduction

Networks represent an effective methodological device for modeling the main features of

several complex systems (see Albert and Barabasi, 2002, Newman, 2003). This paper

builds on such a premise by focusing on the tendency of nodes in a network to cluster, i.e.

the link formation between neighboring vertices (see Watts and Strogatz, 1998) leading to

the identification of the local groups cohesiveness. Such a theme is of paramount relevance

in that it allows one to assess the community structure of a group of interconnected units

(Bianconi et al., 2014). In this respect, we are in accord with Liu and Juan Ban (2015), who

state that, in agreement with the expert systems perspective, the problem of community

detection can be dealt with as a clustering model for networks. This explains also why

community detection is nowadays at the core of most discourse surrounding social networks

(see e.g. Arcagni et al., 2017, Benati et al., 2017, Duch and Arenas, 2005, Yang et al.,

2017).

One of the most acknowledged and employed measures for assessing the tendency of

vertices to cluster is the local cluster coefficient (see Wasserman and Faust, 1994). Such a

quantity has been extensively studied by several authors and applied in different networks

(see Opsahl, 2013; Wasserman and Faust, 1994, Watts and Strogatz, 1998, Zhang et al.,

2008). It captures the degree of social embeddedness of the nodes in a network and

is based on local density (see Soffer and Vazquez, 2005). Indeed, especially in social

networks, vertices tend to create tightly knit groups that are characterized by a relatively

high density of links (see Scott, 2000).

The clustering coefficient assesses the connectivity of node neighborhoods; a node

having a high value of clustering coefficient tends to be directly connected with well-

established communities of nodes (see e.g. Clemente et al., 2017, Costantini and Perugini,

2014). Clustering coefficient is relevant when determining the small-world property of a

network (Humphries and Gurney, 2008) and can be considered as an index of the redun-

dancy of a node (Borgatti, 1997, Latora et al., 2013). In the context of weighted networks,
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the clustering coefficient has been analyzed in Grinrod (2002), Onnela et al. (2003, 2005),

Barrat et al. (2004a), Zhang and Horvath (2005) and Opsahl and Panzarasa (2009), as

reported in Section 4.

The weighted framework is of paramount relevance, in that the analysis of the weights

along the edges and their correlations is able to provide a description of the hierarchical

and structural organization of the systems. This is evident if we consider, as an example,

a network in which the weights of all links forming triangles of interconnected vertices

are extremely small. In this case, even for a large clustering coefficient, these triangles

play a minimal role in the network dynamics and organization, and the clustering features

are certainly overestimated by a simple structural analysis (see Barrat et al., 2004a).

Also, vertices with high degree can be attached to a majority of low-degree nodes whilst

concentrating the largest portion of their strength only on the vertices with high degree. In

this situation, the topology reveals a disassortative characteristic of the network, whereas

the system could be considered assortative since the more relevant edges in terms of weights

are linked to the high-degree vertices (see Leung and Chau, 2007).

Despite several measures being proposed for the local and global clustering coefficients,

they are all only able to capture the clustering of ego networks or the overall statistics

regarding the network (see e.g. Berenhaut et al., 2018, Phan et al., 2013). An ego is a

focal individual and the ego network is composed of the nodes directly connected to him

(also called alters) and the links among him and others (see e.g. Biswas and Biswas, 2013).

Thus, in this paper we are interested in two relevant cases. In the first, the ego is

connected to two alters not mutually connected and we aim to understand if the strength

of the connections with the ego is strong enough to induce a certain level of interaction as

can be found when they are connected.

In the second, the alter of an alter is not directly connected to the ego. Also in this case,

we advance the proposal that the strength of the existing connections induces interactions

between the ego and the alter of the alter.

It is worth noting that all the considered aspects can be interpreted in the context of

link formation as reasonable premises. Link prediction is relevant in that it attempts to

estimate the likelihood of a link existing between two vertices based on observed links and
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the attributes of nodes (see Adamic and Adar, 2003). Such a prediction can be used to

analyze a network to suggest promising interactions or collaborations that have not yet

been identified, or is related to the problem of inferring missing or additional links that,

while not directly visible, are likely to exist (see Liben-Nowell and Kleinberg, 2007, Lü

and Zhou, 2010).

The specific aim of this paper is to introduce a novel definition of a generalized cluster-

ing coefficient by including also the triples of the two cases presented above. In so doing,

our concept of community captures the weighted network’s propensity for close triples.

Moreover, this measure is also useful for predicting the fictitious links that may appear in

the future of evolving networks.

Our generalized clustering coefficient has a further relevant property: it assumes uni-

tary value not only when the graph is a clique, but in a number of different situations.

Specifically, the community structure of the network is intended to include also the realis-

tic cases of the presence of indirect connections among two agents induced by their strong

links with a third node.

The ground of our study is quite intuitive. Indeed, in the context of community

structure of weighted networks, there is evidence that strong enough connections among

two individuals are prone to creating triangles among their neighborhood. Formally, this

means that it is possible to introduce a threshold for stating when the weight of a link

can be defined as strong enough. We reasonably take that the larger the threshold, the

stronger the link.

In this respect, as we will see below in the formalization of our setting, null thresholds

mean no constraints – and all the two-sided figures can be viewed as triples – while a large

value of the thresholds is associated to very restrictive constraints – and a small number

of two-sided figures will be accepted as triples.

It is very important to note that the case of zero thresholds gives further insights into

the topological structure of the unweighted graph associated to the network. We direct the

reader to the empirical analysis section for an intuitive explanation of this point. In this

regard, we have also implemented a comparison between our definition and the standard

clustering coefficient for weighted networks.

4



Based on such a perspective, this paper also implements a wide computational analysis

to explore the reaction of the proposed clustering coefficient to threshold variations.

The paper is structured as follows. Section 2 outlines the motivations – based also on

real-world applications – behind the present study and the novel definition of clustering

coefficient. Such a motivating discussion is proposed before the formal definition to im-

mediately convince the reader of the usefulness of the presented scientific proposal. For

some more formal insights on the generalized clustering coefficient and on the generalized

triangles, please refer to Section 5, where a detailed discussion of definitions and concepts

is carried out. Section 3 is devoted to the outline of certain relevant preliminaries and the

employed notations about the graph theory. Section 4 contains a review of the literature

on the clustering coefficient in both cases of weighted and unweighted networks. Section

5 introduces and discusses the proposed definition of generalized clustering coefficient and

generalized triples, along with the related interpretation. Section 6 focuses on the com-

putational experience of two empirical networks: the network among the 500 commercial

airports in the United States and the nervous system of the nematode Caenorhabditis

elegans. The final section offers some conclusive remarks and outlines directions for future

research.

2 Motivation for the generalized clustering coefficient and

real-world applications

One of the major fields of study in the empirical investigation of networks is the uncover-

ing of subgroups of nodes according to a given criteria. Such subgroups, or communities,

are interesting since they can help to understand a wide variety of possible group organi-

zations, and they occur in networks in biology, computer science, economics, politics and

more (Fortunato, 2010, Girvan and Newman, 2002, Wang and Chen, 2003). Recently,

community discovery has been used in social media, such as in Xie et al. (2012), where

authors propose a community-aware approach to constructing resource profiles via social

filtering, in Zhuang et al. (2015), where communities are discovered from social media by

low-rank matrix recovery, and in Yang et al. (2017), where communities are studied by

means of the network’s internal structural properties.

5



common 
interest

common
interest

common
interest

common
interest

ego i ego i

alter j alter j

alter k alter k

Figure 1: Two different schemes of relationships based on mutual common interests, from

an ego and its ego network (left) and from an ego and a path of length 2 (right).

The behavior of nodes is often highly influenced by the behavior of their neighbors

or community members (Fortunato, 2010, Xie et al., 2014). From this point of view, the

clustering coefficient is one of the main measures used to understand the level of cohesion

around a node.

The generalized concept of clustering coefficient presented here describes community

structures which are not established, but are indirectly induced by strong cooperations

among the formally linked nodes. More specifically, the existence of a powerful link be-

tween two nodes is assumed to be able to form the connection between nodes that are

disconnected but adjacent to the considered ones.

In this respect, social motivations from the perspective of a single node (ego) support

the study of the proposed generalized clustering coefficient. In particular, the knowledge

for two alters of a common ego increases the opportunities for them to meet since they

could be engaged in similar interests, which would ultimately provide a basis for them to

trust one another (see Easley and Kleinberg, 2010). Moreover, social psychology suggests

that an ego has an incentive to connect to its alters in order to reduce its isolation (see

Heider, 1958). An ego might also be interested in connecting to its neighbors for proximity

reasons, taking into consideration the shortest path distance between them (Berenhaut et

al., 2018).
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Here, we also consider the possibility of having an indirect connection of an ego with

an alter of one of its alters. Therefore, we consider two forms of engagements between an

ego and various alters, as shown in Figure 1. More details on the figure will be given in

Section 5.3.

The perspective adopted here represents the basis for several real-world cases. For

example, in Holme et al. (2007), affiliation networks allow one to observe the connections

among individuals indirectly, i.e. not through directly observed social interactions, while

in Berenhaut et al. (2018), a new measure of the clustering coefficient is proposed, with

applications in the study of segregation and homophily. Finally, in biology, gene expression

data can be studied with the weighted clustering coefficient in order to reveal differences

between normal and tumour networks (see Kalna and Higham, 2007).

It is also worth mentioning how the concepts of triples introduced here could relate to

the issue of link formation. Indeed, the presence of a strong connection between two units

would probably induce cooperation also among the units connected with those considered

in the near future. In this regard, link creation was studied from the perspective of the

clustering coefficient. We mention Kossinets and Watts (2009), where authors investigate

the origins of homophily and tie formation by means of triadic closures and proximity, and

Phan et al. (2013), where a new method for triple estimation is presented.

3 Preliminaries and notations about graph theory

For the convenience of the reader, we shall now provide some preliminaries and notations.

The classical mathematical abstraction of a network is a graph G = (V,E), where V is the

set of N nodes (or vertices) and E is the set of M links (or edges) stating the relationships

among the nodes. We refer to a node by an index i, meaning that we allow a one-to-

one correspondence between an index in {1, . . . , N} and a node in V . The set E can be

conceptualized through the adjacency matrix A = (aij)i,j=1,...,N , whose generic element

aij is 1 if the link between i and j exists and 0 otherwise. The graph is undirected when

aij = aji, for each i, j = 1, . . . , N , and directed otherwise. The degree di of the node i is

a nonnegative integer representing the number of links incident upon i.

In this paper, we examine weighted networks, and we refer to a weighted adjacency
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matrix W whose elements wij ≥ 0 represent the weights on the link connecting nodes i

and j, with i, j = 1, . . . , N . Clearly, wij = 0 stands for absence of a link between i and j.

Thus, wij denotes the intensity of the interactions between two nodes i and j and allows

for the modeling of the ties’ strength of the observed system.

4 Literature review on the clustering coefficient for unweighted

and weighted networks

4.1 Unweighted networks

The local clustering coefficient can be defined for any vertex i = 1, . . . , N and captures

the capacity of edge creations among neighbors, i.e. the tendency in the network to

create stable groups (see Watts and Strogatz, 1998). Thus, the cohesion around a vertex

i is quantified by the local clustering coefficient Ci defined as the number of triangles ti in

which vertex i participates normalized by the maximum possible number of such triangles:

Ci =
2ti

di(di − 1)
. (1)

The local clustering coefficient quantifies how a node takes part in a cohesive group.

Therefore, Ci = 0 if none of the neighbors of a node are connected and Ci = 1 if all of the

neighbors are linked.

The value of the local clustering coefficient is influenced by the nodes degrees. A node

with several neighbors is likely to be embedded in fewer closed triangles; hence, it has a

smaller local clustering coefficient when compared to a node linked to fewer neighbors,

where they are more likely to be clustered in triangles (Barabasi, 2016).

The clustering coefficient for a given graph is computed in two classical modes (see

Newman, 2003). The first is the averaged clustering coefficient C, given as the average of

all the local clustering coefficients, while the second, called the global clustering coefficient

and denoted by CG, is defined as the ratio among three times the number of closed triangles

in the graph and the number of its triples, i.e. the number of 2-paths among three nodes.

Note that both C and CG assume values from 0 to 1 and are equal to 1 in case of a

clique, i.e. a fully coupled network. In real networks, the evidence shows that nodes are
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inclined to cluster into densely connected groups (Ferraro and Iovanella, 2017, Wang and

Chen, 2003) and the difficulty of comparing the values of clustering nodes with different

degrees makes the average value of local clustering sensitive to the way in which degrees

are distributed across the whole network.

The quantities C and CG are specifically tailored to unweighted networks, and they

cannot be satisfactorily employed to describe the community structure of the network in

the presence of weights on links and when arcs are of the direct type.

The next section is devoted to the analysis of the more general weighted cases.

4.2 Weighted networks

In many real networks, connections are relevant not only in terms of the classical binary

state – whether they exist or do not exist – but also with regards to their strength which,

for any node i = 1, . . . , N , is defined as:

si =
N∑
j=1

wij . (2)

The introduction of weights and strengths extends the study of the macroscopic prop-

erties of the network by adding some forms of entity of connections and capability to

the mere interactions. In particular, the strength integrates information about the vertex

connectivity and the weights of its links (Barrat et al., 2004a). It is considered a natural

measure of the importance or centrality of a vertex i. Indeed, the identification of the most

central nodes represents a major issue in network characterization (see Freeman, 1977).

In Barrat et al. (2004a), the authors combine the topological information of the net-

work with the distribution of weights along links, and define the weighted clustering coef-

ficient for a node i = 1, . . . , N as follows:

C̃i,B =
1

si(di − 1)

∑
j,k∈V

wij + wik

2
aijajkaik. (3)

This coefficient is a quantity of the local cohesiveness, which considers the importance

of the clustered structure by taking into account the intensity of the interactions found on

the local triangles. This measure counts, for each triangle created in the neighborhood of

the node i, the weight of the two related edges. The authors refer not to the mere number
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of the triangles in the neighborhood of a node but also to their total relative weight with

respect to the strength of the nodes.

The normalization factor si(di − 1) accounts for the strength si and the maximum

possible number of triangles in which the node i may participate, and it ensures that

0 ≤ C̃i,B ≤ 1. The definition of C̃i,B recovers the topological clustering coefficient in the

case where wij is constant, for each j.

Therefore, the authors introduce the weighted clustering coefficient averaged over all

nodes of the network, say CW , and over all nodes with degree d, say CW (d). These

measures offer global information on the correlation between weights and topology by

comparing them with their topological analogs.

Note that si = di(si/di) = di〈wi〉, so C̃i,B can be written as:

C̃i,B =
1

di(di − 1)

∑
j,k∈V

wij + wkj

2〈wi〉
aijajkaik (4)

where 〈wi〉 =
∑

j wij/di. In such equation the contribution of each triangle is weighted

by a ratio of the average weight of the two adjacent links of the triangle to the average

weight 〈wi〉.

Thus, C̃i,B compares the weights related with triangles to the average weight of edges

connected to the local node.

Zhang and Horvath (2005) describe the weighted clustering coefficient in the context

of gene co-expression networks. Unlike the unweighted clustering coefficient, the weighted

clustering coefficient is not inversely related to the connectivity. Authors show a model

that reveals how an inverse relationship between the clustering coefficient and connectivity

occurs from hard thresholding. In formula:

C̃i,Z =

∑
j,k∈V ŵijŵjkŵik

(
∑

k∈V ŵik)2 −
∑

k ŵ
2
ik

(5)

where the weights have been normalized by max(w). The number of triangles around the

node i can be written in terms of the adjacency matrix elements as ti = 1/2
∑

i,k∈V aijajkaik

and the numerator of the above equation is a weighted generalization of the formula. The

denominator has been selected by considering the upper bound of the numerator, ensuring

C̃i,Z ∈ [0, 1] . The equation (5) can be written as:
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C̃i,Z =

∑
j,k∈V ŵijŵjkŵik∑
j,k∈V :j 6=k ŵijŵik

(6)

In Grindrod (2002), a similar definition has been shown; indeed, the edge weights are

considered as probabilities such that in an ensemble of networks, i and j are linked with

probability ŵij . Finally, Holme et al. (2008) discuss the definition of weights and express

a redefined weighted clustering coefficient as:

C̃i,H =

∑
j,k∈V wijwjkwik

max(w)
∑

j,k∈V wijwik
=

W3

(WWmaxW)ii
(7)

where Wmax indicates a matrix where each entry equals max(w). This equation seems

similar to those in Zhang and Horvart (2005), though, j 6= k is not required in the

denominator sum.

Onnela et al. (2003, 2005) refer to the notion of motif, defining it as a set (ensemble)

of topologically equivalent subgraphs of a network. In cases of weighted systems, it is

necessary to deal with intensities rather than numbers of occurrence. Moreover, the latter

concept is considered as a special case of the former one. For the authors, the triangles are

among the simplest nontrivial motifs and have a crucial role as one of the classic quantities

of network characterization in defining the clustering coefficient of a node i. They propose

a weighted clustering coefficient taking into consideration the subgraph intensity, which is

defined as the geometric average of subgraph edge weights. In formula:

C̃i,O =
2

di(di − 1)

∑
j,k∈V

(ŵijŵikŵjk)1/3 (8)

where ŵij = wij/maxj∈V (wij) are the edge weights normalized by the maximum weight

in the network of the edges linking i to the other nodes of V .

Formula (8) shows that triangles contribute to the creation of C̃i,O according to the

weights associated to their three edges. More specifically, C̃i,O disregards the strength of

the local node and measures triangle weights only in relation to the maximum edge weight.

Moreover, C̃i,O collapses to Ci when, for each i, j ∈ V , one has wij = aij , and is thus

in the unweighted case.
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5 The generalized clustering coefficient

This section contains our proposal for a new definition of the clustering coefficient of

weighted networks. Based on a novel concept of triangles, this definition includes the

presence of real indirect connections among individuals. For our purpose, we first provide

and discuss the definition of the triangles, and then we introduce the clustering coefficient.

5.1 Generalized triples

Here, we propose a generalization of the concept of triangle, and rewrite accordingly the

coefficient Ci in (1) for the case of weighted networks.

Definition 5.1 Let us consider a weighted non-oriented graph G = (V,E) with vertices

V = {1, . . . , N}, symmetric adjacent matrix A = (aij)i,j=1,...,N and weight matrix W =

(wij)i,j=1,...,N , with nonnegative weights. Moreover, let us take α, β ∈ [0,∞) and a function

F : [0,+∞)2 → [0,+∞) which is not decreasing in its arguments.

For each triple of distinct vertices i, j, k ∈ V , a subgraph t = ({i, j, k}, ET ) is a gen-

eralized triangle (or, simply, a triangle) around i if one of the following conditions are

satisfied:

T1 aij = aik = ajk = 1;

T2 aij = aik = 1, ajk = 0 and F (wij , wik) ≥ α;

T3 aij = ajk = 1, aik = 0 and F (wij , wjk) ≥ β.

Herein we denote the elements of types T2 and T3 as triples since they are not really

triangles since they are not contained in G. They can be seen as a generalization of

triangles by including the missing side, which is induced by conditions on the weights of

the two existing edges.

We denote the set of generalized triangles associated to case Th as T (i)
h , for h = 1, 2, 3.

By definition, T (i)
1 ∩ T (i)

2 = T (i)
1 ∩ T (i)

3 = T (i)
2 ∩ T (i)

3 = ∅. We denote the set collecting all

the triangles by T (i) = T (i)
1 ∪ T (i)

2 ∪ T (i)
3 .

Figure 2 reports the three different type of triangles, respectively T1, T2 and T3. Clearly,

in the case of T1, the concept of triangle given in Definition 5.1 coincides with the standard
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Figura 1: Grafo.
Figure 2: Types of triangles: T1 (left), T2 (center), T3 (right).

one.

Note that withN nodes, the maximum number of possible triangles is |T1|∗ = max |T1| =(
N
3

)
. This is the case of a clique with Ci = 1, for each i ∈ V .

When considering the maximum number of candidates triangles for a node i to belong

to T2, it is |T (i)
2 |∗ = max |T (i)

2 | =
(
di
2

)
. Then, in this case for the node i the number of

triples is |T (i)
2 | = |T

(i)
2 |∗ − |T

(i)
1 |.

Triples in T3 for node i are the paths of length 2, which can be computed by considering

the square of the adjacency matrix. Indeed, the number of different paths of length 2 from

i to k equals the entry aik of A2 (see Rosen, 2012). For a given row i of A2, the sum of

the element (excluding the element aii) equals the maximum potential number of triples

of type T3.

Figure 2 shows the types of triangles, without emphasis on the conditions on the

weights.

5.2 Conceptualization of the generalized clustering coefficient

Under Definition 5.1, we can introduce a generalization of the clustering coefficients pre-

sented in Formula (1) for weighted networks.

Definition 5.2 Given a graph G = (V,E) and a node i ∈ V , the generalized unweighted

clustering coefficient of i is

C
(g)
i =

|T (i)|
Di

(9)

where Di = di(di−1)
2 +|{j ∈ V : ∆min(i, j) = 2}|, where ∆min(i, j) is the minimum distance

between the nodes i and j.
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The term unweighted in Definition 5.2 points to the absence of w’s in the coefficient

in (9). However, weights intervene in the identification of the triangles, according to

Definition 5.1. In particular, formula (9) extends (1). As an example, notice that C
(g)
i = Ci

in the clique case.

5.3 Implications of the generalized clustering coefficient and equivalent

graphs

The classical local clustering coefficient Ci not only captures the proportion of closed triples

on all possible triples depending on the degree of the ego/node i, but it also identifies its

level of cohesion. While the averaged clustering coefficient C captures the whole level of

network cohesion.

The proposed generalized clustering coefficient extends the same setting also to the

triples in T2 and T3, i.e. it is the proportion of triangles of type T1, T2 and T3 on all

possible triangles. This process depends not only on the degree of the ego but also on the

two thresholds α and β, which take into account the strength profile around the ego, and

thus have the possibility of creating triangles T2 and T3.

The values of the generalized clustering coefficient are 0 ≤ C
(g)
i ≤ 1 as well as for

the averaged measure C(g) and differ from the usual measure because they depend on the

thresholds α and β.

Importantly, C
(g)
i assumes unitary value not only in the clique case, but also when

any missing link is compensated by the high weights of the other two links, i.e. when

simultaneously α < F (wij , wik),∀i, j, k and β < F (wij , wjk), ∀i, j, k. This property of the

generalized clustering coefficient is very relevant, since it allows one to extend the sense of

community given by the classical clustering coefficient to the case of indirect links being

present, as seen in the definition of triples T2 and T3.

The triples T2 and T3 can be described as follows (see Figure 1). The former describes

a situation in which an ego i has a direct relationship with alters j and k. One can say

that there exists a triangle among the three if the strength of the connections of i with

the others is sufficiently high – in the sense described by function F . The idea is that

the cooperation and/or the common interests between i and the alters is so effective and
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fruitful that the presence of a direct link between j and k is not required.

The latter case is associated to the presence of a strong link between i and j and

between j and k, always in terms of the entities of the weights – in the sense described by

function F . In this peculiar situation, the node j represents the intermediate alter letting

also the (indirect) collaboration between i and k be possible.

Finally, the thresholds have a double meaning. In fact, if we consider a network in

which interactions between alters could be facilitated, an external decision-maker could

implement policies aiming to define the correspondent values of α and β low. For example,

in the case of inter-organizational innovation networks, the presence of triangles is posi-

tively related to the establishment of stable groups, as well as to the amount of produced

efforts, the straightening of transitive relationships and the innovation capacity (see Choi

et al., 2010, Ferraro and Iovanella, 2017).

On the other hand, if a decision-maker were to prevent interactions among alters, the

policies with correspondent values α and β could be deemed sufficiently large. Such an

instance can be found in the prevention of community formation in criminal organizations

(see Ferrara et al., 2014, Mahn and Bichler, 2011).

5.3.1 Equivalent graphs

Triangles T1, T2 and T3 also serve in deriving topological information from the graph. In

particular, assume that α = β = 0, so that the number of T2 and T3 around each node does

not depend on the specific selection of function F . In this case, we know that |T (i)
2 | =

(
di
2

)
,

meaning we are able to infer the degree of the node i by the knowledge of the number of

triangles of type T2 around it. Conversely, |T (i)
3 | represents the number of existing paths

of length 2 having i as one of the extreme nodes. By collecting the number of the triangles

T1, T2 and T3 for each node of the graph, we are able to identify a class of graphs.

Formally, consider a 3 × N matrix collecting |T (i)
1 |, |T

(i)
2 | and |T (i)

3 |, for each node

i ∈ V . Denote byM3,N (N) the set of all the matrices with dimension 3×N and filled by

integer nonnegative numbers.

Thus, each matrix M ∈M3,N (N) identifies a non-unique graph that has N nodes and

edges described by M. We refer to such a matrix as the triangles matrix. In this sense,

M can be viewed as an equivalent class in the set of the graph with N nodes, where two
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Figure 3: Two equivalent graphs, according to the equivalence defined through the trian-

gles matrix. In this case, the triangles matrix M associated to the graphs is given in Table

1.

node i |T (i)
1 | |T

(i)
2 | |T

(i)
3 |

1 0 0 3

2 0 0 3

3 0 0 3

4 0 5 1

5 0 1 6

6 0 5 1

7 0 0 3

8 0 0 3

9 0 0 3

Table 1: Triangles matrix M associated with the graphs in Figure 3.

graphs G1 and G2 are said to be equivalent when they share the same matrix M.

Figure 3 and the matrix in (1) provide an example of two equivalent classes, along

with their common triangles matrix M. In particular, notice that matrix M is the same

for the two considered graphs, thus suggesting that the equivalent class identified by M

contains more than one graph.

6 Applications

Herein we considered the analysis of the generalized clustering coefficient on two empirical

networks: the network among the 500 busiest US commercial airports (Colizza et al., 2007)

and the nervous system of the nematode Caenorhabditis elegans (Watts and Strogatz,

1998, White et al., 1986). The data processing, the network analysis and all simulations

were conducted using the software R (R Core Team, 2014) with the igraph package (Csardi

16



Symbol Meaning

ti Triangles around node i.

Th Triples of type h = 1, 2, 3.

T (i)
h Set of triples of node i associated to case Th, for h = 1, 2, 3.

|T (i)
h | Cardinality of the set T (i)

h

Fi Function of type i = 1, 2, 3, 4.

α Threshold for triples T2

β Threshold for triples T3

Ci Local clustering coefficient

C Averaged clustering coefficient

CG Global clustering coefficient

C
(g)
i Generalized clustering coefficient

Table 2: Table of notation.

and Nepusz, 2006). The datasets were obtained from the R packege tnet, authored by

Opsahl (2012). Code in the R programming language is available upon request.

For the sake of readability we report in Table 2 the notations used hereafter.

6.1 General settings

In the empirical experiments, we consider four cases of function F :

F1 sum of the weights is greater than the correspondent coefficient: wij + wik ≥ α and

wij + wjk ≥ β;

F2 average of the weights is greater than the correspondent coefficient: (wij+wik)/2 ≥ α

and (wij + wjk)/2 ≥ β;

F3 minimum of the weights is greater than the correspondent coefficient: min{wij , wik} ≥

α and min{wij , wjk} ≥ β;

F4 maximum of the weights is greater than the correspondent coefficient: max{wij , wik} ≥

α and max{wij , wjk} ≥ β.

The selection of the specific function F – to be implemented among F1, . . . , F4 defined

above – provides further insights into the interpretation of the triples of type T2 and

17



T3. Indeed, once α and β are kept fixed, then F1 and F2 state that both weights of the

considered edges should be taken into account in an identical way by considering their

mere aggregation in the former case or their mean in the latter one. When considering

functions F3 and F4, only one of the weights is relevant for the measurement of the strength

of the connections – the minimum weight and the maximum one, respectively. Naturally,

the former case is more restrictive than the latter one, since it implicitly assumes that

both weights should be greater than α or β for having a triples of type T2 or T3.

Social sciences suggest other functions F ’s to be considered in Definition (5.1) to

capture certain peculiarities of the system under observation. Notice also that |T (i)
2 | and

|T (i)
3 | are not increasing functions of α and β, respectively, as Definition (5.1) implies.

For the simulations, the value of α and β are α, β = {0, 250000, 500000, 750000, 1000000,

1250000, 1500000, 1750000, 2000000, 2225000} for the US airports network and α, β =

{0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70} for the C.elegans network. The max val-

ues were chosen on the ground that function F1 could possibly be true also when consider-

ing arcs with the higher weights. As such, 10 runs were implemented for each considered

value. Thus, we performed 100 computations for the US airports network and 150 com-

putations for the C.elegans network.

According to Definition (5.1), T (i)
2 and T (i)

3 , i.e. the triangles for every node in a

network, can be computed considering α = 0 and β = 0. Concerning the sets T (i)
1 , such

triangles can be easily computed by a built-in function in igraph.

6.2 Analysis of the US commercial airports network

The US commercial airports network has n = 500 nodes denoting airports and m = 2980

edges representing flight connections. In this network, weights are the number of seats

available on that connections in 2010. The network has both small-world and scale-free

organization with γ ' 1.8 (Barrat et al., 2004b).

In Figure 4 (left) we show the network visualization, while Table 3 reports some ba-

sic measures: the density δ, the averaged clustering coefficient C, the global clustering

coefficient CG and the minimum, maximum and average degree, weight and strength.

In Figure 5 (left) we report the strength distribution for this network, with the strength

18



Network δ C CG kmin kmax d

US airports 0.0239 0.617 0.351 1 145 11.92

C.elegans 0.0314 0.228 0.121 1 134 9.26

Network wmin wmax w smin smax s

US airports 9 2253992 152320.19 9416 49316361 1815656.66

C.elegans 1 61 4.198 1 1700 38.86

Table 3: Basic measures for the networks under analysis.

si as the sum of the weights of the links incident on i, while Figure 6 (left) uses a histogram

to display the weights.
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Figure 4: Network visualization for the US airports (left) and C.elegans (right).

Functioning as an example, Figure 7 shows the arcs composing the triples in T (488)
2

and in T (488)
3 for the neighborhood of order 2 of node n = 488, i.e. its 2-step ego network.

Such a node has a degree d488 = 5, a second order neighborhood of cardinality 18 and a

local clustering coefficient C488 = 0.5, because 5 triangles are closed out of a theoretical

10.

Thus, |T (488)
2 | = 5 while triangles in T (488)

3 are computed obtaining |T (488)
3 | = 22. Note

that the blue arcs in the right panel of Figure 7 are 18(< 22) because some arcs can be

mentioned twice in the set, since arc (i, k) can derive from i → j → k as well as from

i→ l→ k.
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Figure 5: Strength distributions for the US airports (left) and C.elegans (right) networks.
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Figure 6: Histogram displaying weights for US airports (left) and C.elegans (right) net-

works.

The generalized clustering coefficient has value C
(g)
488 = 0.0632, which is much lower

than C488 since the proportion of closed triangles when α = 0 and β = 0 is smaller than

the basic setting.

Figure 8 for the US airports network reports three curves for each node: the total

number of triangles |T (i)
1 |, the number of potential triples of type |T (i)

2 | and the number

of potential triples of type |T (i)
3 |. Figure 9 compares the degree di and the local clustering

coefficient Ci for each node i. Note that nodes in the US airports network are enumerated

in non-increasing order of their degree and the nodes with indices until i ' 100 have

values of degree and clustering coefficient, which allow for a large number of triples T2 and

a significant number of triples T3. Then, when the degree decreases and the local clustering

20
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Figure 7: 2−step ego network of node n = 488 of the US airports network and triples

T (488)
2 (left) and T (488)

3 (right).

coefficient increases, the local neighborhoods preclude the formation of triangles.

Figure 10 shows the averaged values of the generalized clustering coefficient C
(g)
i for

the US airports network when considering the four different functions F1, F2, F3 and F4. In

each figure, the values are presented for every combination of α and β while the horizontal

axis reports the values of C
(g)
i as averaged over every node in the network. As expected,

higher values of C
(g)
i are obtained for lower values of α and β and, globally, we have a

non-increasing trend with a higher slope for functions F2 and F3 since the average and the

min functions smooth the values, thus indicating that the functions are true only for small

values of weights. Regarding F1 and F4, they are more prone to being true for higher

values of arc weight, meaning the slope declines at slower rate.

A common behavior for all four cases is that the magnitude of C
(g)
i is more dependent

on triples T2 than those in T3. This is due to the tendency of high-degree nodes to have a

higher strength. Therefore, the functions are more prone to being true for triples T2 than

for triples in T3 since the adjacent links could possibly lie in a low-degree node with a low

value of strength.

In order to study the evolution of the generalized clustering coefficient C
(g)
i when vary-

ing α and β, we provide a series of diagrams in which, for the network under examination,

the density of the C
(g)
i values are reported when considering fixed values of α = 0 or β = 0
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Figure 8: US airports. Comparison between the number of triangles T1, the number of

potential triples T2 and the number of potential triples T3.
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Figure 9: US airports. Comparison between local clustering coefficient (blue points),

degree (red points) and strength (green points).
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Figure 10: US airports: Average values of C
(g)
i for cases F1 (upper left), F2 (upper right),

F3 (lower left) and F4 (lower right).

and when the other thresholds varing.

In particular, for the network under observation, Figure 11 shows different density

values for each α when β = 0, and Figure 12 shows each β when α = 0. All the figures

also report the density values of the local clustering coefficient Ci (colored in light green).

When β = 0 (see Figure 11) we can observe the contribution of triples in T2 to C
(g)
i .

The density of C
(g)
i is more concentrated around the max value 1 when α = 0; however,

when α starts to grow the values shift closer to 0.

For α = 0, Figure 12 highlights that C
(g)
i receives a small contribution from triples in

T3 and the values lay around 0 as soon β grows.

The density of Ci shows that values are concentrated mainly around 0 and 1, mean-

ing that many airports have a single connection with another airport or have a strong
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Figure 11: US airports. Density of C
(g)
i for different values of α when β = 0 for cases F1

(upper left), F2 (upper right), F3 (lower left) and F4 (lower right).
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Figure 12: US airports. Density of C
(g)
i for different values of β when α = 0 for cases F1

(upper left), F2 (upper right), F3 (lower left) and F4 (lower right).
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cohesive structure. When studying C
(g)
i it is possible to infer that some airports with a

single connection with a common node have weight profiles that involve a certain level of

interaction for a given threshold. For example, for low values of α passengers from or to

airports j and k often use connection i, thus suggesting the establishment of a direct and

intended connection between the two airports. This is not true when considering triples

in T3; here the analysis suggests that a direct connection among i and k is less useful and

passengers still prefer to fly by j.

6.3 Analysis of the C.elegans network

The network of nematode Caenorhabditis elegans (C.elegans) has n = 296 nodes repre-

senting neurons and m = 1370 edges occurring when two neurons are connected by either

a synapse or a gap junction; for each edge, weights are equal to the number of junctions

between nodes i and j. The network has a scale-free organization with γ ' 3.14 (Barabasi

and Albert, 1999, Varshney et al., 2011).

In Figure 4 (right) we show the network visualization, while Table 3 reports the basic

measures. Note that for this network we considered the giant component of 296 nodes

while the complete network is composed of 306 nodes.

In Figure 5 (right) we report the strength distributions for the C.elegans network. Note

that the two networks under observation are very different, especially in the distribution of

low and high values of strength. The weight profiles in Figure 6 confirm such differences,

which are mostly caused by a difference of scale in the values.

The analysis of Figures 13 and 14 depicts a very different picture for the C.elegans

network when compared to the US airports network. Again, Figure 13 reports the three

curves representing the total number of triangles |T (i)
1 |, the number of potential triples of

type |T (i)
2 | and the number of potential triples of type |T (i)

3 |. Figure 14 compares the degree

di and the local clustering coefficient Ci for each node i. Note that in these benchmark

instances, nodes are enumerated without a particular rule.

In the C.elegans networks, nodes with a higher degree have relatively small values of

local clustering coefficient, whilst nodes with a smaller degree have, in general, higher val-

ues of local clustering coefficient. This means that small-degree nodes tends to form dense
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Figure 13: C.elegans. Comparison between the number of triangles T1, the number of

potential triangles T2 and the number of potential triangles T3.
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Figure 14: C.elegans. Comparison between local clustering coefficient (blue points), degree

(red points) and strength (green points).
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local neighborhoods, while the neighborhood of hubs is much sparser. Such observations

motivate the limited number of triples in T2 because, for each node i, they are in number

of
(
di
2

)
−|T (i)

1 |, thus implying that denser neighborhoods have a smaller number of possible

triples.

Note in Figure 13 that node i = 295 has a peak because |T (i)
2 | = 8658 when the

thresholds α and β are null (this is the case of all potential triples). This is motivated by

the fact that its particular neighborhood is composed of a limited number of triangles in

which it is embedded (|T (295)
1 | = 253 and C295 = 0.028) despite its degree (d295 = 134).

Choosing two edges on 134 leads to 8911 potential triples of type T2 and subtracting 253

results in 8658. Such a remarkable presence of triples of type T2 for a single node for the

case of α = β = 0 suggests that the C.elegans network is star-shaped.

Similar arguments can be considered for T3; indeed, we have a small number of potential

triples for both small-degree nodes and hubs, since low values of degree allow for a smaller

amount of transitive closure.

Figure 15 reports the same plots for the C.elegans network and same comments on the

general behavior can be repeated as for the previous network. The main difference is the

gentler slope, which occurs due to the profile of weight distribution being less concentrated

on lower values when compared to the US airports network (see also Figure 6).

The analysis of the C.elegans network is completed with the series of diagrams in which

the density of the C
(g)
i values are reported when considering fixed values of α = 0 or β = 0

and varying the other threshold.

Even for this network, Figure 16 shows different density values for each α when β = 0

and Figure 17 for each β when α = 0. Note that all the figures report the density values

of the local clustering coefficient Ci (colored in light green).

When β = 0 (see Figure 16) the contribution of triples in T2 makes the density of C
(g)
i

more concentrated around the max value 1 when α = 0; when α starts to grow the values

shift closer to 0. Such an effect is present in both the networks under observation but it

is more evident for the C.elegans.

Similarly, at the US airports network, for α = 0, Figure 17 highlights that C
(g)
i receives

a small contribution from triples in T3 and the values lay around 0 as soon as β grows.
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Figure 15: C.elegans. Average values of C
(g)
i for cases F1 (upper left), F2 (upper right),

F3 (lower left) and F4 (lower right).

The observation of the way in which Ci density lays seems to affirm that the network

has a small cohesive structure, since the values are mostly around 0 or on low values

(< 0.3). The study of C
(g)
i values highlights that for small values of α there exists an

intense interaction among alters, i.e. many neurons undergo a certain level of mutual

influence when connected to a common neuron. When considering triples in T3 and in

particular for F1, the density remains away from 0, i.e. transitive influence is always

present even for growing values of β, mostly because of the very high strength of node

295.

The different figures confirm that, for the two networks under observation, the main

contribution to C
(g)
i is provided by the triangles in T2, i.e. their structures and weight

profiles cause the networks to be more prone to close triples in T2 rather than in T3.
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Figure 16: C.elegans. Density of C
(g)
i for different values of α when β = 0 for cases F1

(upper left), F2 (upper right), F3 (lower left) and F4 (lower right).

0
5

10
15
20
25
30
35
40
45
50
55
60
65
70

Ci

0.00 0.25 0.50 0.75 1.00

Ci
(g)

D
en

si
ty

0
5

10
15
20
25
30
35
40
45
50
55
60
65
70

Ci

0.00 0.25 0.50 0.75 1.00

Ci
(g)

D
en

si
ty

0
5

10
15
20
25
30
35
40
45
50
55
60
65
70

Ci

0.00 0.25 0.50 0.75 1.00

Ci
(g)

D
en

si
ty

0
5

10
15
20
25
30
35
40
45
50
55
60
65
70

Ci

0.00 0.25 0.50 0.75 1.00

Ci
(g)

D
en

si
ty

Figure 17: C.elegans. Density of C
(g)
i for different values of β when α = 0 for cases F1

(upper left), F2 (upper right), F3 (lower left) and F4 (lower right).
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7 Conclusions and future research lines

In complex systems, the way in which members behave is influenced by their interactions

with one another, as well as by other, not always explicit, phenomena. Networks are a

special case in which interactions can be studied in more formal ways. In this regards,

certain aspects of the network structure, for instance, the neighborhood around a node or

different ways of clustering, allow one to study important characteristics as local or global

cohesive groups.

A classical measure used to study the local cohesiveness is the cluster coefficient, which

has been used in almost every network analysis. However, when a weighted network is

considered, such a measure starts to become ambiguous since all the introduced measures

are sensitive to the degree, as well as the strength profiles, of a node.

Despite the classical clustering coefficient being defined as a measure of the combina-

toric structure of the network, it does not have any ability to provide information when

links, rather than being established, are indirectly induced by strong cooperations among

the formally linked nodes. This occurs when two alters of a common ego have an increased

likelihood of meeting due to the fact that the social motivations are strong enough or that

the weight between an alter of its alters has such an intensity that a connection with the

ego is admissible.

This paper deals with a novel definition of the clustering coefficient for weighted net-

works in that triangles are viewed under such social perspectives, thus allowing consider-

ation of cases whereby one of the edges is missing between three nodes. The propensity

to induce missing edges is studied by means of two thresholds α and β, which capture key

information on the strength profile of a node’s neighborhood.

The definition of two types of triangles, T2 and T3, serves two purposes: on the one

hand, they model the evidence that transitive relations among the nodes appear when the

existing links are strong enough; on the other hand, an understanding of the number and

types of the triangles around the nodes when α = β = 0 identify equivalent classes of

networks on the basis of their topological structures.

The experiments on two real networks, with many different peculiar characteristics,

highlight the ability of the proposed measure to express the hidden influences between
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nodes according to the weight profiles. A thorough computational exercise has also shown

the sensitivity of the networks to the thresholds values, thus allowing us to obtain further

information.

Future research should be devoted in order to extend this approach to more complicated

problems. For instance, the topological structure of the network can be discussed in

more details. In this respect, note that one can introduce a novel formulation of the

concepts of hubs and centrality measures on the basis of the social connections among the

nodes, according to our definition of induced indirect links. In this context, one is able to

generalize the exploration to the cases when α and β are not necessarily equal to zero.
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Barrat A., Barthélemy M., Pastor-Satorass R. and Vespignani A. (2004b). The archi-

tecture of complex weighted networks, PNAS. Vol. 101, no. 11, pp 3747-3752.

Benati S., Puerto J., and Rodriguez-Chia A.M. (2017). Clustering data that are graph

connected, European Journal of Operational Research. Vol. 261, no. 1, pp 43-53.

Berenhaut K. S., Kotsonis R. C. and Jiang H. (2018). A new look at clustering

coefficients with generalization to weighted and multi-faction networks, Social Networks,

31



52, 201-212.

Bianconi G., Darst R. K., Iacovacci J. and Fortunato S. (2014). Triadic closure as a

basic generating mechanism of communities in complex networks, Physical Review E, 90,

042806.

Biswas, A. and Biswas, B. (2015). Investigating community structure in perspective

of ego network, Expert Systems with Applications. Vol. 42, no. 20, pp. 6913-6934.

Borgatti S.P. (1997). Structural holes: unpacking Burt’s redundancy measures, Con-

nections. Vol. 20, no. 1, pp 35-38.

Choi H., Kim S-H and Lee J. (2010). Role of network structure and network effects in

diffusion of innovations, Industrial Marketing Management, 39(1), pp. 170-177,

Clemente, G. P., Fattore, M. and Grassi, R. (2017). Structural comparisons of net-

works and model-based detection of small-worldness. Journal of Economic Interaction

and Coordination, doi:10.1007/s11403-017-0202-7.

Colizza V., Pastor-Satorras R. and Vespignani A. (2007). Reaction-diffusion processes

and metapopulation models in heterogeneous networks. Nature Physics. Vol. 3, no. 4,

pp. 276-282.

Costantini G. and Perugini M., (2014). Generalization of clustering coefficients to

signed correlation networks, Plos One. Vol. 9, no. 2, e88669.

Csardi G. and Nepusz T., (2006). The igraph software package for complex network

research, InterJournal Complex System. Vol. 1695, http://igraph.org Accessed 20 June

2018.

Duch, J., and Arenas, A. (2005). Community detection in complex networks using

extremal optimization, Physical Review E. Vol. 72, no. 2, 027104.

Easley D. and Kleinberg J. (2010). Networks, crowds and markets, Cambridge Uni-

versity Press, NY.

Ferrara E., De Meob P., Catanese S. and Fiumara G. (2014). Detecting criminal

organizations in mobile phone networks. Expert Systems with Applications 41, pp. 5733-

5750.

Ferraro G. and Iovanella A. (2017). Technology transfer in innovation networks: An

empirical study of the Enterprise Europe Network, International Journal of Engineering

Business Management. Vol. 9, Doi: 10.1177/1847979017735748.

32



Fortunato S. (2010). Community detection in graphs, Physics Reports, 486, 75-174.

Freeman L.C., (1977), A set of measures of centrality based on betweenness, Sociom-

etry. Vol. 40, no. 1, pp. 35-41.

Girvan, M. and Newman, M. E. J. (2002). Community structure in social and biological

networks. PNAS, 99(12), 7821-7826.

Grindrod P. (2002). Range-dependent random graphs and their application to mod-

elling large small-world Proteome dataset, Physical Review E. Vol. 66, 066702.

Heider, F.(1958). The psychology of interpersonal relations, Lawrence Erlbaum Asso-

ciates, Publishers, Hillsdale, New Jersey.

Humphries M.D. and Gurney K. (2008). Network ”Small-World-Ness”: A quantitative

method for determining canonical network equivalence, Plos One. Vol. 3, no. 4, e0002051.

Holme P., Park S. M., Kim B. J. and Edling C.R. (2007). Korean university life in

a network perspective: Dynamics of a large affiliation network, Physica A. Vol. 373, pp.

821-830.

Kalna, G. and Higham, D. J. (2007) A Clustering Coefficient for Weighted Networks,

with Application to Gene Expression Data, AI Communications, 20(4), 263–271.

Kossinets, G. and Watts D. J. (2009) Origins of homophily in an evolving social net-

work, American Journal of Sociology, 115(2), 405-450.

Latora V., Nicosia V. and Panzarasa P. (2013). Social cohesion, structural holes, and

a tale of two measures, J Stat Phys, vol. 151, pp 745-764.

Leung, C. C., and Chau, H. F. (2007). Weighted assortative and disassortative net-

works model. Physica A: Statistical Mechanics and its Applications, 378(2), 591-602.

Liben-Nowell D. and Kleinberg J. (2007). The link-prediction problem for social net-

works, Journal of the American Society for Information Science and Technology. Vol. 58,

no. 7, pp. 1019-1031.

Liu, H., and juan Ban, X. (2015). Clustering by growing incremental self-organizing

neural network, Expert Systems with Applications. Vol. 42, pp. 4965-4981.
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