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Abstract: With its growing emphasis on sustainability, the construction industry is increasingly 4 

interested in environmentally friendly concrete produced using alternative and/or recycled waste 5 

materials. However, the wide application of such concrete is hindered by lack of understanding 6 

of the impacts of these materials on concrete properties. This research investigates and compares 7 

the performance of nine data mining models in predicting the compressive strength of a new type 8 

of concrete containing three alternative materials as fly ash, Haydite® lightweight aggregate, and 9 

Portland limestone cement. These models include three advanced predictive models (multilayer 10 

perceptron, support vector machines, and Gaussian processes regression), four regression tree 11 

models (M5P, REPTree, M5-Rules, and decision stump), and two ensemble methods (additive 12 

regression and bagging) with each of the seven individual models used as base classifier. The 13 

analytical results show that with appropriate parameter settings all of these models except for 14 

decision stump achieved acceptable prediction performance. The ensemble methods improved 15 

the prediction accuracy of the four regression tree models, but had less success on the other three 16 

advance predictive models.  The individual Gaussian processes regression model as well as its 17 

related ensemble models reached the highest prediction accuracy in comparison groups. The 18 

results of this paper offer valuable insights to improving the use of these models for property 19 

prediction of concrete.  20 
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Introduction 25 

The construction industry has observed an increasing shift toward sustainability in recent years. 26 

Many companies are proactively using or are required by their clients to use more 27 

environmentally friendly (or so-called “green”) building materials and/or processes to reduce the 28 

environmental effects from construction activities. Environmentally friendly concrete is defined 29 

as concrete produced using alternative and/or recycled waste materials that can lower the overall 30 

environmental impacts of concrete during its life cycle. This type of concrete increasingly 31 

becomes a common element that helps the construction industry achieve long-term sustainability, 32 

although the impact of these alternative or recycled waste materials on various concrete 33 

properties has not been fully understood.  34 

Using alternative materials in concrete may positively or negatively impact its properties 35 

(Khalaf and Devenny 2004; Yang et al. 2005; Berry et al. 2011). Research is thus needed to 36 

thoroughly understand the potential influence from these materials. Since the compressive 37 

strength is one of the most important concrete properties, many experiments have been 38 

conducted to study the compressive strength of environmentally friendly concrete (Yang et al. 39 

2005; Etxeberria et al. 2007; Kevern et al. 2011). Despite some progress, the available data for 40 

such concrete is far from adequate due to the emergence of so many alternative or recycled waste 41 

materials and the complexity of concrete mixture design. Not only is more research needed to 42 

advance the understanding of environmentally friendly concrete properties, but practical tools for 43 

designing these types of concrete are necessary for wide implementation. 44 

Differing from the traditional experimental method, some researchers proposed 45 

mathematical or statistical models to predict the compressive strength of concrete given its 46 

mixture or based on fresh concrete properties (Atici 2011). Statistical modeling has its 47 
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limitations in estimating the underlying relationships between the inputs and outputs of 48 

forecasting models in more complicated cases (Zhang 1998). As a result, recent studies have 49 

shown an increasing trend toward the application of machine learning techniques in predicting 50 

concrete compressive strength (Topçu and Saridemir, 2007; Saridemir et al. 2009; Atici 2011; 51 

Aiyer et al. 2014; Akande et al. 2014; Omran et al. 2014). The results from these studies 52 

demonstrate a great potential of this approach, which warrants further investigation. 53 

The research presented in this paper compared the use of seven individual machine 54 

learning models, including M5Prime (M5P), REPTree, M5Rules, decision stump, multilayer 55 

perceptron, SMO regression (SMOreg), and Gaussian processes, in predicting the compressive 56 

strength of environmentally friendly concrete. It also tested two commonly used ensemble 57 

methods (additive regression and bagging) by adopting each of the seven individual models as 58 

the base classifier to explore the possibility of improving prediction accuracy. The ultimate goal 59 

was to promote the use of data mining techniques for determining the compressive strength or 60 

other properties of new types of concrete while reducing the need for extensive experiments. 61 

This shift will not only save time and money for the industry, but also facilitate the use of new 62 

materials. The unique set of seven data mining models was selected for exploring the prediction 63 

performance of four regression tree models against other three more advanced models. This also 64 

seemed to be the first time that Gaussian processes regression was examined for predicting 65 

concrete strength. This research used four performance measures, namely correlation coefficient 66 

(R), coefficient of determination (R2), root mean squared error (RMSE), and mean absolute error 67 

(MAE), to assess prediction accuracy of generated models. R2 was used to compare models 68 

examined in this research and previous studies.  69 

This paper first introduces the unique type of environmentally friendly concrete studied in 70 
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this research and then reviews previous research efforts in modeling and predicting compressive 71 

strength of concrete. A brief description of all the data mining models examined in this research 72 

is presented. After describing the research methodology and experimental settings, this paper 73 

presents the results and analysis as well as the findings of this research. 74 

Literature Review 75 

Environmentally Friendly Concrete 76 

Conventional concrete is made from four main ingredients: water, cement, fine aggregate (sand), 77 

and coarse aggregate. With the wide use of concrete as a building material, its negative 78 

environmental impacts are significant. Specifically, the cement industry produces up to 5% of 79 

global man-made CO2 emissions (WBCSD 2009) and accounts for approximately 12–15% of 80 

total industrial energy use in various countries (Madlool 2013). The concept of producing more 81 

environmentally friendly concrete emerged as a response to reducing the emissions and other 82 

environmental impacts from concrete production. For this purpose or as a result of a demand for 83 

specific properties needed for concrete applications, alternative materials (particularly 84 

supplementary cementitious materials [SCMs] and alternative aggregates) are added or used to 85 

replace certain amounts of the traditional ingredients.  86 

For environmentally friendly concrete, the commonly used alternative materials are those 87 

that contain recycled contents, are locally available with low transportation costs, have reduced 88 

greenhouse gas emissions in their production, reserve natural resources, or improve concrete 89 

performance during its life cycle. Some of the frequently studied alternative aggregates include 90 

recycled concrete aggregate (Etxeberria et al. 2007; Limbachiya et al. 2012), building rubbles 91 

(Khalaf and Devenny 2004), fiber scrap aggregate (Shahria Alamet al. 2013), recycled glass 92 

aggregate (Berry et al., 2011), etc. Fly ash (FA) class C and F (Basri et al. 1999; Kevern et al. 93 
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2011), furnace slag (Lubeck et al. 2012), and silica fume (Limbachiya et al. 2012), are examples 94 

of materials that have been examined as SCMs.  95 

For this research, Portland limestone cement (PLC), Haydite® lightweight aggregate 96 

(LWA), and FA Class F were selected as alternatives to the traditional ingredients.  This was 97 

based on the literature review and the results of a survey that was performed by the research 98 

team to identify industry interests in using environmentally friendly concrete and ingredients (Jin 99 

2013). A brief review of these alternative materials can be found in Omran et al. (2014).  100 

Related Work in Modeling and Predicting Concrete Properties 101 

The experimental determination of the compressive strength of concrete, especially for concrete 102 

containing alternative materials, is known to be time consuming and costly. On the other hand, 103 

using simple linear regression models for prediction has limited accuracy and flexibility (Yeh 104 

1998; Deepa et al. 2010). As a result, recent years have seen an increasing interest in using more 105 

advanced data mining techniques for predicting concrete properties.  106 

Artificial neural network (ANN) has been used to predict fresh and hardened properties of 107 

high performance concrete (Khan et al. 2013) and LWA concrete (Alshihri et al. 2009; Abdeen 108 

and Hodhod 2010). The results of these studies have generally confirmed ANN to be a powerful 109 

method for such applications. Another widely used data mining method, Support Vector 110 

Machines (SVM), has also been used to predict properties of hardened concrete, such as 111 

compressive strength, tensile strength, and elastic modulus (Gupta 2007; Yan et al. 2013; Yazdi 112 

et al.  2013; Aiyer et al. 2014; Akande et al. 2014). In other attempts, both ANN and SVM have 113 

been applied in conjunction with fuzzy logic to improve the accuracy and reliability of prediction 114 

(Nataraja et al. 2006; Saridemir et al. 2009; Cheng et al. 2012). In addition, some other 115 

prediction models, e.g., ensembles of decision trees in Erdal et al. (2013), were examined for 116 
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predicting the compressive strength of different types of concrete. While these studies have led 117 

to more accurate predictions compared to traditional regression techniques, more reliable, 118 

applicable, and practicable models are yet to be discovered (Chou et al. 2011).   119 

A comparison between multivariable regression analysis and ANN made by Atici (2011) 120 

identified the effectiveness of these methods for predicting the strength of mineral admixture 121 

concrete. With the increasing use of advanced data mining techniques in concrete property 122 

prediction, a few other comparison studies were conducted to evaluate the performance of 123 

multiple data mining models, mostly focused on the compressive strength prediction of high 124 

performance concrete. For example, Deepa et al. (2010) examined ANN, linear regression, and 125 

M5P tree model for their accuracy and time performance. Similarly, Chou et al. (2011) evaluated 126 

ANN, SVM, multiple regression, multiple additive regression trees, and bagging regression trees. 127 

So far, very few studies have compared multiple data mining methods in predicting the 128 

compressive strength of environmentally friendly concrete. This paper aims to fill this gap and 129 

provide a more accurate and reliable tool to predict the compressive strength of a unique type of 130 

environmentally friendly concrete made with PLC, Haydite LWA, and FA.  131 

Predictive Data Mining Techniques Examined in This Research 132 

The research was performed in two steps: 1) Examining the prediction accuracy of seven 133 

individual data mining models, including the four common regression tree models (M5P, 134 

REPTree, M5-Rules, and decision stump) and three more advanced predictive models 135 

(multilayer perceptron, SMOreg, and Gaussian processes regression), and 2) Examining the 136 

prediction accuracy of two commonly used ensemble methods (additive regression and bagging), 137 

in which each of the aforementioned models was used as base classifier to evaluate the effects of 138 

boosting.  Kotsiantis et al. (2006) defined three mechanisms for the ensemble of regression 139 
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models: 1) using a single machine learning model with different subsets of training data, 2) 140 

using a single learning method with different training parameters, and 3) using different machine 141 

learning methods. The second step of this research adopted the first two mechanisms by using a 142 

single machine learning model as base classifier for the ensemble models. Studying multiple 143 

classifiers for the ensemble models can be a subject for future research. A brief review of these 144 

data mining models and selected parameters is presented below. 145 

Regression Tree Models  146 

Regression tree models have long been used in data mining as a supervised learning technique, 147 

and have been widely applied to numeric prediction. Compared to some of the state-of-the-art 148 

models, regression tree models may have lower prediction accuracy, but usually perform faster 149 

and are easier to interpret. This research examined four commonly used regression tree models 150 

as described below.  151 

M5P is a reconstruction of the M5 algorithm introduced by Quinlan (1992) for generating 152 

a tree of regression models from empirical data (Wang and Witten 1997). In a M5P model, at 153 

each branch the tree stores a linear regression model that predicts the class values of the portion 154 

of dataset that reaches the leaf. The dataset splits into different portions according to certain 155 

attributes of the data. Standard deviation (SD) is usually used as a criterion that determines 156 

which attribute is the best for splitting the dataset at each node. The attribute to be chosen is the 157 

one that has the maximum expectation to reduce error, see Eq. (1):  158 

𝐸𝑋𝑒𝑟𝑟𝑜𝑟 = 𝑆𝐷(𝑇) −  ∑
|𝑇𝑖|

|𝑇|
× 𝑆𝐷 (𝑇𝑖) (1) 

 159 

where Ti denotes the subset of cases that have the 𝑖th outcome of the potential test. The process 160 

stops when a very small change happens in class values or only a few instances remain. The tree 161 

will then be pruned back and a smoothing process will be performed in the end to compensate 162 
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sharp discontinuities between adjacent linear models (Quinlan 1992).  163 

REPTree (Reduced Error Pruning Tree) is a fast decision tree learner that builds a 164 

decision/regression tree by using information gain or variance as decision features for splitting 165 

the data at the nodes. Then the generated regression tree is pruned back using the reduced-error 166 

with back over-fitting technique (Witten and Frank 2005). In the context of decision trees, the 167 

term “information gain” is usually equivalent to expectation value of the Kullback–Leibler 168 

divergence of a conditional probability distribution (Garcia et al. 2002). For numeric attributes, 169 

REPTree sorts the values once at the start of the run, and then uses the sorted list to calculate the 170 

right splits in each tree node. 171 

M5-Rules is an algorithm that uses divide-and-conquer to generate decision lists (ordered 172 

sets of if-then rule) for regression problems. Holmes et al. (1999) used decision lists to make a 173 

more compact and understandable model tree compared to previous models.  Decision lists can 174 

work with both continuous and nominal variables. M5-Rules uses the M5 algorithm to build a 175 

model tree, makes a rule from the best leaf, and then works on other instances that are left in the 176 

dataset according to the generated rule.  177 

Decision Stump is a machine learning model that only consists of one-level decision tree. 178 

It has one internal node (called root node), which is immediately connected to nodes in branches 179 

(referred to as terminal nodes). Decision stump makes a prediction based on the value of just a 180 

single input attribute. It performs regression based on the mean squared error where each root 181 

node represents an attribute in an instance to be evaluated, and each branch represents a value 182 

that the node can take (Iba and Langley 1992).  Decision stump is usually used as a component 183 

of a boosting algorithm to improve its prediction accuracy.  184 

Multilayer Perceptron (ANN) 185 
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ANN is a computational system consisting of simple, highly interconnected processing elements 186 

(nodes or neurons) that work together to solve specific problems (Caudill 1987). It is an 187 

algorithm inspired by research in biological nervous systems to generate a simplified model of 188 

how the brain works (Rumelhart et al. 1994).  The first neural network was proposed by 189 

McCulloch and Pitts (1943), and since then many other models have been introduced. The basic 190 

structure of a multilayer perceptron ANN model is shown in Fig. 1 below.  191 

ANN models usually consist of an input layer, one or more hidden layers, and an output 192 

layer. Each of these layers can have different number of nodes. Each node under the hidden 193 

layer(s) will receive one or more inputs. The inputs will be multiplied by their weights, and 194 

summed together and with the bias (threshold). The weighting and bias values will be initially 195 

chosen as random numbers and will then be adjusted according to the results of the training 196 

process (Atici 2011). The output of each node will be generated based on the significance of the 197 

summation value and by the means of a predefined specific activation function, e.g., unipolar 198 

sigmoid function, bipolar sigmoid function, hyperbolic tangent function, etc. (Bishop 2006).  199 

SMOreg-based SVM 200 

SVM is a supervised learning model developed by Cortes and Vapnik (1995). It has been 201 

intensively used in many data mining problems for both classification and regression purposes. 202 

In an SVM algorithm, the training set is first mapped to an n-dimensional feature space by using 203 

a nonlinear kernel mapping procedure. Then a hyperplane, a subspace that is one dimension less 204 

than its surrounding space, will be identified in this feature space according to the projected 205 

dataset. The aim is to find the optimal hyperplane that separates the data points in the classes, 206 

while simultaneously maximizing the margin (i.e., the distance between the hyperplane and the 207 

closest points of the training set) for linearly separable patterns (Leskovec et al. 2014). The 208 
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hyperplane 𝑓(𝑥, 𝑤) is represented by a linear function in the feature space: 209 

𝑓(𝑥, 𝑤) =  ∑ 𝑤𝑗  𝑔𝑗(𝑥) + 𝑏

𝑚

 𝑗=1

 (2) 

where 𝑔𝑗(𝑥),𝑗=1,…,𝑚  denotes a set of nonlinear transformations, and b is the “bias” term. For 210 

SVM regression purposes, Cortes and Vapnik (1995) suggested to use a so called Ɛ, the 211 

insensitive loss function that penalizes error only if it is greater than Ɛ (Shevade et al. 2000). So 212 

the  |ξ|Ɛ is represented as:  213 

|ξ|Ɛ =  {
0                                            𝑖𝑓 |ξ| ≤  Ɛ 
|ξ| −  Ɛ                                𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

 (3) 

 214 

Using (non-negative) slack variables 𝜉𝑖 and 𝜉𝑖
∗
, the final optimization problem to be solved 215 

can be formulated as:  216 

Minimize    
1

2
||𝑤||

2
+  𝐶 ∑(𝜉𝑖 + 𝜉𝑖

∗) 

𝑙

𝑖=1

 (4) 

Subjected to: 217 

{

𝑦𝑖 − 𝑓(𝑥𝑖, 𝑤) ≤ Ɛ −  𝜉𝑖
∗

𝑓(𝑥𝑖, 𝑤) − 𝑦𝑖 ≤ Ɛ −  𝜉𝑖 

 𝜉𝑖 , 𝜉𝑖
∗ ≥ 0, 𝑖 = 1, … , 𝑛

 (5) 

 218 

SVM regression finds the linear regression in the high-dimension feature space using Ɛ while 219 

reducing the model complexity by minimizing ||𝑤||
2
.  220 

Sequential minimal optimization (SMO), an algorithm introduced by Platt (1998), is used 221 

to solve the very large quadratic programming (QP) optimization problems in SVM through 222 

breaking them into a series of smallest possible QP problems. In this way problems can be 223 

solved analytically, eliminating the need for numerical optimization algorithms (Platt 1998). 224 

Gaussian Processes 225 

Gaussian process is a powerful non-linear prediction tool, which can be used for Bayesian 226 
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regression as well as in learning process of both supervised and unsupervised learning 227 

frameworks (Bishop 2006). It is a non-parametric stochastic process that generalizes the 228 

Gaussian probability distribution. A Gaussian process sometimes is described as a distribution 229 

over functions (𝑃(𝑓)), where f is a function that projects input space (vector x) to feature space 230 

(vector r) and for any finite subset of X the marginal distribution over that subset 𝑃(𝑓) has a 231 

Gaussian distribution. The f could be an infinite-dimensional quantity. As a result, Gaussian 232 

process extends multivariate Gaussian distributions to infinite dimensionality (Rasmussen and 233 

Williams 2006). Same as Gaussian distribution that can be specified by a mean vector 𝝁 and 234 

covariance matrix ∑, a Gaussian process can be defined by a mean function 𝑀(𝑥) and 235 

covariance function 𝑘(𝑥, 𝑥′)  expressed as 𝑓(𝑥)~ 𝐺𝑃(𝑀(𝑥), 𝑘(𝑥, 𝑥′)). One of the advantages of 236 

a Gaussian process model is that its formulation is probabilistic. This is especially useful for 237 

probabilistic prediction and “gives the ability to infer model parameters such as those that control 238 

the kernel shape and the noise level” (Chu and Ghahramani 2006).  239 

Ensemble Methods Used in This Research 240 

According to Rokach (2010), the idea of ensemble learning models started with Tukey (1977) at 241 

late 1970s by simply combining two linear regression models using residual of the first model 242 

for the second modeling process. This effort was then followed by many other attempts, such as 243 

partitioning the input space and using two or more classifiers (Dasarathy and Sheela 1979) or 244 

using the AdaBoost algorithm (Freund and Schapire 1996). The purpose for ensemble modeling 245 

is to achieve better prediction performance by combining multiple learning algorithms.  246 

Additive Regression (Gradient Boosting) 247 

Regression trees are well known for many advantages such as flexibility of input variables (e.g., 248 

numeric, ordinal, binary, and categorical variables) and immunity to the effects of extreme 249 
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outliers. However, these methods usually suffer from the lack of accuracy. Gradient boosting, 250 

first introduced by Friedman (2001), is an additive regression tree model that can overcome this 251 

drawback through the application of a boosting technique (Friedman and Meulman 2003). 252 

Additive models are nonparametric regression methods, which assume that each input feature 253 

has a separate contribution to the final prediction and these input features can be added up to 254 

generate the regression model for prediction (Friedman and Stuetzle 1981). According to 255 

Friedman and Meulman (2003), boosting a tree-based model can significantly increase its 256 

prediction accuracy. Additive regression is a metadata learner that improves the performance of 257 

weak prediction models (e.g., regression tree models) by applying the stochastic gradient 258 

boosting technique. The technique mainly involves fitting sequence of models: The first model in 259 

the sequence is trained based on the original dataset, and each of the next models will be trained 260 

on a new dataset containing the residual errors remained from fitting the previous model 261 

(Friedman, 2001). 262 

Bagging 263 

Bagging is short for Bootstrap Aggregating. Breiman (1994) defines bagging as a way to 264 

generate multiple versions of a predictor, through which a more robust predictor can be 265 

generated. It is an ensemble meta-algorithm that improves the accuracy and stability of the 266 

prediction. The algorithm is based on generating bootstrap replications of dataset and using these 267 

different versions of dataset as new training sets to generate multiple models. The final 268 

prediction is achieved through combining the outcomes of these models (i.e., averaging the 269 

results for the regression problem and using plurality voting for the classification problem). 270 

Previous studies have shown that bagging can significantly improve the results of unstable 271 

models (e.g., models sensitive to small changes in the training dataset), models with high 272 
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dimensional dataset problems, and classification and regression tree models (Breiman 1994; 273 

Buhlmann and Yu 2002).  274 

Methodology and Experimental Settings 275 

Concrete Experimental Design and Data Collection 276 

In this study, 36 different batches of concrete were designed and prepared. Each batch contained 277 

different replacement percentages of fly ash Class F (0%, 20%, 30% or 40%) and Haydite LWA 278 

(0%, 33%, 67% or 100%) besides the use of either Portland cement (PC) Type I/II or PLC Type 279 

GUL. In this way, the effects of alternative materials on the compressive strength of concrete can 280 

be examined more accurately. The fly ash Class F replaced part of PC or PLC by different 281 

percentages of weight and Haydite LWA substituted pea gravel by different percentages of 282 

volume. Their numerical values were used as inputs for the tested models.  In addition to the 283 

above three variables, the actual water content, the amounts of sand, pea gravel, and Micro Air®, 284 

as well as the concrete curing age were selected as the other influential variables for the models. 285 

Table 1 shows the range, mean, and SD of those variables in this experimental study.  286 

All the concrete mixed in the experiment was assumed to be air-entrained (considered to 287 

be used outdoors in cold climate) by adding Micro Air, an air entraining agent, to the mixtures. 288 

The intended slump was 12.70 - 15.24 cm and the air content was 6-7%. Concrete was mixed in 289 

a laboratory mixer and the whole processes of making, pouring and curing concrete were 290 

performed based on ASTM C 31/C 31 M – 06 guideline. Three 10.16 cm by 20.32 cm cylinders 291 

from each batch of concrete mixture were tested in each of four different curing ages of 3, 7, 28 292 

and 90 days for compressive strength. The average test result of each three cylinders formed a 293 

data point in the database. All the details for the experiments can be found in Jin (2013).  294 

Parameter Setting of Data Mining Models   295 
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In this study, the Weka workbench toolbox (Waikato 2015) was used to generate the examined 296 

machine learning models for predicting the compressive strength of the environmentally friendly 297 

concrete. Since one of the original goals for experimental testing was to compare the 298 

compressive strength of PC and PLC concrete, this research performed a simple paired T-Test on 299 

the PC and PLC concrete datasets, which confirmed a statistical difference between these two 300 

groups. To evaluate the potential impact of the statistically different datasets on the prediction 301 

accuracy of data mining models, this research took the following three-step approach: The first 302 

was to test the selected data mining models based on the PC or PLC dataset only. In such cases, 303 

seven variables were used to generate the models. The second step was to examine the selected 304 

models based on the whole dataset including all PC and PLC concrete samples. In the modeling 305 

process, eight variables including a new binary variable “cement type” were used.  Thirdly, the 306 

prediction performance of data mining models based on different datasets was compared to learn 307 

whether simpler models with seven variables and individual datasets will lead to better 308 

prediction accuracy, or the prediction accuracy can be improved by a larger sample size though 309 

additional variable(s) may be needed, leading to more complex models.  310 

An example of ANN model with eight input variables including “cement type” is shown in 311 

Fig. 2. The symbol “8-3-1” means that there are eight nodes in the input layer, three nodes in the 312 

hidden layer, and only one node at the output of the network.  313 

Many input parameters need to be set up for most data mining algorithms. The setting of 314 

input parameters could affect the accuracy and/or reliability of generated models. In this research, 315 

a comprehensive sensitive analysis was carefully conducted on each model to identify the 316 

parameter values/options that could lead to the highest prediction accuracy among all the 317 

examined model settings, while avoiding over-fitting issues. The important parameters that were 318 
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tested in this sensitivity analysis are presented in the Analytical Results and Discussion section. 319 

Performance Measures 320 

The models were trained with different parameters and/or variables. Their prediction accuracy 321 

was evaluated and compared based on four frequently used performance measurements in 322 

previous studies: R, R2, RMSE, and MAE. R, RMSE, and MAE are formulated as: 323 

R =  
∑ (𝑃𝑖 − 𝜇𝑃)(𝐴𝑖 − 𝜇𝐴)𝑛

𝑖=1

√∑ (𝑃𝑖 − 𝜇𝑃)𝑛
𝑖=1

2
 ∑ (𝐴𝑖 − 𝜇𝐴)2𝑛

𝑖=1

 
(6) 

  

RMSE = √
∑ (𝑃𝑖 − 𝐴𝑖)2𝑛

𝑖=1

𝑛
 (7) 

  

MAE =  
∑ |𝑃𝑖 − 𝐴𝑖|𝑛

𝑖=1

𝑛
 (8) 

where Ai and Pi represent the actual and predicted compressive strength of concrete samples 324 

related to data point i, respectively, n is the total number of data points in the validation set(s), 𝜇𝐴 325 

is the mean value of observations, and 𝜇𝑃 is the mean value of predictions.  326 

A 10-fold cross-validation was used in this study to minimize the bias associated with the 327 

random sampling of the training and holdout data samples in regular validation methods. The 328 

cross-validation is a technique that evaluates the expected accuracy and validity of a predictive 329 

model by dividing a dataset into different subsets and evaluating the accuracy of the model for 330 

each of those subsets. In general, a k-fold cross-validation includes the following steps:  331 

 Splitting the dataset into K subsets of equal size (K folds) 332 

 In each run, training the model on all the subsets except one 333 

 Evaluating the prediction accuracy by using the left out subset to test the trained model 334 

 Repeating steps 2 and 3 for K times and each time leaving a different fold for testing 335 

 Calculating the final performance measurements by averaging the performance 336 
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measurements from each of the K runs.   337 

This would improve the generalization and reliability of the performance measurements obtained 338 

for models under testing.  339 

Analytical Results and Discussion  340 

Characteristics of Concrete Datasets Used in This Research 341 

The datasets used in this research, i.e., the measured compressive strength of PC and PLC 342 

concrete samples, are illustrated in Fig. 3. It can be noted that the dramatic changes in 343 

compressive strength values shown in the figure were caused by different curing ages of the 344 

tested samples (3, 7, 28, and 90 days). The variation of compressive strength values obtained at 345 

the same curing ages was caused by different concrete mix designs. 346 

Table 2 shows the results of the paired T-Test, which suggest that a statistically significant 347 

difference exists between the average compressive strength of PC- and PLC-based concrete. In 348 

other words, it shows that with 95% confidence, the average compressive strength of PLC 349 

concrete samples is 2.76 to 4.36 MPa higher than that of PC concrete samples.  350 

Comparison Results for the Data Mining Models Tested 351 

In the following, comparison results for the data mining models tested in this research are 352 

presented. Due to its poor prediction accuracy (e.g., R values at 0.5226, 0.6001 and 0.6208 for 353 

the PLC, PC and combined datasets, respectively), the decision stump model is excluded from 354 

most of the tables and figures presented below. The exception is for the presentation of results 355 

related to ensemble models. This is because this study found that when decision stump was used 356 

as the base classifier for the ensemble models, the prediction accuracy was acceptable.  357 

Fig. 4 shows the highest R achieved by each of the eight data mining models. It was found 358 

that the prediction accuracy increased in five of the tested models when combining the two 359 
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datasets (PC and PLC) and using the cement type as an additional binary input. Exceptions are 360 

the three regression tree models (i.e., M5P, REPTree and M5-Rules), in which the accuracy of 361 

prediction based on the PC concrete dataset was slightly better than the combined dataset. 362 

The measured performance of prediction models in terms of RMSE and MAE is presented 363 

in Tables 3 and 4. The bolded value in each row represents the highest prediction accuracy 364 

achieved in this study when different datasets were used for testing individual and ensemble 365 

models. It seems that according to both criteria (MAE and RMSE), additive regression based on 366 

the Gaussian processes classifier obtained the highest prediction accuracy for comprehensive 367 

strength of PLC samples while the individual Gaussian processes regression model achieved the 368 

highest prediction accuracy for both the PC and combination datasets.  369 

The information presented above shows that the listed models all had acceptable prediction 370 

performance. Further, the Gaussian processes regression model achieved the best prediction 371 

accuracy based on all the three performance measures while REPTree had the lowest. Table 5 372 

below lists the important parameters and associated values/options used for these models to 373 

achieve their highest prediction accuracy. In particular, the option of “polykernel” was selected 374 

for all of the four models that need a kernel as their covariance matrix. These include additive 375 

regression, bagging, Gaussian processes, and SMOreg. From this point forward, the analysis and 376 

results are solely presented for the combined (PC & PLC) dataset, which was proven to have 377 

improved the prediction accuracy for most models tested in this study. 378 

Fig. 5 illustrates the relationship between the predicted and actual compressive strength of 379 

the studied concrete samples for each of the eight predictive models. All the plots show fairly 380 

linear relationships between predicted and actual values. Apparently, the Gaussian processes 381 

regression model is the best representative of actual experimental data with the highest R2 at 382 
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0.9842. 383 

Fig. 6 displays the distribution of residuals and percentage error for the tested models. It is 384 

observed that in all these plots when the actual compressive strength of concrete samples 385 

increased, residuals became larger but the associated percentage errors decreased. Similar to the 386 

early findings, Gaussian processes regression, bagging, and additive regressions are the models 387 

with prediction results being the closest to the actual experimental values.  388 

Table 6 compares R values achieved by the seven individual data mining models as well as 389 

two ensemble methods with each of individual data mining models used as base classifier. The 390 

comparison results show that both the additive regression and bagging algorithms using 391 

regression tree models as base classifier achieved better prediction accuracy than individual 392 

regression tree models. On the other hand, when SMOreg, Gaussian processes, and multilayer 393 

perceptron were used as base classifier, mixed results were generated. Similar to the early 394 

conclusion from the individual model comparison, the highest accuracy of prediction for additive 395 

regression and bagging was all achieved when the Gaussian processes was used as their base 396 

classification model. This finding is particularly important since Gaussian processes regression 397 

has rarely been applied in existing research to predict concrete properties.  398 

Table 7 lists the average time spent for building each of the tested models. These times 399 

were associated with the parameter settings for these models to achieve the highest prediction 400 

accuracy in the sensitivity analysis. Due to the use of 10-fold cross validation, the training time 401 

for each of these models was much longer than the time used to build the model. Although many 402 

variables could affect the length of the training time, the total time was mostly proportional to 403 

the time used to build the model. The results indicate that even though the three more advanced 404 

predictive models achieved higher prediction accuracy in general they are far more time-405 
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consuming compared to individual regression tree models as well as ensemble models with 406 

regression tree as base classifier. The individual Gaussian processes model was somewhat an 407 

exception with relatively fast building and training time. 408 

Comparison with Previous Work 409 

Table 8 provides a brief comparison of the highest prediction performance achieved in this study 410 

and some of the primary previous works that used data mining models to predict the compressive 411 

strength of concrete. The comparison of R2 values obtained by different studies shows that eight 412 

of the data mining models examined in this research offered fairly high prediction accuracy with 413 

R2 ranging from 0.9217 to 0.9842.  Moreover, compared with the same types of models 414 

examined in previous research, i.e., M5P, SVM, bagging, and additive regression, this study 415 

achieved relatively better prediction performance. It is worth noting that this research applied the 416 

cross validation method for evaluating the accuracy of predictions, which was not the case in 417 

most of previous studies listed in Table 9 except for Chou et al. (2011) and Deepa et al. (2010).  418 

Compared to the traditional validation method, cross validation usually lowers the R2 values of 419 

tested models, but improves the generalization and reliability of the assessment.  420 

According to Table 8, the Gaussian processes regression model provided the highest 421 

prediction accuracy (R2 = 0.9837) among all the data mining models compared, while having a 422 

relatively fast modeling speed. Based on the extent of literature review performed by the authors, 423 

this research seemed to be the first work that examined Gaussian processes regression for 424 

predicting concrete properties, suggesting a great need for future research. Further, in most cases, 425 

ANN led to higher prediction accuracy than traditional modeling approaches such as linear 426 

regression or regression tree models.   427 

In this research, the additive regression model would rank first in prediction accuracy when 428 
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without the presence of Gaussian processes regression, which is consistent with the results from 429 

Chou et al. (2011). However, Chou et al. used decision stump as base classifier; this research 430 

found that additive regression based on decision stump had the lowest accuracy and the other six 431 

tested base classifiers could improve the prediction performance of additive regression. Also, in 432 

Chou et al. (2011), the prediction performance of bagging with the base fast decision tree leaner 433 

was not as good as the ANN model. In contrast, this study found that bagging could provide 434 

better prediction accuracy than the ANN model when using the advanced methods (i.e., Gaussian 435 

processes regression and multilayer perceptron) as base classifiers. 436 

Conclusions 437 

This research aimed to evaluate the potential of using data mining techniques for predicting the 438 

compressive strength of environmentally friendly concrete containing fly ash, Haydite LWA, 439 

and/or PLC. In particular, four common regression tree models (M5P, REPTree, M5-Rules, and 440 

decision stump) and three more advanced predictive models (ANN based on multilayer 441 

perceptron, SMOreg-based SVM regression, and Gaussian processes regression) were generated 442 

and tested individually. Then they were used as base classifiers in two ensemble models 443 

(additive regression and bagging) to evaluate the effects of boosting. 444 

The obtained analytical results suggest that all of the tested models, except for decision 445 

stump, can provide acceptable prediction accuracy with R2 ranging from 0.9217 (for REPTree) to 446 

0.9842 (for Gaussian processes regression). The Gaussian processes regression model showed 447 

the best prediction accuracy as an individual data mining model. Also, when used as base 448 

classifier, it helped the two ensemble models achieve the best prediction performance. This 449 

observation is important since the Gaussian processes regression model is rarely investigated in 450 

previous works in this field.  451 
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The results of this research also indicate that in most cases, except for M5P, REPTree, and 452 

M5-Rules, training the models with the combined dataset containing PC and PLC concrete 453 

samples provided better prediction accuracy than using only the PC or PLC dataset. Furthermore, 454 

although the prediction accuracy of the three advanced data mining models was higher than that 455 

of the four regression tree models, the time required for building and training the models was 456 

significantly longer. This should be considered a factor in choosing an appropriate data mining 457 

model in practice. Particularly, when dealing with a very large dataset, using an ensemble 458 

method with a regression tree base classifier seems to be a more practical alternative. With the 459 

demonstrated potential of using data mining models to predict concrete comprehensive strength, 460 

future research can adopt this approach to study other properties of concrete such as tensile 461 

strength, durability, or concrete slump.   462 
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Table 1. Parameters and Values for Concrete Mix Design (Per Cubic Meter of Concrete) 625 

Parameter Min. Max. Mean SD 

Age (day) 3 90 35.12 35.37 

Water (kg) 210.61 210.61 210.61 0 

PC or PLC (kg) 226.63 528.02 346.18 102.07 

Fly ash  (kg) 0 211.21 79.80 72.37 

Sand  (kg) 741.60 901.78 768.29 59.91 

Pea gravel  (kg) 0 750.49 483.40 229.54 

Haydite  (kg) 0 368.42 131.13 113.03 

Micro Air (ml) 112.17 135.38 123.78 11.64 

  626 
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Table 2. Paired T-Test of the Means for PC and PLC Concrete 627 

Statistical item 

Compressive 

strength for PLC 

concrete 

(MPa) 

Compressive 

strength for PC 

concrete 

(MPa) 

Mean 37.109125 33.54779 

Variance 227.65862 195.3950 

Observations 72 72 

Hypothesized 

mean difference 

0 

t stat 8.8572 

p(T<=t) one-tail 2.16E-13 

t critical one-tail 1.6665 

p(T<=t) two-tail 4.31E-13 

t critical two-tail 1.9939 

  628 
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Table 3. The Lowest MAE Calculated for Each of the Models based on Different Datasets  629 

Method 

Additive 

Regression Bagging M5P REPTree 

M5-

Rules SMOreg 

Multilayer 

Perceptron 

Gaussian 

Processes 

PLC 1.52 2.1038 3.4854 4.9203 3.9587 2.4839 1.946 1.6343 

PC 1.8992 1.9536 2.4113 3.0505 2.3633 2.36 2.1796 1.8784 

PLC & PC 1.3976 1.5662 2.4536 3.3953 2.4793 2.072 1.9625 1.3756 

  630 
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Table 4. The Lowest RMSE Calculated for Each of the Models based on Different Datasets  631 

Method 

Additive 

regression Bagging M5P REPTree 

M5-

Rules SMOreg 

Multilayer 

perceptron 

Gaussian 

processes 

PLC 2.0309 2.6724 4.7615 6.2041 5.2028 3.3491 3.1178 2.2236 

PC 2.4223 2.4563 2.9852 3.8477 2.9705 2.9571 2.9439 2.4154 

PLC & PC 1.8624 1.9902 3.3367 4.1663 3.3169 2.6104 2.5473 1.837 

  632 
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Table 5. Important Parameters and Associated Values/Options for Achieving the Highest 633 

Accuracy of the Tested Models 634 
 635 

Data mining model The highest R Name of parameter/option Associated value/option 

Additive regression  0.9918 Base classifier Gaussian process 

 Number (no.) of iteration 10 

 Shrinkage rate  1 

 Level of Gaussian noise  0.002 

 Kernel of the choice polykernel 

 Exponent value 3 

Bagging  0.9907 Base classifier Gaussian process 

 No. of iteration 80 

 Bagging size percentage 100 

 Level of Gaussian noise  0.007 

 Kernel of the choice polykernel 

 Exponent value 3 

M5P 0.9735 Min. no. of instances  5 

M5-Rules 0.9738 Min. no. of instances  4 

REPTree 0.9601 Min. total weight of instances  1 

 Min. proportion of the variance 0.0001 

SMOreg 0.9839 Kernel of the choice polykernel 

  Exponent value 3 

Multilayer perceptron 0.9849 Node No. for first hidden layer 15 

 Node No. for second hidden layer 8 

 Learning Rate 0.1 

 Momentum 0.25 

 Training time 10000 

 Validation threshold 20 

Gaussian processes regression  0.9921 Kernel of the choice polykernel 

 Exponent value 3 

 Level of Gaussian noise  0.0005 

  636 
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Table 6. R Values for Ensemble Models Using Different Classifiers 637 

Method REPTree M5-Rules M5P 

Decision 

stump SMOreg 

Gaussian 

processes 

Multilayer 

perceptron 

Individual model 0.9601 0.9738 0.9735 0.6208 0.9839 0.9921 0.985 

Additive regression 0.9822 0.9778 0.9917 0.9712 0.9845 0.9918 0.9793 

Bagging 0.9701 0.9765 0.9786 0.9421 0.9823 0.9907 0.9899 

Note: The bold numbers indicate the best performance result for each dataset.  638 
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Table 7. Time (in Second) for Building Each Model 639 

Method REPTree M5Rules M5P 

Decision 

stump SMOreg 

Gaussian 

processes 

Multilayer 

perceptron 

Individual model 0.02 0.14 0.05 0 10.19 0.33 42.46 

Additive regression 0.03 0.42 1.92 0.17 43.82 3.26 167.36 

Bagging 0.28 1.09 3.71 0.03 127.02 27.89 419.42 

  640 
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Table 8. Comparison of Prediction Accuracy with Previous Works 641 

Previous work Sample size Technique R2 

Yeh 1998 727 ANN 0.914 (avg.)a 

Linear regression 0.574 (avg.)a 

Gupta et al. 2006 864 Neural-fuzzy inference system  0.76 

Fazel Zarandi et al. 2008 458 Fuzzy polynomial neural networks 0.8209 

Yeh and Lien 2009 

 

1196 Genetic operation trees 0.8669 

ANN  0.9338 

Chou et al. 2011 1030 ANN 0.9091 

Multiple regression 0.6112 

SVM 0.8858 

Multiple Additive Regression Trees (MART) 0.9108 

Bagging Regression Trees (BRT) 0.8904 

Deepa et al. 2010 300 Multilayer perceptron (ANN) 0.625 

Linear regression 0.491 

M5P model tree 0.787 

Atici 2011 135 ANN 0.9801 

Multiple regression 0.899 

Erdal et al. 2013 1030 ANN 0.9088 

  Bagged ANN  0.9278 

  Gradient Boosted ANN 0.9270 

  Wavelet Bagged ANN  0.9397 

  Wavelet Gradient Boosted ANN 0.9528 

This paper 144 M5P model tree 0.9476 

  M5-Rules 0.9482 

  REPTree 0.9217 

  Multilayer perceptron (ANN) 0.970 

  SMOreg (SVM) 0.968 

  Gaussian processes regression  0.9843 

  Additive regression  0.9837 

  Bagging  0.9816 
aIn Yeh (1998), the database was divided into four different sets. Each time one set was used for testing and the 642 
other three sets were used for training. The listed R2 value is the average for the four testing datasets.  643 
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 644 

Fig. 1. Structure of ANN models  645 
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 646 
 647 

Fig. 2. The example ANN model (8-3-1)   648 
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 649 

Fig. 3. Experimental results for compressive strength of PC and PLC concrete  650 
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 651 

Fig. 4. The highest R value for each of the models based on different datasets  652 
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 653 

Fig. 5. Predicted vs. actual compressive strength (abbreviated as CS in the figure)  654 
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 655 

Fig. 6. Residuals and percentage errors vs. actual compressive strength values 656 
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