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Abstract

Current industrial robots are highly non-linear systems. However,the
control strategies in most commercially available robots largely ignore
the non-linearity. The resulting linear approximations are only valid at
low speeds. Any improvement would allow robots to move faster and
hence be more productive. There has been much academic research into
robot control, but this has almost always separated the control and the
trajectory planning. In this work we seek to combine these tasks and
hence simplify the computations required. We investigate how to control
a general robot in such a way that it’s gripper follows straight line, circular
or helical paths. These simple paths are both one parameter subgroups
for the group of proper rigid motions and geodesics for certain metrics on
the group. This suggests a non-linear feedback control law which turns
the closed loop dynamics of the robot into the equations for geodesics.
Although these equations are not completely stable we are able to modify
the control law so that the resulting closed loop dynamics are stable.
Hence, the end-effector of the robot will follow straight line, helical or
circular trajectories.

1 Introduction

In many application the end-effector of a robot is required to perform a straight
line motion, or a circular motion. Here we study a generalisation of this problem.
That is we look at how to drive the end-effector through a helical or screw
motion. When the pitch of the screw is zero the motion reduces to a circular path
and if the pitch is ‘infinite’ the motion is a straight line. The study of these screw
motions has a long history in mathematics predating the modern description
which uses group theory. More recently, some authors have suggested that



screw motions could be used to advantage in robot trajectory planning, see [1]
and [2].

Usually in robotics, paths are thought of as the paths of points, however we
prefer to think of the path of the rigid body as a whole. This involves using
some notions from group theory. The set of positions that a rigid body can
take up is the manifold of a six dimensional group. This group is the proper
Euclidian group or group of proper rigid motions. If the rigid body undergoes
a finite motion we may think of the successive configurations as points on a
path in the group manifold. The paths corresponding to helical motions are
very special for a number of reasons. Firstly helical motions result from one
parameter subgroups of the group. Secondly, they are the geodesics of certain
metrics that can be defined on the group. That is, they are the paths of ‘minimal
length’ on the group manifold, and in a sense are optimal paths.

Traditionally, to move a robot through a helical motion we would perform
the following steps. First we would generate the successive positions on the
path, then perform the inverse kinematics at each point to get the values of the
joint angles for each position. The results would then be passed to the robot’s
control system. If the control system of the robot uses the Computed Torque
method, see [3, sect. 7.6.1] then, from the sequence of joint angles we would
calculate the torques required to move the robot to the next position in the
sequence.

In this work we suggest an alternative approach. The required torques are
calculated directly from the measured values of the angles and their velocities.
However, the calculation is done in such a way that the closed loop dynamics of
this feedback system are the geodesic equations given below. Hence, the path
of the robot’s end-effector will satisfy the equations and trace out a geodesic, a
straight line, circle or helical path depending on the initial conditions. Notice
that we avoid the computation of the successive positions on the trajectory and
the inverse kinematics. In fact the computations we must perform are roughly
comparable in complexity to those involved in the Computed Torque method.
However, we stress that the proposed method is a feedback system, see section
4 below.

Before we begin however, we will take the opportunity to review some basic
robotics from the point of view of group theory. See also [1] for an introduction
to this material.

Robotics is largely concerned with moving solid objects about in space, hence
the group of proper rigid motions SE(3), is central to the study of robots. This
group is six dimensional, it is the semi-direct product of the rotation group
SO(3) with the group of translations IR3. Historically, the study of this group
predates modern group theory, for example; Chasles theorem (1830) states that
every proper rigid motion is a screw motion about some axis, see Hunt [4,
sect.2.8]. Hence, we will sometimes refer to the group elements as finite screws.

Many current industrial robots consist of six rigid links connected in series
via one degree-of-freedom joints, see fig. 1. Six joints are used so that the last
link, or end-effector of the robot has six degrees of freedom. Since the group
is six dimensional this is the maximum number of degrees of freedom that a
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single rigid body can have. The joints are usually simple hinges, known as
revolute joints, or sliding joints, called prismatic joints. More rarely, a helical
joint may be used, such a joint can move in the same way as a nut does on a
bolt. The common thing about these joints is that they can be realised with
a pair of mating surfaces, one solid the other hollow. These surfaces can move
relative to each other while still remaining in contact. Such joints are known as
Reuleaux lower pairs, after Franz Reuleaux (1829–1905). The relative motion
allowed by such joints corresponds exactly with the one parameter subgroups
of SE(3), indeed each one parameter subgroup is the symmetry group of the
mating surface of a joint. Revolute joints can be made using any surface of
revolution and prismatic joints from surfaces of translation. The one parameter
groups can be parameterised using the exponential map from the Lie algebra to
the group.

g(t) = ets

The Lie algebra element s characterises the position and type of the joint, and
so will be referred to as the joint screw. More properly we should say the
instantaneous joint screw, to distinguish the Lie algebra elements from the
group itself, however the meaning should be clear from the context. Note, that
we do not follow [1] where the term screw is used to denote a ray in the Lie
algebra, that is an element of the projective space made from the Lie algebra.

For a six joint serial robot the forward kinematics gives a map from joint
space, with coordinates:

θ = (θ1, θ2, θ3, θ4, θ5, θ6)

to the group SE(3);

ρ : θ 7−→ eθ
1s1eθ

2s2eθ
3s3eθ

4s4eθ
5s5eθ

6s6

see [5].
Although we have indicated the joint variables by theta’s it is not intended

that only revolute joints can be treated, any one degree-of-freedom joint can be
considered. However, if the joints are all revolute, then topology of the joint
space will be that of a six-torus. That is, joint space is the Cartesian product
of six circles, since a point in this space can be completely specified by the six
joint angles. For prismatic or helical joints the joint parameter is a real number,
different numbers giving different positions of the joint. Hence, the configuration
space for such a joint is topologically a real line. So when the robot has revolute
and prismatic or helical joints, the topology of the joint space is the Cartesian
product of lines and circles, a circle for each revolute joint and a line for every
helical or prismatic joint.

The velocities of the links are also Lie algebra elements. The angular and
linear velocities combine to give six component vectors. For a general path in
the group:

γ : t 7−→ g(t)
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Figure 1: A Six Joint Serial Robot

the velocity of such a path is given by the Lie algebra element:

q̇ = g−1ġ

The velocity of the sixth link q̇6, of a six joint serial robot can be found by
differentiating the forward kinematics:

q̇6 = θ̇1s1 + θ̇2s2 + θ̇3s3 + θ̇4s4 + θ̇5s5 + θ̇6s6

This equation is independent of the representation we use for the group and its
Lie algebra. However, if we use the six dimensional representation then vectors
on the joint space are related to vectors on the group by the Jacobian:

q̇6 = J(θ)θ̇

The columns of the Jacobian matrix given above are simply the joint screws.

J(θ) =
(
s1 | s2 | · · · | s6

)
These six component vectors can be partitioned into two 3 component vectors:

s =

(
ω
v

)
where ω is the angular velocity and v is the linear velocity of any point on
the axis of the screw. Note also that these are the joint screws at a given
configuration. As the robot moves so do its joints, but in the notation we have
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suppressed the dependency of the joint screws on the joint angles. We will
return to this in a moment but first a little more algebra.

The adjoint action of the group on its Lie algebra can be written using the
six dimensional representation of the group:(

ω′

v′

)
=

(
R 0
XR R

)(
ω
v

)
Where R is a 3 × 3 Special Orthogonal matrix and X represents a translation
by x. It is the anti-symmetric matrix which gives Xu = x × u for any three
dimensional vector u, that is:

X =

 0 −x3 x2
x3 0 −x1
−x2 x1 0


The adjoint action of the Lie algebra on itself is given by the commutator.

In this Lie algebra the commutator of two elements is given by:

[s1, s2] =

(
ω1 × ω2

ω1 × v2 + v1 × ω2

)
The cross here is the standard vector product in three dimensions. Notice that,
we can represent this action by a 6× 6 matrix:

ad(s) =

(
Ω 0
V Ω

)
where Ωx = ω × x and V x = v × x for and three dimensional vector x.

Returning to the movement of joint screw we note that the ith joint moves
about the joints lower down in the chain, so that:

si(θ) = eθ
1s1eθ

2s2 · · · eθ
i−1si−1si(0)

where the screws in the exponents are the joint screws in their home positions
taken in the adjoint representation. Hence the time derivative of a joint screw
is given by:

d

dt
si = θ̇1[s1, si] + θ̇2[s2, si] + · · ·

· · ·+ θ̇i−1[si−1, si]

Finally in this section we look at the two bilinear forms defined on the Lie
algebra which are invariant with respect to the adjoint action. Rather, the one
parameter linear system of such forms. These bilinear forms define bi-invariant
metrics on the group. A basis for the forms is given by the two, 6× 6 matrices,
partitioned as:

Q0 =

(
0 I
I 0

)
,
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and

Q∞ =

(
I 0
0 0

)
Again, these forms have been known for a century or so, the first is usually
called the reciprocal product. The other does not seem to have a special name,
but it is the Killing form of the Lie algebra. Recall that the Killing form of
two elements of a Lie algebra is found by taking the trace of the product of the
matrices representing the elements in the adjoint representation of the algebra.
Notice that Q∞ is the only one of these forms which is positive and it is also
the only degenerate one.

Almost all screws can be written as:

s =

(
ω

r× ω + pω

)
The exception are the screws for which ω = 0. The vector ω is in the direction
of the screw axis and r is the position vector of any point on the screw axis. The
constant p is called the pitch of the screw, it is the distance moved along the
screw axis for every revolution about the axis. In terms of the bilinear forms,
the pitch of a screw s is given by the ratio:

p =
sTQ0s

2sTQ∞s

Conventionally, when ω = 0, we say that the screw has infinite pitch, in this
case the screw is an infinitesimal pure translation and has the shape:

s =

(
0
v

)
We may also associate a pitch to a general bilinear form, suppose p = −β/2α,

then a pitch p form is given by:

Qp = αQ0 + βQ∞ =

(
βI αI
αI 0

)
This definition has been adopted so that for a pitch p screw s we have:

sTQps = 0

2 Christoffel Symbols

The bilinear forms given above can be thought of as bi-invariant metrics on the
group SE(3). In this section we derive the equations for geodesics with respect
to these metrics. In particular we find the Christoffel symbols for the metrics as
functions of the robot’s configuration. That is, we will evaluate the Christoffel
symbols for the metric on joint space in terms of the robot’s joint screws.
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So we begin by pulling-back the metrics to joint space and expressing the
geodesic equations in terms of the co-ordinates in joint space. The pull-back to
joint space of the metric Qp is simply given by:

Q∗p = JTQpJ

where J , is the Jacobian of the forward kinematic mapping.
Given a bi-invariant metric on a compact Lie group, the geodesic curves

will be exactly the one parameter subgroups and their translates, [6, p.224], [7,
p.113] or [8, p.232]. In fact, the proofs in the literature do not depend on the
group being compact. So the theorem is true for our group SE(3), which is not
compact.

We have many bi-invariant metrics, the difference between them is that
although they have the same geodesics the ‘length’ of such a curve is different
under each metric. Recall that the length of tangent vectors along a geodesic
is constant. Notice that, under the pitch p metric, the geodesics generated by
pitch p screws are null.

According to Milnor [7, p.114], for left invariant vector fields on the group
we have:

∇Xi
Xj =

1

2
[Xi, Xj ]

where ∇ is the covariant derivative for a bi-invariant metric. Left invariant
vector fields on a group are in one to one correspondence with elements of the
Lie algebra. So on SE(3) the left invariant vector fields can be thought of as
screws. Now given a general vector field on joint space we can use the forward
kinematics to ‘push-forward’ to a vector field on the group, a pair of vector fields
will be given by:

U = θ̇1s1 + θ̇2s2 + · · ·+ θ̇6s6

V = φ̇1s1 + φ̇2s2 + · · ·+ φ̇6s6

Now the covariant derivative can be calculated:

∇UV = ∂UV − 1

2
[U,V]

=

6∑
i=1

θ̇i
∂

∂θi
V − 1

2
[U,V]

Substituting for U and V and simplifying we obtain:

∇UV =

6∑
i=1

φ̈isi+

1

2

∑
1≤i<k≤6

(θ̇iφ̇k − θ̇kφ̇i)[si, sk]
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This general result tells us how to find the covariant derivative of vector
fields and hence how to parallel translate those vectors. For our immediate pur-
poses we want the equations for the geodesics in joint space. A straightforward
calculation gives:

∇UU =

6∑
i=1

θ̈isi +
∑

1≤i<j≤6

θ̇iθ̇k[si, sj ]

Hence, the geodesic equations in joint space are given by setting the last relation
to zero:

∇UU =

6∑
i=1

θ̈isi +
∑

1≤i<j≤6

θ̇iθ̇k[si, sj ] = 0

These equations, with very slight modifications, make sense for robots with
less than six joints. Our equations describe the geodesics in joint space. How-
ever, when the joint space has fewer dimensions than the group, geodesics in
joint space do not necessarily correspond to geodesics in the group.

The equations can be tidied up further, away from singularities. When the
Jacobian is non-singular we can invert the Jacobian of the robot, let us label
the rows of the inverse Jacobian Si so that:

Si(sj) =

{
1, if i = j
0, if i 6= j

The equations can be rewritten as:

θ̈i +
∑

1≤j<k≤6

Si[sj , sk]θ̇j θ̇k = 0

i = 1, 2 . . . 6

Compare this with the usual geodesic equations on a non-degenerate metric
space:

ẍi + Γijkẋj ẋk = 0

where it is understood that repeated indices are to be summed over. There
are many possible ways to choose the Christoffel symbols to give the same
connection but if we require the connection to be symmetric (zero torsion) then
the Christoffel symbols of the symmetric connection on joint space is given
uniquely by:

Γijk =

{
1
2S

i[sj , sk] j ≤ k
− 1

2S
i[sj , sk] j ≥ k

We believe this result is new. These are not the same Christoffel symbols that
appear in robot dynamics, see for example [3, p.142], there it is the Lagrangian
function which is being minimised. There are, however, other ways to find these
Christoffel symbols. We could have looked at the ‘length’ of a curve in joint
space. This is given by the integral:∫

θ̇
T
JTQPJ θ̇ dt
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This is usually considered to be the square of path’s length, but our metrics are
not positive. It is well known that the geodesic equations can be derived from
variations of the path length integral. The Euler-Lagrange equations for this
variational problem are quite simple to compute using the results of [9].

The easiest, but least informative, way to find the geodesic equations is to
look at the velocity of the robot’s last link. From what we know about geodesics
in groups, we know that q̇6 = constant is a geodesic in the group. Hence the
derivative is zero.

q̈6 = 0

This can be written in terms of joint angles and their rates, since, from the
introduction we know that:

q̇6 =

6∑
i=1

θ̇isi

and
d

dt
si =

i∑
j=1

θ̇j [sj , si]

3 Control

Our aim now is to choose a control law so that the closed loop dynamics of
the system are just the geodesic equation derived above. If we succeed, the
end-effector of the robot will follow a geodesic path; straight line, circle or helix,
depending on the initial conditions.

The model we will use for the dynamics of a Robot can be summarised as:

Aij(θ)θ̈j +Bijk(θ)θ̇j θ̇k + Ci(θ) = τ i

again, with the summing convention understood. The matrix A contains the
information about the inertia of the links while the Bs refer to the interactions
between links and also the Coriolis terms. The Cs are the weights of the links
and the τs are the generalised forces applied to the joints; for revolute joints
these will be torques. See [10, Chap.6] or [3, chap.6].

In order to control the robot we must choose torques at the joints to drive
the machine along the desired path. Conventionally, the desired path of the
end-effector will be given. From this the corresponding path in joint space can
be computed. Typically this involves finding points along the path of the end-
effector and then using the robot’s inverse kinematics at each point. Once we
have the path in joint space, or at least a discrete approximation to it, we can
compute the required torques using the equations of motion above.

For geodesic path we can do better than this. We can dispense with the
inverse kinematics completely. In the last section we derived the differential
equations for paths in joint space corresponding to the geodesics in the group.
Now suppose we can choose a control law which makes the closed loop dynamics
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Figure 2: Schematic for Control Along Geodesics

of the system into these geodesic equations. That is, we choose the joint torques
to be functions of the joint angles and their velocities.

This goal can be achieved we set the joint torques to:

τ i = (Bijk −AilΓljk)θ̇j θ̇k + Ci

i = 1, 2 . . . 6

Note that, since this is a feedback law we assume that the values for the joint
angles and their velocities are measured values. The closed loop equations of
motion are now:

Ail θ̈
l +AilΓ

l
jkθ̇

j θ̇k = 0

The generalised inertia matrix A is always invertible, so this is just the equa-
tion for geodesics, as promised. Hence, the solutions will be one parameter
subgroups, that is helical motions of the robot’s end-effector. The pitch of the
screw motion will depend on the initial conditions, essentially the linear and
angular velocity of the robot’s last link at time t = 0. See fig. 2 for a schematic
diagram of the proposed controller.

There is a standard way of studying the stability of geodesic equations, see
[11, sect.6.9] or [7, sect.19]. The geodesic equations can be linearised about a
particular geodesic. This gives the equations of geodesic deviation:

∇X∇XZ + R(X,Z)X = 0

The vector field X is tangent to the particular geodesic. While Z is a field on
the geodesic which expresses the difference between the geodesic and nearby
geodesics, such a field is called a Jacobi field. The term R is the Riemann
curvature tensor of the metric. It is defined by:

R(U,V)W =

−∇U∇VW +∇V∇UW +∇[U,V]W
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(Notice, it is also common to give R the opposite sign, the conventions in [7]
will be followed here).

According to Milnor [7, sect.21], on a Lie group with bi-invariant metric, we
have that:

R(X,Y)Z =
1

4
[[X,Y],Z]

Hence, we may write the equations of geodesic deviation as:

∇X∇XZ− 1

4
ad2(X)Z = 0

The stability of this equation depends on the eigenvalues of the matrix ad2(X)
where ad is the adjoint representation of the Lie algebra on itself, see section
1 above. A simple computation shows that for the group SE(3), the matrix
ad2(s), generally has eigenvalues; −1 with multiplicity four and 0 with multi-
plicity two. Exceptionally, when s is an infinitesimal pure translation, all six
eigenvalues are 0. Hence we see that most geodesics near a finite pitch geodesic
stay near. However, some will drift away, those corresponding to the zero eigen-
vectors. If the original geodesic is generated by the Lie algebra element s then
the eigenvectors corresponding to the zero eigenvalue of ad2(s) are just those
elements which commute with s. These are simply the screws with the same
axis as s.

It is possible to modify the proposed control law so that the closed loop
dynamics are absolutely stable. Consider the following equations in the group:

q̈6 = λ(sd − q̇6)

Certainly, q̇6 = sd is a solution to this equation for any value of the constant λ.
Moreover, nearby solutions converge to this solution. To see this, assume that
q̇6 is given by a linear combination of constant screws which form a basis of the
Lie algebra:

q̇6 = adsd + a1z1 + a2z2 + a3z3 + a4z4 + a5z5

where the ais are non-constant coefficients. This equation now reduces to the
six equations for the coefficients:

ȧd = λ(1− ad), and ȧi = −λai

i = 1, 2 . . . 5

The solutions of which are:

ad(t) = (1− e−λt) + ad(0)e−λt

and
ai(t) = e−λtai(0) i = 1, 2 . . . 5

If we choose λ to be positive, then it is clear that extraneous solutions will decay
away and ad will tend to 1.
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Just as with the geodesic equations, this equation can be pulled-back to joint
space to give equations in the joint variables:

θ̈i +
∑
j<k

Si([sj , sk])θ̇j θ̇k =

λSi(sd −
6∑
j=1

θ̇jsj)

i = 1, 2 . . . 6

Since:

q̈6 =

6∑
j=1

θ̈jsj +
∑

1≤k<l≤6

θ̇kθ̇l[sk, sl]

Again it is possible to choose a control law which makes the closed loop
dynamics of the robot look like the above equations:

τ i = (Bijk −AilΓljk)θ̇j θ̇k+

Ci + λAilSl(sd − θ̇jsj)
i = 1, 2 . . . 6

Notice that our simple model of the robot’s dynamics takes no account of
friction at the joints, the dynamics of the motors nor any flexibility that may
be present in the links or joints. It may be argued that the dynamics of the
model is too simple especially since the motor dynamics are not included. This
is however, a common first step in modelling robot dynamics. It can also be
justified by the common practice of controlling each motor separately and then
having a supervisory level of control for coordinating the motions of the joints.

We can however, introduce a simple model of friction into the dynamics as
follows. Assume that the frictional forces on the joints are proportional to the
joint rates. The equations of motion for the robot including this type of friction
are just:

Aij θ̈
j +Bijkθ̇

j θ̇k + Ci + µiθ̇
i = τ i

where the µs are the friction coefficients, so no sum over i is intended here. The
same technique as above can be used in this case also, we set the joint torques
to:

τ i = (Bijk −AilΓljk)θ̇j θ̇k + Ci+

µiθ̇
i + λAilSl(sd − θ̇jsj)

i = 1, 2 . . . 6

In many situations we would like the robot’s end-effector to accelerate from
rest or decelerate along a geodesic. In other words we would like the end-effector
to follow a path given by:

q̈6 = eγt
2sd/2
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where the constant γ depends on the rate of acceleration along the geodesic.
For this situation we consider the equation:

q̈6 = γsd + λ(γtsd − q̇6)

Clearly this has a solution:
q̇6 = γtsd

as required. As above we can see that this is stable when λ is positive. Hence,
to make the closed loop dynamics of the robot match this equation we set the
joint torques to:

τ i = (Bijk −AilΓljk)θ̇j θ̇k + Ci+

AilSl(γ(1− λt)sd − λθ̇jsj)
i = 1, 2 . . . 6

Notice that all of our results above depend on the exact cancellation between
the modelled and actual dynamics. That is, the quantities A, B, C and so on,
must be known with a high degree of precision. This will clearly be a problem
when the robot picks up an unknown payload.

4 Comparison with other Methods

In this section we describe how the control method outlined above compares with
some of the standard Robot control techniques. The main reference used here is
Spong and Vidyasagar [3]. They distinguish between the open loop Computed
Torque method and the closed loop version which they call Inverse Dynamics, see
[3, sect. 8.3]. In other work both these methods often go by the name Computed
Torque. A schematic diagram of both methods is given in fig. 3. Notice that
both these methods require an inverse kinematics stage to compute the desired
joint angles and their derivatives. The non-linear compensator referred to in the
diagram is essentially the dynamic equations of the robot. Given the desired
trajectories for the joints we can compute the required torques, the overall
effect is to turn the compensator plus robot into a linear system. In the Inverse
Dynamics method, this linear system is controlled and stabilised using feedback.

The method outlined in this paper is most similar to the technique called;
Inverse Dynamics in Task Space, see [3, sect. 9.4]. We may identify task space
with the group manifold of SE(3), that is the space of positions and orientations
for the robot’s end-effector. The Inverse Dynamics in Task Space method begins
by specifying a co-ordinate system for task space. This is only possibly locally
since there is no global co-ordinate system on the group SE(3). However, this
is not a serious problem since it is only the derivative of the forward kinematic
map; from joint space to task space, that is used subsequently. The derivative,
that is the Jacobian matrix, is not the standard Jacobian of the robot as used
above. Recall, the Jacobian of a robot relates the velocity screw of the end-
effector to the joint rates. Simply integrating the components of such a velocity
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Figure 3: Schematics for Computed Torque (top) and Inverse Dynamics Control
(bottom)

screw will not give a co-ordinate system on the group. However, we can follow
the style of the derivation given in [3, sect. 9.4] to get the simplest of the control
laws given above.

For a constant motion along a screw we have:

J iJ θ̈
j + J̇ ij θ̇

j = 0

Substituting this in the equations of motion gives the required torques as:

τ i = Bijkθ̇
j θ̇k −Ail(J−1J̇)lkθ̇

k + Ci

From the section 2 we can see that:

(J−1J̇)ik = Γijkθ̇
j

5 Conclusions

The idea of using non-linear feedback in robotics is not in itself novel, see for
example [12] and references therein. However, our introduction of some of the
differential geometry of SE(3) into robot control is new. Our approach elimi-
nates the need for much of the computations which would otherwise have to be
done. The scale of the computational task seems to be comparable with that
for the Computed Torque method, which it would also replace. Like Computed
Torque, the technique depends on the exact cancellation of terms in the real
and modelled dynamics of the system. The effect of the mismatch between the
model and the robot, that is the robustness of the method, has yet to be studied.
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The price that is paid for simplifying the control task is that only particular
trajectories can be followed, namely the helical ones. More general trajectories
could be realised in the same manner if they were geodesics for known metrics
or using a scheme similar to Inverse Dynamics in Task Space. Note that there
are many other approaches to simplifying the control of robots, for example see
[13] where the simplification is achieved by careful design of the arm’s dynamics.

Finally, we come to the problem of singularities, that is points where the
robot’s Jacobian has less than maximal rank. This has been avoided throughout
the above. The limitations imposed on the performance of the robot by the
singularities are the same as with any control strategy. Near singularities very
large forces or torques are required to move the robot, and in general singular
positions must be avoided.

It does not seem unreasonable to hope that practical implementation of these
ideas will lead to interesting and useful robot controllers.
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