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ABSTRACT

This thesis introduces a novel distributed model for handling in real-time, edge-

based video analytics. The novelty of the model relies on decoupling and distributing

the services into several decomposed functions, creating virtual function chains (V FC

model). The model considers both computational and communication constraints.

Theoretical, simulation and experimental results have shown that the V FC model

can enable the support of heavy-load services to an edge environment while improving

the footprint of the service compared to state-of-the art frameworks. In detail, results

on the V FC model have shown that it can reduce the total edge cost, compared with a

monolithic and a simple frame distribution models. For experimenting on a real-case

scenario, a testbed edge environment has been developed, where the aforementioned

models, as well as a general distribution framework (Apache Spark ©), have been

deployed. A cloud service has also been considered. Experiments have shown that

V FC can outperform all alternative approaches, by reducing operational cost and

improving the QoS. Finally, a migration model, a caching model and a QoS monitoring

service based on Long-Term-Short-Term models are introduced.
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1

Chapter 1

Introduction

1.1 Background

The recent rise of a diverse set of video analytics, deep learning-based augmented

and virtual reality applications drives the demand for real-time mobile cloud services.

These real-time, mobile apps require heavy computing over big datasets and are

often expected to deliver minimal end-to-end latency for acceptable end-user quality

of experience. Limited battery life, computation and storage capacity constraints

inherent to mobile devices mean that application executions must be offloaded to

cloud servers, which then return processed results to the mobile devices through the

Internet. End-to-end communication between cloud servers in remote data centers

may result in long delays typical of multi-hop Internet communications.

To accommodate these rising edge applications, edge cloud computing has been

presented as a potential solution (Bonomi et al., 2012), which brings computing to the

network edge to reduce response time while avoiding edge-to-core network capacity

limits.

1.2 Challenges and Motivation

Despite previous and ongoing work on many areas of edge computing, it is planned

to approach this challenge in a fully latency-constrained architecture. The following

issues arise as a result of this viewpoint.
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First, how to optimally distribute real-time application functions across mobile

devices, edge servers, and central clouds so that computing resources are fully utilized

while providing global user scalability.

As a sample example, surveillance applications have been extensively accepted

as a killer application in the era of edge computing. Edge cloud computing can

help surveillance applications satisfy their QoS requirements, but merely relocating

all surveillance tasks to the edge makes it more difficult for end users to have in-

tegrated services across the network since synchronizing users’ profiles and video

cameras across widely distributed edge clouds is a challenging task.

Second, the challenge of how to deploy these new edge applications efficiently

within an edge cloud has not been thoroughly investigated. For edge applications,

replicating the successful cloud computing concept can not apply. This is mostly

due to edge clouds’ very diverse characteristics. Edge clouds, unlike central clouds,

are frequently made up of heterogeneous compute nodes with vastly disparate net-

work bandwidths. For example, in (Zhang et al., 2017), the processing nodes and

their interconnects are assumed to be generally homogeneous in central clouds, but

in (Ha et al., 2017), the edge servers have significantly variable capabilities. As a re-

sult, managing these diverse resources efficiently in order to fulfill application latency

limitations is a significant new research area.

Finally, current approaches only contemplate offloading jobs to a single server,

assuming that the server has the resources to complete the tasks in a timely man-

ner. In practice, however, a single edge server is generally outfitted with expensive

hardware, such as Intel Xeon Scalable Processors with Intel Deep Learning Boost or

NVIDIA EGX A100, that is shared by several clients (i.e., multi-tenant environment).

Furthermore, resource fragmentation is caused by the varied resource demands of ap-

plications operating on edge servers and highly dynamic workloads by mobile users.



3

If the fragmentation isn’t used effectively, it might waste a lot of resources throughout

the edge servers.

1.3 Research objectives and contributions

This work introduces a novel distributed model for handling in real-time, edge-based

video analytics, such as the ones required for smart video surveillance. The novelty of

the model relies on decoupling and distributing the services into several decomposed

functions (Virtual Function - V F ) which are linked together, creating virtual function

chains (Virtual Function Chain - V FC model).

The model considers both computational and communication constraints. The-

oretical, simulation and experimental results have shown that the V FC model can

enable the support of heavy-load services to an edge environment while improving

the footprint of the service compared to state-of-the art frameworks.

For supporting the aforementioned approach, the following research questions gov-

erned the development of this work throughout its lifetime.

1. RQ1: Which is the most appropriate optimization model for V F placement in

a heterogeneous edge/fog environment?

2. RQ2: Which is the most appropriate migration model for V F for load balancing

and self-healing?

3. RQ3: Which is the most appropriate caching model for performance boosting

of the proposed architecture?

As far as publishing the results of the work related to this PhD project, the

following papers have been published or are being under review:
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� (Tsakanikas and Dagiuklas, 2018) (Tsakanikas, V. and Dagiuklas, T. (2018).

Video surveillance systems-current status and future trends. Computers & Elec-

trical Engineering, 70:736-753.) reports the literature review which identified

the current status of video surveillance systems, as well as the deployment tech-

nologies which nowadays support such applications are utilizing.

� (Tsakanikas and Dagiuklas, 2021) (Tsakanikas, V. and Dagiuklas, T. (2021).

Enabling real-time AI edge video analytics. In ICC 2021-IEEE International

Conference on Communications, pages 1-6.IEEE.) presented the proposed V FC

model, along with the solution of the V F placement problem.

� (Tsakanikas and Dagiuklas, 2022b) (Tsakanikas, V. and Dagiuklas, T. (2022b).

VFCSIM: A simulation framework of realtime multi-service virtual function

chains deployment. In GLOBECOM 2022 - IEEE Global Communications Con-

ference - IEEE.) details the architecture of the developed simulation environ-

ment for V FC modeling.

� (Tsakanikas and Dagiuklas, 2022a) (Tsakanikas, V. and Dagiuklas, T. (2022a).

A generic framework for deploying video analytic services on the edge. Trans-

actions on Cloud Computing, IEEE - R1 revision.) presents an extensive com-

parison of the proposed distribution model with similar approaches.

� (Tsakanikas, V. and Dagiuklas, T., VF Migration: A QoS aware migration

model for edge deployed Virtual Functions) - to be submitted at IEEE Transac-

tions on Cloud Computing. This paper presents the results reported in Chapter

5, regarding the proposed V F migration model.

1.4 Dissertation structure

The rest of this manuscript is structured as follows.
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Chapter 2 presents an extensive literature review on surveillance systems, the

technologies used nowadays to deploy them and the challenges such system are fac-

ing. The scope of this chapter is to identify the shortcomings of typical surveillance

systems, as well as describing currently available edge deploying frameworks. Special

focus is also placed on edge distributing technologies, as well as identifying and listing

the challenges an edge network needs tackle, in terms of supporting demanding, real

time services.

Chapter 3 introduces the Virtual Function Chaining model, while formu-

lating and solving the V F placement problem. Additionally, comparison studies with

similar approaches are presented in the same chapter. Chapter 3 constitutes the core

of this thesis, as it describes the roadmap from the conception of the V FC model, to

its formulation and its materialization and evaluation. The mathematical formulation

of the model, as well as the methodology for tackling the V F placement problem are

also detailed in Chapter 3.

Chapter 4 presents the architecture of V FCSIM , a simulation environment for

V FC modeling. V FCSIM is an open source simulator, designed and built within

the work of this PhD project. Its scope is to facilitate the evaluation of the proposed

model against other distribution approaches. The relative results of this chapter

promotes the usage of the V FCSIM simulator for simulation of virtual function

chain scenarios.

Chapter 5 introduces, details and evaluates the V FC migration model for boost-

ing quality of service and supporting self-healing mechanisms. After formulating the

migration problem, appropriate solutions and algorithms are discussed. Finally, the

V FC migration model is presented and its performance is evaluated through simula-

tion scenarios on the V FCSIM engine.

Finally, Chapter 6 discusses the conclusions which can be drawn from the manuscript
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and outlines the related future work.

Appendix A outlines the main mathematical principles for optimization theory.
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Chapter 2

State of the Art

This chapter presents the current status of video surveillance systems. The main com-

ponents of a surveillance system are presented and studied thoroughly. Algorithms

for image enhancement, object detection, object tracking, object recognition and item

re-identification are presented. The most common modalities utilized by surveillance

systems are discussed, putting emphasis on video, in terms of available resolutions

and new imaging approaches, like High Dynamic Range video. The most important

features and analytics are presented, along with the most common approaches for

image / video quality enhancement. Distributed computational infrastructures are

discussed (cloud, fog and edge computing), describing the advantages and disadvan-

tages of each approach. Additionally, deep learning algorithms are presented, along

with the smart analytics that they utilize. Augmented reality and the role it can

play to a surveillance system is reported, just before discussing the challenges and

the future trends of surveillance.

2.1 Introduction

During the past decade Video Surveillance Systems (VSS) have revolved from sim-

ple video acquisition and display systems to intelligent (semi)autonomous systems,

capable of performing complex procedures. Nowadays, a VSS can integrate some

of the most sophisticated image and video analysis algorithms from research areas

such as classification (e.g., neural networks or stochastic models), pattern recog-



8

nition, decision-making, image enhancement and several others. Thus, a modern

surveillance system comprises image and video acquisition devices, data processing -

analysis modules and storage units, components, which are all crucial for the system’s

workflow.

Surveillance systems have technically evolved under three generations. The 1st

generation (1G) is dated back in 1960’s, when analog Close Circuit TV (CCTV)

systems were first introduced, mainly for indoor surveillance applications. For that

time, 1G systems performed rather satisfying, gaining the trust of the market with

deployments in banks, supermarkets, garages, etc. Yet, analogue technology con-

strained their capabilities, especially for recording and distributing processes. In

1980’s, digital imaging evolved surveillance systems to the 2nd generation (2G), of-

fering two major advances. First, compression (Galteri et al., 2018) and distribution

(Qiu et al., 2022) have now become more efficient and more cost-effective. Second,

computer vision algorithms have been introduced to surveillance systems, offering

semi-automated functionalities, such as object tracking and event alerting. Finally,

since the early 2000’s, one can discuss about the 3rd generation of surveillance sys-

tems, where fully automated wide-area surveillance systems are explored, aiming to

offer reasoning frameworks and behavioral analysis functionalities, incorporating and

integrating at the same time multi-sensor platforms and data fusion techniques. In

Fig. 2·1, a timeline diagram of the evolution of surveillance systems is depicted.

There are many flavors of Video Surveillance Systems, each one trying to fulfill part

of the market. Several categorizations can be drawn. Hence, one can categorize video

surveillance systems based on the type of imaging modality acquired, producing cat-

egories like “one camera systems”, “many camera systems”, “fixed camera systems”,

“moving camera systems” and “hybrid camera systems”. Another categorization can

be based on the applications which a Video Surveillance System offers, such as object
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Figure 2·1: Evolution of surveillance systems.

tracking, object recognition, ID Re-identification, customized event alerting, behavior

analysis etc. Finally, Video Surveillance Systems can be categorized based on archi-

tecture a system is built on, such as stand-alone systems, cloud-aware systems and

distributed systems.

For most of the time, surveillance systems have been passive and limited in scope.

In this context, fixed cameras and other sensing devices such as security alarms have

been used. These systems are able to either track persons or to detect some kind

of events (e.g., a person breaking the door or the window), however, they have not

been designed to predict abnormal behaviors (Tsushita and Zin, 2018). During the

last years, there was a huge progress in sensing devices, wireless broadband technolo-

gies, high-definition cameras, and data classification and analysis. Combining such

technologies in an appropriate way will allow to develop new solutions that extend

the surveillance scope of the current systems and improve their efficiency. Within the
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context of surveillance systems, efficiency improvement has two directions.

� First, the improvement of the video processing algorithms along with the derived

video analytics will increase the validity and the accuracy of a surveillance

system and

� second the integration of surveillance systems with cloud infrastructures is ex-

pected to improve reliability (e.g., generate alarms under poor lighting condi-

tions etc.), reduce the maintenance costs and increase the response time of the

systems.

VSS have to cope with several challenges, including, but not limited to, algo-

rithmic and infrastructure ones. Thus, surveillance systems have to adapt with the

emerging network and infrastructure technologies, such as cloud systems, in order to

provide more robust and reliable services. This trend will also demand the integration

of different surveillance systems for extracting more useful knowledge. This integra-

tion will require new communication protocols and data formats between surveillance

agents, as well as new surveillance adapted databases and query languages. Finally,

more accurate algorithms are required, especially in the context of behavioral analysis

and abnormal activities detection.

The scope of this chapter is to survey the current status of VSS, aiming to identify

the best practices for image and video processing and analysis and highlights research

challenges for next generated systems. Additionally, the applicability of proposed

algorithms and architectures will be assessed, in terms of time response and scenarios

variety. The chapter is structured as follows: Within section 2.2, the available video

sensors from different surveillance systems are presented, Section 3 describes the

different modalities that are commonly used in surveillance systems. In Sections 4

and 5 several approaches for the most studied image and video processing algorithms
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are analyzed, focusing on video analytics and quality enhancement respectively. In

Section 6, computing architectures for boosting the performance of a surveillance

system are discussed while in Section 7 the future trends on surveillance systems are

drawn.

2.2 Video sensors

Nowadays, there is a variety of video sensors used from surveillance systems (Prati

et al., 2019). As the technical specifications of the video sensors play a key role to the

potential of a surveillance system, in this section an outline of the sensors’ technical

characteristics is provided.

The oldest and most used type of video sensors is analog video sensors which are

used to CCTV surveillance systems. The resolution of the analog cameras is measured

in vertical and horizontal line dimensions and typically limited by the capabilities of

both the camera and the recorder that the CCTV system is using. In Table 2.1,

common formats of analog cameras are provided, along with their resolution are

presented. Until 2017, the higher resolution for analog systems came from the D1

format. Yet, since 2015 the AHD CCTV (Analog High Definition) cameras were

introduced in the market, along with the corresponding recorders. Regarding the

FPS (Frames per Second), specification of analog video sensors, it can vary from 1

FPS to 30 FPS. The majority of the systems use either 15 FPS or 7.5 FPS, as higher

values require a large amount of storage volume, in case of recording.

Table 2.1: Resolutions of common analog video cameras.

Analog Video format Resolution
1,080p Resolution 1,920 x 1,080
720p Resolution 1,280 x 720
D1 Resolution 704 x 480 (NTSC for the United States)

720 x 576 (PAL for Europe)
CIF Resolution 352 x 240
QCIF Resolution 176 x 120



12

During the last fifteen years digital video sensors gained their market share against

analog technology. While analog sensors transmit the captured data uncompressed,

the digital sensors perform digitalization of the input stream and thus can take ad-

vantage of compressing algorithms and advance video codecs. Consequentially, these

sensors can interface directly with network infrastructures and transmit their data

over switches and routers. This is the reason why the digital sensors often referred as

IP cameras. The resolution and the frame rate of digital sensors are adjustable. Com-

mon IP-based cameras, which nowadays belong to the HD (High Definition) category

can capture video on 1,920 x 1,080 resolution and 30 FPS and downgrade to 1,280 x

720 or D1 for 15 FPS. Ultra HD (UHD) video sensors have been also introduced to

surveillance systems, pushing the available resolutions to 4K (3,840 x 2,160, usually

under15 FPS) or 2,048x1,536 under 30 FPS.

Finally, since the beginning of 2010, a new type of video cameras has been intro-

duced, the High Dynamic Range (HDR) video sensors. These sensors, which usually

operate at HD resolution, are able of capturing the same scene multiple times using

different exposure times (the time interval the camera shutter remains open and col-

lects data) and then combine these frames to a single image. This technique, which

nowadays is available only to high-end video cameras, makes the bright areas of the

scene darker and the dark areas brighter, enhancing the quality of the video stream.

HDR cameras (as well as HD and UHD cameras) utilize the H.264 video codec. Ad-

ditionally, the research community, during the last few years has proposed the usage

of High Efficiency Video Coding (HEVC) as an appropriate video coding standard for

HDR content. Recently, several organizations including the Blu-ray Disc Association

(BDA), the High-Definition Multimedia Interface (HDMI) Forum, and the Ultra-High

Definition (UHD) Alliance have decided to adopt a delivery format based on HEVC

Main 10, commonly referred to as ’HDR10’, for the compression and delivery HDR
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content.

2.3 Acquired modalities

All VSS utilize video streams. Yet, this is not the only modality a surveillance system

can use. In this section, a brief description of systems utilizing additional modalities

is provided. This section, presents the state of the art in surveillance system with

respect to different modalities.

2.3.1 Sound

The most common modality to couple with video in a surveillance system is sound.

There are two types of audio-visual data fusion architectures. In the first type, audio

data are spatialized utilizing microphone arrays, aiming to improve tracking algo-

rithms while in the second type, which is more general, sound is captured using a

single microphone.

The most usual scenario for the first type of the systems is a known environment

(indoor in the most cases) which is equipped with fixed cameras and microphones.

For example, in (Zotkin et al., 2002), moving objects are located calculating the

sound time delays among the microphones. Applications utilizing sound as modality

are multi-object 3D tracking and walking person detection. These approaches in-

clude audio source separation, dynamic Bayes networks, learning and interference of

graphical model and 2 - layer HMM (Hidden Markov Model) frameworks.

As for the second type of fusion architectures, due to the presence of only one

microphone, audio spatialization in no longer available. Hence, the most common

approach for audio-visual fusion is Canonical Correlation Analysis (CCA), using as

variables spectral bands for sound and image pixels for video. One of the main draw-

backs of CCA is the need of large amount of data for model training. Some research

works try to tackle this issue, like (Zou and Bhanu, 2005), in which a presumed
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sparsity of the audio-visual events is exploited. Other approaches for audio-video

correlation are proposed in literature. According to these approaches, two groups of

multi-variate variables are correlated using the MMI (Maximization Mutual Informa-

tion) method, while Markov chains are proposed and the audio-video joint densities

are estimated using a group of training sequences.

2.3.2 GPS

Video surveillance systems started to incorporate GPS data when they stopped using

fixed cameras and started to incorporate moving cameras. This required addition

of an extra layer of meta-data to the tracking algorithms. Yet, the raising interest

for aerial video surveillance systems led to the design of surveillance architectures,

which incorporated moving cameras installed either on drones or on UAV (Unmanned

Aerial Vehicles). One of the first research works, which proposed a surveillance system

with moving cameras was (Kumar et al., 2001), where a framework for real-time,

automatic exploitation of aerial video for surveillance applications is presented. The

main functionality of the proposed system is performed by a module, which separates

an aerial video into its natural components, namely the static background geometry,

moving objects and appearance of the static and dynamic components of the scene.

The system finally attempts to register the geo-location of video with the tracked

objects, using GPS data and elevation maps before producing re-projected mosaics

of the scenes.

Besides utilization of GPS data from UAV surveillance systems, geo-location is

also used from in-vehicle surveillance systems. Systems under this framework have

been proposed many research works. The basic idea behind these systems, is the

registration of the tracked objects with the GPS data, in order to facilitate the creation

of a meta-data map with of the trajectories of the tracking objects.
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2.3.3 Video

Undoubtedly, video streams are the primarily modality when it comes to surveillance

systems. At some level, most of the research works regarding surveillance systems

try to mimic the biological process of how people detect events and categorize them.

For example, a common pre-processing procedure of event detection algorithms is

background / foreground classification, where the system tries to distinguish the static

scene (which usually has no interest) from the dynamic foreground objects. This

procedure is similar to the bioprocess where neurons detect a change in luminance

and color of neighboring points after a short delay.

The quality of the acquired video stream plays a key role to the potentials of a

surveillance system. Resolution, frame rate per second and contrast are some of the

most important features of a video sensor. For example, a high quality video sensor

can substitute a pre-processing enhancement algorithm, boosting up the response

time of a surveillance system. On the other hand, usage of high resolutions results to

increment of bandwidth requirements for data transmission and storage.

2.3.4 Modality fusion and intelligent surveillance systems

Data fusion is the process of combining two or more modalities in order to acquire

more efficient and useful information compared to the acquired information when us-

ing the modalities separately. The concept of data fusion is not new, however, merging

different types of data generated by heterogeneous devices is still a challenge. In the

literature, different approaches to deal with this problem have been proposed. Statis-

tical analysis where typical techniques such as mean, median, standard deviation, and

variance (including Kalman filtering) are used is the straightforward approach. Most

of the data fusion being used now rely on probabilistic descriptions of observations

and use Bayesian networks to manage the uncertainty and combine this information.
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In this category, one can also mention the techniques based on fuzzing and Dempster-

Shafer theory, and learning algorithms based on neural networks and hybrid systems.

The approach to be used often depends on the type of data, the level of reliability

foreseen, and the requirements of the application (in our case the intelligent surveil-

lance). Finally, sensor fusion and thermal–visible video registration techniques are

proposed in (Torabi et al., 2012), where sensor fusion uses aligned images to compute

sum-rule silhouettes, and then constructs thermal–visible object models.

2.4 Knowledge extraction algorithms

Within this section, focus will be given on the modules of a surveillance system, which

are responsible for “translating” the raw video data to specific structured information.

The most common activities on this field are face detection, face recognition, object

re-identification and object tracking.

2.4.1 Face detection

Detecting faces within a scene is a mature problem in the area of computer vision.

This is because face detection is one of the most widely used processes within surveil-

lance systems, as it is required by many applications such face recognition, face track-

ing, face analysis for behavioral knowledge extraction (Zafeiriou et al., 2015). Yet,

new applications constantly emerge, such as Human Computer Interaction (HCI),

which demands more robust and accurate solutions.

The aim of face detection is to firstly to determine whether any faces are depicted

in a scene and secondly to calculate and return the coordinates of the detected faces.

This task involves many non-trivial conditions, such as variations in scale, location,

orientation and pose, as well as lighting conditions, facial expressions and occlusions.

One common classification of face detection approaches is reported in (Yang et al.,

2002), where four categories are described: (a) template matching methods, where
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pre-stored face templates are used to decide whether an image contains a face or

not, (b) knowledge-based methods, where well established pre-defined rules are used,

(c) feature invariant approaches, where structural face features are utilized and (d)

appearance-based methods, where models are trained against annotated face data.

Nonetheless, (Zafeiriou et al., 2015) suggests that the innovative work of Viola and

Jones ( (Viola and Jones, 2001) ) has changed the way modern approaches for face

detection are classified, and suggests that face detection algorithms should be catego-

rized to algorithms that are based on rigid-templates and to algorithms that deploy

Deformable Parts-based Model in order to model potential deformations among facial

points.

One of the most important representative of the rigid-templates category is the

work reported in (Viola and Jones, 2001). Within this work, Viola and Jones pro-

posed a face detector which is based on the integral image, classifier learning with

AdaBoost and the attentional cascade structure. Following this concept, new im-

age features have been proposed in order to improve the accuracy of the algorithms.

Such features are joint Haar features, which are based on the co-occurrence of mul-

tiple Haar-like features and Classification and Regression Tree (CART) based weak

classifiers. Another common feature for face detection is based on regional statistics

such as histograms, with Histogram of Oriented Gradients (HOG) being the most

popular one. Lately, an approach that uses the so-called Integral Channel Features

(ICF) with boosting achieved state-of-the-art performance in face detection under

various conditions. Regarding the classification schemes, neural networks are widely

used, like constrained generative model (an auto-associative, fully connected multi-

layer perceptron with three large layers of weight) and convolutional neural network

(CNN) based approaches.

As far as Deformable Parts-Models (also known as pictorial structures modelling)
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is concerned, they constitute one of the standard choices for developing generic object

detectors. While simple models have been proposed, more complex approaches have

provided robust solutions.

2.4.2 Face recognition

Face recognition constitutes the problem of recognizing a face against a predefined

knowledge database of faces. Face recognition problem implies that a face is already

detected in a scene, which makes face detection a prerequisite process for face recog-

nition. This problem troubles researchers for more than forty years, trying to produce

robust, accurate and real-time solutions. The first approaches documented tried to

model the face recognition problem as a two-dimensional pattern recognition problem,

calculating “important” distances of facial features, such as the distance between the

eyes of the length of the lips.

Nowadays, one can classify the methods for face recognition in three categories;

namely holistic matching methods, feature-based methods and hybrid methods. Holis-

tic methods suggest that the whole face region is compared against a face database

using specific techniques such as Eigenfaces, Principal Component Analysis (PCA)

and Linear Discriminant Analysis (LDA). Feature based methods are trying to ex-

tract facial geometrical features, such as mouth, lips, nose and eyes. These features

are used as an input to classifiers, aiming to detect the match closest to the face

detected. Feature based methods need to reformulate in order to produce accurate

results when the aforementioned features are not visible in the scene. In order to

tackle this problem, feature estimation methods have been proposed, mainly taking

advantage of face structural constraints. For example, Ahonen et al. (Ahonen et al.,

2004) proposed a novel approach for face recognition which incorporates both texture

and shape information to represent faces. A face is first divided into small blocks

from which the Local Binary Pattern (LBP) features are extracted and united into a
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single feature histogram, which represents the face. In a more recent approach, Lenc

and Král (Lenc and Král, 2016) propose to use dynamic positions and number of the

fiducial points produced by LBP features. The selection of the chosen fiducial points

is performed fully automatically, utilizing a set of Gabor filters. Local extrema in the

filter responses are detected and used as the feature points. The number of points

is further reduced using the K-means clustering algorithm. Finally, hybrid methods

take advantage of both the techniques of holistic and feature based methods. These

methods use as input 3D images and for that they can use information concerning

the forehead or the chin shape.

During the past few years, face recognition algorithms have come to a matu-

rity level where they can be used on real-world applications and uncontrolled en-

vironments. This fact brought up the need for developing new approaches in face

recognition problem, such as the “watch-list” problem. According to this problem

formulation, the system needs to distinguish among a very large number or individ-

uals only the people who belong in a predefined list. A research work which tries

to address this problem can be found in (Kamgar-Parsi et al., 2011), where for each

individual in the watch-list, a classifier is trained. Then, for the detected individuals,

certain features are used as input to the classifiers, reaching to the final decision.

2.4.3 ID Re-identification

The ID re-identification problem appears on multi-camera surveillance system se-

tups, where people walk around the view field of numerous cameras (e.g. the scene

of Fig. 2·2). Within such setups, a surveillance system should have the ability to

track people across multiple cameras, thus performing crowd movement analysis and

activity detection. More specifically, given a video of a person taken from one camera,

re-identification is the procedure of identifying the person from videos taken from dif-

ferent cameras. Re-identification is crucial in establishing reliable individuals tagging
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across multiple cameras or even within the same camera, when discontinuities and

“blind” spots appear.

Figure 2·2: Person re-identification scenario.

ID re-identification is a challenging problem due to the visual vagueness and spa-

tiotemporal uncertainty in a person’s appearance across different cameras. These

difficulties are often reinforced either by low-resolution images or poor quality video

streams. Issues like these forced the research community to put focus on the ID-

identification problem during the last years, aiming to produce robust and wide-

applicable algorithms.

Since 2010, there has been many research works, which tried to address the ID

re-identification problem. The problem of ID re-identification has been modeled

as recognition problem. Given an image (or images) of an unknown person and a

database of known people, the scope is to produce a sorted list of all the people

in the database based on their similarity with the unknown individual. Thus, it is

expected that the highest ranked match in the database will provide an ID for the
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unknown person, thereby identifying the probe. In this scenario, it is assumed that

the unknown person is included in the database of known persons (closed-set ID re-

identification). Most of the approaches nowadays are based on appearance based

similarity features between frames to establish common similarities. Typical features

used to quantify individual similarities are low-level color features and texture fea-

tures based on clothing. Nonetheless, such similarity features are only valid for a

short period of time as people dress differently from day to day, or even through the

same day. Hence, similarity based features are only suitable for a short period of

time (short-term re-identification), which is the version of re-identification problem

the research community mainly tries to solve. The methods and the techniques for

ID re-identification are categorized in several methods, as depicted in Fig. 2·3.

Figure 2·3: ID re-identification methods categorization..

Contextual methods

Contextual methods take advantage of external information such as camera geometry

and camera calibration. For example, camera geometry setup is taken into account in
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order establish intra-camera relationship and increase constraints among the cameras.

Camera geometry is usually determined by correlating activities among cameras

with disjoint field of views and do not rely on information from tracking algorithms.

The time-delayed correlations of activities are observed and quantified, utilizing mul-

tiple camera views in a single common reference space. Then, the assessment of

the time delayed motion correlations is used for person re-identification and both

temporal and spatial topology inference of a camera network. As far as the camera

calibration as context concerns, camera field of view information and homography

are considered, aiming to extract features from visual descriptors. For example, in

(Lantagne et al., 2003), individuals’ height is calculated using homography, to es-

timate a 3D model. A Panoramic Appearance Map (PAM), uses information from

multiple cameras that view the object to produce a single object signature. Other

important works in this category are reported in (Baltieri et al., 2011). Hu et al.

proposed a method for people tracking using multiple cameras based on the detection

of principal axis for each tracking person, which are the perpendicular segments from

head to toe and from shoulder to shoulder. The algorithm estimates the principle

axis for each camera and then attempts to correspond them in order to re-identify

people. A modelling approach is also proposed in the literature, where 3D informa-

tion is extracted from multiple cameras. The proposed model is a 3D Marked Point

Process model using two pixel-level features. The workflow includes the feature ex-

traction from multi-plane projections of binary foreground masks and the statistical

estimation of the height and the position of each person. Finally, a 3D body model

based long-term tracking algorithm connects missing or hidden tracks and is used to

re-identify people.
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Non-Contextual methods

Non-contextual methods rely on knowledge extraction using only the video stream

as input, ignoring the contextual data. These methods, which are reported with a

high frequency during the past years, are further categorized to both passive and

active. Passive methods extract visual features in order to classify an individual’s

appearance against a known dataset (the description passive comes from the fact that

these methods do not use machine learning techniques for feature extraction). Shape

and color visual features for person modeling is proposed in the literature, where

the video stream is divided in polar bins and Gaussian model along with edge pixels

from each bin are used to produce the features. On the same page, a spatio-temporal

segmentation method, utilizing watershed segmentation has been used, where the

appearance of an individual is a combination of color and edge histograms.

On the other hand, active methods utilize machine learning algorithms for fea-

ture extraction. A machine-learning algorithm can either be supervised or unsuper-

vised. The supervised approaches require a set of annotated training data, in order

to “learn” to detect the desirable features (e.g. person’s silhouette), while the unsu-

pervised algorithms utilize clustering techniques in order to estimate different image

features (without use of training data). One can categorize these machine learning

methods into three categories; namely distance metric learning methods, descriptor

learning and calibration methods. Distance metric learning methods do not use fea-

ture selection techniques for feeding learning algorithms. Yet, they place effort on

learning suitable distance metrics, which are able to maximize the accuracy of the

classification, regardless of the choice of appearance representation.

The descriptor learning methods try to acquire the most discriminative features in

order to achieve ID re-identification. Another approach is to deploy a learning phase in

order to produce descriptive lists of features that better represent an individual’s ap-
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pearance using a bag-of-features approach. Within such approaches, co-occurrences

between a priori learned shape and appearance features produce an individual de-

scriptor. HOG (Histogram of Oriented Gradients) features are also utilized by many

research works. Finally, the color calibration methods try to model the color rela-

tionships between a specific pair of cameras using color calibration techniques. They

usually employ a learning phase to produce the calibration model.

2.4.4 Object detection and tracking

Object detection and object tracking are the most common applications on video

surveillance systems. Object detection constitutes the problem of isolating a specific

region of a video stream based on the system’s parameters while object tracking is

a process of keeping track of the aforementioned region’s motion. One can classify

the object detection algorithms in four categories; namely Background Subtraction,

Temporal Differencing, Frame Differencing and Optical Flow.

Algorithms using background techniques try to separate foreground objects from

the background of the scene. In order to achieve this, background modelling (reference

model) is mandatory. The more accurate and adaptive the background model is, the

more accurate the detection algorithm is. The most common techniques to achieve

background modeling include median and mead filters.

Temporal Differencing algorithms calculate the difference (on pixel level) between

successive video frames, in order to detect the moving object. These algorithms

are able to quickly adapt to highly dynamic scene changes. Yet, they suffer from

important drawbacks; the most important of them is detection loss when the object

stops moving and when the object’s color texture is similar to the scene (camouflage).

Also, false object detection may occur when scene objects tend to move (e.g. leaves

of a tree when the air is blowing).

A simple approach of temporal differencing is Frame Differencing, where the tem-
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poral information indicates the moving objects of the scene. In such methods, pres-

ence of mobility is established by calculating the difference (pixel level) of two suc-

cessive video frames. Finally, Optical flow is the pattern of objects motion in a visual

scene caused by the relative motion between an observer and the scene. Optical flow

methods use partial derivatives with respect to the spatial and temporal coordinates

in order to calculate the motion between two image frames. Such methods seem to

be more accurate that the aforementioned approaches, but due to the computational

time required and the noise tolerance, they are unsuitable for real (or near real) time

scenarios.

Regarding the object tracking algorithms, their scope is to return the route for

an object by calculating its relative position for each video frame. Object tracking

can be classified as kernel based tracking, point based tracking and silhouette based

tracking (Athanesious and Suresh, 2012) (Fig. 2·4).

Figure 2·4: Object tracking methods.

The most common point-based approaches utilize Kalman and Particle filters.

Kalman filter is a set of equations that provide recursive computational means to

estimate a process’s past, presence and future. Methods utilizing Kalman filter are

based on Optimal Recursive Data Processing Algorithm. On the other hand, Particle

Filter generates all models for one variable (e.g., contours, color features, or texture

mapping). The particle filter is actually a Bayesian sequential importance technique.
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In Multiple Hypothesis Tracking algorithm, several frames are observed for better

tracking outcomes (iteration algorithm). Each hypothesis is a crew of disconnect

tracks and for each hypothesis, an estimation of object’s position in the following

frame is made. The predictions are then compared by calculating a distance measure,

allowing multiple hypothesis-tracking algorithms to track multiple objects.

In Kernel based tracking, kernel denotes to the object representations of rectangu-

lar or ellipsoidal shape and object appearance. The objects are tracked by estimating

the movement of the kernel on each successive frame. Kernel based approaches can

be classified in four categories. Template matching algorithms employ a brute force

method for examination of the video frame, aiming to detect the region of interest.

In template matching, a reference image is verified with the frame that is separated

from the video. Template matching algorithms are able to detect small pieces of a

reference image, but the usually work for only one object and they require compu-

tational heavy load. The second category of the kernel based methods is the Mean

Shift Method. The Mean Shift algorithm aims to detect the region of a frame that

is most similar to a reference model. For modeling either the reference object or the

“key” object, probability density functions are utilized as well as color histograms.

Support Vector Machines (SVM), the third category of kernel-based approaches, is a

wide used classification scheme. According to these algorithms, each sample (usually

pixel groups) of a video frame are classified as either “tracking object” or “non-

tracking object”. Such approaches can handle partial occlusion of the tracking object

but they require a training phase. Finally, according to the Layering based tracking,

each frame is separated to three layers; namely, shape representation (ellipse), motion

(such as translation and rotation,) and layer appearance (based on intensity). Such

approaches can handle tracking of multiple objects.

Concluding with the object tracking algorithms, we discuss about the Silhouette
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Based Tracking approaches. These algorithms are used to track objects with complex

shapes, such as fingers. Silhouette based methods utilize accurate shape descriptions

for the objects. Silhouette based tracking approaches are categorized as either contour

tracking methods, where a contour reshapes from frame to frame aiming to keep track

with the object or Shape Matching algorithms, where only one frame is examined

from time to time (without knowledge passed from the previous frame), using density

functions, silhouette boundary and object edges.

2.5 Quality enhancement algorithms

The knowledge extraction algorithms discussed in the previous section use as input

either frames or video streams. Such input is required to either enhance the quality

of the modalities or to provide an initial layer of information for the next processing

level. In this section, we will discuss some of the most important quality enhancement

methods as well as the most common preprocessing algorithms.

2.5.1 Foreground/background identification

Foreground/background modeling identification is the process where each pixel of a

scene is classified in two classes; either F (denoting the foreground) or B (denot-

ing Background), which can be eliminated to a one-class classification problem, if

uniform foreground distribution is assumed, as the intensity of a foreground pixel

can randomly take any value (unless specific information about the foreground is

available) (Elgammal, 2014). Foreground includes the surveillance subject while the

background includes the rest of the scene. There are several approaches which can

model the background, as depicted in Fig. 2·5. According to Single Gaussian back-

ground models, the noise distribution at a given pixel can be modeled as a zero mean

Gaussian distribution. Thus, the intensity (or any other pixel feature) at a pixel is

a random variable with a Gaussian distribution, which was widely reported in liter-
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ature in the 90’s. In case of colorful images, a multivariate Gaussian model is used.

This model can be adaptive to slow changes in the scene (e.g., dust) by recursively

updating the mean with each new frame. Single Gaussian Background models fail to

model (usually) outdoor environments, where background is not static (e.g. leaves

of a tree). In order to model such scenes, a generalization based on a Mixture of

Gaussians has been proposed in the literature.

Figure 2·5: Background modeling approaches.

The need of modeling highly dynamic scenes requires a much more flexible back-

ground modelling. This leaded to the use of non-parametric density estimator for

background modeling. All non-parametric density estimation methods (e.g. his-

tograms) are asymptotically kernel methods, and a wide used non parametric model

is the kernel density estimation technique, which estimates the underlying density

and is quite general.

Lastly, in the literature there have been proposed other statistical techniques for

background modelling. For example, linear prediction use the Wiener filter to predict
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pixel intensity given a recent history of pixel values while linear prediction employs

the Kalman Filter. Another approach has used Hidden Markov Models to model

a wide range of variations in the pixel intensity. These variations are modeled as

discrete states corresponding to modes of the environment, for example cloudy vs.

sunny. Other approaches utilize background subtraction techniques which deal with

quasi-moving background, e.g. scenes with dynamic textures. One robust algorithm

of this approach is the Auto Regressive Moving Average model, where a Kalman filter

was used in order to update the model.

Finally, a biologically-inspired non-parametric background subtraction approach

has been proposed, where the pixel process is modeled as an artificial neural network.

As far as the features that are used for Background Modeling concern, intensity has

been the most commonly-used feature. Alternatively, many research works use edge

features. The use of edge features for background modelling is inspired by the need to

have a brightness invariant representation of the scene. Another feature is the optical

flow, which was used to capture background dynamics. Apart from pixel-based ap-

proaches, block-based approaches have also been used for background modeling. For

example, block matching has been used for detection of changes between successive

frames.

2.5.2 Image/Video quality enhancement algorithms

Image/Video enhancement algorithms are mandatory for any surveillance system.

Low quality sensors and multivariate environmental conditions (e.g. fog, rain, ex-

treme sunshine etc.) produce highly noisy video streams. Hence, enhancement algo-

rithms are crucial for the robust function of applications such as object detection and

object tracking. There are two main techniques for image enhancement depending on

the domain each technique works; namely spatial based and frequency-based domain.

Spatial based domain refers to the image plane itself, and algorithms in this class
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process the image pixels directly while frequency-based domain processing techniques

represent the image in the spatial domain and manipulate the spatial frequency spec-

trum. Research community has proposed several methodologies for improving the

quality of image/video input, which can be categorized as shown in Fig. 2·6.

Figure 2·6: Categories of Image/video enhancement techniques.

Self-enhancement techniques refer to the techniques that use as input only the

image/video under study. There are four categories in this class. The first category

refers to modifications on the contrast map of an image. The aim is to adjust the

local contrast in different regions of the image so that the “hidden” details in shady or

bright regions are revealed. There are numerous algorithms for contrast enhancement

which all aim at taking advantage the parts of the dynamic range that are “inactive”.

Widely used algorithms are power low rule, gamma manipulation, histogram equal-

ization and tone mapping. Histogram equalization aims to uniformly distribute an

image’s histogram utilizing density functions. On the other hand, tone mapping tech-

niques take under consideration the display device of video, trying to map the tone

between the video input and the tone of the display device. HDR-based enhancement

techniques are the second category of self-enhancement methods. HDR is a set of

methodologies that offer a larger dynamic range of brightness between the brightest

and the darkest pixel. HDR images can be produced by either combing multiple
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images of the same scene taking under different exposure values or by using image

processing algorithms. The third category utilizes wavelet transformation, producing

a wavelet image, suitable for processing the image/video. The wavelet techniques uti-

lize wavelet coefficients, wavelet shrinkage denoising or the dual-tree complex wavelet

transform. Finally, the compressed based enhancement algorithms operate directly

on the transform coefficients (e.g. Discrete Cosine Transform) of the images that are

compressed. As far as the context – based fusion enhancement techniques concern,

they utilize information from other modalities, or even from past data of the same

sensing device in order to overcome poor light conditions and other environmental

noisy situations.

2.5.3 Limitations

All of the aforementioned algorithms and techniques are innovative and provide solu-

tions to by any means non-trivial problems. Yet, almost all of the approaches share,

more or less, the same weaknesses. First of all, while the majority of video processing

algorithms (such as motion detection) work fairly well, when we move to video anal-

ysis algorithms (such as human running detection), the response time of the systems

increase and the accuracy decreases. Additionally, as debated in (Porikli et al., 2013),

most of the test databases used to evaluate the performance of surveillance systems

don’t include heterogeneous datasets. Thus, the accuracy of proposed algorithms dif-

fers, sometimes to a great extent, when they are tested to real life scenarios, where

the lighting and weather conditions constantly change.

Taking under consideration that nowadays the majority of the installed surveil-

lance systems are CCTV based, there is a great need of addressing issues like robust-

ness to environmental conditions, practical or even automatic effective calibration

procedures (applicable to systems of hundreds and even thousands of cameras), deal-

ing with crowded conditions and being able to handle pan-tilt zoom cameras. Addi-
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tionally, most surveillance systems face technical limitations. The most usual ones are

improper viewing angle, blind spots in coverage area, improper lighting conditions,

improper recording resolution settings and too few cameras with too wide field-of-

views. Yet, the proposed techniques (along with the required infrastructures) which

are proposed (both from research and industry arena) address these limitations entail

costs that can be prohibitive in many applications, such as warehouse monitoring and

shop-lifting alerts.

While CCTV systems handle the recorded video stream in house, providing a

level of privacy and security on the content, the scene is completely different when it

comes to surveillance systems with IP cameras supported by cloud services. Streaming

video content over Internet raises security and privacy issues which are difficult to

tackle with existing technologies like VPNs or cryptography (Costa et al., 2017). The

majority of the proposed systems do not deal with these issues which are crucial

for a surveillance system, especially if the captured video streams can be viewed as

potential law evidence to a court. Thus, there is a great need of designing approaches

which will be more robust, more reliable and more secure, increasing the applicability

and therefor the economy scale of surveillance systems.

2.6 Computing infrastructures

2.6.1 Cloud-based accelerators

Real time or near-real time response is perhaps the most important factor when

it comes to surveillance systems. Automatic alerting upon a specific event is only

valuable when it occurs within a time window after the actual event. Nowadays,

surveillance systems, which meet the aforementioned requirement have been designed

and deployed all around the world. Yet, the nature of the events which are rec-

ognized automatically from the systems are rather trivial, including object moving,
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fire existence or object recognition. Nonetheless, surveillance systems face today a

set of challenges, which involve car accidents detection, terrorist activities prediction

or multipurpose behavioral analysis. These events require substantial larger com-

putational resources, as they comprise complex calculations and non-linear models.

On top of this, modern video sensors are able to capture HD and HDR footages,

which facilitate the event detection algorithms and tackles, to a certain point, bad

lighting conditions and other artifacts. The result of incorporating such sensors into

surveillance systems is the proliferation of the produced data rates and of course the

increment of the required storage size.

Both requirements for additional computational capabilities and storage size in-

crement could be addressed by integrating surveillance systems with cloud infrastruc-

tures. There are not many reported surveillance systems in the literature, which use

cloud services, either as SaaS (Software as a Service), as PaaS (Platform as a Service)

or as IaaS (Infrastructure as a service).

One of these works is reported in (Rodŕıguez-Silva et al., 2012), where the proposed

cloud infrastructure is used as SaaS and focus mainly on storage issues, using Amazon

S3 platform. On the same track, (Li et al., 2011) describe a surveillance system for

urban traffic systems, which is able to process massive floating car data coming from

city taxis. Bigtable and MapReduce are explored as cloud technologies for not only

storage purposes but also for computational processes. Finally, a resource allocation

scheme for service management in cloud-based surveillance systems is described in

(Hossain et al., 2012), where VM (Virtual Machines) resources are tuned based on

QoS requirements, as depicted in Fig. 2·7.

2.6.2 Fog/Edge based accelerators

As discussed in the section 6.1, the concept of introducing cloud infrastructures and

services into surveillance systems resolves (partially or fully) major limitations of
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Figure 2·7: Proposed conceptual cloud architecture. (Hossain et al.,
2012)
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current systems, such as lack of computational power and restrictions in storage

capacity. Yet, this approach introduces some new challenges that need to be addressed

by a surveillance system that will be capable of meeting the requirements of the end

users. More specifically, a surveillance system that utilizes cloud infrastructures needs

to take into account the latency and the extra communication cost that is introduced

between the sensors and the cloud infrastructure. Sending video streams to the cloud

is by no means cost effective, especially if the video sensor has large resolution (e.g.

HD video), while at the same time bearing in mind the “best – effort” characteristic

of IP networks, the latency that is introduced is not only large but also fluctuating.

These network characteristics prevent a cloud surveillance system from “reacting” to

(near) real time events, such as car accidents.

Figure 2·8: The Fog Computing conceptual architecture. (Chen et al.,
2017)

A solution to these issues could be Fog Computing. Fog Computing (Fig. 2·8) is

a paradigm that extends Cloud computing and services to the edge of the network.

Thus, Fog Computing should not considered as a competitor to Cloud Computing but

a complement technology that improves the characteristics of Cloud services. One
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can describe Edge/Fog Computing as a distributed computation concept which is

installed near (in terms of communication latency) the production of raw data. Fog

Computing comprises many (and sometimes heterogeneous) devices that are capable

of communicating and reallocating computational tasks. These devices have enough

power to perform non trivial computational tasks, but in no case they match the

capacity of a cloud system. The main advantage of Edge/Fog Computing is that if

can offer to a surveillance system a first level of analytics extraction and decision

making with minimum network traffic overhead and latency.

The research community during the last few years tries to utilize the concept

of Edge/Fog Computing to surveillance systems, where video streams from Google

Glasses© where captured and processed by either Google Glass device or the user’s

mobile devices (e.g. smartphone), depending on the battery life of the devices and the

required computational power. The architecture is tested on several video processing

tasks, such as face recognition and Optical Character Recognition (OCR). An urban

traffic management and car accident system is described and tested in (Chen et al.,

2017), where Fog Computing enables the near-real time vehicle tracking and its speed

calculation. Following and projecting the logic of the last two sections, edge com-

puting is introduced to surveillance systems. As defined in (Shi et al., 2016), Edge

Computing refers to the enabling technologies allowing computation to be performed

at the edge of the network, on downstream data on behalf of cloud services and up-

stream data on behalf of IoT services. Within the context of surveillance systems,

edge computing refers to transferring computational and storage capacities from data-

centers to the video sensors (or any other kind of utilized sensors), minimizing further

(comparing with Fog Computing) and eliminating network latency. The paradigm of

Edge Computing deployed to a surveillance system will require the usage of special

hardware and / or software aside each video sensor. This hardware/software will be
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able to perform a first level of video processing which can boost the performance

of the surveillance system, in terms of response time and communication costs. For

example, the edge systems could calculate the features (e.g. HOG descriptors) from

the captured video stream and forward them to the next tier, decreasing the network

requirements, as performed in (Zhang et al., 2016). In another research study, body-

worn cameras are suggested to be used by police officers, aiming to provide specific

analytics for law enforcement (Corso et al., 2016), while in (Shi et al., 2016) case-

studies for cloud offloading and video analytics at the edge of a surveillance system

are explored (Fig. 2·9).

Figure 2·9: Overview of Edge Computing concept. (Zhang et al.,
2016)

Taking under consideration the described Cloud, Fog and Edge Computing con-

cepts within the context of surveillance systems, a promising approach is a “blended”

architecture (Fig. 2·10), where certain characteristics (e.g. low-cost and proximity of

the Edge layer, connectivity and power sustainability of the Fog layer and computa-
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tional power and storage of the Cloud layer) of each approach are utilized, in order

to maximize the efficiency of the system.

2.6.3 Deep learning methodologies

Deep learning approaches are intensively utilized during the last decade for address-

ing some of the most challenging problems regarding visual content, such as image

classification, knowledge extraction and object identification. While the concept of

deep learning regarding visual context was initially introduced through many years

before, inspired by a biological model of the cat’s visual system, it only produced

tangible implementations at the end of the previous decade. One can mention three

key developments. Namely, the high increase in the computational power and in the

capacities of the processing hardware, the exponential decrease of the hardware’s cost

and the substantial advances in the machine learning algorithms.

Deep learning algorithms are a subclass of machine learning algorithms, which

have the capacity of discovering multiple levels of distributed representations. The

key word is “discovering”, which implies that deep learning algorithms can identify

the most important features that should be used for performing an information repre-

sentation, such as object identification or human pose estimation. In order to achieve

this, deep-learning approaches usually requires a (very) large dataset of annotated

data. The features that deep learning approaches retrieve usually have a very impor-

tant characteristic, when it comes to visual content analysis. They are invariant to

irrelevant variations of the input. While for humans this task is trivial (e.g., identi-

fying a lion regardless its pose), for many image processing algorithms, a change of

an object’s pose can alter the labeling output.

While the research community has proposed many algorithms, techniques and

methodologies for deep learning algorithms, one can categorize the deep learning

approaches in four classes (Guo et al., 2016). Namely,
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i Convolutional Neural Networks (CNNs),

ii Restricted Bolzmann Machines (RBMs),

iii Autoencoder-based methods and

iv Sparse Coding – based methods

CNNs is probably the most common deep learning approach in the visual context.

CNNs utilize multiple layers, which are trained in a robust manner. Effectiveness and

robustness of CNNs have been proved by many research works in various computer

vision applications. Some of the most important works in this directions are AlexNet

©, Clarifai©, VGG©, GoogLeNet© and SPP©. Restricted Boltzmann Machines

(RBMs) were originally introduced by (Hinton et al., 1986). An RBM, is a generative

stochastic neural network, (modified Boltzmann Machine), with the constraint that

the visible units and hidden units must form a bipartite graph. This constraint

allows for more effective training algorithms, such as the gradient-based contrastive

divergence algorithm. Some of the most representative research works, which utilize

RBMs are Deep Belief Networks, Deep Boltzmann Machines and Deep Energy Models.

Auto encoders is a special class of artificial neural networks, which utilize an un-

supervised learning algorithm that applies backpropagation, setting the target values

to be equal to the input values. Auto encoders are trained to reconstruct their own

inputs, which are then used for the training phase (this explains the auto in their

name). In other words, they learn an approximation of a function, so as to produce

an output that is similar to the input data. This results to the output vectors having

the same dimensions as the input vectors. The encoder brings the data from a high

dimensional input to a ’bottleneck layer’, where the number of neurons is smaller than

the input and output layers. Then, the decoder takes this encoded input and converts

it back to the original input image. The latent space is the space in which the data
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lies in the bottleneck layer. The latent space contains a compressed representation

of the image, which is the only information the decoder is allowed to use to try to

reconstruct the input as faithfully as possible. To perform well, the network has to

learn to extract the most relevant features in the bottleneck. Some of the most im-

portant applications that utilized auto encoders are Sparse Autoencoder, Denoising

Autoencoder and Contractive Autoencoder.

Sparse coding aims to learn an over-complete set of basic functions in order to

describe the input data. Two of the most important advantages of the sparse coding

are

(i) it can reconstruct the descriptors by using multiple bases and capturing the

correlations between similar descriptors which share bases and

(ii) the sparsity allows the representation to capture salient properties of images

and videos.

The most important research works that utilize sparse coding are Sparse Coding

SPM, Laplacian Sparse Coding, Local Coordinate Coding and Super-Vector Coding.

2.7 Edge Computing at scale

During the last decade, academia and industry have introduced a set of architectures

which common characteristic is the utilization of low-end hardware new the place

data are generated. Such architectures, like Multi-access Edge Computing, Fog Com-

puting, Cloudlet Computing, and Mobile Cloud Computing, while differ in several

aspects, like communication network ownership, device mobility and device power

supply, all share in common the same need for distributed architectures and ap-

proaches, which can enable the hosting of more demanding services (Carvalho et al.,

2021).
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Several research studies have been focused on enabling edge computing to support

demanding latency sensitive applications. Author in (Kitchin, 2014) has proposed

a scheme for handling mass video data coming from city surveillance services on

heterogeneous digital devices. Zhou et al. (Zhou et al., 2015) have described a model

for offloading cloud by utilizing an edge meshed network. Li et al. (Li et al., 2017)

have proposed a general virtualization architecture, based on VMs, mainly focusing on

its networking aspects. Chen et al. (Chen et al., 2016) have described an architecture

which explores fog computing as a processing infrastructure for supporting dynamic

urban surveillance streams. Dautov et al. (Dautov et al., 2018) have performed a

comparison study among cloud, fog and edge computing for supporting intelligent

surveillance applications.

The authors in (Satyanarayanan, 2019) provide a survey of the applications that

can be supported from Edge Computing. Finally, the author in (Chen and Chen,

2018) provides a holistic vision about surveillance applications on edge/fog computing

paradigms, where the basic concepts, challenges and opportunities are discussed.

The proposed model has compared with the current state-of-the art literature and

does not require any special virtualization (e.g., Virtual Machines) (Li et al., 2017)

or distribution (Lee et al., 2017) (e.g., Apache Spark ©) middle-ware in order to

perform the real-time calculation of AI analytics, offloading the edge devices from the

substantial overhead these approaches require. Additionally, surveillance applications

are decomposed in virtual functions that are deployed in nodes with the available

resources. Such functions are scaled up based on demands.

Deep learning techniques have been widely used during the last years to extract

information from various kinds of data (Khan, 2018). Depending on the characteris-

tics of input data, several architectures for deep learning have been proposed, such as

the recurrent neural networks (Ranzato, 2014), convolutional neural networks (Rawat
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and Wang, 2017), and deep neural networks (Sharma and Singh, 2017). As deep and

convolutional networks do not have the capacity to manage temporal information of

input data, areas involving data such as text, audio or video, recurrent neural net-

works (RNNs) are usually applied. More specifically, there are two types of RNNs:

discrete-time RNNs and continuous-time RNNs (Gallagher et al., 2005). The main

characteristic of the RNN architecture is a cyclic connection, which enables the RNN

to possess the capacity to update the current state based on past states and current

input data.

Long short-term memory (LSTM) networks have been proposed for input data

which hold dependencies with a large temporal distance (Neil et al., 2016), which fit

the problem described in the present model.

2.8 Edge Environment simulators

The technological developments of the last decade in the area of networking and em-

bedded systems have resulted to an exponential increase of micro-processing units,

which can be deployed near the production of primal data. These units formulated the

paradigm of Edge Computing. Edge Computing is an umbrella term which describes

an extensive range of computing concepts, such as mobile computing, multi-access

edge computing (MEC) (Giust et al., 2017), open edge computing (Dinh et al., 2013)

and fog computing (Kim, 2016). The underline denominator of the aforementioned

approaches is the effort to minimize the network distance and thus increase proxim-

ity between data (usually generated by sensing devices and communicated through

streaming protocols) and processing devices. Time sensitive services benefit from the

edge computing model, as the round-trip network delay, implied by the cloud com-

puting based services, is omitted. Additionally, services which can not access cloud

infrastructures can explore Edge computing for deployment.
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Furthermore, the network infrastructure of the edge computing provides a lower

transmission delay than the cloud computing because the clients do not encounter

the wide area network (WAN) delay. Thus, services like video analytics or biosignals

processing can be implemented more efficiently on the edge of the network (Orsini

et al., 2018).

Both academia and industry are showing an increasing interest towards edge com-

puting and many researchers and engineers are designing new models and novel ap-

proaches. Such approaches though pose a challenge from the design point of view, as

a wide set of parameters and performance criteria need to be considered. During the

design phase, there are three options to be explored: (i) cloud environments (Pacheco

and Hariri, 2018), (ii) experimental test beds (Garćıa-Pérez and Merino, 2018) and

(iii) simulators (Yaseen et al., 2018), in order to evaluate the proposed schemes. For

each option, certain advantages and disadvantages can be discussed. An actual cloud

environment is usually costly and requires special virtualization frameworks for de-

ployment. Likewise, designing on experimental test beds brings in difficulties regard-

ing the expandability of the experiments and scalability of the proposed architectures

(D’Angelo et al., 2017). On top of that, as the main category of edge processing units

are mobile systems, emulating their software environment is a challenging task.

Edge computing, fog computing, open edge computing, and MEC, while present-

ing some dissimilarities, can be considered as similar conceptions. In the present

study we use the term edge computing, for consistency.

A useful review on the evolution of the edge computing paradigm is provided

by Taleb et al. (Taleb et al., 2017). (Satyanarayanan et al., 2009) introduced the

Cloudlet paradigm. Cloudlets can be thought as micro-clouds close to mobile users,

which can deploy and manage their own virtualized environments. About the same

period, Cisco© proposed fog computing (Kim, 2016), a concept comparable to the
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Figure 2·11: Cloud - Edge - IoT conceptual architecture.
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main ideas as cloudlets. Fog computing architectures most usually comprise devices

placed in the edge of the network, with the capacity of of wireless communication.

The aforementioned approaches draw the attention of the telecommunication ser-

vice providers and public institutions. Thus, European Telecommunications Stan-

dards Institute (ETSI) introduced the mobile edge computing (MEC) concept, aim-

ing to adjust the edge computing paradigm in mobile cellular networks (Farris et al.,

2018). The objective of this concept is to enable the support of real time access to

high-end services by adjusting the edge and cloud computing capabilities into the

edge of the radio access network (RAN). To expand the MEC paradigm from cellular

networks to alternative wireless access technologies (e.g. WiFi), ETSI modified the

name of the concept to multiaccess edge computing (keeping though the abbreviation

the same).

A typical edge computing architecture and end user devices are depicted in Fig.

2·11. The proliferation of cloud based services resulted to numerous cloud computing

simulators (Byrne et al., 2017). Basically, most of these simulators provide the com-

putational models for the virtualized cloud environments, which can simulated the

basic aspects of the virtual nodes, such as CPU, RAM memory, storage and energy

consumption. The models incorporated in the simulators usually consider at least

three of the aforementioned characteristics.

Three of the most well established cloud simulators are GreenCloud (Kliazovich

et al., 2012), iCanCloud (Núñez et al., 2012) and CloudSim (Calheiros et al., 2011).

GreenCloud (an add-on of the well-known NS2 simulator) is a framework which has

advanced models for energy usage and consumption for both communication and

computational tasks. GreenCloud can utilize the full TCP/IP stack from the NS2

library, enabling the detailed modeling of the energy consumption on the network

elements. Nonetheless, NS2 backend requires substantial CPU and memory capac-
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Table 2.2: Comparison of the well-established simulators.

Resource
modelling

Dynamic
simulation

Virtualization
modelling

Cloud
GreenCloud - - X
iCanCloud X - -
CloudSim X X -

Edge
IoTSim X - X
SimIoT - X -
iFogSim X - X

ity, affecting the simulation time of the produced scenarios. Built on OMNeT++,

iCanCloud is another well-established cloud simulator. The comparative advantage

of iCanCloud is the capacity to simulate large-scale environments with thousands

of nodes, by supporting great extensibility, scalability and performance indicators.

iCanCloud provides a graphical user interface to describe the simulation scenario.

When it comes to simulate Infrastructure-as-a-Service cloud computing environ-

ments, CloudSim is probably the optimal option, as it is designed for modeling both

cloud components such as datacenters, virtual machines and hosts, and source pro-

visioning policies such as CPU, RAM memory, storage, and network communication

models (Makaratzis et al., 2018).

Edge environments, compared with the cloud setups, share diverse characteristics,

as far as devices, virtualization environments, networking, user access and service

deployment. For this, additional aspects need to be integrated in the simulation

frameworks which plan to support edge computing environments. These aspects can

be summarized in three categories:

1. Edge node mobility profiles, as mobility is usually not considered in cloud en-

vironments,

2. Data generation devices (e.g., sensors) integration and

3. Reliability profiles for the edge devices.
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For supporting these capabilities, simulators specialized for edge environments have

been introduced. Among the most popular ones are SimIoT (Sotiriadis et al., 2014),

IOTSim (Zeng et al., 2016), and iFogSim (Zeng et al., 2016). IOTSim is simulator

which is built upon the engine of CloudSim. It is proposed for simulations which

require large volumes of data to be sent out to cloud infrastructures. SimIoT is

developed by extending the SimIC (Sotiriadis et al., 2013) simulator and, in prin-

ciple, it integrates an IoT layer to the SimIC, allowing edge devices to request and

access cloud resources. Finally, iFogSim runs on top of CloudSim and it has been

developed for simulating IoT and fog environments by modeling components like the

sensors, actuators, fog devices and the cloud infrastructures. iFogSim supports the

establishment service access from edge devices from fog servers. Table 2.2 summa-

rizes the reviewed simulators, in terms of their capacity to model resource allocation,

virtualization technologies and dynamic changes during the execution of a simulation.

The main limitation that the aforementioned simulators share is that the sim-

ulation scenario is static and can not be updated during a runtime. This acts a

bottleneck for simulating V FC model, where runtime decisions about V F placement

or migrations (see Chapter 5) are required.

2.9 Migration on the network Edge

A migration process of an edge service (or even a virtual environment) from an edge

device to another can be either stateless or stateful. When referring to stateless

(Meng and Lu, 2021), the migration usually comes down to a deployment (or a re-

deployment) of a stateless virtual function on another edge device. Stateless migra-

tions are deployed on situations when a device hosting a virtual function unexpectedly

fails and all the runtime data of the virtual function are lost. In this case, migration

models need to consider the selection of the most suitable node to undertake the
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execution of the virtual function.

Yet, things are far more challenging when stateful migrations need to be performed

(Jin et al., 2021). By stateful, we consider both runtime and persistent data, which

need to be transmitted to the receiving node in order to restore the virtual function

exactly in its state before the migration process. Yet, as discussed in the previous

section, differently from the Cloud systems, persistent data (usually written on the

secondary memory) are not utilized by edge virtual functions. Hence, most of the

edge migration models usually consider runtime data from the source to the target

node and then applies this state to a base image of a virtual function. This image may

be acquired from shared repository, or transmitted through the edge orchestrator, or

it could even be available on the receiving node thus making only the runtime state

impact the overall migration time.

Additionally, when it comes to edge networks, both the low capacity (in terms

of processing power) of the edge devices and the network interconnecting links force

migration models to reduce both the computational and the network overheads. The

non-trivial aspect of this statement is though that these two remarks often appear

opposing characteristics, as improving one deteriorates the other.

2.10 Future trends in Edge Computing and Video Surveil-

lance Systems

2.10.1 Surveillance Systems and augmented reality

Augmented Reality, in the context of surveillance systems, refer to the information

depicted on the operator’s screen(s) on top of the video stream captured by the

surveillance cameras of the system. The type of the projected information range

from static information to object tracking trajectories, dynamic labeling of detected

objects and missing or hidden objects. Some of the most important studies on this
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field come from surveillance system used for military purposes. For instance, in (Hall

and Trivedi, 2002) a scheme is proposed for observing multiple video streams and a

visualization system is proposed by merging dynamic imagery with geometry model

of a battlefield visualization. In (Kumar et al., 2000), an augmented visualization of

urban locations is reconstructed using offline video streams and 3D location models.

Finally, a system which automatically detects humans and vehicles from multiple

video streams and then extract and place selected frames on a map, thus reducing

the workload of the operator, is described in several research studies.

On a similar context, (Adhikari et al., 2016), a surveillance and rescue system is

described which automatically combine computer-generated imagery with real-world

imagery in a portable electronic device by retrieving, manipulating, and sharing rele-

vant stored videos. Proposing similar technologies, the work presented in (Sebe et al.,

2003) describes a visualization system for video surveillance based on an Augmented

Virtual Environment (AVE) that fuses dynamic imagery with 360 and 3D models in

a real-time display to assist observers and users to easily and effectively comprehend

multiple video streams of temporal data and imagery from random views of the scene,

where moving objects are detected and tracked in video streams and visualized as 3D

elements in the AVE scene display in real-time. Finally, numerous research works have

been presented where augmented reality is used to support operators watching video

streams from surveillance cameras by offering functionalities like removing immobile

items (over certain time frame) from a scene, providing text-based and sound-based

messages or even proposing areas in the scene that the operator should pay attention

to.

2.10.2 Challenges

During the past three decades, an enormous set of works addressing the problem of

automatic (or semi-automatic) surveillance has been proposed by the research commu-
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nity. Main subtasks that were studied were object tracking, object re-identification,

object recognition and image enhancement. Within this framework, many excel-

lent studies have proposed algorithms and systems which address the aforementioned

problems with (more than) acceptable accuracy and robustness. Yet, a lot of work

still needs to be done. Most of the video surveillance systems seem to share two

common limitations. The first limitation refers to a (too) high false alarm rate in

detection of interesting events within the surveillance scene. This drawback causes

various problems to the owners of the surveillance systems and they usually decide

to deactivate automatic alerting features. Secondly, existing surveillance systems fail

to function properly under all real-world conditions, such as rain, fog, snow, blowing

dust, water on the lens or image plane artifacts.

In order to overcome the aforementioned limitations, new algorithms and tech-

niques need to be developed, increasing the accuracy and the robustness of the surveil-

lance systems. Besides addressing flaws of already established surveillance systems,

researchers working on video analytics should bring surveillance to the next level,

working on the following topics (Fig. 2·12).

� Cloud/Fog/Edge infrastructures integration. Cloud technology seems to

match perfectly with surveillance systems, as it can offer both the missing com-

putational power video analytics require and the storage capacity usually a

surveillance system needs. Cloud infrastructures are expected to facilitate in-

stallation and management of surveillance systems, shifting the paradigm from

standalone applications to Software-as-a-Service. This will allow surveillance

systems to use different video analytics and alerting mechanisms when it is

required and for the time period it is required. Bearing in mind the cost trans-

mitting a video footage to a cloud system and the cost of cloud storage, new

compression algorithms must be used, which will maintain the accuracy of the
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Figure 2·12: Research trends of surveillance systems.

video analytics algorithms while reducing the aforementioned costs. Cloud tech-

nology, as argued in paragraphs 2.6.2 and 2.6.3, can be supported and extended

by Fog computing and Edge computing. More specifically, Fog and Edge com-

puting can address the delay overhead that cloud services usually impose to a

surveillance system by transferring computational power closer to the source of

the event. By calculating features and analytics close to the sensors decreases

the required network bandwidth and increases the response time of the system.

Thus, these approaches can be used to cutting-edge approaches like automatic

drone navigation or automatic field of view rearranging.

� Communication protocols between surveillance systems. Despite the

fact that surveillance systems become more and more popular, there is no spe-

cific protocol for communication among them. Such protocols would be ex-

tremely useful for public safety scenarios and terrorism prevention, facilitating
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information exchange between different surveillance systems deployed around a

city. Thus, analytics such as object re-identification and object tracking would

be possible among different and heterogeneous surveillance systems.

� Modality fusion. Apart from video, which is the dominating sensing tech-

nology for surveillance systems, other modalities can facilitate monitoring and

alerting tasks. Such modalities are audio, thermal video, night vision video,

HDR video and GPS tags. Thus, algorithms and techniques are required, in

order not only to seamlessly fuse these modalities to a single output but also

to automatically decide which modalities are more suitable for different condi-

tions or for different tasks. These approaches, among other applications, are

expected to provide to autonomous vehicles (such as drones) the functionality

of “deciding” which sensors are more appropriate to use on different situations.

� Analytics and scene reasoning. The ultimate aim of an intelligent surveil-

lance system is to automatically produce high-level information of the recorded

scene, such as objects identification and motion recognition. Other tasks, such

as tracking of individual people in crowds, keeping track of moving objects that

are temporally occluded, and tracking and understanding interactions between

multiple targets are further challenges that aren’t yet reliably addressed. While

the research community has proposed an extended set of algorithms and tech-

niques in this area, higher levels of accuracy and applicability are required.

� Surveillance databases & event oriented query languages. The usual

scenario of a surveillance system is to store the video footage for a pre-defined

time-frame in order to use it in case of a future events, related to the area under

surveillance. In such scenarios, the common practice is to review the video

streams which is a rather time-consuming and resource demanding task. As we
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use surveillance systems to capture events, surveillance databases must be event

oriented, improving not only the workflow of a person seeking a specific event,

but also the storage capacity of a system, as we will avoid the pointless saving

of the whole video footage and focus on storing the events. Such databases will

be integrated with event oriented query languages, in order to facilitate seeking

tasks and high level knowledge extraction tasks.

� Augmented reality on surveillance systems. Offering in real time (or in

near-real time) information, analytics and metadata about a monitoring scene

would undoubtedly help surveillance operators to work with several monitors

and with crowded scenes. Thus, producing virtual reality information and over

layering it with the actual video footage is a challenging task that needs to

be further addressed. Additionally, generating an auditory display for complex

scenes is very appealing to support situational awareness in surveillance systems.

Approaches like these are expected to improve the workflow of monitoring.

� Virtual reality. As the number of the video sensors of a scene/area increases,

the operator’s monitoring work becomes non-trivial, as she/he has to constantly

pay attention to multiple screens. As already argued, augmented reality can

facilitate this workflow through adding an intelligent layer to the monitoring

screens. Another approach to achieve this workflow facilitation is Virtual Real-

ity (VR), where a set of algorithms and techniques will reconstruct a 3D (360o)

world from the video sensors, in which the operator will be able to walk through

and observe certain features, such as objects and individuals. While such solu-

tions have been proposed in the literature (Du et al., 2016) a lot of work still

needs to be done, improving the required algorithms for gaze direction compu-

tation, camera scheduling, collaborative tracking and Virtual Reality content

streaming.
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� Deep learning algorithms. While supervised deep learning algorithms have

performed extremely well, when compared with other approaches, unsupervised

learning is expected to play an important role in reviving interest in deep learn-

ing. Unsupervised learning is expected to produce representations and relation-

ships which are not obvious even to animals and humans. Also, deep learning

approaches are expected to mimic even further human vision, producing sys-

tems that are trained end-to end to decide where to in the field of view the

system should focus.

� Security at the edge of the network. The very nature of an edge network

creates a challenging environment for any well established security architecture

which is applied in cloud environments. A recent model proposed for addressing

security in the edge is Zero Trust (ZT) security model (Samaniego and Deters,

2018). According to ZT, entities are not considered trusted based on their

network location (perimeter-based security architecture). Yet, all entities need

to manifest a ’trust’ token every time a request is address to it, without relying

on implicit trust. While block-chain is already proposed as an implementation

path for ZT architectures (Dhar and Bose, 2021), designing, implementing and

testing new schemes for implementing ZT on the edge is still a great challenge

to consider.

All of the aforementioned remarks share common ground with edge computing,

and most of this ground has not yet been explored. More specifically, ad hoc pro-

tocols suitable for non-centralized services, like edge-based surveillance services are

mandatory for integrating large-scale systems. On top of that, edge-based distri-

bution schemes are necessary for supporting demanding computational tasks, like

artificial intelligence analytics, deep learning models and virtual reality rendering.

Such distribution schemes also require edge-based storage solutions and data redun-
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dancy models. Finally, security and data integrity require innovative solutions when

projected at the edge of the network.

2.11 Conclusion

After surveying the current status of surveillance systems, both from the algorithmic

and the systemic / infrastructure point of view, several conclusions can be drawn

regarding the available technology nowadays, the technological limitations and the

future challenges of the area.

Video surveillance systems have been introduced almost fifty years ago, through

CCTV systems, requiring a substantial number of manpower, analog to the number

of the installed video sensors, leading to high operational costs. The majority of the

research studies on surveillance systems the last five decades are trying, to substitute

the operator with a video processing algorithms which will be able to perform certain

tasks. While all of the effort put on this non-trivial mission has produced some really

innovative and brilliant algorithms, these are only limited to a small set of tasks, like

face recognition and object detection and tracking. The accuracy of these algorithms

is usually far from satisfying when the scene conditions are not perfect.

Research developments during the last decade have revitalized the expectations

for automatic surveillance systems. These developments mainly involve machine-

learning, deep-learning algorithms and distributed computational infrastructures, like

cloud, fog and edge computing. These methodologies, combined together, are ex-

pected to improve the accuracy of surveillance algorithms, proposed new smart an-

alytics and reduce the response time of the systems, in order to produce meaningful

alerts.
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Limitations

As already discussed, there are a lot of research challenges that need to be addressed.

Among these, special attention needs to be placed on optimization techniques that

will automatically redistribute the computational power among edge, fog and cloud

agents, based on specific performance, cost and privacy criteria. Such optimization

techniques will boost the performance of the surveillance systems, enabling at the

same time a new paradigm, Video Surveillance as a Service (VSaaA).

More specifically, the main deployment paradigm for deploying surveillance ser-

vices nowadays is cloud computing. This paradigm implies the transmission of the

collected video streams to a centralized hub, posing a high communication latency.

Additionally, having video streams transmitted and stored to third-party servers raises

privacy and security issues, which many users consider of paramount importance.

As already discussed, edge computing, by design, can address the two main limi-

tations of cloud based surveillance systems. Yet, the low end devices which comprise

the edge environments, along with high heterogeneity and mutable characteristics

of both devices and network, deter the direct deployment of demanding streaming

applications, like surveillance services.

These limitation aspects of edge environments drove the core inspiration for this

PhD project. Within the next chapters, a model for enabling AI analytics and other

heavy computational tasks to be deployed on an edge environment is proposed. Upon

the basic model, auxiliary models for results caching And virtual function migration

are described. Finally, evaluation of the proposed models, both on simulation en-

vironment and on a experimental setup provides proof-of-concept evidence that the

proposed model is vital and can support actual use case scenarios.
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Chapter 3

Proposed Virtual Function Chaining

model

This chapter introduces a novel distributed model for handling in real-time, edge-

based Artificial Intelligence analytics, such as the ones required for smart video

surveillance. The novelty of the model relies on decoupling and distributing the

services into several decomposed functions which are linked together, creating vir-

tual function chains (V FC model). The model considers both computational and

communication constraints. Theoretical, simulation and experimental results have

shown that the V FC model can enable the support of heavy-load services to an edge

environment while improving the footprint of the service compared to state-of-the

art frameworks. In detail, results on the V FC model have shown that it can reduce

the total edge cost, compared with a Monolithic and a Simple Frame Distribution

models. For experimenting on a real-case scenario, a testbed edge environment has

been developed, where the aforementioned models, as well as a general distribution

framework (Apache Spark ©), have been deployed. A cloud service has also been

considered. Experiments have shown that V FC can outperform all alternative ap-

proaches, by reducing operational cost and improving the QoS. Finally, a caching and

a QoS monitoring service based on Long-Term-Short-Term models are introduced.
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3.1 Introduction

Artificial Intelligence (AI), as expressed by the latest developments of Machine Learn-

ing (ML) and Deep Learning (DL), has produced numerous models which are mature

enough to reach the market massively during the next few years. The main reasons for

this, mainly involves the improvements on data-capturing devices, the re-engineering

of several ML algorithms and the release of ML and DL toolkits, like PyTorch and

TensorFlow (Jain et al., 2019).

Video analytics is an umbrella term for describing applications like object track-

ing, pedestrian detection, face recognition, behavioral analytics etc. The common

business - technology model for deploying AI surveillance services nowadays is Cloud

Computing (He et al., 2018), where the captured video streams are uploaded to a

centralized data center. This imposes a round-trip time to the throughput of the

service which, in many cases reduces significantly the Quality of Service (QoS). This

leads the service providers to either reduce the processing frames per second (fps)

or lower the resolution of the captured videos, nullifying the advances of new video

sensors, like UHD and HDR sensors.

Edge Computing has been proposed as a computing paradigm according to which

the data are processed ’near’ the generating data devices and comprises many low-

capacity devices (Sun et al., 2019). While this paradigm addresses the large round-trip

times of Cloud Computing, the QoS is now limited due to the capacity of the edge

devices. Not only academia, but lately industry has placed focus on Edge Computing,

by providing software (e.g., Google Lite TensorFlow (Demosthenous and Vassiliades,

2021)©) and hardware (e.g., NVIDIA Jetson AGX Xavier©(Hossain and Lee, 2019)

and AWS DeepLens©(Khan et al., 2020)) solutions are suitable for edge processing.

As discussed in several works (Alnoman et al., 2019), (Carvalho et al., 2021), current

edge computing approaches face several challenges and limitations. These limitations
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mainly involve the insufficient computational capacities for heavy loaded tasks, like

AI model training and the low storage space usually the edge devices are equipped

with.

This chapter proposes a novel distributing framework which explores the Virtual

Function Chaining (V FC) concept inspired from the Software-Defined Networks and

enables the real-time inference for surveillance applications at the Edge, supported

by edge learning services build on deep learning models with the capacity to monitor,

assess and predict the QoS of the supported services. In this model (Fig. 3·1), an AI

smart video analytics service is decomposed to a set of Virtual Functions (V Fs), which

can be deployed on different edge devices. Using these V Fs, a V FC is created which

process the streaming data in a distributed fashion. For example, in Fig. 3·1, there

are two V FCs presented (purple and orange chains), each one of which implements

a different service. V FO (Virtual Function Orchestrator) is responsible for deploying

the V FCs, along with the auxiliary services discussed in the next chapters.

The V FC framework deploys several modules which aim to optimal design the

service, monitor its QoS metrics and fine-tune its configuration in order to avoid

failures. More specifically, a computational engine is responsible for proposing the

optimal setup of the V FC while an edge-learning service monitors the performance

of the edge devices and propose possible alterations.

The V FC architecture for effectively distributing an video analytics service to the

Edge architecture seamlessly integrates V FCs. The proposed architecture’s services

are mainly hosted on the Virtual Function Orchestrator (V FO). Additionally, a

model for designing the optimum setup for a V FC, in terms of V F instances and

V F placement on the edge devices is presented. Each V F may appears in the V FC at

several instances (replicas) and interconnected V FCs (Fig. 3·2). The contributions

of this chapter mainly include:
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Figure 3·1: Conceptual architecture of the proposed system.
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1. An edge learning service is built on deep learning models for assessing the QoS

of the deployed services and alerting in case a V FC is about to fail.

2. A caching mechanism, which demonstrates the scalability of the proposed model

when multiple services are requested.

3. A prototype of the described architecture, which is used to evaluate the de-

scribed models and provide a proof of concept, in terms of effectiveness and

feasibility, on enabling V FCs as a model for real-time AI surveillance applica-

tions.

Additionally, within this work an extensive comparison with generic distribution

engines (Apache Spark©) is presented, along with a set of experiments.

While the proposed model is inspired by the Service Function Chaining (SFC)

concept, it alters and extends several of its features, in order to meet the requirements

of video analytics. Service Function Chaining refers to the use of Software-Defined

Networking (SDN) programmability to create a service chain of connected (virtual)

network services. One advantage of using SFC is to automate the way virtual network

connections can be set up to handle different types of traffic flows.

� First, it introduces a load-balancing mechanism in order to support the QoS,

which monitors the output of the service and rearranges the V FC automatically.

� Additionally, it extends the SFC model by allowing one V F instance to be

part in several V FCs (e.g., face detection, gender identification, etc.), so that

several video analytic services can be deployed simultaneously.

The different deployment modes of the V FCs are presented in Fig. 3·2. Basic

V FC deployment refers to the case according to each V F of a V FC is deployed to a

different edge node, without any replications. V F replicas deployment describes the
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Figure 3·2: Different modes of V FC deployment. (a) Basic V FC
deployment, (b) V FC deployment with V F replicas and (c) Two V FCs
with caching enabled.
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case where one or more V F are deployed in replicas in order to divide the incoming

streaming tasks and thus reduce the required processing time of this specific V F .

Finally, the caching deployment presents the case according to which, one V F is part

of two (or more) V FCs, enabling the utilization of cache data.

The management of the V FC (autoscaling, QoS monitoring, etc.) is facilitated

by an edge-learning model with the capacity to assess the performance of the edge

devices within a specific time-frame and inform the V FO about possible failures.

Figure 3·3: Logical architecture of the proposed V FC model.

More specifically, in Fig. 3·3, all the submodules of the proposed model are pre-

sented, along with their interconnections and dependencies. When a user requests

from the orchestrator (V FO) a specific service, V FO executes the placement algo-

rithm and assign each V F to the appropriate node. At the same time, the QoS

monitoring model establish a mechanism for collecting data about the utilized edge

nodes and as soon as a possible overload is detected, it triggers the migration model

for assigning a V F to another edge node. At the same time, V FO checks with the

cashing module whether there are other services up and running with a common V F .

If so, the placement algorithm is informed and combines the appropriate V Fs.
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The rest of this chapter is organized as follows. Section 2.7 provides a brief

state-of-the-art approaches for utilizing edge for hosting AI services, while Section

3.2 describes the V FC model. Section 3.3 includes the implementation details of all

the tools developed to evaluate the proposed concept. In Section 3.4, the results from

the experiments are presented. Finally, the results are discussed in Section 3.5.

3.2 Virtual Function Chaining Model

Aiming to enable edge as a real time inference mechanism for AI video analytics ser-

vices, a generalization distribution framework is proposed, according to which a video

analytic service is decomposed to a set of V Fs, creating a V FC. The proposed model

aims to facilitate the efficient offloading of surveillance cloud services to a cooperative

distributed edge environment, where heterogeneous edge devices formulate a service

chain and jointly implement a service.

The basic principles of the proposed model (Figure 3·1) are the following:

� Each surveillance service is decomposed to set of processes. Each process im-

plements certain tasks, like image enhancement, edge detection, AI model in-

ference, etc.,

� Each process instantiates a V F and is deployed as an edge node. Each V F

comprises three parallel threads: the Input Queue, the Output Queue and the

Running agent (Fig. 3·4). The running agent implements the logic part of the

V F (e.g., image filtering) while the Input and Output queues handle the pack-

aging and communication of the V F with the previous V F and the next V F in

the V FC respectively. The communication between the V Fs is unidirectional,

as surveillance services are streaming processes. This means that when there is

an information flow from V Fi to V Fj, there is no communication from V Fj to

V Fi by default.
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� A surveillance service is realized by a V FC, similar to the service function

chaining proposed by the IETF WG (Halpern and Pignataro, 2015). A V FC

must include at least one instance of each V F . The main concept of the model

proposed by (Halpern and Pignataro, 2015), includes network services, like

firewall and packet filtering.

� V FO manages the V Fs allocation to the physical devices and established the

communication channels among them. Additionally, V FO monitors the perfor-

mance criteria of the service (e.g. processed frames/sec, total cost, etc.) and

performs actions in order to meet them, while hosting the edge learning AI

model for QoS monitoring.

Figure 3·4: Implementation of a V F .

3.2.1 Model Formulation

Each service is described by a V FC, and in general, a single V F can have multiple

instances (replicas) within the edge environment. The rationale behind the replication
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of the V Fs is that when a V F requires a processing time larger than the one prescribed

by the required QoS. Note that:

1. the processing time of the whole V FC is actually equal with the processing

time of the most demanding V F in the V FC, and

2. the processing time of the V Fs must be almost identical, due to the streaming

nature of the described services.

If V Fi produces data faster than V Fi+1 can consume, then data will flood V Fi+1

leading to the overflow of the input queue of the relevant edge device.

When a user subscribes to a service (e.g., object detection, etc.), V FO instantiates

the V FC by implementing the following tasks:

1. Calculates the required number of instances (replicas) for each V F , in order to

meet the service’s QoS criteria,

2. Allocates the V Fs to edge devices and

3. Establishes communication channels between the edge devices.

A V F instance can be part of several service chains (Fig. 3·5). Table 3.1 summa-

rizes the formulations of the main entities of the proposed modeling framework. More

specifically,
−→
S refers to a decomposed service, aiming to be deployed,

−−→
V F describes

the features of a single virtual function,
−→
K refers to a processing edge node and finally

−−→
Wab refers to the communication channel between nodes a and b.

It is important to mention that we consider as the primary component of the QoS

the number of frames the service can successfully process per second. This processing

frame-rate influences the data volume injected in the edge network and thus is is

correlated with the capacity of the distributed network to undertake specific load.

As there are additional components that could be considered, as the resolution of
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the frame, we chose not to consider them for defining the QoS, due to the fact that

frame-rate has a much higher contribution to the data volume.

Finally, it should be stressed that while for the video surveillance scenario we will

consider processed frames/sec for quantification of QoS, but other metrics can be

used as well, depending on a specific usage scenario. For example, if a service aimed

at collecting and assessing the sentiment from social media feeds, the QoS could be

defined as the number of messages processed/sec.

Figure 3·5: Conceptual architecture of the proposed V FC model.

3.2.2 Problems definitions and solutions

V FO node needs to assign the V FC to the edge environment. In order to achieve

this, the following general assignment constrained problem needs to be solved:

Problem 1: Determine the number of V F instances (replicas) and assign each

instance to an edge device, such that the video analytics are generated while main-

taining the required fps and the total network cost be minimum.

Problem 1 can be formulated as:
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Table 3.1: Basic entities of the proposed V FC model.

Entity Formulation Description

Surveillance
service

−→
S = [fps, {V Fj}]

fps is the processed frames / sec
the service requires (QoS)
{V Fj} is the set of processes com-
prise the service

Virtual
Function

−−→
V F = [cpuload, outdata]

cpuload is the required CPU in-
structions per frame
outdata is amount of data virtual
function produces after process-
ing the input data

Edge
Node

−→
K = [m, c(l), r(l)]

m is the CPU instructions / sec the
device can execute
c(l) is the cost function of the de-
vice, when performing l CPU in-
structions. Cost is a general term
which includes battery life, main-
tenance cost, etc.
r(l) is the required time to pro-
cess l CPU instructions

Link
−−→
Wab = [bw]

bw is the communication bandwidth
among edge nodes a and b
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min

{
n∑
i=1

y∑
j=1

xi,jci,j

}
(3.1)

y∑
j=1

xi,j = 1 (3.2)

n∑
i=1

xi,j ≤ 1 (3.3)

timecomputational + timecommunication ≤
1

fps
(3.4)

, with

min

{
y =

m∑
j=1

instancesj

}
(3.5)

timecomputational =
j=1..y
max
i=1..n

{xi,jti,j}

timecommunication =
j=1..y−1
max
i,i′=1..n

{
xi,jxi′,j+1

outputj
Wi,i′

}
, where n is the number of edge devices, m is the number of the V Fs, y is the

total number of V Fs, xi,j =


1 if V Fj is assigned on node ni

0 otherwise

, ti,j is the required

time for device Di to execute V Fj and process the data produced from a single

frame and instancesj is the number of the required instances for V Fj. Finally, Wi,i′

is the bandwidth of the communication link between nodei and nodei′ , which host

two adjacent V Fs, j and j + 1. This formulation describes a model which aims to

minimize the total cost of the service (eq. 3.1) while meeting the QoS constraints (eq.

3.4), with the minimum number of V F instances (eq. 3.5), requiring that each V F

instance must by assigned to exactly one edge device (eq. 3.2) and each edge device

can undertake no more than one V F instance (eq. 3.3).

This is a NP-Hard problem (Besse and Chaib-draa, 2007), which requires a sub-
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stantial computational time to be solved. Problem 1 is actually an variation of the

Job-Shop problem (Manne, 1960), which can be reduced to the Traveling Salesman

Problem (TSP) (the cities are the machines and the salesman is the job). Since TSP

is an NP-Hard problem, Problem 1 is also an NP-Hard problem.

In order to acquire a feasible solution within an acceptable time-frame, we de-

couple Problem 1 to two sub-problems: (A) V F instances sub-problem and (B) the

assignment (placement) sub-problem.

Sub-problem A aims to identify the minimum number of instances for each V F .

As discussed in the previous section, one instance from each V F must be deployed

on the V FC, in order to support the service. Let GV F = [V F1, V F2, ..., V Fn] be the

set of the first instances of each V F . Each one of these V Fs will be deployed to a

different edge device. At this point of the assigning workflow, the allocation cost is

not considered. Yet, we seek if there is a feasible solution of the placement, such that

the QoS constrain is met on a specific edge instance. This results to the following

relaxation.

min

{
j=1..y
max
i=1..n

{xi,jti,j}+
j=1..y−1
max
i,i′=1..n

{
xi,jxi′,j+1

outputj
Wi,i′

}}
(3.6)

m∑
j=1

xij = 1 (3.7)

n∑
i=1

xij ≤ 1 (3.8)

Regarding ti,j, it can be calculated using the rd() function of the edge device

d. Thus ti,j = ri(Nj), where Nj refers to the CPU instructions required by V Fj to

complete its task.

Equation 3.7 reflects the fact that each V F from the GV F set must be appointed
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only to one node and (eq. 3.8) that each edge node can not undertake more than

one V F . Sub-problem A can be solved in a polynomial time by modeling it as a Min

Cost Flow problem (Ahuja et al., 1988). The utilized solver is a typical Hungarian

algorithm. This process results to an allocation of the GV F with the minimum

required time that the network can support. Let t∗ be the resulting time. If t∗ ≤
1

fpsserv
, then the edge network can support the service without having to replicate a

subset of the V Fs. In this case, we can re-formulate the assignment problem as a

constrained mixed integer problem, with the following formulation:

Sub-problem B :

min

{
n∑
i=1

m∑
j=1

xi,jci,j

}
(3.9)

m∑
j=1

xi,j = 1 (3.10)

n∑
i=1

xi,j ≤ 1 (3.11)

j=1...y
max
i=1...n

{xi,jti,j}+
j=1...y−1

max
i,i′=1...n

{
xi,jxi′,j+1

outputj
Wi,i′

}
≤ 1

fpsserv
(3.12)

The objective function (eq. 3.9) of this formulation aims to minimize the total

cost of the V FC deployment to edge network, while fulfilling the QoS constraints

of the service (eq. 3.12) and assigning all V Fs to a device (eq. 3.10) while limiting

the number of deployed V Fs to a device (eq. 11). This problem, can be solved by

utilizing Constrained Programming (Laborie et al., 2018) in a polynomial time.

Solving Problem 1

If t∗ > 1
fpsserv

, then the computational capacity of the edge devices is insufficient to

support the service’s QoS, if only one instance of each V F is deployed. In order to



73

tackle this, we draw inspiration from the recently launched concept of Cloud-native

functions (Aderaldo et al., 2019), which handle dynamically the number of their

instances aiming to handle the incoming requests. Thus, a mechanism is proposed,

according to which a V F can be launched to multiple devices, and share the data

coming from the previous V F of the V FC following a routing algorithm. For the work

presented in the following sections, unless stated otherwise, for routing algorithm, the

route-robin has been deployed, especially due to its simplicity and fairness.

According to this mechanism, V F replicas are deployed to different nodes, and

each replica undertakes a portion of the data produced by the previous V F on the

chain.

Thus, if a second instance of V Fj is deployed, the required time for the function

to process the data related to a single frame changes from rk(l) to rk(l)
2

+ b, where b is

the time overhead implied for handling the data separation on V Fk−1 (previous V F

in the chain) and data merging on V Fk+1 (next V F in the chain), assuming that the

two instances of the V F is deployed to identical nodes.

This case leads as to the formulation of a new sub-problem (sub-problem C ). Its

objective is to identify the minimum number of replicate instances for each V F that

need to be deployed on the edge network, in order to meet the QoS constraints. Let
−→
S = [s1, s2, ..., sm] represent the number of instances for each one of the V Fs, with

si being an integer larger or equal to one (si ≥ 1). Thus, we derive the following

problem formulation:

min

{
m∑
j=1

sj

}
(3.13)

m∑
j=1

(
rf (Nj)

sj
+ (sj − 1)b+

outputj
Wff ′

) ≤ 1

fpsserv
(3.14)

, where Nj are the required instructions per frame required for executing V Fj
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on device f , with f ′ undertaking V Fj+1. Equation 13 drives our model to produce

solutions with the minimum total new instances of the V Fs, while (eq. 14) satisfies

the QoS of the surveillance service. Unlike the problem formulated by eq. (3.9-3.12),

this is a non-linear mixed integer problem, which requires the utilization of the active

set solver APOPT (Hedengren et al., 2012). Let the result of this sub-problem be

instances = [ins1, ins2, ..., insm]. Using instances, we can revisit Sub-problem B and

solve the allocation problem as before.

The discrepancy of the latest described sub-problem is that the utilized nodes

f and f ′ are unknown. This is rational, because we seek the number of the V F

instances with regard to the computational time, which depends not only on the V F

load but also on the node that will undertake the V F . We resolve this deviation by

using Algorithm 1. This algorithm can provide two approaches:

(i) worstCase scenario, where the edge device used to calculate (eq. 3.14) is the

one with the lowest processing capacity and

(ii) bestCase scenario, where the highest processing capacity device is utilized.

Algorithm 1 receives as input the processing fps implied by the QoS and the al-

location of the initial instances of the V Fs. As depicted in Fig. 3·6, both approaches

converge to the desired processing fps. The reported results have been derived by a

simulation framework that has been developed in order to evaluated the reported ap-

proach (simulation plots) and by an experimental edge network setup (system plots).

Details on the utilized edge environment are provided in Section 3.3.2.

As far as the two functions (addReplicate() and removeReplicate()) used in Algo-

rithm 1, they calculate for each V F either the improvement (for the addReplicate())

or the regression (for the removeReplicate()) a new instance will have to the to-

tal cost. Let {vi} be these values. Then, we choose the V F which minimizes the

difference |fpscurrent − vi|. In each iteration, Sub-problem B is solved.
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Algorithm 1: Online placement optimization algorithm

Input: fps, xij, ε (error tolerance)
deploy(xij);
fpscurrent = measurefps();
if |fpsserv − fpscurrent| < ε then

return xij
else

while (|fps− fpscurrent| > ε) do
sleep(1);
if (fpsreal < fpscurrent − ε) then

xij = addReplicate(xij)
else if (fpsreal > fpscurrent + ε) then

xij = removeReplicate(xij)
else

return xij
end
deploy(xij);
fpscurrent = measurefps();

end

end
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Aiming to evaluate the accuracy of the proposed algorithm for solving Problem

1, a set of scenarios (edge networks and V FCs) have been setup, solving Problem

1 both using a naive greedy algorithm (which calculates the optimum solution) and

the proposed approach. More specifically, the greedy algorithm exhaustively creates

placement solutions and calculates the total cost for each solution. After testing all

possible combinations, the algorithm selects the solution with the minimum total

cost. For the number of replicas, the greedy algorithm tests all scenarios with the

number of replicas taking values from 0 to n − m, where n is the number of edge

nodes and m the number of the different V Fs.

Five different V FCs have been used. For each V FC, 15 scenarios have been

established by setting the parameters presented in Table 3.2. The parameters were

acquired from the experimental setup, after following the measurement approaches

suggested in (HajiRassouliha et al., 2018) and in (Zou et al., 2009). Figures 3·7 and 3·8
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present the results of this comparison. The reported results are the average values of

the total cost among the 15 different scenarios. The total average extra cost imposed

by the proposed approach was ≈ 1.97%, while the required time for each algorithm

to solve the problem is ≈ 5.61sec for the proposed approach and 7.89 × 103sec for

the greedy algorithm (Fig. 3·8). The solvers, which have been implemented using

GEKKO suite (Beal et al., 2018), have been executed on a Intel i7 2.8GHz (8core)

on 8GB of RAM.

Table 3.2: Parameters on experiment setup.

Parameter Value
cpuload 104N(10, 0.8)
mk 103N(20, 0.9)
Wtt′ 105N(10, 0.7)
output 103N(200, 0.65)

3.2.3 QoS monitoring and failure avoidance

The model described in the previous sections is used in order to initialize and instan-

tiate a V FC for serving a surveillance service. Yet, during the execution time of a

service, the edge environment, unlike cloud infrastructures, is highly dynamic. The

edge devices, due to low resources, appear fluctuations in their main performance

metrics, like available CPU and RAM.

A surveillance service, in order to maintain the QoS standards, adequate resources

are required through its lifecycle. The proposed V FC model is more prune to the

fluctuations on the performance indicators compared to the Monolithic approach, as

it depends not only from one edge device but from a set of edge devices, where if one

of the hosting devices fail (overload, battery drain, network disconnection), the whole

service collapses.

Aiming to address this issue, a ”failure alert” methodology has been designed and

developed, based on a well established Recursive Neural Network, the Long-Short
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Term Memory (LSTM). By failure we consider the overloading of an edge node at

such level that the assigned V F can no longer be executed properly, in terms of

assigned mips (million instructions per second).

A variation on the LSTM is the Gated Recurrent Unit, or GRU, introduced by

(Cho et al., 2014). It combines the forget and input gates into a single “update gate”

while it also merges the cell state and hidden state compared to the classic LSTM cell.

The core memory cell of the utilized network is presented in Fig. 3·9 and governed

by (eq. 3.12) - (eq. 3.18).

Figure 3·9: LSTM memory cell.

zt = σ(Wz) · [ht−1, xt] (3.15)

rt = σ(Wr) · [ht−1, xt] (3.16)
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h̃t = tanh(W · [rt ∗ ht− 1, xt]) (3.17)

ht = (1− zt) ∗ ht−1 + zt ∗ h̃t (3.18)

The model learns long term dependencies on the performance metrics of the edge

devices. More specifically, two LSTM models have been established, one for predict-

ing CPU usage and one for predicting RAM usage. The training datasets have been

created using the benchmark edge environment and by mimicking artificial fluctua-

tions on the edge devices. Details on the process are provided in Section 3.3.3. When

the inference of the model (which is executed in the V FO) predicts high CPU and /

or RAM utilization, it informs the relevant module for the specific V FC that is pos-

sible to face a failure within the specific time-frame. At this point, V FO recalculates

the optimal placement of the V FC and resets the V FC.

3.2.4 Caching Mechanism

Surveillance as a service is one of the most promising models for delivering surveillance

analytics to the end users. According to this model, a user can choose a camera feed

and request for specific analytics. It is important to consider that the V FC model

enables the sharing of the results among different services, in case two (or more)

services share the same(s) V Fs. For instance, a municipality offers video analytics

services on live video streams from the busiest shopping streets of a region. A user

can request a service named ”Count women” from a specific video camera for two

weeks, as she / he is interested on opening a beauty salon while another user request

a service named ”Detect abandoned items” from the same video stream. While the

two services seems to have nothing in common, they share a subset of common V Fs,

image-enhancement and light-equalization.
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For this, a caching mechanism has been designed and developed, according to

which when a node executes a V F for data related with frame k, it stores the results

in a stack for a specific time-frame. In case another video analytics service request

from the same V F to process data related to an already processed frame, it retrieves

the results and forwards them to the next V F of the V FC, without recalculations.

3.3 System implementation

Aiming to evaluate the V FC model described in Section 3.2, both simulation and

prototype platforms have been developed, where all the necessary functionalities have

been deployed to support AI real-time video analytics of surveillance services. More

specifically, three discrete tools have been formulated: (i) a simulation platform, (ii)

an edge benchmark environment and (iii) a cloud-based surveillance service.

3.3.1 Simulation Platform

The simulation platform has been developed under Python 3.6 (Gries et al., 2017).

All the entities described in Table 3.1 have been modeled as distinct processes. Linux

commands cpulimit and ulimit have been utilized to mock specific computational

capacities for each ’edge device’. In the experiments described in the Section 3.4,

each video analytic service has been modeled as a set of n V Fs, where n is a random

integer ∈ [3, 7]. Each V F could be either a light V F , a moderate V F or a heavy V F ,

with relative computational characteristics. Finally, each V F may by identical with

another V F with a probability of 15%, enabling the caching mechanism described in

the following sections.

Withing the simulation platform, three different Setups of a surveillance service

have been implemented.

� Setup I: The surveillance service has been implemented under a monolithic
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approach. This means that each deployed surveillance service has been hosted

in one edge device (details in 3.3.4).

� Setup II: The surveillance service has been implemented under a simplistic

distributed method, where each surveillance service were deployed to multiple

edge devices (details in 3.3.4).

� Setup III: The proposed V FC model.

All of the above setups have been tested under different service demand prob-

ability distributions. By service demand probability distribution, we refer to the

probability a user requests a service at a specific time-point td. More specifically,

various Poisson distributions have been used. For the Poisson distributions, three

different λ parameters have been used, aiming to mimic low, normal and high user

demand rates, according to (Hossain, 2011), (Song et al., 2014) and (Nwokolo and

Inyiama, 2017). For the same Setup, the cumulative number of the requested services

was the same. All the different scenarios are presented in Figure 3·10.

3.3.2 Edge environment implementation

The implemented edge network comprise 6 Raspberry PI 3 (model B+) devices, with

a Quad Core 64bit CPU @ 1.2GHz and 1GB RAM and 2 Raspberry PI 4 devices

with a Quad core Cortex-A72 (ARM v8) 64-bit CPU @ 1.5GHz with 4GB RAM,

running Raspbian OS. The feed from the camera has been mocked as video file from

the VIRAT dataset (Oh et al., 2011).

Two video analytics services have been deployed on the edge environment. Service

A and Service B, require gender and age classification respectively. For the main

inference model, the pre-trained deep learning models proposed in (Blog, 2018) have

been used. Both Service A and Service B decompose to 4 V Fs. Service A includes
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Figure 3·10: Probability distributions for user demand.

V F1(), V F2(), V F3() and V F4(), while Service B includes V F1(), V F2(), V F5() and

V F6().

Details on the V Fs are presented in Table 3.3.

� V F1(): Frame acquisition and image enhancement (histogram equalization and

Multi-scale retinex on low light conditions,

� V F2(): Blob calculation for a specific frame,

� V F3(): Convolutional Neural Network (MobileNet v2) pass and probability

matrix acquisition,

� V F4(): Coordinates calculation for the detected objects and non maxima sup-

pression for overlapping objects,

� V F5(): Convolutional Neural Network (gender CNN networks) pass and prob-

ability matrix acquisition,
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Table 3.3: Model’s parameters.

Parameter Value
n 8
W 98± 1.7Mbps

cpuload
[103, 5× 103, 106, 102] instruc-
tions/frame

output [105, 3× 104, 107, 104] bytes
ck(l) l2+0.8

1000
r(l) 20l+9

mk
sec

m1 104 instructions/sec (PI 3)
m2 107 instructions/sec (PI 4)

� V F6(): Results reporting.

The model’s basic parameters are presented in Table 3.3.

The values have been selected after performing a set of experiments for different

workloads. A non-linear model for the cost function has been chosen. V Fs have been

implemented using Python3, utilizing the multiprocessing library.

3.3.3 LSTM models

As discussed in Section 3.2.3, a QoS monitoring and failure avoidance mechanism

has been developed, in order to enable the hosting of demanding surveillance services

throughout their life-cycle. The basic concept is based on the idea of monitoring

the basic performance indicators of an edge device and trying to predict the value

of these indicators within a specific time-window in the future. For this prediction,

two LSTM models have been utilized, one for each performance indicator. While the

possibility of using a single LSTM model has been explored, by combining RAM and

CPU utilization in a singe metric, the experimental results have shown that it is more

appropriate to deploy two models, one for each metric.

As far as the architecture of the deployed LSTM models is concerned, a two layer

approach has been adopted, with one hidden dense layer, each of them comprise 100
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nodes. ReLU has been used as the activation function and ADAM solver for the

optimization steps. Finally, the Mean Square Error has been selected as the loss

function.

The challenging part of this approach is to acquire a suitable dataset for success-

fully training the LSTM models. As no suitable dataset came to our knowledge, the

edge environment described in 3.3.2 has been used in order to produce the suitable

datasets.

An agent hosted in the V FO device constantly collecting data regarding the CPU

and RAM utilization for each device which is part of a V FC. A software which can

mimic overload demand on the edge devices (stress tool) has been installed on each

edge device, under a random distribution on the required resources. At the same

time, V FO monitors the QoS (processed frames / sec) for each one of the deployed

services (Fig. 3·11).

The training dataset has been created after 248 hours of monitoring and collecting

data from the eight (8) devices of the edge environment, with an interval of five (5)

secs. This process has resulted to a set of time series tcr = ci, ri, one for each V FC

service applied on the edge environment.

The models have been implemented by taking 100 neurons in the LSTM layer.

The utilized loss function is Mean Squared Error. Train and test errors are presented

in Fig. 3·12 and Fig. 3·13.

3.3.4 Comparison setups

Baseline V F allocation algorithm

The first comparison study refers to the quantification of the improvement the V FC

placement algorithm provides on an edge environment upon the deployment of a

V Fs set. To achieve this, a simple placement algorithm (Algorithm 2) needs to be

considered, in order to assess the influence of the proposed placement algorithm. The
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Figure 3·11: LSTM dataset creation.
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rationale of the baseline algorithm is based on an initial random placement of the

V Fs of a V FC on the edge nodes. After the constitution of the chain, the processed

fps are measured and compared with the desired QoS. In case the QoS requirements

aren’t met, the baseline algorithm detects the edge node with the lowest throughput

and creates a replica of the relative V F , which is again randomly placed on an edge

node. The last step iterates until the QoS requirements are met, or their are no more

resources to commit.

The first set of experiments concerned the evaluation of the V FC placement

algorithm. For this, the simulation environment has been utilized, aiming to compare

the two approaches as the edge environment scales up.

For each simulation scenario, a specific number of V FCs has been considered

and the simulation was executed 10 times. For each V FC, the number of V Fs was

randomly selected from the distribution bN (3, 8)c. The relevant results (average

values for the 10 fold executions) are presented in Fig. 3·14 and Fig. 3·15.

More specifically, one can observe that the number of the required V Fs (includ-
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Algorithm 2: Baseline placement algorithm.

Input: fps, V Fi, Kj, ε
xij = random-placement(V Fi, Kj);
fpscurrent = measurefps();
if |fps− fpscurrent| < ε then

return xij
else

while (|fps− fpscurrent| > ε) do
sleep(1);
Klow, V Fh = getLowestThroughput(Kj) addReplicate(V Fh)
fpscurrent = measurefps();

end

end

ing replicas) are reduced at approximately 95.32% (average value) when using the

V FC placement algorithm, when compared with the baseline placement algorithm.

Additionally, the total edge environment cost is reduced by 68.22% with the use of

the V FC placement model.

Cloud service

Aiming to compare the proposed architecture with the current common practice of

deploying a surveillance service, a cloud surveillance service has been deployed. The

characteristics of the utilized Virtual Machine are the following. CPU: Intel Xeon E5

v3 @2.8GHz and RAM: 32GB. The IaaS of the Google Platform ©has been chosen

to host the services.

The services deployed on the Cloud are identical (Service A and Service B), in

terms of implementation, with the services deployed on the edge environment.

Monolithic model

The simplest approach for deploying a video surveillance service on the edge would

be to host the service on a single edge node. Despite the simplicity of this approach,

several advantages can be found, like the easy deployment and the straightforward
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management of the service. Yet, the computational capacity of the edge nodes is

expected to limit the QoS.

The specific model has been implemented and deployed to the edge environment,

mainly for identifying the lowest threshold for the QoS and edge environment cost.

For the implementation of the model, the same V Fs have been used as the ones in

the V FC model.

Simple Frame Distribution model

A second benchmark model has been implemented, also for comparison purposes.

The Simple Frame Distribution model (SFDM) extends the Monolithic model by

deploying the same service on several edge nodes and by distribution the incoming

frames to the nodes. This model requires an new agent which handles the packaging

and distribution of the frames under a proprietary protocol and a second agent which

sinks and synchronize all responses and inform the end user about the final result.

The implementation and deployment process of the SFDM model is simpler than

the V FC model. Yet, this approach nullifies benefits of the differential algorithms,

like background subtraction (Piccardi, 2004). Nonetheless, the SFDM is considered,

aiming to evaluate the processing capacity of the V FC model and its cost over the

edge environment.

Apache Spark framework

Apache Spark© (Zaharia et al., 2016) is a general-purpose distribution system,

which can utilize the processing capacity of a cluster to perform complex computa-

tions. There are three different ways in which Apache Spark can be used for dis-

tributing computational tasks:

(i) Standalone Mode, in which Spark and HDFS (Hadoop Distributed File System)

directly communicate with each other and optionally MapReduce can submit
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jobs in the same cluster;

(ii) Hadoop Yarn according to which Spark executes over a Hadoop container man-

ager distributed across the cluster and

(iii) Spark in MapReduce, where Spark can execute its own jobs along with the one

submitted by MapReduce.

For benchmark purposes, the Standalone deployment mode of the Apache Spark

has been selected, in which both HDFS and Apache Spark are the part of the cluster.

The master node, which acts as a server, also hosts the streaming framework of

Kafka (Khochare et al., 2017), which is used to collect the input of the camera and

distributed efficiently on the cluster. The Spark cluster deployed on the same edge

devices as the ones used to test the V FC model. It’s configuration parameters have

been set according to (Nasir et al., 2019).

The acquirement of the data was performed by a single service which hosted the

Apache Kafka© framework, outside the edge environment, as described in (Ichinose

et al., 2017).

3.4 Experimental Setups and Results

A set of experiments have been contacted, aiming to report the performance of the

proposed V FC model. One can categorize the experimental work in three parts:

� Experiments set out to assess the scalability and sustainability of the V FC

model.

� Experiments set out to assess the contribution and the benefits of the two add-

on services on the V FC model (caching and QoS mechanisms).
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� Experiments set out to compare the V FC model with alternative frameworks

which can host surveillance services.

The tools described in Section 3.3 have been used in order to evaluate the V FC

model under specific metrics. Namely, the QoS of the deployed services, the to-

tal cost of the edge environment and the scaling capacity of the V FC model have

been considered. A set of variants (Setups) have been used, aiming to examine the

aforementioned metrics. More specifically, (as briefly mentioned in Section 3.3.1) the

experimental setups described in Tables 3.4, 3.5, 3.6 and 3.7 have been implemented

on the edge environment detailed in 3.3.2.

3.4.1 Assessing the scalability of the V FC model

The first metric under consideration is the scalability of the proposed model under

parameters like edge devices number and user services demand. To examine these

parameters, the simulation platform detailed in Section 3.3.1 is utilized.

Fig. 3·16 and Fig. 3·17 present the experimental results of the simulation environ-

ment for Monolithic model, SFD model and for the V FC model. All models refer

to single service implementations. More specifically, Fig. 3·17 presents the number

of required edge devices in order to support a specific number of services, while Fig.

3·16 presents the total cost of the edge environment as the number of requested ser-

vices increase. The characteristics of the simulated services are given in Table 3.2. It

is obvious that the V FC model enables the support of a specific number of services

with fewer edge devices and with substantially lower total cost, as the service demand

scales.

Next, the scaling of the V FC model in a temporal simulation scenario is assessed.

For this, simulations for the Monolithic model and the V FC model have been im-

plemented under a 24 hour scenario, according to which users request surveillance

services under different probability distributions (Fig. 3·10). Five parameters have
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been examined. Namely, the percentage of served services over total requested ser-

vices (Fig. 3·20), the percentage of rejected services (due to lack of resources) over

total requested services (Fig. 3·19), the total edge environment utilization (Fig. 3·18),

the total edge environment cost (Fig. 3·21) and the edge network traffic (Fig. 3·22)

have been calculated, as the number of the edge devices scales up. It is important

to mention that low demand scenarios appear to produce more traffic and higher

environment cost due to the fact that fewer services are rejected during these setups.
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Figure 3·18: Edge environment utilization on different user demands
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number of edge devices.

Combining the results of aforementioned figures, one can notice that the V FC

model can achieve higher percentages of served services, under all three of the dif-

ferent user demand distribution probabilities, while maintaining lower levels of total

environment cost. Additionally, V FC model can achieve higher edge devices utiliza-

tion while reducing the percentage of the reject services must faster as the network

scales, always compared with the Monolithic model.
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Table 3.4: Evaluation of VFC services - single service (Service A
(gender classification)).

Scenario Description
S11 VFC model.
S12 VFC model + QoS mechanism.

Table 3.5: Evaluation of VFC services - multiple services (Services A
(gender classification) and B (age classification) deployed on V FCs).

Scenario Description
S21 VFC model.
S22 VFC model + cashing mechanism.
S23 VFC model + cashing + QoS mechanism.

3.4.2 Assessing the add-on services on the V FC model

As described in Section 3.3.2, a prototype edge environment with eight low capacity

edge devices has been implemented. Using this environment, a set of experiments

(scenarios) have been implemented, as presented in Table 3.4 for a single service and

in Table 3.5 for multiple services.

In order to support Service A, V FO deployed 1 instance of V F1, 2 of V F2, 4

of V F3 and 1 instance of V F4. For Service B, the resulted instances were 1, 3,

3 and 1 for V F1, V F2, V F5 and V F6 respectively. The calculated V FCs are in

accordance with the V F characteristics, as the most demanding V Fs (V F3 and V F5)

participated in the chains with the largest number of instances.

QoS monitoring mechanism

This set of experiments aim at assessing the performance of the QoS mechanism based

on the learning service build on the LSTM models described in Section 3.2.3. For

this, scenarios described in Tables 3.4 and 3.5 have been utilized. Each scenario has

been implemented in the edge benchmark environment for a real case scenario of 12

hours of continuous execution of the surveillance services.
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The results of this set of experiments are reported in Fig. 3·23 and in Fig. 3·24.

QoS monitoring mechanism, which is supported by the two LSTM models described

in Section 3.3.3, plays a crucial role in the stabilization of the QoS of the executed

services. This applies to both single-service and multi-service scenarios, as presented

in both figures. Applying the QoS mechanism decreases the variation of the processed

frames by more than 59.24%, resulting to a more stable surveillance service.

Caching mechanism

As described in Section 3.2.4, the V FC model enables caching the processed data

and avoiding recalculations when two of more services require the processing of the

same frames. A set of experiments has been conducted, trying to reveal the benefits

of the V FC approach. Services A and B can share V F1() and V F2().

Fig. 3·24 presents the results on the evaluation of the caching mechanism. The

different scenarios were configured in order to support the QoS constraints of Services

A (fps = 12) and B (fps = 10). Cashing mechanism reduces the environment cost

by 32.3% from the V FC, while improving the the QoS by 2.93% and the edge

environment cost by 9.8%1 compared to scenario S21.

Caching mechanism reduces the total environment cost by 30% while maintaining

the QoS of the services. Additionally, the utilization of the caching model reduces

the fluctuations of the QoS, which is crucial for the service delivery.

3.4.3 Assessing the performance of the V FC model

This set of scenarios aim to provide evidence about the performance of the V FC

model against alternative approaches. More specifically, section 3.4.3 describes the

results on the comparison of the V FC model with a cloud-based surveillance service

while section 3.4.3 includes the relative results on the comparison of the model with

other distribution schemes.
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Cloud infrastructure compared to V FC model

The first set of experiments aim at evaluating the performance of the proposed V FC

model against a surveillance service deployed on a cloud infrastructure. For this,

Service A has been deployed to the cloud environment described in Section 3.3.4 and

specific performance metrics have been compared against the V FC model deployed

on the edge environment detailed in Section 3.3.2.

The first parameter under consideration is the performance of the cloud environ-

ment under different network communication channels and on different video resolu-

tions. These experiments, which results are reported in Fig. 3·25, aim to assess the

importance of different broadband communication technologies to the real time QoS

(processed fps) of the deployed service.
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It is obvious that the network link between the surveillance camera and the cloud
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infrastructure plays an important role to the QoS of the service. Next, the second

parameter under consideration are the number of edge devices required to meet the

same QoS as the one observed on the cloud infrastructure. This parameter has been

calculated for the different video resolutions. The results, which are presented in Fig.

3·26, indicates that with a relative small number of edge devices, V FC model can

meet the performance of a cloud service.
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Comparison with similar distribution frameworks

The experiments for this purpose are summarized in Tables 3.6 and 3.7. More specif-

ically, the V FC model has been tested against Monolithic and SFDM models, as

well as with the Apache Spark©both on single service and on mutli-service scenarios.

The relative results are presented in Fig. 3·27 and in Fig. 3·28 respectively. Both

for the single service and the multi-service scenarios, V FC model achieved higher
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Table 3.6: Comparison of V FC model - single service (Service A
(gender classification) against other frameworks).

Scenario Description
S31 Monolithic model.
S32 SFD model.
S33 Spark framework.
S34 VFC model + QoS mechanism.

Table 3.7: Comparison of V FC model - multiple services (Services A
(gender classification) and B (age classification) against other frame-
works).

Scenario Description
S31 Monolithic model.
S32 SFD model.
S33 Spark framework.
S34 VFC model + cashing + QoS mechanism.

QoS compared with the Monolithic approach (+120.5% for the single service and

+133.3% for the multi-service scenario) and with the SFDM model (+22.5% for

the single service and +10.8% for the multi-service scenario). At the same time, the

V FC model reduced the operational cost by 43.5% on average compared with the

aforementioned models.

As far as the comparison with the Apache Spark © framework is concerned,

the V FC model has achieved on average the same QoS by reducing the operational

cost of the edge environment by approximately 103.3% on the single service scenario

and by 90.7% on the multi-service scenario. Additionally, while the average value of

the achieved QoS by the V FC model is slightly improved with the one produced by

the Apache Spark ©, the variation of the QoS throughout the service is reduced by

almost 50.3% in both single service and multi-service scenarios.
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3.5 Discussion

Enabling edge computing to support heavy load computational tasks is crucial for

integrating IoT environments with machine learning and artificial intelligence services.

Towards this direction, a novel approach is proposed, which introduces the decoupling

of the services to independent micro-services, all integrated under a V FC model.

The proposed V FC model is introduced by incorporating a decoupling scheme on

the main V F allocation process. It is shown that this particular NP hard problem

can be solved in a viable time-frame, even for edge computing low level devices.

Aiming to assess the scalability and the performance of the proposed V FC model,

a comparative study has been performed, both on a simulator and on a real-case

benchmark edge environment. As far as the scalability and expandability of the

model is concerned, the simulation results have revealed that the V FC model can

be deployed on a high number of edge devices, maintaining each advantages as far

as the total cost and the edge devices utilization are concerned. Additionally, the

proportions of the served services and the rejected services over the total requested

services under different user demand rates show that the V FC model can operate

effectively on large-scale scenarios.

As far as the comparison of the V FC model with alternative distribution ap-

proaches is concerned, a set of experiments has taken place. The experiments can

be categorized into three main categories. Namely, the first category involve the

comparison of the V FC model with baseline approaches, like the Monolithic ser-

vice approach and the SFDM model. The scope of these experiments is to set a

performance borderline, aiming to assess the improvement level of the V FC model.

The relevant results have shown a substantial improvement over the aforementioned

simplistic approaches.

The other two categories of experiments involve more pragmatic alternative ap-
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proaches. Namely, a comparison study with a surveillance service deployed on a Cloud

infrastructure has been held. The results have shown that with a relative small num-

ber of edge devices, the V FC model can have the same performance metrics as the

Cloud service, under different technologies of broadband connections. Finally, a com-

parison study has been performed with Spark, a generic distribution framework. Both

due to the extensive footprint of Spark on the low-level edge devices and due to the

achieved QoS, the V FC model has outperformed Spark in all performed scenarios,

especially on stabilization of the achieved QoS.

On top of the V FC model, two add-on services have been designed, developed and

deployed, aiming to boost its performance. More specifically, a caching mechanism

has been introduced, reducing the operational cost of the edge environment on multi

service usage scenarios. Finally, QoS monitoring service based on a deep learning

framework attempts to predict possible V Fs failures and inform the V FO to take

the appropriate actions.

All of the aforementioned experiments support the fact that the proposed V FC

model has the capacity to effectively distribute and deploy complex service and AI

models. The main aspects of the proposed model include the V F placement and

consequently the setup of the edge environment, as well as a V F migration model for

auto-healing purposes. Finally, the framework supports caching among different vir-

tual function chains, boosting the performance and reducing the overall environment

cost.

As far as the limitations of the proposed model are concerned, its main short-

coming is the fact that all the V FC services (placement, caching, migration) are

deployed centralized at the V FO node. This produces a single-point failure discrep-

ancy, which limits the capacity of the proposed framework, in terms of robustness. As

future work, a de-centralized model, based on distributed algorithms should replace
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the V FO node, according to which all involved nodes will undertake the support of

the aforementioned services.
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Chapter 4

VFCSIM: A simulation framework for

real-time multi-service Virtual Function

Chains deployment

Modelling service deployment on distributed, heterogenous and dynamic environ-

ments usually involves the integration of multiple software components under a com-

mon deployment. Such deployments have gained focus lately, not only because of

the rise of the Edge Computing paradigm but also due to Clouds and micro-Clouds

Computing infrastructures. A novel approach for this deployment is Virtual Func-

tion Chains, according to which a service is decomposed to a set of Virtual Functions

and each Virtual Function is undertaken by a different device. We propose a Virtual

Function Chain Simulation (V FCSIM) Framework, an opensource library for build-

ing simulation models of both edge and cloud networked systems, based on Virtual

Function Chains. V FCSIM ’s central structure is a heterogeneous network, which

can describe, via scripting, a wide set of devices, network links, cloud resources, cost

models and services. A case study is presented, according to which final users request

on demand surveillance services from an edge network. After describing the simula-

tion setup steps, both the summarization results and the real-time probing metrics

are presented. V FCSIM is expected to enhance and facilitate the deployment of the

Virtual Function Chaining paradigm both to cloud and edge infrastructures.
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4.1 Introduction

Engineers and researchers usually use simulation frameworks to optimize and evaluate

their edge computing architectures and designs. While simulators offer many advan-

tages, various modelling challenges need to be tackled by developers (Kecskemeti

et al., 2017). Compared with mainstream cloud computing simulators, edge com-

puting environment simulators need to incorporate heterogeneous devices, limited

computing resources and networking protocols, which require a more complex frame-

work to be developed. Thus, while cloud environment simulators can inspire and

direct the device of edge based simulators, they can not be used ‘off the shelf’ for

simulating edge environments.

A second challenge to be addressed when designing an edge environment simulator

is the mobility of the edge devices. Relative positioning of the edge devices plays

an important role when point-to-point communication protocols are applied (e.g.,

BLE – Low Energy Bluetooth). Finally, edge based setups are highly fluctuating

environments where edge devices become either available or unavailable constantly.

This environment fluctuation is a characteristic that is not explored in cloud based

simulators, as the infrastructure is expected to be stable at a high degree.

A service deployed on an Edge environment can be conceived as a set of indepen-

dent functions which communicate with each other to realize the service’s objective,

and typically interact in a sequential order, especially in IoT scenarios demanding for

sense-process-actuate workflows (Brogi and Forti, 2017), (Skarlat et al., 2017). These

functions are composed of atomic commands and are expected to be deployed on vir-

tualized infrastructures (e.g., container-based virtualization (Morabito et al., 2017))

or run natively on an edge device. For instance, Docker containers are explored in

Microsoft Azure IoT Edge (Mendu et al., 2022) for deploying computational processes

on edge devices, and Amazon AWS Greengrass (Dayalan et al., 2021) can deploy and
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execute Lambda functions on the Greengrass core software in edge devices (Das et al.,

2018).

An umbrella term for these functions is called Virtual Functions (V Fs) and are

inspired by the Virtual Network Functions, as a set of interconnecting and communi-

cating V Fs as Virtual Function Chains (V FCs). Concerning V FC models, a wide set

of problems have been addressed and discussed by the research community (Gouareb

et al., 2018). Among the most challenging ones are:

1. V F placement problem, which refers to the optimal assignment of each V F

instance to an edge device, so that the services constraints are met and the total

environment cost is minimized.

2. V F dimensionality problem, which refers to the estimation of the minimum

number of V F replicas required to implement the service. It is important to

mention that V FC models may consider deploying multiple replicas of a V F in

order to distribute the data to the edge and thus reducing the processing time

of the specific V F . This approach, inspired by the micro-services model (Sun

et al., 2017), can enable the deployment to heavy processing V Fs to low-end

edge devices.

3. V F migration problem, which refers to the transparent transfer of the run-

ning status of a VF when the undertaking device needs to be removed from the

V FC. While the aforementioned problems have been discussed in the literature,

new approaches appear constantly which need to be evaluated.

For this, we consider a simulation framework suitable for modeling V FC architectures

and schemes that would be of great usefulness to engineers and researchers. This

work proposes V FCSIM , a simulator for V FC architectures, both in the Edge and

in Cloud. While other simulation environments can be used for simulating V FCs,
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they require substantial effort for doing do.

The novelty of V FCSIM is that is can natively support V F and V FCs. Most im-

portant, V FCSIM can support real-time interaction with the simulations, enabling

the ad hoc alteration of the edge environment, edge network and deployed services.

V FCSIM can be used for simulations on Edge environments, as well as in Cloud

environments. Finally, V FCSIM can support multi user access support, which is

crucial for edge environments. V FCSIM is an open source project and is publicly

available at github.com/vtsakan/VFCSIM.

V FCSIM introduces a simulation framework which can be used to simulate sce-

narios based on virtual functions, both on edge and cloud environments. The main

novel aspects of the proposed framework are: (i) native support of V F and V FCs,

(ii) real-time interaction with the simulation environment, (iii) common simulation

environment for Edge and Cloud based simulations and (iv) multi user access support.

4.2 V FCSIM simulation framework

With the progress of modeling frameworks, and the diverse scenarios where V FC

could be integrated, the scripting approach has been applied, according to which the

modeler can utilize already established entities and constitute a simulation scenario,

without requiring advance programming skills, especially with Python involved in

the pathway (Thorp and Bronson, 2013). When a flexible structured framework is

provided, scripting can create complex simulation scenarios by modelers, after only a

small time investment which is required for catching up with the learning curve.

V FCSIM is a modelling and simulation framework created to build V FC sce-

narios on edge and cloud infrastructures. V FCSIM is based on an object-oriented

approach to define the network environment, the computational nodes (edge-cloud

nodes), the services, described as a set of sequential V Fs their properties, as well as
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the demand from the users side. This particular design approach is general enough for

enabling modular, multi-services scenarios and specific enough, so that the modeler

can easily deploy different scenarios.

V FCSIM ’s novelty lies on the fact that it is a generic V FC simulation framework,

written in Python, capable of supporting multi-service modelling. The use of Python

offers V FCSIM particular advantages, such as:

� Python integrates numerical, statistical, scientific and visualization libraries,

like numpy, pandas, seaborn, matlibplot and skipy-kit.

� Python is a recognized framework for resource modelling (Fienen and Plant,

2015)

� Python integrates pyomo, a native optimization framework.

In V FCSIM documentation, the following terminology is used to describe its

elements:

� Module: A file containing a python class definition,

� Object : An instance of a class (as defined within a Module),

� Type: A file containing a super-class definition, along with the relative python

decorators and

� Simulation: An instance of a model with a particular set of model parameters.

4.2.1 Design

The basic classes of the simulation framework are presented in Fig. 4·1. More specif-

ically, the basic entities of the framework are:
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Figure 4·1: UML design of the proposed simulation framework.



114

� Node , which is used to model a computational and communication entity, as an

edge device or a virtual machine. The basic attributes of the Node entity are (i)

CPU mips (million instructions/sec), RAM memory volume, storage capacity

and a cost function, which refers to the total operational cost of the node

� VF , which is used to model a virtual function with attributes: (i) input data

size, (ii) output size data and (iii) required CPU instructions

� NetworkLink , which is used to model a point-to-point or a point-to-multipoint

network communication links.

� Service , which models a deployed service. Service’s attributes include a set

(list) of V Fs, which actually constitute a VFC and QoS requirements which

refers to the specific quality of service contract of a service.

� Simulation , which is used to create a script with a specific simulation scenario.

In order to set up a simulation scenario, one should create a script which de-

scribes (i) the device environment, (ii) the deployed services and the networking

infrastructure. Each simulated entity is materialized as a Python process, utilizing

the multiprocess Python library. Thus, V FCSIM considers a no-shared memory

environment, promoting a realistic framework for the simulations. V FCSIM han-

dles the evolution of time as discrete time points. It is important to mention that

the time discretization is involved on probing the relative pre-defined metrics and

logging them. The actual simulation of performed on a realistic basis, according to

the specific simulation scenario. Fig. 4·2 illustrates the basic steps for the execution

of a simulation.
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Figure 4·2: Steps for simulation execution.
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4.2.2 Visualization

VFCSIM offers two visualization modules, which are expected to facilitate the work

of the modelers. The first module parses the designed environment and produces a

graph network by utilizing the NetworkX library (Prabhakar and Anbarasi, 2021).

Thus, the modeler can inspect the designed network. It is important to mention that

V FCSIM offers live interaction with the simulation, which means that the modeler

can intervene with the environment during the execution of a simulation (Fig. 4·3).

The second visualization module refers to the real-time probing of specific simulation

metrics. This user interface explores the Python-Qt library and communicates with

the up-running processes via UDP multicast sockets. Thus, when an edge node for

example needs to report a metric, it creates a multicast packet and send to a pre-

defined port. The visualization module dynamically creates a set of views for each

node and for each VF, which can be later selected by the modeler (Fig. 4·10).

Figure 4·3: Network visualization of the simulated environments.
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4.3 Validation

Aiming to verify that the entities built in V FCSIM are valid, and that the simulation

environment is functioning properly, we have implemented a virtual function chaining

scenario in V FCSIM and in a well-established simulation environment (iFogSim).

The scenario involved the modeling of a set of virtual function chains, each one of

them modeling a mock service. Each V FC required 3 - 8 nodes, with a different V F

to be deployed to a different edge node. Each V F produced a throughput of 200kbps.

By implementing the same setup in both iFogSim and V FCSIM , the overall network

utilization has been compared (Fig. 4·4). One can observe that the difference between

the two simulation frameworks, is approximately 1.8% (maximum value), and remains

relatively small, even when the number of the edge devices increases.
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4.4 Case Study: Surveillance services

Aiming to test the proposed simulation framework, a specific scenario has been built.

More specifically, an edge environment with dynamic number of devices has been

considered, upon which, users can request on demand different surveillance services

with different demand probabilities. The simulated services have been modeled as a

set of n V Fs, where n is a random integer ∈ [4, 10], following a normal distribution.

Each V F could be either a light V F , a moderate V F or a heavy V F , with relative

computational characteristics each. Withing the simulation platform, two different

Setups of a surveillance service have been implemented.

� Setup I: The surveillance service has been implemented under a monolithic

approach. This means that all V Fs of the same service has been hosted in one

edge device.

� Setup II: A V FC model, where the different V Fs were deployed on different

edge devices.

The two aforementioned setups have been tested under different service demand

probability distributions. By service demand probability distribution, we refer to the

probability a user requests a service at a specific time-point td. More specifically,

various Poisson distributions have been used. For the Poisson distributions, three

different λ parameters have been used, aiming to simulate low, normal and high user

demand rates. For the same setup, the cumulative number of the requested services

is the same.

The parameters of the simulation environment are given in Table 4.1.

For this specific scenario, the modeler aims at exploring the scalability of V FC

model. For this, a script has been developed which implements the aforementioned

setups under two dependent variables: (i) the number of edge devices n and (ii) the
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Table 4.1: Parameters on simulation setup.

Parameter Value Description
cpuload 104N(12, 0.9) cpu mips of edge devices
mk 2× 103N(30, 0.7) V Fk required mips per data instance
Wtt′ 3× 105N(13, 0.9) bps between V Ft and V F ′t

cg(l) l2+1.2
1400

function which describes the cost of g
edge device when performing l instruc-
tions

r(l) 30l+11
mk

function which describes required time
of an edge device to perform l instruc-
tions

service demand distribution probability. The measurements of the simulation study

include the following metrics:

1. the total edge environment utilization (Fig. 4·5),

2. the total network traffic (Fig. 4·6),

3. the percentage of successfully served services (Fig. 4·7),

4. the percentage of rejected services (Fig. 4·8) (inadequate resources) and

5. the total edge environment cost (normalized) (Fig. 4·9)

. Finally, the V FCSIM visualization module can probe specific metrics during the

execution of the simulation. For example, in Fig. 4·10, the available RAM of edge

device 2 is presented, after 60 secs of simulation time.

4.5 Conclusions

V FCSIM has been applied successfully to a case study which aims to design an

edge network with the capacity to undertake a set of surveillance services. The

feature under study was the number of required edge devices against the service

deployment mode (Monolithic vs. V FC). Via scripting, a set of simulation scenarios
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have been considered, with different end user demand probability distributions. From

the simulation results, certain conclusions can be drawn. For instance, in order to

avoid down-time of the designed system (down-time refers to the time the system can

not undertake new services), the edge environment would require 58 devices for low

demand, 125 devices for normal demand and about 190 devices for high demand, if

the V FC model is applied. In case of the Monolithic model, the relative numbers

are 110, 195 and > 200 edge devices. Thus, V FCSIM can be successfully utilized in

order to design heterogeneous edge networks with the capacity to undertake streaming

services, like surveillance analytics, with a certain QoS.

As virtualization and dockerization technologies are recently considered not only

to the cloud but also to the edge computing paradigm, an abstract approach for

developing services is required. V FC model can support this design approach. For

this, we propose a simulation framework which can support modellers, engineers and

researchers to test architectures and solutions based on V F . The limitations of the
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framework summarize our future work. An integrated user interface for designing

networks, devices and V F is expected to facilitate the work of the modellers. On the

same direction, the integration of libraries with well-established devices and commu-

nication protocols will result to a more concrete simulation framework.
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Chapter 5

Virtual Function Migration Model

5.1 Introduction

Compared to cloud environments, systems deployed on edge networks present core

differences, especially when it comes to virtualization and migration models. In cloud

infrastructures, virtualization of a service via a virtual machine or a container may

facilitate isolation and flexibility, which permits occupancy and means efficiency. In

such an environment, migrating a service among processing nodes offers the system

suppleness and adaptability.

When compared with an Edge environment, virtualization and migration appear

specific differences, due to the following remarks:

� Edge network comprises nodes which appear a high degree of heterogeneity in

terms of software capabilities (e.g., operating systems) and hardware (e.g., CPU

architectures). Consequently, there is the need for more generic virtualization

models.

� Edge nodes have (in most of the cases) less processing power when compared

with those in a Cloud environment. Thus, virtualization and migration models

with smaller footprint and less overhead would be more appropriate.

� A Cloud Data Center relies on a high-bandwidth and low latency network. On

the contrary, edge nodes are interconnected through a WAN and hence usually

experience disconnections (Ha et al., 2017). Having this in mind, it is essential
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that all the migration models for edge environments should keep the volume of

the transmitted data as low as possible.

� Aggregate migration time (which equals the downtime of the service) is not

considered of high importance on Cloud environments. Yet, at the edge of the

network, QoS fluctuations appear throughout the whole migration process.

� edge services usually execute momentary data analysis and are thus not sup-

posed to write to any persistent memory (e.g., the disk). On the other hand,

Cloud services exploit persistent memory in a much higher degree. Therefore,

migration models on the Edge could neglect it is any data written by the service

to persistent memories when migrating from one edge node to another.

5.2 State of the Art

Migration at the edge of the network is one of the most challenging research topics

in the area of edge computing. As edge environments are highly dynamic and com-

prise heterogeneous, low-end devices, the deployment of efficient migration services

is mandatory for enhancing their robustness and their reliability.

Since the emerge of edge computing, there have been numerous novel approaches

for tackling the problem of migration. One may categorize the proposed migration

algorithms and models in two sets, cloud-edge migration algorithms (which are also

referred as offloading algorithms) and edge-edge migration algorithms (Fig. 5·1).

Additionally, the proposed model can either utilize deterministic or machine learning

models.

One of the first approaches were (Rodrigues et al., 2016). Within this work,

authors presented a method for minimizing service delay in a migration scenario be-

tween two cloudlet servers, after considering both computation and communication
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Figure 5·1: Categories of migration models.

elements, controlling processing delay through virtual machine migration and im-

proving transmission delay with transmission power control. According to the main

outcome of this work, the consideration of both computation and communication

constrains results to the optimum design of a migration model. A replica migration

model is proposed in (Li et al., 2019) for facilitating access hotspots to obtain the

pairing migration relationship from source node to target node. The experimental

results revealed that the proposed replica migration algorithm can effectively reduce

the migration time, minimize the response time, and improve network resource uti-

lization.

On the same topic, the work presented in (Doan et al., 2020) introduces a model

for maintaining a consistent state of mobile-edge computing application. According

to this model, state storage component is decoupled from the computing one. A key-

value storage layer is proposed, to synchronize states between mobile-edge computing
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servers. Subsequently, a distributed key-value store framework is proposed, which

decouples mobile-edge computing application design into processing and state, to en-

sure service continuity. Evaluation results show that the proposed solution reduces

downtime by half in most of the cases, even under high load of state update. Further-

more, under moderate load of state updates, the framework can eliminate downtime

completely.

Authors in (Chen et al., 2019), after introducing edge cognitive computing paradigm,

they describe an edge cognitive computing based dynamic service migration mech-

anism to provide insight into how cognitive computing is combined with edge com-

puting. The experimental results show that the proposed architecture has ultra-low

latency and a high user experience, while providing better service to the user, sav-

ing computing resources, and achieving a high energy efficiency. Additionally, the

work presented in (He et al., 2021) models the intra-edge migration problem as a

dynamic resource dependency graph. After introducing an iterative Maximal Inde-

pendent Set-based multiple migration planning and scheduling algorithm, based on

real-world mobility traces of taxis and telecom base station coordinates, authors pro-

vide evidence that the proposed model can efficiently schedule multiple live container

migrations in large-scale edge computing environments.

As far as services migration between different edge environments is concerned,

(Doan et al., 2021) introduced Flexible and Low-Latency State Transfer in Mobile

Edge Computing model, a novel programmable state forwarding framework. The

proposed model flexibly and directly forwards states between source instance and

destination instance based on Software-Defined Networking. Mobility of edge nodes

is discussed in (Ray et al., 2020), where it is discussed that edge network design and

services placement may need to be re-calibrated, triggering service migrations to main-

tain the advantages offered by mobile-edge computing. In this work, authors proposed
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a Reinforcement Learning based proactive mechanism for microservice placement and

migration. Experiments on the San Francisco Taxi dataset showed the effectiveness

of the proposed model in comparison to other state-of-the-art methods.

Recently, researchers attempted to explore the potential of machine learning paradigm

on edge migration models. For instance, works like (Sun et al., 2018) and (Ray and

Banerjee, 2021) propose a reinforcement learning based model for identifying the

optimum policy for service migration. According to the later work, the migration

problem is formulated as a sequential decision making problem aiming to minimize

the overall response time. Then, a novel on-policy reinforcement learning based com-

putation migration scheme, which learns on-the-fly the optimal policy of the dynamic

environment is proposed. Numerical results demonstrate that the proposed scheme

can adapt to the uncertain and changing environment, and guarantee low comput-

ing latency. Similarly, authors in (Miao et al., 2022) proposed a user classification

mechanism based on users’ mobility patterns to reduce the complexity of decision-

making. Then the service migration is formulated as a Markov decision process and

then a reinforcement learning-based framework is introduced, to make service migra-

tion decisions in real time in the dynamic MEC environment. Extensive data-driven

experiments demonstrate the efficacy of the proposed model in reducing the system

average delay. Finally, authors in (Wang et al., 2019b) suggest a formulation of the

service migration problem as a Markov decision process. For tacking the underly-

ing optimization problem, a new algorithm is proposed and a numerical technique for

computing the optimal solution, which is significantly faster than traditional methods

based on the standard value or policy iteration. The applicability of the proposed

model is illustrated in practical scenarios where many theoretical assumptions are

relaxed. The evaluations based on real-world mobility traces of San Francisco taxis

show the superior performance of the proposed solution compared to baseline solu-
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tions.

Regarding the cloud-edge algorithms are concerned, authors in (Wang et al.,

2019a) provide a detailed survey of the specific area, sketching the overall area and

research directions. In more details, authors in (Yousafzai et al., 2019) proposed

a lightweight process migration-based computational offloading framework for IoT-

Supported Mobile Edge/Cloud Computing. Compared with similar approaches, the

proposed framework does not require application binaries at edge servers and thus

seamlessly migrates native applications. Experimental work revealed that the pro-

posed framework shows profound potential for resource-intensive IoT application pro-

cessing in Mobile Edge/Cloud Computing.

5.3 Migration scenarios

At this point, we should detail the cases that the proposed virtual function migration

model considers.

5.3.1 Failure – Stateless migration

By failure, we consider an edge node unexpectedly failing and disconnecting from the

virtual chain which materializes a service. As it will be discussed in the next sections,

migration due to failures results to the re-deployment of the virtual function to the

most suitable available edge node. We are referring to such migrations as stateless

migrations.

5.3.2 Overload – Stateful migration

Due to the low capacity of the edge devices, in parallel with the increasing demand

of edge services, it is not unusual for an edge network to be overloaded. In such

cases, migrating virtual functions to available edge nodes can result in an overall

performance improvement of the hosted services.
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5.4 Edge network and virtualization

Although virtualization is a long-established technology for Cloud Computing ser-

vices, its adaptation for the edge networks is a relatively new field (Mansouri and

Babar, 2021). From a technical point of view, virtualization may actually refers to

any compute virtualization approach, as long as there is a model to abstract the run-

time from the main environment (e.g., firmware, hardware) where the business logic

of an application is designed to run. If we consider this definition, virtualization for

edge devices may comprise several different paradigms, covering a path from virtual

machines to lightweight containers.

Typical (complete) virtualization is the first version of this technology, and it

has been used widely on (full-stack) guest environments. On the other hand, para-

virtualization provides improvements in the form of cooperation between the guest

environment and the hypervisor. According to para-virtualization a totally inverted

approach is applied, based on the Unikernels (Chen and Zhou, 2021). This change

points to lightweight, application specific machine images to be run directly on a

hypervisor (i.e., the VM runtime) or even on bare metal. Anykernels (Tazaki et al.,

2021) are a term for a modular model to the building of a Unikernel, by making

OS-specific (e.g., NetBSD-based) drivers in the form of libraries. Anykernels provide

improved security, lighter footprint, and faster boot times, when compared to typical

VMs.

On the other hand, containers represent a more recent virtualization paradigm,

which can be characterized from the low overhead deployment and lightweight exe-

cution of applications. Indeed, containers isolate only the user space environment,

leaving the hardware abstraction layer as well as the application for process sand-

boxing to the shared kernel co-hosting them. Also, for containerization, there are a

set of approaches a model could adopt, from system containers (Pérez Castillo, 2021)
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(e.g., LXC, LXD), where the user-level environment mimics a full-featured operat-

ing system, to application ones (e.g., Docker), where a container is usually expected

to host a single user process. Application-based containers, generally present sev-

eral features (e.g., lightweight footprint) which make them highly appropriate for the

network edge.

One step after containers would be to consider bare-bones approaches. Such vir-

tualization models are called name-spacing. Namespaces are enabling technologies

for containerization, but name-spacing can be much more fine-grained and limited to

very specific subsets of resources. Process name-spacing can be regard as the most

intense example: resource partition in that case takes place only at the process level,

such that process identifiers are unique within a namespace.

Among VMs and containers, highly lightweight VMs have been proposed. An

example of this approach is the Kata Containers (Randazzo and Tinnirello, 2019),

which are managed by the OpenStack Foundation (Lima et al., 2019) and merge

technologies from Intel Clear Containers (Arnautov et al., 2016) and Hyper runV

(Debab and Hidouci, 2020). Specifically, their business logic is providing a user

understanding very similar to that of containers, while guaranteeing the security and

isolation advantages of a VM.

5.5 Migration models

As discussed in the aforementioned sections, a virtual function migration can be either

stateless or stateful.

5.5.1 Stateless migration

Stateless migration result in a redeployment of a stateless virtual function on the

receiving node. When compared to stateful migration, stateless migration models



133

tend to be simpler and more straightforward, as it is applied on failure nodes, which

are more frequent on edge networks.

5.5.2 Stateful migration

In this section, an overview of the existing models for stateful migration of a virtual

function is provided, discussing their implications on an edge network.

Hard (cold) migration

This type of models often refer either as hard (usually on edge networks) or cold

migrations. This notation arises from the fact that the virtual function stops / freezes

at a certain point before starting the migration process. The migrated virtual function

will resume as soon as all of its state becomes available on the receiving edge node.

The duration which the virtual function is not running is known as downtime.

Figure 5·2: Hard (cold) migration model.
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Figure 5·2 describes the necessary steps for performing a hard (cold) migration.

This model is considered one of the lowest footprinted, in terms of computational

requirements, which is crucial at the edge networks. However, its main drawback is

the high downtime, as it even overlaps with the total migration time (i.e., the time re-

quired for the whole service state to be available on the receiving node). Finally, this

model migrates the whole state (runtime and persistent data) irrespective of whether

part of that state is already present on the receiving node or not. In parallel, each

memory page (and disk block for persistent data) is transferred only once. A widely

used implementation of hard/cold migration model is based on Checkpoint/Restore

In Userspace (CRIU). While this technology has built under the Virtuozzo project

(Rosen, 2016) for its OpenVZ containers (Babu et al., 2014), it quickly gained popu-

larity and has been reused by other containerization platforms such Docker.

Soft (live) migration

Soft (live) migration models aim at minimizing virtual function downtime. Notation

live refers to the fact that the virtual function keeps running while its state is be-

ing transferred to the receiving node. The virtual function is freezed only for the

transmission of a slight amount of data, after which the virtual function runs on the

receiving node. When the downtime is not noticeable on the QoS metrics (or by the

end user), live migration is said to be ”seamless”. Live migrations can be categorized

in two categories: pre-copy and post-copy.

Pre-copy migration models (Figure 5·3)took their name from the fact that they

copy the largest proportion of the state prior freezing the virtual function, after

which the virtual function runs on the receiving node. It is also known as ”iterative

migration”, since it performs the pre-copy phase through several iterations. Each

iteration updates the target node with the latest state. The pre-copy phase ends

when a maximum number of iterations is reached (usually predefined) and/or when
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the last iteration was so short that the number of dirty pages to be transferred would

determine a short downtime. The downtime of pre-copy migration mode is usually

short. Yet, it can not be pre-calculated, as it as it depends on the number of dirty

pages (memory pages with new data) that have to be transferred while the virtual

function is suspended. This fact can cause discrepancies on the overall QoS, and

need to be treated with caution. Therefore, this model is usually deployed when

virtual functions have a low page modification rate. Pre-copy migration is by far

more widely used than post-copy migration models. All hypervisors (e.g., VMware,

Microsoft Hyper-V) implement live migration. As far as containers are concerned,

CRIU provides all the basic mechanisms (e.g., CRIU pre-dump functionality) that

are necessary to pre-copy the runtime state of a service.

Post-copy migration models operate on a reverse rationale, compared with pre-

copying. These models initially suspend the virtual function on the source and copy

a minimal state (e.g., CPU execution state, registers values, cache memory) to the

receiving node so that the virtual function can continue its execution there. Only after

that, they copy the rest of the required data. There exist three flavors of post-copy

migration, which vary on the way they perform this second step.

The first variant is known as post-copy migration with demand paging method.

Once the resumed virtual function tries to access a memory page that is not available

on the receiving node, it generates a ”page fault” and demands that page from the

source node. Upon such request, the source node provides the service with the faulted

page.

The second method is called post-copy migration with active pushing. According

to this method, the virtual function can generate page faults for forcing the source

node to transfer faulted pages. However, the overall number of page faults is reduced,

as the source node sends concurrently the memory pages to the receiving node even



136

Figure 5·3: Live pre-copy migration model.
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if the resumed service has not tried to access them yet. Finally, post-copy migration

with pre-paging (Figure 5·4), can further reduce the number of page faults, as the

source node actively transmits memory pages that are “close” to the latest faulted

page, increasing the probability of transmitting a page that would be requested later

on.

5.6 Virtual function migration model

In this section, the migration model for the proposed Virtual Function Chaining

model is presented. More specifically, the proposed migration model comprises two

modes:

� Cold migration mode (post-active), which is invoked by the orchestrator when

an edge device unexpectedly fails, and thus disconnects from the virtual function

chains which participated. The reasons for an edge device to fail can vary, from

battery drain to computational overloading.

� Live migration mode (pre-active), which is invoked when the overload detection

model (QoS monitoring model) (described in chapter 3) predicts that an edge

node will be overloaded in the next time period.

The two modes are implemented through algorithms 3 and 4, as presented below.

The two algorithms run in parallel and perform the migrations, when required.

For the live migrations , the pre-copy mode has been selected. The reason for this

decision is that the persistent data of the virtual functions are provisional, especially

for streaming services like surveillance analytics. Thus, it does not make much sense

to fully transfer the dirty memory pages which store the latest processing frame.

Thus, loaded execution programs and business logic can be copied a-priory.
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Figure 5·4: Live post-copy migration with pre-paging.
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Algorithm 3: Cold migration model.

Input: failed VF
for network node ni do

collect node state si
end
1. nr = placementAlgorithm(si)
2. pack a container with the appropriate VF
3. orchestrator send the container to the selected node
4. nr unpacks the container and initialize the VF
5. orchestrator inform previous and next VF in the chain about the network
update

Algorithm 4: Live migration model.

Input: K, fail probabilities (overload prediction model)
for network node ni do

collect node state si
end
for nodes with failing probability ≥ K do

1. nr = placementAlgorithm(si)
2. failing node(ns) packs a container with the appropriate VF
3. ns sends the container to the nr
4. nr uppacks the container and initialize the VF
5. orchestrator inform the previous and the next VF in the chain about
the network update

end
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Table 5.1: Edge environment model’s parameters.

Parameter Description Value

g
number of nodes comprising
the edge environment

[100, 200, 300, 400, 500]

W network links capacity N (98, 2.32)Mbps

ck(l)
cost function of a node k for
l CPU instructions

l2+N (2.1,0.5)
1000

m CPU instructions/sec the
node can execute

N (105, 103) instructions per
sec

5.7 Migration model evaluation

For assessing the performance of the migration model, a set of studies have been

performed, both in the simulation environment detained in Chapter 4 and on an

experimental setup. The aim of these studies is to:

� Assess the network overhead of migrations,

� Assess the influence of the migration model on the QoS of the deployed services

and

� Assess the performance and the overhead of the pre-active mode against the

usage of the post-active mode of migrations

5.7.1 Simulation environment

In order to acquire the necessary results, a set of simulation scenarios have been

established. While each scenario has certain characteristics, edge environment and

V FCs have been modeled under the same principals. More specifically, in Table 5.1,

the modeling features for the edge environment are presented, while in Table 5.2, the

relative information for the V FC is presented. It is important to mention that the

considered environment is heterogeneous.
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Table 5.2: V FC model’s parameters.

Parameter Description Value

n
number of V Fs comprise
the V FC

bN (8, 4c)

cpuload
instructions per frame for a
specific V F

N (104, 103) instruc-
tions/frame

output
V F output size per frame in
bytes

N (105, 104) bytes

5.7.2 Simulation results

A. Dedicated edge environment

The first set of simulation scenarios were established by modeling the edge nodes

’behavior’ with constant probabilities. More specifically, an environment with g nodes

has been simulated. Dedicated refers to the fact that the simulated edge environment

does not host any other tasks or jobs, aside from the deployed V Fs. For simulating

the overload of a node, the following approach has been applied. Each node has

been supplied with a probability P = Pleave + Poverload, where Pleave expresses the

probability the node suddenly fails and Poverload expresses the probability a node

exceeds K% of its computational capacity, where K is a constant. It is important to

mention that exceeding the K of the computational power does not mean that a live

migration will be triggered. Triggering of a live-migration is based on the accuracy

of the overload prediction model (QoS assessment), as presented in Chapter 3.

Regarding the services’ demand, as in paragraph 3.3.2, three different modes have

been considered. Namely, low (λ = 54 requests/hour), normal (λ = 83 requests/hour)

and high (λ = 118 requests/hour) demand modes have been simulated. More specif-

ically, the arrival time for a service request has been modeled as a Poisson process,

with different λ for each mode.

Two main scenarios have been considered (Table 5.3). According to the first

scenario, the overload prediction model is not deployed. Thus, a (cold) migration is
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Table 5.3: Deterministic simulations characteristics.

Simulation scenario Description

1 Overload prediction model not deployed.
Only cold migrations are considered.

2 Overload prediction model is deployed.
Both cold and live migrations are considered.

only triggered when a node, hosting a virtual function, fails unexpectedly, either due

to overload or due to disconnection from the network. The second scenario deploys the

overload prediction model (when the node’s load exceeds K) and in parallel enables

the live migration model, as previously discussed.

The results of the simulations are presented in the following figures. More specif-

ically, Fig. 5·5 to Fig. 5·9 presents the services downtime (as percentage % to the

overall simulation time) for the different number of edge nodes, when the users’ de-

mand rate is set to normal (λ = 83 requests/hour).
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Figure 5·5: Services’ downtime (%) without the deployment of over-
load prediction model (n=100).
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services downtime (no live migration) (n = 200)
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Figure 5·6: Services’ downtime (%) without the deployment of over-
load prediction model (n=200).

The next scenario applies the QoS assessment model, which triggers a live migra-

tion whenever the load of a node exceeds K. Fig. 5·10 to 5·14 presents the influence

of Pleave and Poverload for different number of edge nodes. Comparing the presented

heatmaps, the influence of the overload prediction model is obvious. On average,

services’ downtime is improved by 34.2%.

Similarly, the total data volume transmitted over the network for supporting the

migrations has been considered. Figure 5·15 presents the total transferred volume

when overload prediction model is not deployed (n = 100, users’ demand rate set to

normal), and Figure 5·16 the relative one with the overload prediction model deployed.

As expected, the volume of the transmitted data for supporting V F migrations is

greater (19.1%) when the overload prediction model is deployed, as more migrations

take place. Thus, while the overload prediction model improves the QoS for the

deployed services, it produces more network data traffic.
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services downtime (no live migration) (n = 300)
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Figure 5·7: Services’ downtime (%) without the deployment of over-
load prediction model (n=300).

services downtime (no live migration) (n = 400)
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Figure 5·8: Services’ downtime (%) without the deployment of over-
load prediction model (n=400).
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services downtime (no live migration) (n = 500)
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Figure 5·9: Services’ downtime (%) without the deployment of over-
load prediction model (n=500).
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Figure 5·10: Services’ downtime (%) with the deployment of overload
prediction model.
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services downtime (cold and live migration) (n = 200)
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Figure 5·11: Services’ downtime (%) with the deployment of overload
prediction model.
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Figure 5·12: Services’ downtime (%) with the deployment of overload
prediction model.
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services downtime (cold and live migration) (n = 400)
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Figure 5·13: Services’ downtime (%) with the deployment of overload
prediction model.
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Figure 5·14: Services’ downtime (%) with the deployment of overload
prediction model.
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Figure 5·15: Total data (MB) transmitted without the deployment of
overload prediction model.

Fig. 5·17 and Fig. 5·18 presents the average downtime of the deployed surveil-

lance services along with the absolute number of migrations respectively, for different

number of edge nodes, when Pleave = Poverload = 0.1. From these figures, one can

conclude that by increasing the number of the available nodes, downtime is improved

and the required migrations decrease, as the placement algorithm can, statistically,

detect more stable nodes to migrate a V F , when required. In addition, increasing

the users’ demand rate increases the average downtime, as well as the number of

required migrations. More important, the deployment of overload assessment module

improves downtime while increasing the required migrations.

B. Generic edge environment

For the next set of simulations, an attempt has been made to simulated the workload

of a node more realistically. For this, each node D in the edge environment is supplied
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Figure 5·16: Total data (MB) transmitted with the deployment of
overload prediction model.
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Figure 5·17: Services’ downtime (%).

0

20

40

60

80

100

✶
✵
✵

✷
✵
✵

✸
✵
✵

✹
✵
✵

✺
✵
✵

♥
✉
♠
❜
❡r

♦
❢
♠
✐❣
r❛
t✐
♦
♥
s

♥✉♠❜❡r ♦❢ ♥♦❞❡s

◆✉♠❜❡r ♦❢ ♠✐❣r❛t✐♦♥s ✲ ❝♦♥st❛♥t ♣r♦❜❛❜✐❧✐t② ✭P✮ ♠♦❞❡❧

❝♦❧❞ ♠✐❣r❛t✐♦♥s

❝♦❧❞ ✰ ❧✐✈❡ ♠✐❣r❛t✐♦♥s

❧♦✇ ❞❡♠❛♥❞
♥♦r♠❛❧ ❞❡♠❛♥❞

❤✐❣❤ ❞❡♠❛♥❞

Figure 5·18: Number of required migrations.
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with a probability density function H(t), which describes the probability a job J

arrives in the node at time t. Each job J is characterized by a CPU load, a memory

RAM load and its duration t. If a job J is undertaken by a node, it consumes

its computational resources for t secs. If not, it enters a FIFO queue, until the

necessary resources are free. A V F has the same priority as the other jobs, with the

difference that it does not wait in the queue, and the orchestrator seeks for another

node candidate.

This model, which mimics the ’behavior’ of an edge node more realistically, al-

lows for the deployment of the QoS assessment model, as described in the previ-

ous chapters (based on the trained LSTM models). Thus, Poverload is now simu-

lated by a stochastic process. More precisely, the arrival time of a new task (dif-

ferent than V Fs) is modeled as a Poisson process, with probability mass function

P (k jobs in simulation time) = e−λ λ
k

k!
, where k, λ are randomly selected for

each different edge node during the simulation setup and equals to k = bN (8, 5)c

and λ = N (5, 2). When a node undertakes a new task, the processing time of a

V F increases. When this time exceeds a certain threshold, implied by the required

processed frames per second, the overload event is triggered, along with the relative

migration. For the same set of simulations, Pleave = N (0.1, 0.005). This probability

density function is probed 10 secs after the deployment of a V F on an edge node

(either initial installation or installation due to migration).

Similarly with the previous section, Fig. 5·19 and Fig. 5·20 presents the average

downtime of the deployed surveillance services along with the absolute number of

migrations respectively, for different number of edge nodes.

While the absolute values differ from the ’dedicated’ edge environment scenario,

the trend of the results remain the same, for all three user demand rates.

The next step is to assess the optimum probability K, which acts as a threshold
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Figure 5·19: Services’ downtime (%).
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Figure 5·20: Number of required migrations.
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for triggering a live migration, based on the output of the failure assessment model.

Figure 5·21 and Figure 5·22 present the results on a set of simulations performed for

this scope. For these simulations, Pleave = 0.1, while Poverload is modeled with the

previously described stochastic process and users’ demand was set to normal. Finally,

different sizes of the edge environment have been considered.
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Figure 5·21: Services’ average downtime for different values of K and
n.

As one can notice, smaller values of K cause more migrations and has a benefit ef-

fect on services’ downtime while higher values of K increases downtime and decreases

generated volume traffic.

For the live migrations, it is interesting to assess the timing of each different

phase of the process. The results for this task are presented in Figure 5·23. The data

transmission phase is the most timely one, especially due to the WAN connection

links, which were simulated in the environment.
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Figure 5·23: Timing of the live migration phases.
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5.7.3 Comparison with similar frameworks

On top of the aforementioned studies regarding the scalability of the proposed V FC

migration model, the required time for deploying a service on an edge network with

n devices is analyzed. Without loss of generality, lets assume an edge network with

wireless devices, based on WiFi 802.11g connections (S Mbps actual bandwidth).

Additionally, let j be the number of V Fs to be deployed using c GB containers each.

The deployment of a service following the V FC model comprises four steps:

� Initial probe of edge devices available resources. If a kb is the size of

the probing message, then it would require approximately a×8
S×103 secs for the j

devices to transmit the data.

� Placement problem solving. Based on (Hedengren et al., 2012), APOPT

solver requires polynomial time to solve a mixed-integer problem with one non-

linear equation.

� V Fs deployment. For each one of the chosen edge devices, it would require

f × c×8×103
S

, where f is a coefficient which expresses the delay which will be

caused by reaching the limit of the output bandwidth of the V FO node.

� Monitoring phase. Every 30 secs, the j selected edge devices, hosting a

V F each, are informing the V FO about their available resources, enabling the

QoS monitoring service to function. This phase requires j × a kb of data to

be transferred in the network every 30 secs, with each transmission to require

a×8
S×103 secs.

Based on the described network times, as well as the times acquired for solving the

placement problem (using an Intel i7 2.8GHz (8core) on 8GB of RAM), the results

presented in Fig. 5·24 has been obtained. The values of the variables were: j = n/2,

c = 1.2GB, a = 2kb, S = 100Mbps.
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One can notice that even when using 1000 edge devices and 500V Fs, in order to

deploy a service, the required time to select the optimal nodes is kept relatively small,

enabling the efficient scaling up of the model.

Kubernetes framework

Kubernetes (Burns et al., 2022) is an open-source container orchestration tool, which

quickly after its introduction, became the de facto standard for managing large con-

tainer deployments. Kubernetes support by default orchestration and autoscaling of

containerized services, based on the users’ demand. Aiming to evaluate the perfor-

mance of the autoscaling capacity of the proposed V FC model, a Kubernetes cluster

has been build using the Raspberry Pi cluster as worker nodes, based on the blueprint

proposed in (Kayal, 2020).

The testbed comprise a PC (Intel x64 architecture) serving as Kubernetes master

node and the 8 Raspberry Pi devices described in Section 3.3.2. Service A has been
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deployed on the cluster and a user simulated the demand alterations by changing the

requested fps processed. Total edge environment cost and number of deployed V Fs

have been considered when comparing the two approaches.

V FC Autoscaling capacity evaluation

A set of experiments for assessing the V FC model’s capacity to autoscale the de-

ployment of the V Fs depending on the users’ QoS demand has been conducted.

According to the experimental scenario, Service A has been deployed on both V FC

and Kubernetes frameworks. The simulation run for 60 minutes on each framework.

Within the simulation time, the required QoS (requested fps processed) was randomly

changed every 5 minutes, within the range [5, 20]. During the first 5 minutes, the re-

quested fps was set to 0, aiming to assess the zero-demand footprint of the solutions

under comparison. Total edge environment cost, as well as total number of deployed

containerized V Fs have been probed and the relative results are presented in Figures

5·25 and 5·26.

From the reported results we can observe that the V FC model can follow the de-

mand changes more efficiently compared with Kubernetes, even if the improvement

is small. As far as the total edge network cost is concerned, V FC presented a re-

duction of 12.54% compared to Kubernetes, averaging the cost over the 60 minutes

experiment.

Results on experimental setup

After exploring the simulator for assessing the influence of live migrations on the

services status, the migration models have been implemented in the experimental

setup, consisting of six Raspberry Pi 3 and two Raspberry Pi 4. The service deployed

was the same as the one described in chapter 3, and run for 6000 seconds.

While the improvement of the average value of the processed fps is rather small
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Figure 5·27: Experimental results on QoS.
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( 2%), when using the live migrations model, the fluctuation on the QoS is significantly

decreased (76.3%), making the service much more stable and robust (Figure 5·27).

5.8 Conclusions and Discussion

Within this chapter, the migration model for the V FC framework has been presented.

After presenting relevant technologies and methodologies for edge-based migration

services, the designed approach for the V FC migration model is detailed.

Two types of migrations have been considered, cold migrations and live migrations.

In detail, cold migrations refer to the scenario according to which an edge node hosting

a V F fails unexpectedly, while live migrations refer to the scenario according to which

an edge node transfers its deployed V F to another edge node, due to possible node

failure.

The algorithm for supporting cold migrations is based on a monitoring mechanism

by the V FO edge node. According to this mechanism, V FO probes the binary status

of all V Fs (up and running / not responding). As soon as a non-responding V F is

detected, V FO executes the placement algorithm for calculating the most appropriate

node to undertake the failed V F . The next step includes the deployment of the V F

to the selected node and the update of the V FC according to the new establishment.

As far as live migrations are concerned, the migration model works in parallel

with the V FC QoS monitoring model. According to this pipeline, V FO probes the

status of the edge nodes utilized in the V FC and assess their probability to fail in

the next period. As soon as the model detects a failing node, it initiates the live

migration model. The next step involves the utilization of the placement algorithm

for detecting the most appropriate node for undertaking the V F from the failing node

and of cource the actual migration steps from one node to the other.

The V F migration model plays a important role on the robustness of the overall
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framework, as it imposes a self-healing mechanism against edge nodes failure. In

contrast to cloud infrastructures, edge environments appear large fluctuations to the

capacity and availability of the processing nodes. In order to meet the different

characteristics of such environments, we have proposed a migration model with light

demands, in terms of computational requirements, which improves the overall QoS of

the deployed services, without requiring an exceed amount of computations.

Finally, comparing the capacity of the V FC model to auto-scale and self-heal,

the experiments described in this chapter against similar distribution frameworks

(Kubernetes) showed that the proposed model has the capacity to operate efficiently.
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Chapter 6

Conclusions and Future Work

6.1 Conclusions

Edge computing is expected to be an important part of the AI industry during the

next few years. Its advantages lie not only on the proximity with the processing data,

but also on the data protection, privacy and safety issues, which are debatable on

the Cloud Computing paradigm. This work proposes a novel concept for enabling

real-time AI applications on an Edge network, such as video analytics. Our proposal

is based on the V FCs which are used to distribute an AI application across the

edge network on an scalable fashion. After providing a mathematical model for the

proposed system, the results of a real-case scenario are reported, where the system

has been implemented and tested in various conditions. A caching mechanism is also

described, which extents even further the capacity of the system. Finally, a migration

model suitable for V F management is designed, implemented and evaluated, both in

simulation environment and in a real testbed system. The experiments have provided

evidence that the proposed model can be used to undertake heavy-load AI applications

and handle them in real-time, under QoS constraints.

The proposed model has been applied on a video analytic service, which belong

in the family of streaming applications, in terms of data generation. The nature of

the streaming applications matches the characteristics of the proposed V FC model,

which partially explains the really good performance of the model against other dis-

tribution approaches. Thus, while it is anticipated that the proposed model would
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be outperformed by generalized distribution schemes (i.e., Apache Spark ©) on non-

streaming applications, streaming applications from other domains, like sentiment

analysis on data coming from social media are expected to have similar performance

benefits as the tested surveillance service. Deploying such applications on the V FC

model is part of our future plans.

For supporting the evaluation of V FC model, a simulation environment has been

designed, implemented and deployed. More specifically, V FCSIM can be used to

simulate both virtual machines and containers, as virtualization and dockerization

technologies are recently considered not only to the cloud but also to the edge com-

puting paradigm, an abstract approach for developing services is required. V FC

model can support this design approach, as it is a simulation framework which can

support modellers, engineers and researchers to test architectures and solutions based

on V Fs.

Fluctuations and diverse characteristics of edge/fog environments dictates the

deployment of self-healing services, in order to support processing devices’ registering

and/or un-registering from the environment. As migration is considered one of the

most appropriate solutions for handling edge devices disconnections from the edge

network, a migration model for V F has been designed, implemented and deployed

on-top of the proposed V FC model. This migration model considers both cold

migrations, for supporting sudden disconnections of edge devices, and live migrations

for offloading edge devices with high utilization rates. By using V FCSIM , the

proposed migration model has been evaluated under different scenarios. The relevant

results showed that the migration model can improve the QoS characteristics of a

deployed service. The same conclusions can be drawn by the experiments conducted

on a real testbed with eight edge devices (Raspberry Pi devices). More specifically,

according to the results from these experiments, the variation of the processed frames
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per second of a VSS is significantly reduced.

6.2 Future Work

Within the lifetime of this PhD project, a novel scheme for distributing AI tasks on

a heterogeneous edge network has been designed, implemented and evaluated. For

supporting the proposed scheme, the first step was to build a simulation environment

(V FCSIM) tailor-made for V FC simulations. By using this simulation environment,

V FC supporting models, like caching and migration models have been tested.

The next step was to implement on a real test-bed the proposed model and com-

pare it against nowadays common practice (cloud services) and generalized distribu-

tion schemes (Apache Spark ©).

About the relevant future work, it will be focused on four main directions. First,

the deployment of the proposed model on a large-scale real environment will allow

the comparison of the scale-up characteristics of the proposed model with the sim-

ulation results. In addition, scaling-out the proposed model with other streaming

applications, aside surveillance services, will demonstrate the general character of

the proposed model. For example, real-time processing of data generated from so-

cial networks (e.g., sentiment analysis on Twitter data) is anticipated to be perform

relatively good.

Second, throughout the analysis of the model presented in the previous chapters,

all of the supporting services of the proposed V FC model (V F placement, migration,

edge nodes monitoring, etc.) are hosted on the network’s orchestrator node. Our

plan is to produce a fully distributed version of the V FC model, with the capacity to

deploy these services decentralized, by utilizing graph algorithms like leader election

and distributed spanning trees detection.

Third, a communication protocol among different virtual function chains will allow
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the execution of surveillance services like person re-identification, according to which

some temporary results on person identification must be shared to other edge nodes,

in order to identify whether a person is already included in the system or he/she is

appears for the first time.

Finally, about the simulation environment (V FCSIM) , an integrated user inter-

face for designing networks, devices and V F is expected to facilitate the work of the

modellers. On the same direction, the integration of libraries with well-established

devices and communication protocols will result to a more concrete simulation frame-

work.

To conclude, V FC model can act as an AI accelerator at the Edge, enabling the

execution of complex and computational heavy tasks.
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Appendix A

Optimization Theory

Resource management problems are usually expressed in the form of constrained op-

timization problems, where a predetermined objective function (objective) must be

optimized under specific constraints that dictate its solution. The goal of resource

management problems is either to maximize a core efficiency or to minimize a core

cost, related to the amount of resources consumed to ensure service quality. However,

depending on the solution to the problem (ie, objective function, resources and con-

straints), resource management problems can be solved with different learning tools.

For this reason, this chapter presents the basic optimization tools used in this PhD

thesis, with the aim of presenting a comprehensive solution framework for the opti-

mization problems that are commonly encountered. In more detail, the following are

presented: The Optimization Theory, the Variational Inequalities Theory, along with

some basic concepts from the Game Theory.

A.1 Optimization Theory

First, some principles from the optimization theory are presented (Floudas, 2009). In

more detail, the definition of an optimization problem is presented, some principal

definitions and optimization conditions, and finally the Euler-Lagrange equation.
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A.1.1 Definition of Optimization problem

Unconstrained Optimization problems

Before considering the constrained optimization problem, which is the most common

for resource management problems, the corresponding unconstrained optimization

problem is presented. More specifically, the general form of such a problem has the

following form:

min
x∈<

f(x) (A.1)

where the vector x = (x1, ..., xn) is the optimization variable of the problem and the

function f : <n → < corresponds to the objective function to be optimized (or the

cost function for specific minimization cases). A vector x∗ is called total Optimal or

otherwise the solution of the problem A.1, if it has the lowest objective value of all

the vectors in <n, that is, if for every z ∈ <n holds that f(x∗) ≤ f(z). Additionally,

a vector x+ is called a local optimal if there is ε > 0 such that f(x+) ≤ f(z) with

‖x+ − z‖2 ≤ ε. It is stated that an optimization problem can be transformed into a

minimization problem A.1, if the opposite objective function −f is considered.

Constrained Optimization problems

A constrained optimization problem is defined in its general form as follows:

min
x∈<

f(x)

s.t. gi(x) ≤ 0, for i ∈ [1,m]

hj(x) = 0, for j ∈ [1, n]

(A.2)

where the vector x = (x1, ..., xn) is the optimization variable of the problem in

the set Ω ⊆ <n, the function f : <n → < corresponds to the objective function to be

optimized (or the cost function for specific minimization cases), while the functions

gi, hj : <n → < are the constraint functions of inequalities and equalities, respectively.
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If the constraints are absent, i.e. m = p = 0, problem A.2 is simplified to an

optimization problem without constraints for Ω = <n. An optimization problem is

feasible if there is at least one point that satisfies the constraints of the problem,

which is called a feasible point. The set of feasible points is called the feasible set or

set of constraints. A vector x∗ is called (total) Optimal or otherwise the solution of

the problem A.2, if it has the lowest objective value of all the vectors in Ω that satisfy

the constraints (achievable points), i.e. if for every z ∈ Ω with gi(z) ≤ 0 and hj(z) = 0

for i ∈ [1,m] and j ∈ [1, p] holds that f(x∗) ≤ f(z). Additionally, a vector x+ is

called a local optimal if there is ε > 0 such that f(x+) ≤ f(z) for the achievable z

with ‖x+−z‖2 ≤ ε. If for a feasible point x, gi(x) = 0, then this inequality constraint

is called active in x, otherwise the inequality constraint gi(x) ≤ 0 is called inactive.

Finally, it is stated that an optimization problem can be transformed into a problem

form minimization A.2, if the opposite objective function −f is considered.

A.1.2 Basic Definitions

An optimization problem is called a linear program, if the objective function and

the constraint functions are linear functions of x. If some of the above functions

are non linear, the problem is called non-linear problem. Additionally, if the set Ω

contains integer sets, the problem is called an integer problem. A special category

of non linear problems are convex optimization problems, in which for a convex set

Ω, the objective function and the inequality constraint functions are convex, while

the equality constraint functions are affine. In a convex optimization problem, the

feasible set it is convex. Finally, for the opposite function −f , which is concave, the

equivalent concave maximization problem derives.

Definition 1 A set Ω ⊂ <n is convex, if ∀x, y ∈ Ω and for every θ ∈ [0, 1], it holds

θx+ (1− θ)y ∈ Ω (A.3)
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That is, for a convex set Ω, any straight line between two points of Ω is inside Ω.

Definition 2 Given a convex set Ω ⊆ <n, a function f : <n → R is

� convex in Ω, if

f(ax+ (1− a)y) ≤ af(x) + (1− a)f(y),∀x, y ∈ Ω and a ∈ (0, 1) (A.4)

� strictly convex in Ω, if

f(ax+(1−a)y) ≤ af(x)+(1−a)f(y),∀x, y(x 6= y) ∈ Ω and a ∈ (0, 1) (A.5)

� strongly convex in Ω, if exist c > 0, s.t.

f(ax+(1−a)y) ≤ af(x)+(1−a)f(y)− c
2
a(1−a)‖x−y‖2, ∀x, y ∈ Ω and a ∈ (0, 1)

(A.6)

That is, for a convex function, the straight line joining two points of the graph

representation of the function is located above its graph. A function is called concave

if −f is convex. From the previous definition, it is obvious that the following are

valid:

Strongly Convex ⇒ Strictly convex ⇒ Convex

Additionally, the curvature of a function can be verified with the help of the

following theorem:

Theorem 1 (Boyd et al., 2004). A differential function f : <n → < is convex on

the convex Ω ⊆ <n, iff one of the following conditions holds for x, y ∈ Ω:

First Degree Condition: f(y) ≥ f(x) +∇f(x)T (y − x)

Second degree condition (for twice differentiable f): ∇2f(x) ≥ 0

Note that ∇2f(x) represents the Hessian matrix of f , which is given as follows:

Hf (x) = ∇2f(x) =


∂2f
∂x21

. . . ∂2f
∂x1∂xn

. . . . . .
. . .

∂2f
∂xn∂x1

. . . ∂2f
∂xn

 (A.7)
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∇2f() ≥ 0 means that the matrix ∇2f() is positive semi-definite. An important

property of convex functions is the satisfaction of Jensen inequality. According to this

inequality, if a function f is convex and the parameter x has some random distribution

in Ω, then the following inequality holds:

f(E [x]) ≤ E [f(x)] (A.8)

, where E [.] is the expected value function. Since in some cases the curvature of a

function is not necessary, the following definitions of functions are presented.

Definition 3 A function f : <n → < is called quasi-convex in the convex Ω, if for

every x, y ∈ Ω, the next inequality holds:

f(ax+ (1− a)y) ≤ max{f(x), f(y)},∀a ∈ (0, 1) (A.9)

That is, for a quasi-convex function, the value of the function in a segment between

two points does not exceed the maximum value of the two extreme points. A function

is called quasi-concave, if −f is quasi-convex. Every convex function is quasi-convex.

Definition 4 A differenciable function f : <n → < is called psedo-convex in the open

Ω ⊆ <n, if for every x, y ∈ Ω, with ∇f(x)T (y − x) ≥ 0), holds f(y) ≥ f(x) (or if

f(y) < f(x),∇f(x)T (y − x) < 0).

A function is called pseudo-concave if −f is pseudo-concave. Any differential

convex function is pseudo-convex.

A.1.3 Optimization Conditions

This subsection presents the basic optimization conditions of a point, for optimization

problems with or without restrictions.

Optimization problems without restrictions

First, a subset of the optimization conditions for an optimization problem without

restrictions is briefly presented A.1.
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� Necessary Conditions

1. First degree: if f(x) is differentiable at x̄ and x̄ is a local optimum, then

∇f(x̄) = 0.

2. Second degree: if f(x) is twice differentiable at x̄ and x̄ is a local optimum,

then ∇f(x̄) = 0 and ∇2f(x̄) ≥ 0.

If a point x̄ satisfies ∇f(x) = 0, this does not necessarily mean that it is an

optimal point, but it is a stationary point. A stationary point can be an optimal

point or a saddle point. For this reason, in addition to the necessary conditions,

there are also the sufficient conditions that ensure the optimality of a point.

� Sufficient Conditions

1. First degree: if f(x) is quasi-convex at x̄ and x̄ is a local optimum, then

∇f(x̄) = 0.

2. Second degree: if f(x) is twice differentiable at x̄, if ∇f(x̄) = 0 and

∇2f(x̄ ≥ 0), then x̄ is a local optimum.

Optimization problems with restrictions

The following describes some necessary and sufficient conditions for the optimization

of the initial constraint optimization problem. More specifically, for A.2, which is not

necessarily convex, the Lagrange function is defined as L : <n ×<m ×<p → <

L = f(x) +
m∑
i=1

λigi(x) +

p∑
j=1

µjhj(x) (A.10)

where the vectors λ = (λ1, ..., λm) and µ = (µ1, ..., µp) are called Lagrange mul-

tiplier vectors related to the constraints of equalities and inequalities, respectively.

Next, the theorems that offer some necessary and capable conditions of first degree
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optimization are presented. Regarding the conditions of second class optimization,

the reader is referred to (Bertsekas, 2016).

Theorem 2 (Necessary conditions Karush-Kuhn-Tucker ( (Bazaraa et al., 2013)).

Let the problem A.2 for open Ω ⊂ <n with f, gi for i ∈ [1,m] and hj for j ∈ [1, p]

be constantly differenciable in a random x∗ ∈ Ω. Additionally, let for the point x∗

to hold suitable regularity conditions (constraint qualifications). Then, if x∗ solves

locally problem A.2, then scalar vectors λ = (λ∗1, ..., λ
∗
m) and µ = (µ∗1, ..., µ

∗
p) exist, s.t.

hj(x
∗) = 0,∀j ∈ [1, p]

gi(x
∗) ≤ 0,∀i ∈ [1,m]

λ∗ ≥ 0,∀i ∈ [1,m]

λ∗i gi(x
∗) = 0,∀i ∈ [1,m]

∇xL(x∗, λ∗, µ∗) = ∇f(x∗) +
m∑
i=1

λ∗i∇gi(x∗) +

p∑
j=1

µ∗j∇hi(x∗) = 0

(A.11)

These conditions are called the Karush-Kuhn-Tucker (KKT) conditions and the point

which satisfies them is called the KKT point.

The first two conditions are the feasibility conditions of the initial problem, the

third is the feasibility condition of the binary problem (Boyd and Vandenberghe,

2011), the fourth is referred to as complementary slackness, and the latter as station-

arity condition. KKT conditions are necessary and not always sufficient conditions

for solving the Optimization problem. Therefore, the solutions resulting from the

KKT conditions are not necessary and solutions to the optimization problem, but

they are a stationary point. However, if the optimization problem is convex, then

the above conditions are also capable conditions. In addition, the following general

theorem applies.

Theorem 3 Let the problem A.2 for open Ω ⊂ <n with f, gi for i ∈ [1,m] and hj

for j ∈ [1, p] be constantly differenciable in a random x∗ ∈ Ω, for which the KTT

conditions apply, meaning that there are scalar vectors λ∗ and µ∗, s.t. A.11 applies.
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If f is psedo-convex at x∗, gi are quasi-convex at x∗ for i ∈ [1,m] and hj are quasi-

convex at x∗ for the j for which µ∗j > 0 and quasi-convex at x∗ for the j for which

µ∗j < 0, then point x∗ is total optimum solution of A.2. If the conditions of curvature

are limited to a region around x∗, then the x∗ is a local minimum of A.2.

In a simpler form the above sentence applies to a convex set, with f pseudo-convex,

gi quasi-convex and hj affine. Therefore, the theorem also applies to a convex problem.

Finally, it is stated that an important feature of convex optimization problems is that

each local optimal solution is also a total Optimum. Additionally, a feasible point x

is optimal for a convex problem with a differential objective function, iff

∇f(x)T (y − x) ≥ 0 (A.12)

for each feasible y, while for a convex problem without restrictions, the relative

condition of the optimum x is

∇f(x) = 0 (A.13)

A.1.4 Euler-Lagrange equation

A particularly useful equation for optimization problems that exhibits integrals in

object functions and constraint functions is the Euler Lagrange equation (Zeidler,

2008), which is derived from the theory of calculus of variations. First, the following

overview is presented concerning the Basic Optimization Problem from which the

Euler-Lagrange equation is derived, and then some generalizations of the equation

are presented.

Theorem 4 (Zeidler, 2008) Let ta, tb, g(ta), q(tb) ∈ Re, with ta < tb and the following

optimization problem:

min
q(t)

tb∫
ta

F (q(t), g′(t), t)dt, withq(ta) = qa, q(tb) = qb (A.14)
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, where function F : <×<× [ta, tb]→ < is twice differenciable. If q(t), with t ∈ [ta, tb]

is twice differenciable and solves problem A.14, then the following equation holds

(Euler-Lagrange equation):

d

dt

∂F (q(t), q′(t), t)

∂q′
− ∂F (q(t), q′(t), t)

∂q
= 0 (A.15)

The solution of the Euler-Lagrange equation gives the stationary points of the

problem in result to be the necessary condition for the solution of the problem. For

competent conditions the reader is referred to (Zeidler, 2008). It is stated that in

the special case where F (q(t), t), the Euler-Lagrange equation is simplified to the

following equation and in addition there is no requirement for border conditions:

∂F (q(t), t)

∂q
= 0 (A.16)

Additionally, in a more general case where t = (t1, ..., TN) is a vector of values

in the range D ∈ <N and q = (q1, ..., qK) = q(t) is a vector function under specific

boundary conditions, the following system of Euler-Lagrange equations arises:

N∑
n=1

∂

∂tn

∂F

∂ ∂qk
∂tn

− ∂F

∂qk
= 0, for k ∈ [1, K] (A.17)

, where F = F (q1, ...., qK ,
∂q1
∂t1
, ..., ∂q1

∂tN
, ..., ∂qK

∂t1
, ..., ∂qK

∂tN
, t1, ..., tN).

Finally, it is reported that for the problems where constraints (with or without

integrals) apply, a function with Lagrange multipliers respectively with the Lagrange

function of the Optimization Theory is defined, which is introduced in the Euler-

Lagrange equation instead of F (Zeidler, 2008). Therefore, the KKT conditions can

be used in combination with the Euler-Lagrange equation for optimization problems

with limitations that include integrals.
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A.2 Inequalities - Variation Theory

This section presents the inequalities variation theory, which deals with a more generic

class of problems in non linear analysis. More specifically, the Inequalities Variation

Theory (Scutari et al., 2010) is suitable for the study and solution of a wide range of

mathematical problems, such as computer systems, computer graphs, completeness

problems, fixed point problems etc. It is a powerful Mathematical tool for studying

the problems of interactions between different entities, which is common in edge

networks and can be applied even in cases where the classic game theory does not

apply.

Next, some basic definitions and theorems of the inequalities changes theory are

presented. Next, the existence and uniqueness of the solution of a change inequality

problem is studied. Finally, some basic elements from the game theory and more

specifically the cooperative game theory are presented, as well as its connection with

the theory of changes inequalities.

Basic definitions

The inequalities change theory is a general mathematical framework that encompasses

convex optimization and is directly related to the game theory. More specifically, the

problem of Variational Inequality (VI) is defined below.

Definition 5 Given a set K ⊆ Rn and a function F : K → Rn, the problem V I,

which is defined as V I(K,F ), aims to find an x∗ ∈ K, called solution of VI, s.t.

F (x∗)T (x− x∗) ≥ 0,∀x ∈ K (A.18)

, where (.)T is the transpose matrix, or

〈F ((x∗), x− x∗)〉 ≥ 0,∀x ∈ K (A.19)

where 〈., .〉 is the representation of the inner product. The set of the the solutions
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to this problem are denoted by SOL(K,F ).

Next, it is assumed that K is closed and F is continuous. A problem of variation

inequality is that it can be mapped to a convex optimization problem A.2, where ∇f

is replaced by a general function F (A.12), as shown in the following sentence.

Statement 1 (Nagurney, 1999). Let x∗ be the solution of the following optimization

problem.

min
x
f(x)

s.t. x ∈ K
(A.20)

, where f : K → < is continuously differentiable and the set K ⊆ <n is closed and

convex. Then x∗ is a solution of problem V I(K,∇f).

If f is a convex function then the inverse is also true, while for K = Rn the

problem becomes an optimization problem without restrictions. Note that, if the

function F cannot be expressed as the gradient of a potential function f (i.e. when

F does not have a symmetric Jacobian array), V I problems are separated from the

classical convex optimization problems, making the variation inequalities theory more

general, since it includes a wider range of problems.

In addition, the following suggestions apply.

Statement 2 (Nagurney, 1999). The problem of solving a system of equations F (x) =

0 is equivalent to problem V I(<n, F ).

Statement 3 (Nagurney, 1999). Let’s be a Nonlinear Complementarity Problem

(NCP), which for a function F : <n+ → <n is defined as the problem of finding a

x ∈ <n such that

0 ≤ x ⊥ F (x) ≥ 0 (A.21)

The above NCP problem (F ) is equivalent to problem V I(<n, F ).

Note that for z, y ∈ <n, 0 ≤ z ⊥ y ≥ 0 means that z ≥ 0, y ≥ 0 and zTy = 0

(Orthogonality).
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A.2.1 KKT conditions

For problems in V I class, the KKT conditions are defined accordingly. More specifi-

cally, let problem V I(K, F ) and set K to incorporate constraints on inequalities and

equalities as follows:

K ≡ {x ∈ <n : h(x) = 0, g(x) ≤ 0} (A.22)

, where h : <n → <p and g : <n → <m be constantly differenciable. Also, let some

suitable conditions of regularity apply (Facchinei and Pang, 2003). Then the KKT

conditions for the specific problem are the following:

h(x) = 0

0 ≤ λ ⊥ g(x) ≤ 0

F (x) + λT∇g(x) + µT∇h(x) = 0

(A.23)

Additionally, the following theorem applies:

Theorem 5 (Facchinei and Pang, 2003) Let K ≡ {x ∈ <n : h(x) = 0, g(x) ≤ 0} with

h : <n → <p and g : <n → <m to be constantly differenciable and a function F : K →
<n. The following applies:

� Let x ∈ SOL(K, F ). If the Abadie normality conditions (Facchinei and Pang,

2003) apply to x, then there exist vectors µ ∈ <p and λ ∈ <m s.t. the conditions

KKT A.23 apply.

� Conversely, if h is affine, g is convex and (x, λ, µ) satisfies KKT A.23, then it

is also a solution of V I(K, F ).

A.2.2 Existence and Uniqueness of the Solution

Next, the existence and uniqueness of the solutions of a V I problem are studied. More

specifically, regarding the existence of solutions, the following statement applies.

Theorem 6 (Facchinei and Pang, 2003) Let a convex and solid set K ⊆ <n and a

continuous function F : K → <n. The set SOL(K, F ) is non empty and solid.
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However, under certain conditions for the function F , a problem V I can have

solutions without the set K being bounded. First, some definitions are given for

F ’s monotony, which interacts with the corresponding curvature of f in the classical

optimization problems.

Definition 6 Given a convex set K ⊆ <n, a function F : K → <n is:

� monotone in K, if:

(F (x)− F (x)T )(x− y) ≥ 0,∀x, y ∈ K (A.24)

� strictly monotone in K, if:

(F (x)− F (x)T )(x− y) ≥ 0,∀x, y ∈ K and x 6= y (A.25)

� strongly monotone in K, if:

(F (x)− F (x)T )(x− y) ≥ c ‖x− y‖2 ,∀x, y ∈ K (A.26)
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Rodŕıguez-Silva, D. A., Adkinson-Orellana, L., Gonz’lez-Castano, F., Armino-Franco,
I., and Gonz’lez-Martinez, D. (2012). Video surveillance based on cloud storage.
In 2012 IEEE fifth international conference on Cloud computing, pages 991–992.
IEEE.

Rosen, R. (2016). Namespaces and cgroups, the basis of linux containers. Seville,
Spain, Feb.

Samaniego, M. and Deters, R. (2018). Zero-trust hierarchical management in iot.
In 2018 IEEE international congress on Internet of Things (ICIOT), pages 88–95.
IEEE.

Satyanarayanan, M. (2019). The Emergence of Edge Computing. Computer,
50(1):30–39.

Satyanarayanan, M., Bahl, P., Caceres, R., and Davies, N. (2009). The case for
vm-based cloudlets in mobile computing. IEEE pervasive Computing, 8(4):14–23.

Scutari, G., Palomar, D. P., Facchinei, F., and Pang, J.-S. (2010). Convex opti-
mization, game theory, and variational inequality theory. IEEE Signal Processing
Magazine, 27(3):35–49.

Sebe, I. O., Hu, J., You, S., and Neumann, U. (2003). 3d video surveillance with
augmented virtual environments. In First ACM SIGMM international workshop
on Video surveillance, pages 107–112.

Sharma, P. and Singh, A. (2017). Era of deep neural networks: A review. In
2017 8th International Conference on Computing, Communication and Networking
Technologies (ICCCNT), pages 1–5. IEEE.



189

Shi, W., Cao, J., Zhang, Q., Li, Y., and Xu, L. (2016). Edge computing: Vision and
challenges. IEEE internet of things journal, 3(5):637–646.

Skarlat, O., Nardelli, M., Schulte, S., and Dustdar, S. (2017). Towards qos-aware fog
service placement. In 2017 IEEE 1st international conference on Fog and Edge
Computing (ICFEC), pages 89–96. IEEE.

Song, B., Tian, Y., and Zhou, B. (2014). Design and evaluation of remote video
surveillance system on private cloud. In 2014 International Symposium on Bio-
metrics and Security Technologies (ISBAST), pages 256–262.

Sotiriadis, S., Bessis, N., Antonopoulos, N., and Anjum, A. (2013). Simic: Designing
a new inter-cloud simulation platform for integrating large-scale resource manage-
ment. In 2013 IEEE 27th International Conference on Advanced Information
Networking and Applications (AINA), pages 90–97. IEEE.

Sotiriadis, S., Bessis, N., Asimakopoulou, E., and Mustafee, N. (2014). Towards sim-
ulating the internet of things. In 2014 28th International Conference on Advanced
Information Networking and Applications Workshops, pages 444–448. IEEE.

Sun, F., Cheng, N., Zhang, S., Zhou, H., Gui, L., and Shen, X. (2018). Reinforcement
learning based computation migration for vehicular cloud computing. In 2018
IEEE Global Communications Conference (GLOBECOM), pages 1–6. IEEE.

Sun, H., Shi, W., Liang, X., and Yu, Y. (2019). Vu: Edge computing-enabled video
usefulness detection and its application in large-scale video surveillance systems.
IEEE Internet of Things Journal, 7(2):800–817.

Sun, L., Li, Y., and Memon, R. A. (2017). An open iot framework based on mi-
croservices architecture. China Communications, 14(2):154–162.

Taleb, T., Samdanis, K., Mada, B., Flinck, H., Dutta, S., and Sabella, D. (2017). On
multi-access edge computing: A survey of the emerging 5g network edge cloud archi-
tecture and orchestration. IEEE Communications Surveys & Tutorials, 19(3):1657–
1681.

Tazaki, H., Moroo, A., Kuga, Y., and Nakamura, R. (2021). How to design a library
os for practical containers? In Proceedings of the 17th ACM SIGPLAN/SIGOPS
International Conference on Virtual Execution Environments, pages 15–28.

Thorp, K. R. and Bronson, K. F. (2013). A model-independent open-source geospa-
tial tool for managing point-based environmental model simulations at multiple
spatial locations. Environmental modelling & software, 50:25–36.



190
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