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Background: Metastasis of cutaneous squamous cell carcinoma (cSCC) is uncommon. Current staging
methods are reported to have sub-optimal performances in metastasis prediction. Accurate identification of
patients with tumors at high risk of metastasis would have a significant impact on management.
Objective: To develop a robust and validated gene expression profile signature for predicting primary
cSCC metastatic risk using an unbiased whole transcriptome discovery-driven approach.
Methods: Archival formalin-fixed paraffin-embedded primary cSCC with perilesional normal tissue from
237 immunocompetent patients (151 nonmetastasizing and 86 metastasizing) were collected retrospectively
from four centers. TempO-seq was used to probe the whole transcriptome and machine learning
algorithms were applied to derive predictive signatures, with a 3:1 split for training and testing datasets.
Results: A 20-gene prognostic model was developed and validated, with an accuracy of 86.0%, sensitivity
of 85.7%, specificity of 86.1%, and positive predictive value of 78.3% in the testing set, providing more
stable, accurate prediction than pathological staging systems. A linear predictor was also developed,
significantly correlating with metastatic risk.
Limitations: Thiswas a retrospective 4-center studyand largerprospectivemulticenter studies arenowrequired.
Conclusion: The 20-gene signature prediction is accurate, with the potential to be incorporated into
clinical workflows for cSCC. ( J Am Acad Dermatol 2023;89:1159-66.)
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BACKGROUND
Cutaneous squamous cell carcinoma (cSCC) is the

commonest form of skin cancer with metastatic
potential and incidence and mortality rising.1-4

Although the frequency of metastasis arising from
cSCC is relatively low at 2% to 5%, the sheer number
of cases represents a significant disease burden.
CAPSULE SUMMARY

d A 20-gene expression profile signature
derived from clinical archival tissue using
an unbiased whole-transcriptome
approach showed superior performance
for predicting metastatic risks for
primary cutaneous squamous cell
carcinoma (cSCC).

d This prognostic signature could
significantly improve risk stratification,
identifying patients with high-risk cSCC
who may benefit from adjuvant
treatment and reducing overtreatment
for patients with low-risk cSCC.
Current management could
be improved by more accu-
rately identifying tumors
most likely to metastasize,
targeting adjuvant therapy,
and intense clinical supervi-
sion programs to those at
highest risk, while reducing
unnecessary interventions
for people with low-risk
tumors.

Multiple histopathological
staging classifications for
cSCC are available although
reported to be suboptimal in
predicting poor outcomes.5,6

Recent studies suggest that
genomic and transcriptomic
signatures may improve risk

prediction for primary cSCC progression.7-10 Using
whole exome sequencing data, we previously iden-
tified 16 high-risk and 6 low-risk specific significantly
mutated genes.9 More recently, a 40-gene expression
profiling (GEP) signature based on candidate genes
identified by a combination of literature review and
discovery efforts, was developed to predict metasta-
tic risk (Castle Biosciences, Inc Friendswood,
Texas).11,12 A positive predictive value (PPV) of
60% was achieved for the highest risk tumors, with
overall sensitivity, specificity, and PPV for differen-
tiating Class 2 (high-) and Class 1 (low-risk) cSCC of
65.4%, 68.8%, and 28.8%, respectively.11 A
completely unbiased discovery-driven approach us-
ing information from the whole genome and tran-
scriptome to identify prognostic gene signatures is
currently lacking. Such an approach may also un-
cover key molecular mechanisms underpinning dis-
ease progression and metastatic risk.

To develop a validated prognostic signature in an
unbiased manner, we assembled a multicentre
cohort of primary cSCC archival tissue from 237
patients with known clinical outcomes (no metas-
tasis over 3 years, n = 151; metastasis, n = 86). Whole
transcriptomic data were generated from tumor and
perilesional normal skin. A range of machine
learning (ML) techniques was applied and a 20-
gene GEP model was developed which displayed a
high level of accuracy in differentiating metastasizing
and nonmetastasizing primary cSCC. A linear pre-
dictor based on the 20-gene GEP was then devel-
oped to further aid the implementation of the GEP
signature for risk stratification in clinical practice.
Ultimately, use of this GEP to guide management
decisions may significantly improve patient manage-
ment for this common
cancer.

METHODS
Ethical approval and
sample identification

This study was approved
as IRAS project 266,559
(Diagnostic marker panel
development for progression
in skin cancer, PERMEDID).
Four collaborating pathology
centers identified consecu-
tive patients with primary
cSCC which had metasta-
sized, or primary cSCCwhich
had not metastasized within
3 years (Table I).
Immunosuppressed patients
were excluded. Formalin fixed paraffin embedded
(FFPE) sections were reviewed by an expert derma-
topathologist and tumor and perilesional normal
skin marked for subsequent analysis (see
Supplementary Materials, available via Mendeley at
https://doi.org/10.17632/z77kdgddm9.1).

Pathology review and pathological tumor
staging

Hematoxylin and eosin stained sections were
digitally scanned by Leica scanner and Aperio
software. Images were reviewed centrally by two
expert dermatopathologists and primary tumors
typed, graded, and histologically staged using
Union for International Cancer Control (UICC)-8
and Brigham and Women’s Hospital (BWH)
classifications.

Transcriptomics investigation
Transcriptomic analysis was performed using the

TempO-Seq whole-protein coding transcriptome
platform with a proprietary processing pipeline
(Bioclavis Ltd, Glasgow, UK).13 Data preprocessing
and normalization were performed using limma R
package.14 Batch effect was removed using the
ComBat package.15 Differential expression (DE)
analysis using limma was performed between clin-
ical groups, followed by gene set overrepresentation

https://doi.org/10.17632/z77kdgddm9.1


Abbreviations used:

AUC: area under the ROC curve
BCR: B-cell receptor
BWH: brigham and women’s hospital
cSCC: cutaneous squamous cell carcinoma
DE: differential expression
ESCC: esophageal squamous cell carcinoma
FFPE: Formalin fixed paraffin embedded
GEP: gene expression profile
GSEA: gene set enrichment analysis
KNN: K-nearest neighborhood
ML: machine learning
PPV: positive predictive value
UICC: union for international cancer control
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and gene set enrichment analysis (GSEA) using
DAVID16 and clusterProfiler.17
Gene signature analysis using machine
learning

To derive a set of genes that could distinguish two
groups (ie, metastasizing vs nonmetastasizing cSCC),
the caret R package18 was used for ML analysis. A
range of ML techniques were used and compared
(Supplementary Materials). We randomly split the
samples into training (75%) and testing (25%) sets.
Starting with an initial set of genes in the training set
(ie all DE genes from the DE analysis comparing
metastasizing and nonmetastatic cSCC), the best
performing set of genes for each ML algorithm (ie,
feature selection) was determined using the
Recursive Feature Elimination procedure, with 10-
fold repeated cross validation of five repeats. A final
model for each ML algorithm was then trained using
the final selected number of genes with 10-fold
repeated cross validation of ten repeats and used to
predict the two classes in the testing set. The
performances of predictions were measured using
accuracy, precision, along with sensitivity and spec-
ificity, PPV, and negative predictive value.

A weighted linear predictor was generated for
each sample based on the expression of the final set
of genes in the model and their fold changes in the
DE analysis (see Supplementary Materials) Linear
predictors were compared between clinical groups
and correlated with classes. The area under the ROC
curve (AUC) was calculated using the pROC
package.19
RESULTS
Clinicopathologic characteristics

Demographic details of patients and histologic
features of primary cSCC are presented in Table I.
Transcriptomic analysis between primary
cSCC groups

GEP of 19,072 genes across a total of 433 samples
were sufficiently profiled for analysis. Four sample
groups were compared; cSCC tumor from metasta-
sizing (n = 84) and nonmetastasizing (n = 146) cSCC,
and matched perilesional normal skin from metasta-
sizing (n = 71) and nonmetastasizing (n = 132) cSCC
(Supplementary Table I, available via Mendeley at
https://doi.org/10.17632/z77kdgddm9.1). Principal
component analysis based on genes across all
samples showed a clear separation between cSCC
and perilesional normal skin samples from metasta-
sizing and non-metastasizing cSCC (Supplementary
Fig 1, available via Mendeley at https://doi.org/10.
17632/z77kdgddm9.1). Differential gene expression
analysis revealed that 1038 genes were upregulated
and 236 genes downregulated in metastasizing cSCC
compared to nonmetastasizing cSCC (absolute log2
fold change[1 and adjusted P value\.05). The gene
set overrepresentation test showed keratinization, B-
cell receptor (BCR), innate immune response, cell
cycle, DNA replication, and DNA repair were highly
overrepresented in the DE genes (hypergeometric
test q \ 0.05, Supplementary Fig 2A, available via
Mendeley at https://doi.org/10.17632/z77kdgddm9.
1). Overrepresentation analysis against cellular sig-
natures showed that signatures associated with neu-
ral progenitor, endothelial, and cancer stem cells
were highly enriched within the DE genes
(Supplementary Fig 2B, available via Mendeley at
https://doi.org/10.17632/z77kdgddm9.1), suggest-
ing that cell differentiation is a key factor distinguish-
ing the two cSCC groups. GSEA against MSigDB
canonical pathways further suggested that cell cycle
related, DNA replication and repair, and immune
pathways (BCR regulation, interferon, and
interleukin-12 signaling), were all significantly upre-
gulated inmetastasizing cSCC, while formation of the
cornified envelope, keratinization, and many meta-
bolism pathways (sphingolipid, triglyceride, crea-
tine, and fatty acid metabolism) were significantly
downregulated (Fig 1).

Normal perilesional samples from metastasizing
and nonmetastasizing primary cSCC were also
compared. GSEA indicated many immune pathways
(such as BCR and T cell receptor signaling, Fc
gamma receptor activation, and chemokine receptor
binding) and cell cycle related pathways (synthesis,
replication and repair of DNA) were significantly
upregulated in perilesional skin samples from
metastasizing tumors (Supplementary Table II,
available via Mendeley at https://doi.org/10.17632/
z77kdgddm9.1).

https://doi.org/10.17632/z77kdgddm9.1
https://doi.org/10.17632/z77kdgddm9.1
https://doi.org/10.17632/z77kdgddm9.1
https://doi.org/10.17632/z77kdgddm9.1
https://doi.org/10.17632/z77kdgddm9.1
https://doi.org/10.17632/z77kdgddm9.1
https://doi.org/10.17632/z77kdgddm9.1
https://doi.org/10.17632/z77kdgddm9.1


Table I. Clinicopathologic details of patients and primary cSCC samples

Feature All (n = 237) No metastasis (n = 151)* Metastasis (n = 86)y P value

Age, y, median (range) 80 (39-100) 78 (39-100) 80 (64-93) .57
Male, n (%) 142 (60) 90 (60) 52 (60) 1
Located on head and neck, n (%)z 155 (65) 91 (61) 64 (74) .033
Tumor diameter, cm, mean (range)x 1.85 (0.18-9) 1.31 (0.18-4.1) 2.82 (1.6-9) \.0001
Tumor thickness, mm, mean (range)k 3.94 (0.2-26.7) 2.96 (0.2-13) 5.65 (0.3-26.7) \.0001
Poorly differentiated, n (%) 115 (48.3) 47 (30.9) 68 (79.1) \.0001
Clark level[ V (beyond fat), n (%){ 43 (18.6) 10 (6.7) 33 (40.2) \.0001
PNI, n (%)# .0004
Present ($ 0.1 mm) 20 (8.6) 8 (5.3) 12 (14.6)
Present (\0.1 mm or unknown) 11 (4.7) 3 (1.99) 8 (9.8)
Not present 202 (86.7) 140 (92.7) 62 (75.6)
Lymphovascular invasion** 15 (6.5) 1 (0.66) 14 (17.5) \.0001

UICC T stage, n (%)yy \.0001
T1 134 (59.3) 115 (78.8) 19 (23.75)
T2 25 (11.1) 11 (7.5) 14 (17.5)
T3 67 (29.6) 20 (13.7) 47 (58.75)
T4 - - -

BWH T stage, n (%)xx \.0001
T1 86 (37.7) 84 (56.75) 2 (2.5)
T2a 65 (28.5) 44 (29.7) 21 (26.25)
T2b 71 (31.1) 20 (13.5) 51 (63.75)
T3 6 (2.6) - 6 (7.5)

*Total number of primary cSCC which did not metastasize = 152 (one patient had 2 separate primary cSCCs); median follow-up was

76 months.
yMedian time from primary cSCC to metastasis was 9.9 months.
zLocation not recorded for 2 cSCCs (both nonmetastasizing).
xNot available for 10 cSCC (5 nonmetastasizing and 5 metastasizing).
kNot available for 15 cSCC (10 nonmetastasizing and 5 metastasizing).
{Invasion through or beyond subcutaneous fat: not available for 7 cSCC (3 nonmetastasizing and 4 metastasizing).
#Not available for 5 cSCC (1 nonmetastasizing and 4 metastasizing cSCC).

**Lymphovascular invasion not available for 6 cSCC (all metastasizing).
yyNot available for 12 cSCC (6 non metastasizing and 6 metastasizing).
xxNot available for 10 cSCC (4 nonmetastasizing and 6 metastasizing).
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Development of the 20-GEP prognostic
signature

To identify a smaller set of genes that were
predictive for primary cSCC metastasis, a range of
ML classification algorithms were applied after split-
ting the primary cSCC samples into training and
validation sets. A 20-gene model derived from
K-nearest neighbors (KNN) was identified
(Supplementary Table III, available via Mendeley at
https://doi.org/10.17632/z77kdgddm9.1) which
provided the best performance in differentiating
the two cSCC groups in the validation set (n = 57:
36 nonmetastasizing; 21 metastasizing), with an
accuracy of 86.0% (95% confidence interval 74.2%-
93.7%), a sensitivity of 85.7% and a specificity of
86.1% (Table II). Patients predicted as high risk of
metastasis by the 20-GEP signature (n = 23) had
significantly worse metastasis-free survival (MFS)
rates than those predicted as low-risk (n = 34)
(3-year MFS, 91.7% for low-risk vs 21.7% for high-
risk) (Fig 2). In this 20-gene GEP model, 18 genes
were upregulated in nonmetastasizing cSCC and 2
genes (MDK and STMN1) were upregulated in
metastasizing cSCC (Supplementary Table III and
Fig 3, available via Mendeley at https://doi.org/10.
17632/z77kdgddm9.1). Functional annotation of the
20 genes suggested the significant enrichment in the
signatures from keratinization, GnRH, oxytocin, Ras,
and MAPK signaling pathways (hypergeometric test,
P \ .01). Using the same ML procedure based on
perilesional normal skin samples, a 22-gene KNN
model was also developedwith an accuracy of 64.0%
(95% CI: 49.2% to 77.1%), sensitivity of 41.2%, and
specificity of 75.8% (Table II).

Prognostic accuracy of the 20-GEP test
compared to pathological staging
classifications

Using the Royal College of Pathologists dataset for
histopathological reporting of primary invasive
cSCC, tumors were staged by both UICC-8 TNM,
and BWH T-staging classifications after central
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Fig 1. Normalized enrichment scores (NES ) of the top
dysregulated canonical pathways between metastasizing
and nonmetastasizing cSCC. Pathways with positive NES
(in red ) were upregulated while pathways with negative
NES (in blue) were downregulated in metastasizing
compared to non-metastasizing primary cSCC.
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consensus histopathological review. Prognostic met-
rics for UICC-8 (low T1/T2 vs high T3/T4) and BWH
(low T1/T2a vs high T2b/T3) staging showed per-
formance with an accuracy of 85.4% for both systems
in the validation set, compared to 86.0% for the 20-
GEP signature (Table II). Performance of BWH T-
staging based on original pathology reports without
central consensus review (BWH v1), was marginally
inferior in predicting metastasis, with an accuracy of
81.8%. This was largely due to differences between
the scoring of poor differentiation after central
review compared to the original report (Table I,
Supplementary Table IV, available via Mendeley at
https://doi.org/10.17632/z77kdgddm9.1).

The 20-GEP signature showed strong correlations
with staging for risk prediction in the validation set.
Of 23 metastasizing cases predicted by the 20-GEP
test, 21/23 (91.3%) were T2b/T3 by BWH staging vs
15/23 (65.2%) UICC-8 T3/4. Of 32 nonmetastasizing
cSCC predicted by the 20-GEP, 26/32 were T1/T2a by
BWH and 26/32 were UICC-8 T1/T2 (81.3%).
Accuracy of the histology staging systems dropped
to 81.1% and 76.5% for BWH and UICC8, respec-
tively, when the whole cohort (n = 237) was
considered (Table II).
Generation of a linear predictor for metastatic
prediction

To further enhance the potential clinical applica-
tion of the 20-GEP signature, a linear predictor for
metastasis combining the expression values and
fold-changes of these 20 genes in the DE analysis
was generated: the higher the linear predictor value,
the higher the risk of developing metastasis. The
previously reported 40-GEP11 stratifies tumors into 3
classes of risk (low, high, highest), whereas a linear
predictor allows a more detailed assessment of risk
that can be used alongside pathological risk factors
to influence clinical management. The linear predic-
tor had a very high correlation with metastatic risk,
with an AUC of 0.85 (95% CI, 0.80-0.91) and 0.88
(95% CI, 0.78-0.99) for the training and validation
(testing) sets, respectively (Fig 3). In comparison, the
KNN binary classification model (ie, yes or no for
metastasis prediction) had an AUC of 0.86 (0.76-
0.96). As expected, the linear predictor was signifi-
cantly higher in metastasizing vs nonmetastasizing
cSCC in both training and testing sets (Wilcoxon rank
sum test, P\ .0001, Supplementary Fig 4, available
via Mendeley at https://doi.org/10.17632/
z77kdgddm9.1).

Finally, the linear predictors across both tumor
and perilesional skin for both metastasizing
and nonmetastasizing cSCC were compared
(Supplementary Fig 5, available via Mendeley at
https://doi.org/10.17632/z77kdgddm9.1). There
was no difference in linear predictors between
nonmetastasizing cSCC and both normal adjacent
groups. However, linear predictors increased signif-
icantly for metastasizing cSCC compared to other
groups (P \ .0001), suggesting that our linear
predictor was only associated with metastasizing
primary tumors.

DISCUSSION
This study reports a 20-GEP signature that predicts

metastatic risk of primary cSCC. It was developed
and validated in a UK cohort of 237 primary cSCC
from immunocompetent individuals using archival
FFPE tissue in which whole-transcriptome analysis
with an unbiased discovery approach was per-
formed. The 20-GEP signature achieved an accuracy
of 86.0%, a negative predictive value of 91.2% and a
PPV of 78.3% for predicting metastasis in the valida-
tion set (n = 57). A linear predictor to facilitate
potential clinical use of the 20-GEP was created
based on the expression and fold changes of
signature genes and had an AUC of 0.88. UICC-8
TNM and BWH pathological staging systems per-
formed unexpectedly well in risk prediction
compared with previous reports. Nonetheless, the
20-GEP remained overall the most stable and accu-
rate predictor of metastatic risk, and in contrast to
histology, the GEP signature is unbiased and not
dependent on human evaluation and interpretation.
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Fig 2. Kaplan-Meier analysis of the 20-GEP prognostic test
and outcomes in terms of metastasis free survival in the
validation dataset. No at-risk in the follow-up was shown
in the table below.
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Fig 3. Area under the receiver operating characteristic
curve (AUC ) of the performance of linear predictors
correlating with the metastatic incidences. Linear pre-
dictors were produced based on the 20-GEP signature,
and both training and testing data sets were included in the
calculation. AUC and 95% confidence interval were
shown.

Table II. Accuracy of the prediction of metastatic risks of the 20-GEP signature and other risk assessment
methods (n = 57)

Classifier Accuracy% Sensitivity% Specificity% PPV% NPV% 1LR -LR

20-GEP 86.0 85.7 86.1 78.3 91.2 6.17 0.17
UICC-8 85.4 81.0 88.2 81.0 88.2 6.88 0.22
BWH 85.4 95.2 79.4 74.1 96.4 4.63 0.06
BWH v1 81.8 76.2 85.3 76.2 85.3 5.18 0.28
22-GEP* 64.0 41.2 75.8 46.7 71.4 1.70 0.78
UICC-8y 76.5 58.8 86.3 70.1 79.2 4.29 0.48
BWHy 81.1 71.2 86.5 74.0 84.8 5.27 0.33

1LR, Positive likelihood ratio; -LR, negative likelihood ratio; BWH, brigham and women’s hospital staging system after the central review;

BWH v1, derived from original pathology reports before central pathology review; GEP, gene expression profile; NPV, negative predictive

value; PPV, positive predictive value; UICC, union for international cancer control.

*22-GEP was derived from normal adjacent samples only.
yStatistics were derived from the whole cohort (n = 237).
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There appeared to be a strong association be-
tween the 20-GEP and keratinization. Key keratini-
zation genes, such as LCE1C, LCE2B/C, LCE3C, and
CDSN, were all significantly downregulated inmetas-
tasizing primary cSCC as were two genes involved in
alpha-Linolenic acid and ether lipid metabolism
(PLA2G4E/F ), consistent with our GSEA results.
Only two genes, STMN1 and Midkine (MDK), were
significantly upregulated in metastasizing samples.
STMN1 a microtubule-destabilizing protein, regu-
lates the dynamics of microtubules and cell cycle
progress.20 Its high expression is associated with
poor prognosis in esophageal (ESCC), lung (lung
squamous cell carcinoma) and oral SCC.21-23 In ESCC
and lung squamous cell carcinoma, it was reported
to promote cell proliferation, migration, chemora-
diation resistance,21,22,24 and is strongly associated
with lymph node metastasis in ESCC.25,26 MDK, a
heparin-binding growth factor, is also associated
with cancer progression, drug resistance, and a
tolerogenic and immune-resistant state.27-30 A recent
study showed that MDK was highly expressed by
stem-like tumor cells and led to mTOR inhibition
persistence and an immune-suppressive microenvi-
ronment.31 MDK represents an interesting therapeu-
tic target for advanced cSCC.

Currently, clinical pathways determining treat-
ment plans for patients with cSCC use
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clinicopathological staging systems. In practice, the
predictive accuracy of staging systems for primary
cSCC can vary significantly across reported
studies.11,32-35 Factors possibly accounting for the
variability in pathology staging include nonstandar-
dized reporting of high-risk features (particularly
poor differentiation and perineural invasion); prob-
lems defining the state of differentiation of an indi-
vidual tumor; and variable practice in the use of
Mohs’ surgery which may affect detection of high-
risk features and lead to understaging.11 In our study,
careful central review by two highly experienced
dermatopathologists adhering to the Royal College
of Pathologists dataset led to a much higher perfor-
mance of pathology staging systems than previously
published. This highlights the need for a more
objective grading system such as that used world-
wide in breast carcinoma.36

Additional strengths of our study include an
unbiased discovery-driven approach using the
whole transcriptome of FFPE clinical samples to
develop a prognostic signature suitable for routine
clinical use. We also excluded immunosuppressed
patients as iatrogenic and disease-associated immu-
nosuppression is an important risk factor for poor
outcomes in cSCC and variations in immune status
and effects of immunosuppressive drugs are likely to
impact the transcriptome. Excluding confounding
factors due to immunosuppression may have
permitted generation of a more metastasis-specific
gene signature of greater use for risk prediction.
More work is needed to test our 20-gene signature in
other patient populations, such as those with darker
skin and in immunosuppressive populations.

The retrospective nature of this study was a
limitation and, although consecutive eligible primary
cSCC were enrolled at each center, the possibility of
some bias relating to patient and sample selection
cannot be excluded. The study size for the validation
set was also a limitation and further validation will
require larger, prospective studies.5

In conclusion, we have used an unbiased
discovery-driven approach to generate a promising
candidate 20-GEP prognostic signature for cSCC
metastasis. The GEP not only represents a novel
and potentially clinically applicable prognostic tool
but has also provided biological insights into the
process of metastasis and potential therapeutic
targets. In addition, there are biological and genomic
mechanisms common to cSCC across different tissue
types and this signature may provide further insights
into common differentiation and stem-like pathways
underpinning these SCCs. Further prospective eval-
uation is now underway to confirm clinical utility of
this GEP in management of primary cSCC.
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