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Abstract

The usual means of solar farm condition monitoring are limited by the typically poor quality
and low-resolution data collected. A micro-synchrophasor measurement unit has been adapted and
integrated with a power quality monitor to provide the high-resolution, high-precision, synchro-
nized time-series data required by analysts to significantly improve solar farm performance and to
better understand their impact on distribution grid behaviour. Improved renewable energy gener-
ation at large solar photovoltaic facilities can be realized by processing the enormous amounts of
high-quality data using machine learning methods for automatic fault detection, situational aware-
ness, event forecasting, operational tuning, and planning condition-based maintenance. The limited
availability of existent data knowledge in this sector and legacy performance issues steered our ex-
ploration of machine learning based approaches to the unsupervised direction. A novel application
of the Clustering Large Applications (CLARA) algorithm was employed to categorise events from
the large datasets collected. CLARA has been adapted to recognize solar site specific behaviour
patterns, abnormal voltage dip and spike events using the multiple data streams collected at two
utility-scale solar power generation sites in England. Fourteen days of empirical field data (seven
consecutive summer days plus seven consecutive winter days) enabled this analytical research and
development approach. Altogether, ∼725 million voltage measurement data points were investi-
gated, and automatic voltage anomaly detection demonstrated.

Keywords: Solar energy, condition monitoring, micro-synchrophasor measurement unit, electrical
anomaly detection, unsupervised machine learning.

1. Introduction

Shifting to renewable energy sources, such as solar power with its smaller carbon footprint is
essential to mitigate climate change. However, irregularities and abruptions in solar power genera-
tion bring challenges for power distribution system operators [1] and the energy market. In the UK,
utility-scale (> 1 MWp) solar farm owners commonly suffer from burdensome plant failure rates,
reduced equipment lifespan, unplanned outages, diminished energy output, and replacement over-
heads [2]. These problems can be countered through better condition monitoring and knowledge
discovery that can automatically perceive abnormalities and trends that may indicate arising issues
and even predict faults before they occur.

Today’s industry standard Supervisory Control And Data Acquisition (SCADA) systems do not
have the inbuilt capability to detect anomalous behaviour, predict faults, and diagnose failure modes
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which lead to expensive complications [3]. Improved monitoring tools are beginning to provide more
granular, higher accuracy time-stamped data [4]. Via the rapid development of digital technology
and cloud computing, vast amounts of “big data” are produced through the plethora of installed
sensors and advanced digitalisation infrastructures. Cost-effective exploration and rationalisation
of the resulting plethora of structured big data can benefit facility operation and understanding of
grid interactions [5].

To help observe and manage the distribution grid, the micro-synchrophasor measurement unit
(µPMU or microPMU) was developed to provide ultra-high precision Root Mean Square (RMS)
voltage and current phasor values at twice-per-cycle granularity (100/120Hz depending on grid
frequency) with sub-100 nanosecond synchronised time stamps [6].

Transforming µPMU measurements into actionable information in real-life scenarios however
remains a huge challenge [7]. Applying µPMU technology can improve operational monitoring of
distribution networks and their performance via applications such as: stability assessment, state
estimation, outage or disturbance detection, energy management, and so on [8]. These µPMUs
could become an important part of smart-grid technology and rapid state variable solution, due
to their lower cost, high accuracy, and short latency [9]. Establishing timely data transmission
and effective large-scale data storage are implementation challenges [10]. The µPMU data volume
grows massive with fast data reporting rates, thus pre-processing these big data to extract valuable
information towards solar site maintenance and operation is challenging [11].

1.1. Background of Power Grid System µPMU Applications

Machine learning based data analytics can play a role in making large scale systems such as cities
and their power grids more effective and user centred. Much research has been published on the
challenges of optimising energy performance of low carbon cities using artificial intelligence [12, 13].
In future power systems, µPMUs and similar devices could provide enabling data for advanced
distribution system operation [5]. For example, in a research study by Yigit, et.al. [2], linear state
estimation has been performed to improve parallel computation for big power grid data screening,
gathering, and processing, with the aim to provide intelligent grid monitoring via abnormal event
detection. Several studies have been performed to investigate big µPMU data to identify anomalous
events in the power distribution network [14]. In [4], a µPMU data-driven based method to classify
power quality events to improve power distribution network performance has been presented. But
this work involved rigorous data labelling by field experts and utility records, a luxury not always
available if the execution of renewable infrastructure is to grow as it must to attain the worldwide
targets published. The authors extended their previous work for determining the likely source of the
power quality events on distribution systems through voltage and current phasor measurements [15];
however, results are limited to the examination of four event scenarios. Distributed generation can
create problematic low-frequency oscillations (LFO). To deal with LFO, a two-stage method with
Tunable Q-factor wavelet transformation and matrix pencil algorithm using the µPMU data has
been proposed in [10].

Irregular fluctuations in power distribution by short-time local outlier probability and peak anal-
ysis have been analysed in [16]. The absolute deviation around the median combined with dynamic
window size was employed in this paper for the purposes of event detection. A kernel Principal
Component Analysis (kPCA) is obtained to build statistical models for anomaly detection in [17].
Here, expert knowledge has been used to train the event types (e.g. voltage sag) from the µPMU
data using partially hidden structured support vector machine. In [18], a semi-supervised learning
(SSL) approach has been applied to identify high impedance faulty events and their location, where
the partial knowledge of the event is available a priori. Local outlier factor algorithm is used for
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the abnormal event detection purpose, where the PCA-based similarity search method was used
to measure the differences of operation states between any two buses of the Western Electricity
Coordinating Council (WECC) 179-bus power system, a case from the South China Power System
(SCPS), and a case from the Guangdong Power System (GDPS) was proposed in [19]. A hidden
structure semi-supervised machine learning method was proposed to detect events in power sys-
tems, where Minimum-redundancy-maximum-relevance (mRMR) is adopted to create a feature set
(20 most informative features) and resolve the trade-off between relevancy and redundancy [20].
A three layered frequency events have been proposed in [21], where Granger causality was used to
compare measurement relations across different locations, train sparse coding dictionary and the
moving z-score mechanism was applied to detect the events from µPMU measurement installed by
Lawrence Berkeley National Laboratory (LBNL) and Riverside Public Utility (RPU).

These studies reported employing data-driven conceptualisation to indicate inaccurate power
event sensing is a significant task for researchers and site engineers. The µPMU provides high-
resolution and substantial insight on the state of power system to which it is attached, is beneficial
to prevent outages, reduce operational cost, and increase equipment lifespan. But, studies hitherto
either utilise probabilistic approaches, data transformation into smaller domains to represent events,
or labelling of a low number of data patterns to recognise abnormal events. Probability does not
provide absolute decision, it expresses the chance of an event being normal or abnormal. Hence
the event decisions are uncertain and cost-inefficient when it comes to big-data. The semi-labelling
approaches are limited by knowledge and time complexity. The segregation of power data based on
their quantifiable property has not yet been explored, which could be a fast and efficient automated
site maintenance solution. These issues have been addressed through our study, where large-scale
data has been collected by an operatively-paired µPMU plus power quality monitor (PQM) appa-
ratus from existing UK solar sites. The resulting µPMU data has been analysed by employing fully
unsupervised machine learning (UML) or clustering approach. This UML approach was performed
by using the quantitative three-phase voltage magnitude. Voltage is often a key parameter when
investigating or assessing the risk of operational problems or equipment failures on solar sites.

Figure 1: Process flow diagram of the contributed work.

The proposed framework comprised five stages: (a) grid data units were designed and installed
on the solar farms to gather the time-series voltage measurement data, (b) masses of µPMU data
were collected, pre-processed, and stored into a dedicated ‘Data-Lake’, (c) time-series feature vector
approximation has been performed to find optimal feature vector length, (d) the Clustering LARge
Applications (CLARA) algorithm was employed for the first time on this large-scale µPMU data to
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categorise and analyse the voltage dip events, (e) the proposed framework was tested on two real
UK based solar farm sites over the period of two week’s data for the summer and winter seasons,
(f) the obtained results were validated through the standard power quality event monitoring data.
The contributions are summarised by the flow diagram of Fig. 1.

2. Material and Methods

Engineers at Neuville Grid Data built a bespoke apparatus [22], the Grid Data Unit (GDU), to
collect the high-resolution and accurate data from solar sites. The GDUs were installed at solar
farm substations in Norfolk and Bedfordshire, England, UK. Both of the solar sites are connected
to the UK Power Network. The collected data from these sites were investigated in this study and
the overall process flow is shown in Fig. 2.

Figure 2: Proposed µ-PMU data-driven based solar farm anomaly event detection procedure.

2.1. Designed Apparatus

The GDU (shown in Fig. 3) incorporates a µPMU instrument, a PQM, simultaneous global
positioning system (GPS) antenna for time-synchronization to sub-100ns, solid-state memory for
data-buffering, and secure bidirectional 3G/4G cellular data telemetry equipment. This GDU pro-
vides mechanical protection, instrument power, and telecoms equipment for data backhaul.

The µPMU’s underlying analogue-to-digital conversion (ADC) at 4MHz digital signal processing
(DSP) results in RMS voltage and current phasor values for each phase at every half-cycle (i.e.
on a 3-phase 50Hz installation collects 6 channels at a 100 Hz data-reporting rate). This can be
subsequently down sampled to suit the post-processing techniques employed. The phasor amplitude
and angle accuracies are ±0.05% and ±0.01o, giving a total vector error (TVE) of ±0.01%. Fig. 4
shows the data collection apparatus, from signal acquisition through to data storage. The GDU
apparatus is typically installed in the customer substation or inverter station. Calibrated split-core
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Figure 3: Grid Data Unit apparatus prototype.

current transformers monitor the 1A or 5A secondary outputs of the revenue-grade 11/33kV current
transformers (CT), while voltage transformers (VT) on all three phases of the export cables provide
proportional signals to the operatively paired µPMU and PQM.

Figure 4: Utility-scale (> 1 MW) solar farm GDU installation.

2.2. Micro-synchrophasor Measurement Unit Data Characteristics

The µPMU operates in the frequency domain and collects measurements for each half-cycle
at 10 milliseconds data reporting rates (i.e., 100Hz in Britain). Fig. 5 shows the actual power
measurement generated by the solar farm on a single day during the summer of 2020. Fig. 5(a)
depicts how the photovoltaic (PV) generated a three-phase current output, which varies with solar
irradiance, subject to intermittent cloud cover. Fig. 5(b) depicts the corresponding three-phase
(line-to-neutral) voltage measurements, where large voltage drops were found on several occasions.
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Figure 5: Collected µ-PMU solar farm data for a single day , (a) current measurements, (b) phase voltage measure-
ments.

2.3. Proposed Approach

The anomaly detection method followed two consecutive and correlated ML steps: feature length
approximation and clustering, using solar site µPMU big data. The data cleaning and preparation
are key tasks on which the performance of tackling outliers depends. Thus, raw data was formatted
from binary to columnar format and prepared to fit for the ML task. Different feature lengths of the
data attribute were approximated with clustering to obtain optimally performing feature lengths
for anomalous event detection and identification.

2.3.1. Feature Length Approximation

The three-phase, time-series voltage magnitude measurements are denoted by Eq. (1) and (2),
where the voltage of each phase is considered as a 1−D feature vector. We used an approach that can
transform the time series voltage feature vector in higher Euclidean space (Es), where s denotes the
number of feature space and time domain voltage data (Vϕ) of a time frame is considered as feature
space to represent the voltage behaviour. The voltage feature engineering approach contemplates
the time window (δ) required to collect n number of data points and the data reporting interval
(t = 10ms) required to collect N number of bifurcate voltage magnitudes, aligned uniformly in
(N = δ/t) no. of rows (r).

Vϕ =
{
αx ∈ R|αx, x = 1, 2, ..., n

}
,

ϕ = 1, 2, 3, n = total no of datapoints in each phase.
(1)

V T
ϕ =


α1 α2 . . . αN

α1+N α2+N . . . α2N
...

...
...

...
α(r−1)N+1 α(r−1)N+2 . . . αrN

 (2)

2.3.2. Clustering Large Applications

Once the optimal feature vector is obtained, the unsupervised learning or clustering method
is subsequently applied to recognise distinct voltage behaviour of the data patterns without prior
information. Clustering partitions the r number of patterns into k number of clusters with the aim to
minimise intra-cluster distance and maximise inter-cluster distance. The unsupervised segregation
follows partitioning based clustering method Clustering LARge Applications (CLARA) to perform
this big voltage data clustering [23]. CLARA inherits and extends the methodology of partitioning
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around medoids (PAM) to overcome the limitations of k-medoids and k-means algorithms that
operate on medoids for clustering the big data, reducing computational time. They are not sensitive
to outliers like k-means. CLARA is fast and effective for large-scale data clustering as it does not
check every neighbour of a node, only checking a sample of the neighbours of a node. CLARA takes
a small percentage of the dataset to find medoids instead of the whole dataset. The PAM algorithm
is applied to create an optimal set of medoids for the small sample. The performance of resulting
medoids is calculated by averaging dissimilarity between each object within the full data set D and
the medoid of its own cluster, defined as the below cost function:

C(µ,D) =

∑s
i=1∆(wi, wj)

s
(3)

∆i,j =
2

√
(wi, wj)2 (4)

Where, µ is the set of selected medoids, s is the selected sample, dissimilarity between objects
(wi, wj) is measured by ∆i,j and returns a medoid from µ which is closest to the object. CLARA
iterates the sampling and clustering process and derives the final clustering result from the calculated
medoids with minimal cost. The quality of clustering highly depends on the sample size as CLARA
adopts a sampling approach.

2.3.3. Thresholding and Validation

Once the data are partitioned, a thresholding based on the cluster’s mean (µ) and standard
deviation (σ) is then applied on the Euclidean distance to detect the outlier events within the
clusters. The three-sigma rule has been considered over the clustered data to highlight anomalous
events. If each data point’s distance exceeds the three-sigma rule (3σ ± µ) from its own centroid,
then the data point is considered an outlier. The mathematical expression for thresholding is set
experimentally and the outcomes are analysed later in this article. Once the outliers are identified,
unusual voltage magnitudes are validated through power quality measurement data considering the
event reporting time from both systems. The outcome and their validation are analysed in detail
in the following section.

3. Result Analysis

The proposed method has been tested and implemented using data gathered from two pilot
solar sites in England. The 13.2MWp Bedfordshire site comprises 8 inverter-stations that consist of
transformers, Power Electronics brand inverters, and switchgear. The 8.0MWp site in Norfolk has
5 inverter-stations consisting of Gamesa central inverters, transformers, and switchgear. Both sites
are physically located at approximately the same latitude. The sites were commissioned around the
same time to similar designs. Having with very similar equipment, except for their inverters, and
are therefore comparable matched pair. Our research investigated normal and abnormal voltage
behaviour from the two-pilot sites for automatic anomalous event detection. This method experi-
mented on the µPMU data collected by the GDU over a particular period between May to November
2020. The time span additionally covers both the summer and winter, which helps to account for
seasonal aspects of both the solar farms and subsequent effects on the power grid. Physical details
of both sites are summarized in Table 1.
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Table 1: Site locations and details for the two pilots solar farm.

Site Name Location Commissioned
DNO Grid
Connection

Inverter
Type

MV Power
Transformers
(oil cooled)

Power
generation
capacity

Solar
Altitude

Data Study

Period

Langford
Bedfordshire,

England
March 2015 UKPN 33kV

Central
(Power

Electronics)

4 x 400V:33kV1800kVA
2 x 400V:33kV1400kVA
2x 400V:33kV1250kVA

13,184
kWpdc

6.6
May to

November
2020

Kenninghall
Norfolk,
England

March 2015 UKPN 33kV
Central

(Gamesa)
5 x 400V:33kV 1400kVA

7,999
kWpdc

5.8
May to

November
2020

3.1. Data and Event Description

This is a first-ever study presented where real and high-resolution solar data is clustered using
CLARA approach. With 100 samples/second data reporting rate, µPMU gathers ∼8.6 millions of
voltage samples daily for each phase along with precise timestamp information. Primarily, three-
phase voltage phasor measurements were studied here to detect anomalies as it has significant
effect on the energy management functionality of the power distribution system. Seven consecutive
summer days (from 1st July to 7th July 2020) and seven consecutive winter days (from 1st November
to 7th November 2020) have been included in this study and analysed thoroughly. During these
periods, several voltage issues have been noticed in the site data, some of them reported by the PQM
data. The power quality voltage events found during this time span are summarized in Table 2.
These anomalous events are known as voltage dip/ voltage sag events.

Table 2: Details of the occurred events during the experimented days.

Location
Event
Type

Event
Magnitude

Event
Duration
(Seconds)

Trigger
Date

Trigger
Day

Trigger
Time
(UTC)

Trigger
Channel

Trigger
Threshold

Langford Voltage Dip
90.32%

of nominal
0.718s 2020/07/02 Thursday 15:32:50.370 L1-L2

94.0%
of nominal

Langford Voltage Dip
91.95%

of nominal
0.080s 2020/11/01 Sunday 10:59:36.347 L3-L1

94.0%
of nominal

Kenninghall Voltage Dip
92.43%

of nominal
0.140s 2020/07/06 Monday 12:46:43.579 L1-L2

94.0%
of nominal

Kenninghall Voltage Dip
91.73%

of nominal
0.589s 2020/07/06 Monday 12:47:15.139 L1-L2

94.0%
of nominal

Kenninghall Voltage Dip
92.84%

of nominal
0.359s 2020/07/07 Tuesday 03:55:09.649 L1-L2

94.0%
of nominal

3.2. Data Distribution Analysis

Initially, the probability distributions of the daily voltage trends were analysed. Fig. 6 and
Fig. 7 show the three-phase voltage probability distribution for both solar farms under test: Lang-
ford and Kenninghall, respectively. The distributions presented in the first column represent the
summer day voltage and the second column represent the winter days voltage samples. The
grid connection phase-to-phase nominal AC voltage is 33kV with a phase-to-neutral voltage of
33kV/

√
(3) = 19.052kV . The x-axis defines the voltage magnitude measurements in kV AC in the

distribution plot and y-axis represents the probability density of each magnitude, where the red
dotted line shows the nominal voltage for each phase. The distribution curves have been observed
as left skewed depicting the voltage magnitudes as always lower than the nominal voltage. Also, the
mean (µ) and standard deviation (σ) were measured for both sites and it was found that the sea-
sonal voltage mean ranges between ∼ 18.6kV (18600V/1.8×104V ) to ∼ 18.8kV (18800V/1.8×104V ).
However, for both solar farms σ is different for summer days compared to winter days. The σ of volt-
age for the Langford (site-1) is ∼ 14V whereas it is ∼ 66V for Kenninghall (site-2). The variation
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in σ from the two different sites indicate that the site-2 voltage measurements are more dispersed or
spread out in relation to their corresponding µ. The higher σ indicates the all three-phase voltage
measurements of Kenninghall during the winter days are not clustered around the mean but display
a greater spread.

Figure 6: Site -1: Three phase voltage data distribution for a single day of a summer day (left) and winter day
(right).

Conversely, the probability density of the voltage data is higher in Langford than at the Ken-
ninghall site for both summer and winter days. The two sites clearly show contrasting probabilistic
density, the voltage data of the Langford site (in Fig. 6) are unbiased with larger group of data
population, whereas the data of Kenninghall site (in Fig. 7) contains smaller and sparser voltage
groups. Analysis of voltage data distribution looks at the preparation specific to clustering for
understanding the scale of magnitudes in different seasons and sites before execution. It provides
the underlying groups of voltage magnitudes and intuition to make optimal default choice of initial
parameters for initialising data transformation through clustering.

3.3. Feature Vector Approximation and Clustering with CLARA

Once the scale and distribution frequency of voltage magnitude had been pre-investigated, the
voltage data was accumulated to make feature vectors representing different events through cluster-
ing. A feature vector was separately created for each voltage phase to study the variations, following
the same data transformation mechanism. The voltage magnitudes were selected from pre-defined
time frames and used as a feature vector for clustering (described in Section 2.3). The time frame
was varied from 100ms to 10s with experimentally predefined intervals to obtain the best performing
feature vector for clustering. Time windows of 100ms, 1s, 24s, 3s, 5s, 8s, and 10s were investi-
gated for the optimal feature vector creation and to examine window size impact on the clustering
outcomes. All the data from both sites was transformed in this way and the multi-featured data
patterns are projected into the hyperspace to comprehend how each time window depended on the
feature vector’s potential for voltage anomaly detection. The feature vectors were employed to clus-
ter the three phase voltages using CLARA. Each voltage phases and site were analysed separately
using CLARA. The clustering outcomes obtained from these seven different feature lengths for the
tested sites of Langford and Kenninghall are shown in Fig. 8 and Fig. 9 respectively. Fig. 8(a) to
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Figure 7: Site -2: Three phase voltage data distribution for a single day of a summer day (left) and winter day
(right).

Fig. 8(g) demonstrate the clustering output using selected feature lengths from 100ms, 1s, 2s, 3s,
5s, 8s, and 10s respectively of the Langford site. The same numeric sequences have been used for
clustering the Kenninghall data as shown in Fig. 9(a) to Fig. 9(g).

From this analysis, it was observed that the longer time windows represent lengthier feature vec-
tor/ feature dimensions, which decreasing the granularity of the data, losing the precise information
needed for effective anomaly detection. Also, it has been found that the longer feature vector (i.e.
magnitudes of longer time frame) produces more overlapping clusters, where the inter-cluster dis-
tances are shorter than the intra-cluster distances. Thus, segregating the normal voltages from any
kind of abrupt changes that may have occurred becomes difficult. Conversely, the smaller feature
dimension helps to capture distinct event behaviour and identify more granular information of an
event that has occurred. The shorter feature length is preferable to detect finer changes therefore
the “100ms” time window has been considered as the best performing feature vector for this study.

3.4. Anomaly Detection by CLARA

Once the feature vector’s length has been approximated with 100ms time window, CLARA was
performed on this optimal feature vector to detect voltage anomalies from the real data from both
sites under test. Fig. 10 shows the clustering outcomes from a single day’s µPMU data from the
Langford solar farm (Site-1). The top row represents the µPMU data clusters from a summer day
and the bottom row represents clustering outcomes of a winter’s day. The three phases; phase-1,
2, and 3 are shown separately, and the red and yellow coloured data points indicate two different
clusters i.e. two different voltage patterns. Outliers or anomalies were detected by measuring the
mean and standard deviation of each cluster’s Euclidean distance between the data points from
their respective cluster centroids. The cluster mean and standard deviation were calculated, and it
was experimentally found from repeated simulation that if any data point lies beyond the distance
d = (3σ ± µ) they should be considered as an outlier of that cluster (described in Section 2.3.3).
Using this statistical approach, the data points that were found to be outliers are marked with blue
colour for (cluster-1 patterns) and green colour for (cluster-2 patterns) in Fig. 10.

The same approach was performed on the second site’s µPMU data and the resulting clusters are
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Figure 8: Site -1 feature length approximation.

depicted in Fig.11. The first row again shows the summer days’ pattern, and the second row displays
the winter days’ pattern. The figures contain two clusters and their outliers. Outliers or anomalies,
the unusual voltage behaviours have been detected through the stated approach and marked with
blue (from cluster-1) and green (from cluster-2) colours as before. Though the data distribution of
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Figure 9: Site -2 feature length approximation.

both sites is different, the physical location parameters of both sites are similar enough to compare
their energy generation performance. The big data clustering experiment was performed over all the
µPMU data for the considered time span to capture any voltage fluctuations which had occurred
due to anomalous PV effect. The segregated anomalies by CLARA were validated further using

12



Figure 10: Site -1: three phase µPMU voltage data clustering for anomaly detection: (a) for a summer day, (b) for
a winter day.

power quality measurements.
Performance of CLARA was compared with CLARANS, as both are useful for clustering big

data [24]. However, CLARANS is known for its higher time complexity for time series data which
reflected with collected time series voltage data too. Initial testing was performed on a single day’s
voltage measurement data (∼8.64 million of data points). CLARANS stuck to local minima when
searching for local optimum and losses its effectiveness. Thus, CLARANS took a much longer time
to converge, and it was challenging to evaluate the output quality from this method. CLARA takes
a sample of voltage data points at the beginning of the search whereas CLARANS takes sample
of voltage data point neighbours in each step of search. Therefore, CLARA converges quickly and
efficiency in voltage data than CLARANS. Thus, CLARA was chosen for clustering the µPMU
data.

3.5. Anomaly Validation via PQM

The detected outliers using CLARA along with the proposed feature approximation and thresh-
olding were verified by expert engineers and the Power Standards Labs (PSL) standard Power
Quality Monitoring (PQM) device. Precise time stamps and the reported event types from the
PSL-PQM device were collated to compare with the identified anomalous events. According to the
UK electricity supply the acceptable voltage to drift outside +10% to -6% is standard in public
supply network. By following this, the PQM device reports an event at the point of time when
any voltage measurement deviates outside of +10% to -6% from the nominal voltage. Although
the duration and the characteristic of the event is not usefully captured due to the low-resolution
data recording rate of the PSL device compared to the µPMU. During this research, all the events
recorded by the PQM, and the anomalous events detected by this study were thoroughly inspected
and cross-referenced by the authors and the engineers of the Neuville team. This proposed proto-
type can auto-detect anomalous behaviour far more precisely than the PQM device and therefore
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Figure 11: Site -2: three phase µ-PMU voltage data clustering for anomaly detection:(a) for a summer day, (b) for
a winter day.

help in analysing their relationship with the distribution grid network. The work focusses on volt-
age performance monitoring and in particular “voltage dip/sag” event monitoring as this event
occurred more often during the tested period. The algorithm was tested and validated on fourteen
days consecutive historic data and a single day’s results are displayed here from summer seasons of
the two tested solar sites.

As expected, with its higher resolution µPMU reports a greater number of data points than
the PQM and is able to capture important events. Those datapoints are clustered here for voltage
anomaly identification. Also, µPMU can capture those events which may not drift outside the
standard range, thus are not recorded by the PQM but do have an impact on the grid network. For
example, there are two voltage dip events found from the Langford site’s µPMU data on 2nd July
2020 at 15:32 hr and 17.30 hr shown in Fig. 12 (top plot). The detected anomaly’s time has been
taken by the proposed method. It is to be noted that the first reported dip has been found from
the PSL-PQM provided data (shown in Table 2), however the second voltage dip event at 17.30
hr of 2nd July 2020, goes undetected by the PQM as it had not triggered the voltage dip event.
Similarly, voltage dip events are also found in the Kenninghall site data on 6th July 2020 at 12.47
hr shown in Fig. 12 (bottom plot). One event has been captured by the PQM, but the other event
at 18.20 hr goes undetected. However, these events have been detected by the proposed method
using the µPMU data. These voltage dips may have occurred due to either outages in a nearby
generation unit, short-circuit, or overload that may have occurred on the grid. Thus, detecting
a high proportion of unusual event is essential for comprehensive behaviour analysis and external
grid effect on sites, demonstrating the usefulness of the method. The validation phase shows the
effectiveness of the proposed method and its potential to capture more granular voltage trends
beyond the power quality measurement mechanism. The method shows 100% accuracy for voltage
dip event detection that are recorded by the PQM and an ability to detect those usual events that
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are sparse from the nominal voltage magnitude.

Figure 12: Voltage dips of the µPMU data on the tested day for Langford (top) and Kenninghall (bottom).

3.6. Discussion

Voltage dips and short voltage interruptions occur due to (a) abrupt changes in large loads/
high inrush and switching currents on the power network or on-site equipment (e.g. energising
local transformers) and (b) various faults in the transmission and distribution networks [25]., which
can adversely affect sensitive equipment and overall system operation. Thus, voltage dip can be
an issue in solar farm operation and maintenance. Conversely, inspection of false issues, leaving
anomalies undetected and undiagnosed can have a lasting and detrimental effects on a large solar
farm’s productivity. Hence, the proposed CLARA, followed by the statistically decided adaptive
thresholding on high-resolution µPMU reported voltage data brings a cutting-edge solution to solar
farm fault detection and diagnosis. Selected positive impacts from the work completed:
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(a) A priori fault (anomaly) information from experts or technicians is not required to initiate the
automatic voltage error detection, saving costly manual work, and time.

(b) Voltage spikes and dips can be detected quickly and automatically using unsupervised learning
with near 100% certainty permitting a plug and pay future approach.

(c) Anomalies can be predicted to a useful extent; such cueing enabling avoidance of unexpected
equipment failure through pre-emptive maintenance intervention leading to extended equipment
service-life or planned equipment replacement.

(d) Operators can save costs and maximise revenues with tailored understanding of their site’s
unique behaviour patterns.

4. Conclusion and Future Work

The research is encouraged by the fact that there is over 8 GW of commonly underperforming
utility-scale (> 1MWp) solar capacity across approximately 1,200 sites that were often hastily con-
structed in the UK between 2011 and 2017 to meet government subsidy programmes. The National
Grid’s Future Energy Scenarios 2020 report [26] projects 1.4GW of new UK solar installations every
year through to 2050. Hence this study combined empirical big data analysis and machine learning
to facilitate and improve solar farm operational and cost-efficiency through remote condition mon-
itoring using CLARA for the first time on µPMU data for efficient cost, computational overhead
management, and fast execution time.

The detected sparse voltage events will be further analysed. Both voltage anomaly detection
and recognition of their cause will be studied for future work. Other anomalous events such as
dip and flicker will be further studied to understand their relationship with weather conditions and
electrically associated equipment. This will aid identifying the root of the outliers and motivate
improvements to CLARA and the threshold decisions for a better performing solar data anomaly
detection model. Anomaly recognition will be performed using historic data and the label informa-
tion of events will come from the detection phase to predict future occurrences of voltage spike/dip
enabling predictive solar site maintenance. Training ML models with voltage trends/profiles of
specific faults (e.g. switchgear failure, transformer overheating, etc.) will be established for the bet-
terment of diagnostic and control functionalities. The ongoing research predicts not only improved
preventive and predictive site maintenance but also provides greatly improved data analytics for
geographically dispersed assets and distribution grid purposes.
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