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Abstract

This paper explores a large collection of about 377,000 observations,
spanning more than 20 years with a frequency of 30 minutes, of the
streamflow of the Paglia river, in central Italy. We analyze the long-
term persistence properties of the series by computing the Hurst expo-
nent, not only in its original form but also under an evolutionary point
of view by analyzing the Hurst exponents over a rolling windows basis.
The methodological tool adopted for the persistence is the detrended
fluctuation analysis (DFA), which is classically known as suitable for
our purpose. As an ancillary exploration, we implement a control on
the data validity by assessing if the data exhibit the regularity stated
by Benford’s law. Results are interesting under different viewpoints.
First, we show that the Paglia river streamflow exhibits periodicities
which broadly suggest the existence of some common behaviour with
El Nifio and the North Atlantic Oscillations: this specifically points to
a (not necessarily direct) effect of these oceanic phenomena on the hy-
drogeological equilibria of very far geographical zones: however, such
an hypothesis needs further analyses to be validated. Second, the se-
ries of streamflows shows an antipersistent behaviour. Third, data
are not consistent with Benford’s law: this suggests that the measure-
ment criteria should be opportunely revised. Fourth, the streamflow
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distribution is well approximated by a discrete generalized Beta distri-
bution: this is well in accordance with the measured streamflows being
the outcome of a complex system.

Keywords: River streamflow, Hurst exponent, Benford’s law, De-
trended fluctuation analysis, Discrete generalized Beta distribution.

1 Introduction

Hydrogeological paths exhibit often a complex behaviour. Such irregulari-
ties are driven by the presence of several factors of uncertainty in the climate
dynamics. River streamflows represent paradigmatic examples of this evi-
dence. In fact, human activities and natural events drive the fluctuations,
sometimes with catastrophic effects, of such phenomena.

This paper elaborates some crucial observations from these premises. In
particular, we develop an analysis of the streamflow of the Paglia river, a
major tributary of Tiber, whose watercourse is entirely localized in Central
Italy. Data are the official measurements of the streamflow of the river at
Ponte dell’Adunata, near Orvieto, a historical town in Umbria region. The
time interval covered by the measurements is January 1st, 1992 (12:00am)
— May 13, 2014 (h11:30pm), and the periodicity of the observations is 30
minutes. However, the pervasive presence of missing values in the first part
of the series prevented us from using the data prior to November 2, 1992
(h12:30pm).

We specifically focus on the so-called long run dependence property of
the series, which gives a thoughtful view of the behaviour of the autocor-
relation function. Such a statistical property can be suitably employed for
making forecasts on the future evolution of the streamflow. The perspec-
tive presented here is in line with the original, path-breaking study by 7,
who explored the long-run dependence of the runoffs of the Nile river. The
analysis is based on the assessment of the value of the constant H € (0,1)
— the so-called Hurst exponent — which represents the rate of decay of
the autocorrelation function of the series as a function of the time-lag. If
H > 1/2, the series is said to present a persistent behaviour, which basically
means that the history of the past will “statistically” repeat in the future;
H < 1/2 stands for antipersistence, the opposite of persistence; H = 1/2 is
the pure random case.

Since its inception, several contributions dealing with the assessment of
the Hurst exponent in a number of very different contexts have appeared in
the literature; a complete list is too long to be mentioned here.

In detecting long-run dependence, river discharges are of particular in-
terest. In fact, they offer very specific time series with peculiar features.
First of all, they have periodicities, with different periods. Such a property



is due to the strong relationship between the river streamflow dynamics, the
weather and the precipitation, but also to the effects of the global warming
over the hydrogeological systems of the planet Earth (see, e.g., 77772777).

Under the point of view of the human activities, it is self-evident how the
fluctuations of the streamflow of any river affect (positively or negatively)
the socio-economic system of the surrounding areas. In this respect, the
Paglia river and the municipality of Orvieto represent very interesting cases
to treat. In fact, there is a high level of hydrogeological risk related to
Paglia’s floods in the Orvieto area: the last important flood took place on
November 12, 2012, causing injuries and huge damages to the local economy.
An effective plan to deal with this recurring phenomenon should necessarily
move from a deep knowledge of the dynamics of the river and a forecast of
when and how a flood will take place in the future.

From a purely technical viewpoint, we proceed by applying the Detrended
Fluctuation Analysis (DFA) — introduced by ? — which is classically ac-
knowledged to be a powerful tool for the estimation of the Hurst expo-
nent, whence long term persistence effects, mainly in the presence of non-
stationarities. The appeal of the DFA lies in its conceptualization. Indeed,
the underlying theoretical framework can be found in the theory of random
walks (see ?7). In such a context, time series are opportunely aggregated.
This reduces the noise level due to biases in measurements.

In the context of DFA applications, it is worth mentioning 7777,

As an ancillary analysis, we also consider the “validity” of the data
measured at Ponte dell’Adunata. We do not infirm its interest, of course,
but we wish to point some possible defects impairing a finer analysis as that
presented here. In fact, the subsequent discussion and conclusions might
be the first of this sort in the present context. For this purpose, and in
accordance with 7 observations of river streamflows in the USA, we check
if data fit Benford’s law (7).

In fact, such an empirical rule (on the logarithmic distribution of the
first digit in lengthy data) has been found to hold in a wide spectrum of

presence of some sort of data manipulation or mistakes in data collection
has to be debated.

The rest of the paper is organized as follows: in the next Section (Sect. 2)
we introduce the dataset and the methodologies. In Section 3 we present and
discuss the results. In the last Section (Sect. 4), we offer some concluding
remarks.

2 Data and methodologies

The Paglia river is an important right-side tributary of Tiber, the third
longest river in Italy. It is about 86km-long, with many tributaries along
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Figure 1: Streamflow (expressed in logyo (m?/s)) of the Paglia river mea-
sured at every half hour between November 2, 1992 and May 13, 2014. Ticks
on the x-axis identify the beginning of the years, except the the last tick that
indicates the last available observation.

its course. It is characterized by a very variable streamflow (see Table 1
and Figure 1) which gives Paglia a crucial role in determining the floods
of Tiber. Data, obtained from an hydrometer station run by the Umbria
regional authority, measure the streamflow (expressed in m3/s) of the Paglia
river at Ponte dell’Adunata, just downstream of the confluence of Chiani
river, a 42km-long left-side tributary of Paglia.

Because of the presence of many long measurement interruptions during
the first ten months of 1992, in our analysis we consider measurements
recorded at each half hour starting on November 2, 1992 (h12:30pm), until
May 13, 2014 (h11:30pm). There are still a few missing values in the selected
period (in 7 occurrences the interruption of the measurements lasted for
more than 2 days). Such missing values have been linearly interpolated on
the series expressed in logarithms.! The resulting series (plotted in logs in
Figure 1) includes 377,399 observations.

Data have been analyzed under several perspectives: first, we carry out
a graphical analysis of the main features of the streamflows.

Then, we estimate the spectrum of the daily averages, in order to assess
the presence of seasonal and non-seasonal periodicities.

For what concerns the estimation of the Hurst exponent, we perform a
detrended fluctuation analysis (DFA) over 90-day long rolling windows. At

'All computations have been carried out using R ver. 3.3.1 (?) and packages ben-
ford.analysis (7), fractal (?), ggplot2 (?), imputeT$S (?), moments (?), psd (?), xts (7).



Min. 1st Q. Median Mean 3rd Q. Max.
0.59 6.29 12.31 20.53 23.93 2794.00

o Skewness Kurtosis Date of Max. Date of Min. Data points
34.63 20.81 989.48 2012/11/12 1995/07/28 377399

Table 1: Main descriptive statistics of the Paglia river streamflow (m3/s)
as measured at Ponte dell’Adunata, near Orvieto (November 2, 1992 — May
13, 2014).

each iteration the window is moved forward by a 1-day step. For a more
intuitive visualization, when needed, windows will be numbered according
to a chronological criterion. Specifically, we start from window 1 — the
one at the beginning of the sample period. Then, we shift the window by
one day and add 1 to the windows counter at any shift. According to this
mechanism, window 1 is the one spanning days 1-90, window 2 spans days
2-91, window 3 insists on days 3-92, and so on. The Hurst exponent, H,
is estimated in each window, resulting in a series of 7,773 estimated values
of the Hurst exponent. In order to check the sensitivity of the results on
the window length, we repeat the same analysis using 180 and 400-day long
windows.

We also carry out a check for “data validity”. For this purpose, we adopt
the point of view of 7, who suggest that streamflow statistics of US rivers are
broadly consistent with Benford’s law. For this reason we check if the data
gathered for the Paglia river are also consistent with Benford’s law. This
part of the analysis is carried out on the observed data only, without any
imputation of missing values. In particular we carry out a first-two digits
test, which is more informative than the combination of both the first digit
and the second digit tests (see e.g. 7, especially Chapter 4).

Finally, we check if the observed data approximately follow a discrete
generalized Beta distribution (DGBD), typical of the output of complex
systems (7).

3 Results and discussion

The streamflow series expressed in logarithms shows several features of the
Paglia river fluctuations (see Figure 1). However, more information can
be gathered by looking at the basic monthly statistics of the data: it is
evident that the series exhibits some periodicity, visually two regimes: a
stationary one, representing the “normal” streamflow of the Paglia river, and
a peaked one, which captures the cases of floods. This is nicely exemplified
by displaying the monthly distribution of the water flow as provided in
Figure 2: significant variations are apparent. Indeed, the streamflow of the
river is more powerful in winter than in summer, and this is in line with the
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Figure 2: Distribution of the streamflow (log;, (m?/s)) of the Paglia river

by month.
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Figure 3: Evolution of monthly average streamflow (m?/s) of the Paglia
river. The black dashed line represents the yearly average.

standard precipitation cycle in Italy, which exhibits a periodicity associated
to the seasons. However, the highest streamflow peaks are all concentrated
in November, even if the median value of the streamflow in that month is
smaller than in the other winter months. This observation suggests that
the maximum intensity of precipitations in the area is historically located
in November, despite this month not being the most rainy one.

The evolution of the monthly averages is plotted in Figure 3. If the
median streamflow is considered instead of the average, the overall picture
remains substantially unchanged and is possibly even clearer (Figure 4).
A cyclical pattern is apparent from the data, with a cycle whose period is
about 5-7 years. This result suggests the existence of a relationship between
rivers streamflow fluctuations and the periodicity of the oscillations of El
Nifno, which is recurrent on irregular intervals with an average period of 3—4
years (see, e.g., 7?7). However, it is worth to point out that the observed
periodicities of these different phenomena do not perfectly match, indicating
that further investigations are needed for a confirmation of this hypothesis.
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Figure 4: Evolution of monthly median streamflow (m?3/s) of the Paglia
river. The black dashed line represents the yearly median.

Furthermore, such a periodicity is also broadly in accordance with that of
the North Atlantic Oscillations, whose fluctuations show a fairly regular
periodic behaviour over a time interval of 6-8 years (see, e.g., ?).

Equally interesting is the evolution of the monthly maxima, reported in
Figure 5, where a positive trend seems to exist in the recent annual maxima
of the streamflow. This means that the intensity of the streamflow maxima
has grown with respect to time in the last few years. This finding is in
line with the overall climate change, which represents a severe and debated
concern.

The rolling estimates of the Hurst exponent are plotted in Figure 6: at
first sight this figure seems to suggest the presence of frequent large oscil-
lations of the estimated values of the Hurst exponent in adjacent windows.
In fact, this is not the case and this impression is mainly due to the high
density of data points along the x-axis in the graph. A closer examination
of the estimated values of the Hurst exponent reveals that there are few rel-
atively large oscillations, related to an extreme event entering (or leaving)
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Figure 5: Evolution of monthly maxima (m?/s) of the Paglia river. The
black dashed line represents the yearly maximum.
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. Estimated Hurst exponent over 90, 180, and 400-day long rolling
. At each iteration the window is moved forward by a 1 day step. On
the x-axis is reported chronological order given to windows. The horizontal
red line is the average estimate of the Hurst exponent over all the windows.
The fourth (lower-right) panel focuses on a subset of windows centred on
the negative peak of the 400-day long windows estimates, corresponding to
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the estimation window. This effect is clearly visible in the fourth panel of
Figure 6 that focuses on a subset of windows in the neighbourhood of the
negative spike depicted in the 400-day long windows panel. Here it can be
seen that the value of the Hurst exponent is fairly stable until the data of
the flood of November 12, 2012 enter the estimation window: in coincidence
with the new data entering the window, the estimated value of the Hurst
exponent drops.

When considering 90-day long windows, 90% of the variations of the
estimates across adjacent windows belong to the interval (—0.043,0.046)
and about 3.6% of them are larger than 0.05 in absolute value, whereas
only 0.4% are larger than 0.1 (less than one third of the average value).
Furthermore, 90% of the differences across adjacent 180-day long windows
belong to the interval (—0.032,0.034) and less than 0.1% of the variations
are larger than 0.1 in absolute value: when 400-day windows are considered,
these values become (—0.023,0.022) and 0.03%, respectively (see Table 2).
Note also that the estimated values are more stable for longer windows, as
expected.

It is interesting also to observe that the average Hurst exponent over the
rolling windows is about 1/3 (see again Table 2 and Figure 6). This value
means that the series of the Paglia river streamflows is highly antipersistent.
By analogy with financial econometrics based on DFA and time evolution of
the Hurst exponent, this observation should lead to constructive risk assess-
ment measures, but an application or discussion of this forecasting process
falls outside the framework of the present paper. Uncertainty associated
with the estimates is small, as can be observed from Table 2.

The estimates of the Hurst exponent seem to show a cyclical pattern,
too. For this reason we carry out a spectral analysis of the series of the
estimated Hurst exponents (see Figure 7) using an adaptive, sine multitaper
power spectral density estimation method (7).

We are not now in the position to offer a definitive answer to this phe-
nomenon. The apparent periodicity of the estimated Hurst exponent is
probably influenced by the intrinsic features of the river streamflow: in
particular, we observe that 2-3 days is the time interval required for the
streamflow to return to the “normal” level preceding a peak, in the absence
of further atmospheric phenomena. This is well illustrated in Figure 8,
where the dynamics of the streamflow in the neighbourhood of a number of
peaks is compared: for ease of comparison, the peak heights are normalized
to have the same range. We conjecture that the nonlinear, fairly recurrent,
dynamics highlighted in Figure 8 may lay behind some of the observed pe-
riodicities of the Hurst exponent. This is not the only possible explanation,
of course, and we acknowledge that the influence of several factors affecting
the estimation of the Hurst exponent though DFA may be large and such
to determine possible periodicities in the rolling estimates. To the best of
our knowledge, a list of such factors should necessarily include the size of

11
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Figure 7: Estimated spectra of the series of the estimated Hurst exponents.
The grey areas represent spectral uncertainties for 95% coverage probability.
Peaks (from left to right) correspond to periodicities of about 12, 6, 3, and
2.5 days, respectively.
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normalized streamflow

days after peak

Figure 8: Comparison of the streamflow dynamics in the neighbourhood of a
number of peaks. The x-axis represent the distance from the peak expressed
in days. The y-axis is the streamflow, normalized to have the same range
across peaks.

the time window, the number of data points in the window, the position of
the windows on the time interval, the presence of heteroskedasticity in the
original data. The literature lists important contributions dealing with esti-
mation problems of the Hurst exponent and proposing methods beyond the
DFA (see, e.g., 7?) or with different tools like moving average techniques
(see, e.g., 7?7). Although this is beyond the scope of the present paper,
the observed behaviour of the spectrum of the Hurst exponent suggests to
carry out further investigations on the estimation procedure of the Hurst
exponent, possibly along the lines advocated in the contributions mentioned
above. At any rate, the order of magnitude of the Hurst exponent given by
the DFA is incontestable.

We want now to focus on a potential weakness in the data recording pro-
cess. The validity check of the data, implemented through the consistency
with Benford’s law, leads us to observe a substantial failure: data seem to vi-

14



Digits Distribution
Second Order Test

Digits Distribution

o _
o n
o
8 _
wn o _|
— <
o
g S g 8
w — w
o |
o |
o
0 o
—
o o il
10 21 32 43 54 65 76 87 98 10 21 32 43 54 65 76 87 98
Digits Digits
Chi-Squared Difference
]
8 _ X
Q X
X
kel
I o
g 8 o x X
=] n
o —
i X
L - X X
5 X x X
o X7 xX
g - x x
(2] X
X RO
o | B RS R RSRK
L

10 21 32 43 54 65 76 87 98
Digits
Figure 9: Benford’s law first-two digits tests carried out on streamflow data

(m3/s). Histograms represent the actual data distribution; the red solid
curve is the theoretical Benford distribution.

olate Benford’s law (see Figure 9). Recall that Benford’s law (BL) describes
the frequency distribution of leading digits in large data sets. In particu-
lar, Benford’s law on the first digit (BL1) (??) states that the distribution
of the first digit is more concentrated on smaller values: the digit ”1” has
the highest frequency, ”9” the lowest frequency. The first digit distribution
follows a logarithmic law:

P(d) = log; <1+(11>’ d=1,2,....,9, (1)
where P(d) is the probability that the first digit is equal to d in the data
set; log;y being the logarithm in base 10.

There is a reasonable interpretation of the outcome of the inconsistency
of the data with the regularity imposed by Benford’s law. Flows (m3/s)
are computed from water height, which is the really monitored quantity.
However, water height is recorded with one centimetre precision, so that
many repeated values are possible. In fact, the two most common values

15
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are repeated more than 10,000 times (see Table 3). The analysis repeated
on water heights (measured in centimetres) reveals that the distribution of
water heights does not conform to Benford’s law either (see Figure 10). In
fact, this is practically annoying when looking for streamflow fluctuations
in predictive analyses.

Finally, looking for other important data regularities, we argue that a
plot of the (log-)size against the rank of the river’s streamflow (see Figure 11)
suggests that this relation can be well approximated by a discrete generalized
Beta distribution (DGBD) of the form

AN +1—7)b
fr)=———";7" (2)
r
where r is the rank, N := max(r), and A, a, and b are parameters to

be estimated from the data.? This is indeed the case, and the R? of the

2Parameters can be estimated by Ordinary Least Squares from the model in logarithms.
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Figure 11: Rank-size relation of the Paglia river streamflow (data points are
represented in grey). The continuous curve is the fit of a discrete generalized
Beta distribution with (A, a,b, R?) = (163.117,0.596, 0.382, 0.986).

approximating function is R? ~ 0.986, confirming the “universality” of the
DGBD suggested in other fields of investigation (see, e.g., 7), particularly in
relation to complex phenomena characterized by the co-existence of many
subsystems whose interactions produce the observed outcome (?).

4 Conclusions

This paper presents the analysis of the Paglia river streamflow. The dataset
used is of large size: the considered series has 30-minutes period over a time-
span of more than 22 years. The data series is antipersistent, with an average
Hurst exponent of about 1/3. This gives a precise information on how one
can do forecast on the overflow of the considered river. Furthermore, we show
that in recent years there has been an increasing trend in the maxima of the
river streamflows, and a periodicity which broadly suggests a connection of
the streamflows with El Nifio and the North Atlantic Oscillations. However,
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m3/s freq
5.9833 10061
5.6859 10014

6.2890 9940
5.3968 9086
6.6030 8263
5.1161 7978
4.8436 6784
6.9253 6698
7.9420 6361
7.5948 5881

Table 3: Frequencies of the ten most common values.

more accurate measurements of the streamflow could be useful in having
a more consistent dataset. We also show that the Paglia river streamflow
is well represented by a discrete generalized beta distribution, congruent
with the observed river discharge being the result of the interaction of many
complex subsystems.
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