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Smart Green Charging Scheme of Centralized Electric Vehicle Stations 

Abstract: This paper presses a smart charging decision-making criterion that significantly 

contributes in enhancing the scheduling of the electric vehicles (EVs) during the charging process. 

The proposed criterion aims to optimize the charging time, select the charging methodology either 

DC constant current constant voltage (DC-CCCV) or DC multi-stage constant currents (DC-

MSCC), maximize the charging capacity as well as minimize the queuing delay per EV, especially 

during peak hours. The decision-making algorithms have been developed by utilizing metaheuristic 

algorithms including the Genetic Algorithm (GA) and Water Cycle Optimization Algorithm 

(WCOA). The utility of the proposed models has been investigated while considering the Mixed 

Integer Linear Programming (MILP) as a benchmark. Furthermore, the proposed models are seeded 

using the Monte Carlo simulation technique by estimating the EVs arriving density to the EVS 

across the day. WCOA has shown an overall reduction of 13% and 8.5% in the total charging time 

while referring to MILP and GA respectively.   

Keywords: Electric Vehicles Station (EVS); PV-Grid integrated supply; Water Cycle Optimization 

technique (WCOT); Electric Vehicles (EV) charging time; Levelized Cost of Energy (LCOE) 

Introduction 

Recently, the projected size of the global electric vehicles (EVs) fleet is showing a booming 

trend, seeking a green sustainable eco-environment (Domínguez-Navarro et al. 2019; Amjad et al. 

2018). Towards more sustainability, the integration of renewable energy sources in charging 

electrical vehicles is demonstrated in the literature (Domínguez-Navarro et al. 2019).  Principally, 

EVs can be charged either in a centralized or decentralized manner (Amjad et al. 2018). For 

Decentralized charging, where AC is the only available choice, long charging time, overnight, is 

usually needed (Amjad et al. 2018). Consequently, researchers are tending to implement fast-

charging centralized stations supplied from the utility grid and renewable energy resources to DC 

fast charge the EVs (Domínguez-Navarro et al. 2019). 

For optimized charging performance in centralized stations, three case studies of feeding 

the electric vehicle stations (EVSs) based on the Monte Carlo method and GA have been applied 

using an objective function targeting maximum net present value (NPV) in (Domínguez-Navarro 

et al. 2019). The EVS is either supplied from the grid or the renewable energy sources or a mix 

between both of them. However, the contribution percentages of the renewable energy sources and 



the grid have not been stated in the third case. The optimal charging schedule of battery-swapping 

stations based on genetic and particle swarm optimization algorithms has been presented in (Wu 

et al. 2017). The targeted objective function has been considered as the electricity cost, the batteries 

used from the stock, and the potential damage due to various charging rates and implemented on 

four different battery charging scenarios: super, fast, normal, and slow chargers. In (Mehrjerdi and 

Hemmati 2020) the charging station has been supplied from the utility grid, wind energy system, 

and energy storage system based on stochastic mixed-integer programming. The operational sizing 

of the storage system and the charging time of EVs have been optimized. A mixed-integer 

nonlinear problem formulated the energy management system (EMS) of the utility grid with an 

EVS was introduced in (Ahmad et al. 2019). EMS is executed in balancing and forecasting the 

load demand with the generated power either from the utility grid or the PV or vehicle to vehicle 

(V2V) technology. However, the utilization of simple linear programming techniques in the EV 

decision algorithm has not shown the expected robustness in capturing the global minimum of a 

given fitness function as reported in (Moghaddam et al. 2017; Ki et al. 2018). In (Huang and 

Kockelman 2020) genetic algorithm has been implemented to identify the profit-maximizing 

station placement and design in a congestion location.  The model feedbacked the travelers by the 

optimum route choices under elastic demand and the charging price elasticity for the EV drivers. 

In (Chen et al. 2016) the authors proposed a framework for optimal routing and charging of the 

EVs based on minimizing the travel time and distance and maximizing the energy efficiency by 

reducing fuel and the charging cost. In (Korkas et al. 2017) approximate dynamic programming 

(ADP) method has been used to tackle a nearly-optimal control approach for charging and 

discharging of the EVs. The authors (Liang et al. 2020) presented joint charging scheduling, order 

dispatching, and EV rebalancing to a position. 

Multi-charging options including AC charging, DC fast charging, and battery swapping 

has been presented in (Moghaddam et al. 2017). The decision-making options were implemented 

throughout the Ant Colony Optimization Algorithm (ACOA). The algorithm targeted the reduction 

of the travel time, the charging time, and the charging cost. A queue mapping of EVs based on the 

Markov decision process (MDP) was declared in (Zhang et al. 2013). Optimal scheduling was 

achieved based on the EV arrival time, the intermittency of renewable energy, the grid power price, 

and the charging energy of the EVs (Zhang et al. 2013). In (Ucer et al. 2019) DC-fast charging 

station based on the constant current-constant voltage method has been presented using Monte 



Carlo analysis to quantify the effect of EV loading on the station. However, the charge acceptance 

curves of the EV should be implemented before the charging process. The charge acceptance 

curves used to limit the power used in charging the EV and have been categorized into three main 

categories (24 kWh, 60 kWh, and 85 kWh). In (Said and Mouftah 2019), the Peak-load 

management (PLM) scheme has been used to schedule EVs for charging and discharging. The EV 

supply equipment selection model has been investigated to guide EVs to the best supply station 

corresponding to the power demand, timing, and location. In (Zhang, You, and Cai 2018) the 

number of EVs that leave the EVS without charging has been minimized, with an optimal pricing 

approach has been applied in the station. Long term profit of EVS owner and minimizing delay 

time of EVs have been discussed in (Rabiee, Ghiasian, and Chermahini 2018). EVS owner has the 

control to set the charging process of queues. The Joint Admission and Pricing (JoAP) mechanism 

has been applied in (Wang et al. 2018). JoAP optimized the admission rate control, electricity 

price, and EVs arrival rate. However, the impact of the efficiency of the charging station including 

integration between renewable energy sources and distributed energy generations were not 

declared. While various attempts have been introduced in the literature to develop an EVS 

decision-making algorithm, a limitation in considering a constant partial charging capacity was 

always reported with a limited EV database as well. In (Gupta, Rana, and Mishra 2020) a 

scheduling method of the EV users while traveling on a highway has been proposed based on the 

priority selection using their state of charge (SoC) data. An orderly charging scheduling algorithm 

based on user bidding has been declared in (Cheng et al. 2020). The charging priority has been 

determined according to the user bid and the charging status of the EV.    

This paper presses novel smart green charging decision-making algorithms to be utilized 

in the electric vehicle charging stations. The estimated number of EVs entering the station is 

simulated using the sequential Monte Carlo simulation technique. The developed criterion is 

capable of scheduling the EVs entering the centralized station through a fitness function with 

variable weighting factors. The novelty of the proposed centralized approach is based on 

minimizing the total interval charging time of the entire station, determining the targeted partial 

charging capacity, and classifying the charging methodology for each EV. The effectiveness of the 

metaheuristic algorithms has been addressed with respect to linear programming showing the 

proposed model superiority.  



The system under Feasibility Study 

The proposed EVS, under investigation, is chosen to be localized in El-Sherouk City, Egypt 

(30,07,03, N-31,36,20, E). EVS under feasibility consists of a photovoltaic (PV) system with a 

maximum power point tracking system (MPPT), Batteries, Utility grid, DC-AC inverter, net 

metering, and DC-DC converter to charge electric vehicles as shown in Fig. 1. The EVS composes 

of ten DC charging points which can be used for DC-constant current constant voltage (DC-

CCCV) or DC-multi-stage charging current (DC-MSCC) charging methodologies and powered 

only from the PV system in the morning while in the evening the station pumped from the grid. 

The total energy consumed of the proposed electric vehicle station has been assumed during the 

day, based on the study in (Reddi et al. 2016), as presented in Fig. 2.  

 

Figure 1. A schematic for the proposed electric vehicle station localized in El-Sherouk City, 

Egypt. 

 



 

Figure 2. Energy consumed by the proposed electric vehicle station during the day 

In this paper, the number of EVs entering the EVS has been analyzed through the sequential Monte 

Carlo simulation technique (Domínguez-Navarro et al. 2019; Vorobjovs, Berzma, and Zirovecka 

2018). This technique presents the flow of the electric vehicles that arrive at the station with a 

finite number of charging points (ten points). The sequential Monte Carlo simulation technique 

has been iterated for ten successive runs where the average number of EVs has been observed to 

be 15 EVs at peak working hour (5:00 pm) as shown in Fig. 3. The estimated number of vehicles 

at peak hour is consistent with corresponding systems in literature as in (Ucer et al. 2019).  

 

Figure 3. The Monte Carlo technique is used to predict the average number of EVs entering 

the EVS across the day, samples of ten successive runs are plotted. 
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To study the feasibility of the proposed system, 15 various cars are used to emulate the different 

charging scenarios in the station with a randomly chosen initial state of charge per each, while the 

energy required for full capacity has been estimated using each EV full capacity, initial SOC, and 

voltage (c.f. Table 1). The DC-CCCV charging time has been captured from the datasheet of each 

corresponding EV. However, the DC-MSCC charging time has been estimated by the multi-stage 

charging current methodology based on Cuckoo Optimization Algorithm (COA) implemented in 

(Makeen, Ghali, and Memon 2020b; Makeen, Ghali, and Memon 2020a).  

TABLE 1. Proposed EVs with various charging methodologies (https://ev-

database.org/car/1178/SEAT-el-Born#charge-table Last accsssed: 18/04/2020)  

Car_# Car type 

Charging Methodology 
Energy 

(kWh) 

Remaini

ng SOC 

(%) 

DC-CCCV 

(min) 

DC-MSCC 

(min) 

Car_1 
Mercedes EQC 400 (4 

matic) 
30 23.265 80 20 

Car_2 
CHEVROLET SPARK 

(2016) 
20 15.51 19 15 

Car_3 Ford Focus (2013) 30 23.265 23 16 

Car_4 Fiat 500 (2018) 30 23.265 24 18 

Car_5 Nissan leaf (2016) 30 23.265 24 21 

Car_6 E-Golf (2018) 40 31.02 24 10 

Car_7 SEAT-el-Born (2019) 30 23.265 62 8 

Car_8 Mitsubishi I-Mi (2012) 20 15.51 16 23 

Car_9 Kia Soul (2015) 33 25.592 27 25 

Car_10 BMW i3 (2014) 30 23.265 18.8 9 

Car_11 Toyota RAv2 (2014) 30 23.265 8.8 12 

Car_12 Honda Clarity (2020) 35 27.143 17 11 

Car_13 
Mercedes EQC 400 (4 

matic) 
30 23.265 80 9 

Car_14 
CHEVROLET SPARK 

(2016) 
20 15.51 19 10 



Car_15 Ford Focus (2013) 30 23.265 23 8 

Electrical Vehicle Station Smart Charging Strategy 

Levelized Cost of Energy (LCOE) 

In general, to start calculating the LCOE, PV sizing calculations of the energy demand in kWh 

presented by the load profile in Fig. 2, have to be determined and multiplied by a safety factor 

from 20% to 30% depending upon the topology of the system, either a stand-alone or grid-

connected to compensate the systems losses. As a first step, the overall PV system capacity is 

determined based on the peak sun hours of the desired location, an average of 5.8 hours is used in 

the case of Egypt. Consequently, the number of panels was calculated using: 

NP =  
EL × (1 + losses %)

PP × PSH
 

(1) 

where NP is the number of required panels, EL is the load energy consumption (Wh/day), Losses 

% is the overall system losses, PP is the panel power (W) and PSH is peak sun hour (h/day). 

Following that, the needed number of inverters/converters is calculated in terms of the 

overall system power as well as the rated power per selected inverter/converter using: 

Ninv =
(EL × (1 + losses %)/Tw)

Pinv
 

(2) 

where, Ninv is the number of inverters/converters, Pinv rated power per each inverter (kW), Tw is 

the charging time in h/day.  

Finally, the charging bank of storage batteries is estimated for the fourth scenario where a 

fully standalone system is proposed by: 

  EL × (1 + losses %) × (N + 1) ×
1

DOD
×

1

ηB
×

1

VB
×

1

Ah
= NB 

(3) 

where  NB is the number of storage batteries, DOD is the depth of discharge, ηB  is battery 

efficiency, Ah is the battery ampere-hour and VB is battery voltage. In order to evaluate the amount 

of excess energy pumped to the grid during the morning time, the following equation is involved:   

EE =
(EP) − (EC)

(EP)
 × 100 

(4) 



where, EE is the percentage of excess energy per year, (EP) is the energy supplied per year and 

(EC) is the energy consumption per year. The PV system specifications are listed in Table 2. 

TABLE 2. The PV system specifications 

Project location Cairo assuming (PSH) 5.8 h 

PV Panel specification 0.335 kW 

Length 1.988 m 

Width 0.992 m 

Vmp 34.7 V 

Imp 7.12 A 

Clearance shadowing area 0.3 % 

Price 5450 LE/kW 

Inverter specification for PV off-grid load (5kW) 13965 LE 

Structure price 1700 LE/kW 

Connection price 810 LE/kW 

Battery no of charging cycle 4000 Cycles 

Battery specification (12 v/ 200 AH) 

200 Ah 

12 V 

0.2 DOD% 

4764.42 LE 

Number of cloudy days 2.5 

Total energy consumption per day 
1244.880274 

kW/day 

Total solar PV power  214.6345299 kW 

No. of PV panels used  641 

Area of the system  1643.347597 m2 

No. of inverters 7 

Capital cost  2208290.858 LE 

Capital cost for Morning DC load  1708490.858 LE 



To engage the economic side in the current study, the Levelized Cost of Energy (LCOE) for the 

different scenarios (ε) has been calculated by: 

𝐿𝐶𝑂𝐸 =
CC +  ∑( RC − ES)

∑EP
 

(5) 

where CC is the capital cost (LE), RC is the Running cost and ES is the Energy sold to the grid in 

(LE). 

The proposed EVS operates as the DC charging points in the morning will be powered only 

from the PV system while in the evening the station will be pumped from the grid through the 

AC/DC converter. The LCOE for the DC-CCCV charging methodology during the morning and 

evening is assumed to be 0.75 LE and 4.84 LE respectively. Furthermore, the LCOE of the DC-

MSCC charging methodology used in this paper has been estimated to be 20% higher than the DC-

CCCV methodology due to the controller used to acquire the multi-stage charging currents with 

their interval times based on the COA initial introduced in our previous work in (Makeen, Ghali, 

and Memon 2020b).  

Charging Capacity (𝑪𝒄𝒉) 

The desired charging capacity for each EV is depending on the charging cost of each charging 

methodology and its current SOC As given in:  

𝐶𝑐ℎ𝜆
= 𝐿𝐶𝑂𝐸 × (𝛿 − 𝑆𝑂𝐶𝜆) × E (6) 

Where 𝛿 is the coefficient of partial charging capacity which can vary from the SOC of current 

state to a range of targeted SOC varies from 85% to 100%, and E is the total capacity of the 

corresponding EV.  

Total Charging Time (𝑻𝑻) 

Each EV has a different total charging time in the EVS due to the variable charging alternative 

DC-CCCV or DC-MSCC and the queuing time to reach the charging point. The total charging 

time for each EV in the EVS can be expressed as  

𝑇𝑇𝜆
= 𝑇𝑃𝜆

+ 𝑇𝐶ℎ𝜆
+ 𝑇𝑊𝜆

 (7) 



Where 𝑇𝑃𝜆
 is the parking time of each EV in the station and has been assumed to be constant of 3 

mins,  𝑇𝐶ℎ𝜆
 is the charging time of each EV according to the charging option DC-CCCV or DC-

MSCC and 𝑇𝑊𝜆
 is the total waiting time in the queue to be charged from the charging point.  

 Decision Making Criteria  

In this section, a decision-making criterion is applied to optimize the total charging time 

corresponding to the charging methodology and the optimum coefficient of partial charging 

capacity of each EV based on a comparison between the Mixed Integer Linear Programming 

(MILP) and metaheuristic algorithms, including Genetic Algorithm (GA) and Water Cycle 

Optimization Algorithm (WCOA). The coming two subsections demonstrate the proposed EVS 

decision-making algorithm based on MILP and metaheuristic algorithms respectively.    

Mixed Integer Linear Programming (MILP) 

MILP is considered as a mathematical optimization process with a condition that all the variables 

are integers (Trespalacios and Grossmann 2014). The optimum charging methodology either DC-

CCCV or DC-MSCC and overall charging time corresponding to the maximum preferable capacity 

corresponding to the current SOC of each EVs have been integrated as a linear equation as follow 

ζ𝜆|𝐷𝐶−𝐶𝐶𝐶𝑉,
 𝐷𝐶−𝑀𝑆𝐶𝐶

=
β1𝜌𝑛𝑜𝑟.𝜆

+ β2(𝑇𝑇𝜆
)

𝑛𝑜𝑟.𝜆
+ β3(𝐶𝑐ℎ𝜆

)
𝑛𝑜𝑟.𝜆

3
 (8) 

∑ βi

3

i=1

= 3, 𝜆 = 1,2, … . . , 15 (9) 

Where 𝜆 is an incremental counter for the EVs entering the station at the same time and it varies 

from 1 to 15, β is the weighting factor of the corresponding elements and 𝜌 is the EV arriving 

density. Herein, all parameters have been normalized with respect to the maximum as indicated by 

the subscript 𝑛𝑜𝑟.  

Metaheuristic Algorithms 

In the previous section, the proposed smart charging scheme has been formulated as a classical 

optimization problem. However, the optimization solution is hard to be implemented through 

linear programming, so metaheuristic algorithms are recommended to solve such research 



problems (Moghaddam et al. 2017; Ki et al. 2018). Various algorithms are used to solve 

optimization problems, which guarantee to obtain the global optimal solution for the studied 

system. Recently, researchers tend to use a meta-heuristic algorithm based on natural inspiration. 

The algorithms combine rules and randomness of the natural phenomena (Shi et al. 2016; Makeen 

et al. 2018). 

The MILP which is presented in eq. (8) has been updated to be more precise in ranking the 

EVs and ensure the optimum solution of fast charging the EV with its corresponding current and 

targeted SOC as   

ζ𝜆|𝐷𝐶−𝐶𝐶𝐶𝑉,
 𝐷𝐶−𝑀𝑆𝐶𝐶

= √𝜌β1 × (𝑇𝑇𝜆
)

𝑛𝑜𝑟.𝜆

β2
× (𝐶𝑐ℎ𝜆

)
𝑛𝑜𝑟.𝜆

β33
 (10) 

The proposed fitness function is complex in nature and quite difficult to solve because there 

is more than one local optimum in the problem and multiple constraints have to be satisfied.  

Although the gradient search may be unstable for solving such problems to avoid getting trapped 

in local optima.  So, in this paper two metaheuristic algorithms, GA and WCOA have been 

implemented to have the optimum charging scheme efficiency, accuracy, overall charging time as 

well as queuing delay of the EVs. The results of the metaheuristic algorithms have been compared 

with each other and with the MILP. The proposed MILP and metaheuristic algorithms (GA and 

WCOA) are targeting to minimize the objective functions in eq. (8) and eq. (10) respectively. The 

decision-making criteria are based on the random selection of the parameters within the permitted 

constraints.          

GA is considered as the reference of the metaheuristic algorithms as it is inspired by the 

biological evolution process of computational data and the mechanism of natural genetics selection 

(Abdel-aal 2012; Dasgupta and Michalewicz 2013).  GA is composed of the initial population, 

fitness evaluation function, reproduction approach, crossover operator, and mutation operator. 

These operators result in an optimum solution using a fitness function, as it maps the natural 

objective function and the results have been compared with the WCOA. 

WCOA is inspired by the nature of the water cycle based on the flow of the rivers and 

streams toward the sea.  This algorithm ensured more precise performance compared with other 

alternating algorithms, this can be attributed to its efficiency, accuracy in terms of the number of 



function evaluations (Eskandar et al. 2012; Shi et al. 2016). The deployment of WCOT consisting 

of the creation of the initial population, flowing of streams to the rivers and sea, the evaporation 

process, the raining process, and the constraints of the algorithm have been demonstrated in Fig. 

4. 

 

 

Figure 4. The flowchart for the Water Cycle Optimization Technique (WCOT) (Eskandar et 

al. 2012). 



Results and Discussion  

In this section, the comparison between the MILP, GA, and WCOA has been investigated to ensure 

the optimum charging ranking of 15 EVs entering the station at the same time as the procedures in 

Fig.5. The proposed scheduling is depending on selecting the charging methodology, optimizing 

the charging capacity within an acceptable range from 85% to 100% of the total capacity of the 

battery, and minimizing the total charging time in the EVS.   

 

Figure 5. The illustrative flowchart of the proposed decision-making criteria 

The results of the proposed optimizing algorithms are depending on the charging methodology, 

coefficient of partial charging capacity, and the density coefficient of the station. The scheduling 

of the EVs in the charging station has been presented in Fig. 6 where the methodology used in 

charging the EV, the partial charging capacity, and the corresponding charging point for each EV 

have been introduced.  



It is observed that the total charging time of the proposed 15 EVs using MILP, GA, and 

WCOA is 51.3 mins, 48.6 mins, and 44.5 mins, respectively. MILP is considered as the lowest 

efficient algorithm used to solve such an optimization problem. This shows high consistency with 

the previously reported data in the literature, concerning the inapplicability of linear programming 

techniques in EV decision-making algorithms, the impossibility of considering nonlinear effects, 

and the risk of the high dimensionality of the problems in comparison with other advanced 

optimization techniques (Moghaddam et al. 2017; Ki et al. 2018; Urbanucci 2018). This is 

quantitatively attributed to the fact that 40% of the EV has chosen DC-CCCV as a charging 

alternative in MILP, while 60 % and 73% of EVs have chosen DC-CCCV in WCOA and GA, 

respectively. Principally, this observation should inflate GA and WCOA total charging time in 

comparison with MLIP, as the average charging time for DC-CCCV is significantly higher than 

that of DC-MSCC. However, the impact of both the queuing delay and the partial chagrining 

capacity coefficient influences the performance of both GA and WCOA over the MILP. It is easily 

observed that the metaheuristic algorithms recorded dynamic partial charging coefficient, 

depending on the EV initial parameters, while a maximum partial charging coefficient is always 

observed in the MILP model.    

On the other hand, the observed results, while considering the efficiency of the WCOA 

against GA and MILP, emphasizes the attractiveness of the suggested model in handling the 

optimization problem under study. The obtained results show that the proposed algorithm offers 

better solutions than other optimizers considered in this work. Although, WCOA proved its 

effectiveness in different challenging benchmark optimization problems with lots of local 

optimization points investigated in different research areas as stated in (Dizangian and Hooshyari 

2017; Makeen et al. 2018; Eskandar et al. 2012) in addition to its efficiency in terms of the number 

of function evaluations (computational cost) for the considered nonconvex problem.  

Besides, the WCOA ensured a speed computational time response where only 2.67 secs 

have been preordained to ensure the optimum combination of the EV’s charging interval time till 

leaving the station, the targeted partial/full charging capacity, and the appropriate charging 

methodology. However, the GA and MILP spent 2.9 and 3.168 secs respectively to find the 

optimum combination from their perspective.      



 

(a) 

 

(b) 

MSCC 

CCCV 

MSCC 

CCCV 



 

(c) 

Figure 6. EVS smart charging scheme of Mixed Integer Linear Programming (MILP), 

Genetic Algorithm (GA), and Water Cycle Optimization Technique (WCOT) respectively.  

Conclusion  

Green and sustainable electrification for the automation industry is considered as a proactive model 

to minimize global pollution. However, providing optimum charging time in the centralized 

stations is still missing. In this paper, we highlighted the utilization of an integrated 

Photovoltaic/grid scenario to provide sustainable energy for an electric vehicle station. A decision-

making criterion based on a multi-objective function has been presented to schedule the EVs 

charging scheme seeking minimum total charging interval time of the centralized station, selecting 

the appropriate charging methodology (CCCV or MSCC), and the targeted partial/full charging 

capacity for each EV that satisfies long lifespan of the battery. Three optimizers have been 

investigated by utilizing the mixed-integer linear programming and metaheuristic algorithms (GA 

and WCOA). It was observed that the metaheuristic algorithms, specifically the water cycle 

optimization algorithm, have reported the minimum total charging time with a 13% reduction in 

comparison with the MILP algorithm. Additionally, metaheuristic algorithms have shown an 

interesting capability in optimizing the partial charging capacity coefficient in terms of the initial 

EV parameters. Finally, the WCOA has glowed up as a potential optimizer in terms of the 

MSCC 

CCCV 



computational cost and time response against other introduced models, while recording the 

minimum charging time.  

The current optimization model has been tested on a limited number of EVs due to the 

manually structured databased used for EVs, however in order to examine the model performance 

with increasing the number of EVs, a more advanced artificial model with a database management 

system can be used. Machine learning, as well as deep learning, may be utilized in optimizing such 

EV optimization problem. the authors consider such optimizer as the future extension of the current 

work.      
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