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1 INTRODUCTION   

 

This paper describes spatial Fourier transform method which is based on calculation of complex 

pressure distributions on two parallel surfaces and decomposing the complex pressure distributions 

into plane-wave components by using two-dimensional spatial Fourier transform which is used to 

separate the incident and reflected plane wave components. Johnson-Champoux-Allard model is 

utilized to predict effective density and bulk modulus of the air in the material, which are used to 

calculate wave number and characteristic impedance. Consequently, they are used to determine 

reflection coefficient of the porous materials at a range of angle of incidence.     

 

2 THEORY OF SPATIAL FOURIER TRNASFORM  

2.1 Reflection coefficient   

A material with an infinite thickness is considered in this work. The reflection coefficient of 

surface of the test material at a given angle is determined using following equation [1, 2]. 

 

                                     𝐶𝑟(𝑘𝑟) =
𝑍1 𝑐𝑜𝑠 𝜃−𝑍0[1−(𝑘0/𝑘1)2 𝑠𝑖𝑛2 𝜃]1/2

𝑍1 𝑐𝑜𝑠 𝜃+𝑍0[1−(𝑘0/𝑘1)2 𝑠𝑖𝑛2 𝜃]1/2,                   (1)    

 

Where 𝐶𝑟(𝑘𝑟) is the reflection coefficient of the surface at an angle of incidence, Z1 is the 

characteristic impedance in the test material, k1 is the complex wave number in the test materials, 

𝑘𝑟 = 𝑘0 𝑠𝑖𝑛 𝜃,  Z0 is the characteristic impedance of air, and k0 is the wave number of air, and 𝜃 is 

the angle of incidence. 

The characteristic impedance and the complex wave number in the test materials are calculated 

using Jonhson-Champoux-Allard (JCA) model [3], see appendixes for more information.   

 

2.2 Complex sound pressure distribution   

A monopole sound source is located at a point (0,0, z0) above the centre of the test material. The 

complex pressure distribution of this monopole source at a point (r, z) could be calculated using 

the following equation.  

𝑃(𝑟, 𝑧) = 𝑒𝑥𝑝( 𝑖𝑘0𝑅1)/4𝜋𝑅1 + ∫ 𝐶𝑟(𝑘𝑟)𝑖
𝑒𝑥𝑝[𝑖𝑘𝑧(𝑧0+𝑧)]

4𝜋𝑘𝑧

∞

0
x𝐽0(𝑟𝑘𝑟)𝑘𝑟𝑑𝑘𝑟                    (2) 

 

Where 𝑟 = (𝑥2 + 𝑦2)1/2, 1R  is the length of the direct path, 𝑅1 = [𝑟2 + (𝑧0 − 𝑧)2]1/2, 𝑘𝑟 =

(𝑘𝑥
2 + 𝑘𝑦

2)
1

2, kx and ky are the wave vectors in x and y direction respectively, kz is the wave vector 

in z direction, J0 is the Bessel function of the first kind for order 0.   
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The complex pressure distribution over a surface of the material given in equation 2 is numerically 

calculated from repeated application of the trapezoidal integration formula [4]. 

 

3 THEORETICAL RESULTS  

A sound source was assumed to be located at 200mm height above the centre of the material. Two 

circular planes with a radius of 1000mm and with heights of 10mm and 30mm are considered for 

calculations in this work. Complex sound pressure that was applied to the surface of the material 

at 1000 Hz is given in Figure 1. Complex sound pressure reduces with moving towards outer of 

the circular planes.   

The spatial spectrum of the complex sound pressure is shown in Figure 2. Spatial spectrum 

becomes smoother when kr/k0 ratio is higher than 1.2 while it fluctuates when kr/k0 ratio is lower 

than 1.2. 

 
 

Figure 1: Complex sound pressure distribution on a plane versus radial distance. 

 
Figure 2: Spatial spectrum of the complex pressure distribution. 
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The reflection coefficients obtained from equation (1) are shown in Figure 3a and Figure 3b for 

different flow resistance values of 5460 Pa/m2.s and 100 Pa/m2.s, respectively. The discrepancy is 

attributed to the fact that the reduction of the sound pressure towards outer of surface is slower for 

material with higher flow resistance value.  

 

 
Figure 3a: Reflection coefficient versus angle of incidence for flow resistance value of 5460 

Pa/m2.s at 1000 Hz. 

 
Figure 3b: Reflection coefficient versus angle of incidence for flow resistance value of 100 

Pa/m2.s at 1000 Hz. 

4 CONCLUSION 

A spatial Fourier transform method is used to determine the reflection coefficient at oblique angles 

of incidence. The complex parameters such as wave number and characteristic impedance are 

predicted using Johnson-Champoux-Allard model.  
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Appendix: Summary of the equivalent formulation for the effective density and the bulk 

modulus calculations.  

 

Complex Wave number  

𝑘 = 𝜔√
𝜌

𝐾
 

Where 𝜌 is the effective density, K is the bulk modulus of the air. 

Surface impedance  

𝑍 = −𝑗
𝑍𝑐

∅
𝑐𝑜𝑡𝑔 𝑘𝑑 

 

Where d is the thickness of the sample, 𝑍𝑐 is the Characteristic Impedance and given by 𝑍𝑐 =

√𝜌𝐾, and ∅ is the porosity.  

 

Effective density 

 

𝜌 = 𝛼∞𝜌0 [1 +
𝜎∅

𝑗𝜔𝛼∞𝜌0
𝐺𝑗(𝜔)] 

 

Bulk Modulus 

𝐾 = 𝛾𝑃0 [𝛾 − (𝛾 − 1) [1 +
𝜎′∅

𝑗𝐵2𝜔𝛼∞𝜌0
𝐺𝑗

′(𝐵2𝜔)]

−1

]⁄  

 

𝐺𝑗(𝜔) = √1 +
4𝑗𝛼∞

2 𝜂𝜌0𝜔

(𝜎⋀∅)2
 

𝐺𝑗
′(𝐵2𝜔) = √1 +

4𝑗𝛼∞
2 𝜂𝜌0𝜔𝐵2

(𝜎′⋀′∅)2
 

Characteristic dimension for viscous forces 
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⋀ =
1

𝑐
√

8𝛼∞𝜂

𝜎∅
 

Characteristic dimension for  

⋀′ =
1

𝑐′
√

8𝛼∞𝜂

𝜎∅
 

 

𝛼∞is the tortuosity given by 𝛼∞ = 1.025 + 0.864 cos2(𝜃) 

𝜎 is the flow resistivity of the material, 

∅is the porosity of the material, 

𝜂 is the viscosity of the air,  

𝜌0is the density of the air. 

𝜔is the angular frequency, 

𝛾 is the ratio of the specific heats (1.4 for air),  

𝑃0 is the atmospheric pressure of air, 1.0132 x 105 Pa  

B2 is the Prandtl number and given by 𝜂𝛾𝑐𝑣/𝐾. It is around 0.71 at 18oC. 

𝑐𝑣is the specific heats per unit mass at constant volume, 𝐾is the thermal conductivity.  

c and c’ are the coefficients that are used to fit measured and predicted values the effective density 

and the Bulk Modulus.  


