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Introduction

Cayley map well known for rotations, SO(3).

Want to extend this to the group of rigid body
motions SE(3).

Close connection with linear line complexes.
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The Cayley map for SO(3)

Let A be a 3 × 3 anti-symmetric matrix, then the
Cayley map is defined as,

Cay(A) = (I3 + A)(I3 − A)−1 = R

It is a straightforward exercise to show that R is a
rotation matrix.
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The inverse Cayley map for SO(3)

Not every rotation occurs in this way, the Cayley
map is not onto.
Rearranging the previous equation gives,

A = (R + I3)
−1(R − I3) = Cay−1(R)

Can’t be solved if (R + I3) is singular, that is if
rotation angle is ±π.

Cayley map very similar to exponential map—a
map from the Lie algebra of the group to the
group itself.
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The Exponential map

For any 3 × 3 antisymmetric matrix Ω we have,

eΩ = I3 + Ω +
Ω2

2!
+

Ω3

3!
+ · · · +

Ωn

n!
+ · · ·

which can be abbreviated to the Rodrigues
formula using the cubic relation satisfied by the
anti-symmetric matrices,

eΩ = I3 +
1

θ
sin θΩ +

1

θ2
(1 − cos θ)Ω2

where Tr(Ω2) = −2θ2.
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Formula for the Cayley map

Easy to produce Rodrigues like formulas for the
Cayley map, since anti-symmetric matrix A also
satisfies cubic relation.

Cay(A) = I3 +
2

1 + λ2
A +

2

1 + λ2
A2

where Tr(A2) = −2λ2.

Also the inverse Cayley map can be written,

Cay−1(R) = A =
1

1 + Tr(R)
(R − RT )
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Comparison with the Exponential

Now we can compare the Cayley map with the
exponential map,

Cay−1(eΩ) = A =
sin θ

θ(1 + cos θ)
Ω

so A determines rotation axis (like Ω).
For exponential, θ is rotation angle. Comparing
normalised matrices (1/λ)A = (1/θ)Ω,

λ =
sin θ

(1 + cos θ)
= tan

θ

2
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A Cayley map for SE(3)

Use homogeneous rep. of SE(3), group
elements are 4 × 4 matrices,

M =

(

R t

0 1

)

,

where R a rotation matrix and t a translation
vector. Corresponding Lie algebra elements or
twists (screws),

S =

(

A u

0 0

)

,

A — 3 × 3, anti-symmetric, u — 3-vector. IFToMM June 2007 – p.8/21



A Cayley map for SE(3) (cont.)

Simply extend definition above,

Cay4(S) = (I4 − S)−1(I4 + S),

can show this is well defined etc.
Rodriguies formula,

Cay4(S) = I4 + 2S +
2

1 + λ2
S2 +

2

1 + λ2
S3

where, λ2 = −(1/2) Tr(A2) = −(1/2) Tr(S2).
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Inverse of the Cayley map

Inverse of this Cayley map easy to compute.

Cay−1

4 (M) =

(

Cay−1(R) (R + I3)
−1t

0 0

)

for rotation angles between ±π only.
Translational part of general finite screw,

t = (I3 − R)q +
( p

2π

)

ω

q any point on the screw axis, ω the direction of
the screw axis, |ω| = θ rotation angle, p the pitch
of the screw. IFToMM June 2007 – p.10/21



Pitch of the screw

Translational part of the infinitesimal screw is,

u = (I3 + R)−1(I3 − R)q +
( p

2π

)

(I3 + R)−1
ω

= −Aq +
( p

4π

)

(I3 − A)ω

= q × a +
( p

4π

)

ω

= q × a +
(θ/2)

tan(θ/2)

( p

2π

)

a

a—3-vector corresponding to A.
Pitch of this infinitesimal screw is quasi-pitch or
‘quatch’ introduced by Hunt and Parkin (1995).
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The Complex of Midpoint lines

x

y

a

Rotate and translate point x to
point y = Rx + t.
Direction of the line joining these
points is v = y−x and the midpoint
between them is m = (1/2)(x+y).
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Plücker Coordinates

Set of lines through m and perpendicular to v for
all points x form a linear line complex—Bottema
and Roth.
The Plücker coordinates of such lines are,

s =

(

ω

(1/2)(x + y) × ω

)

,

where ω · v = 0.
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Linear Line complexes

If the lines s lie in a linear line complex they will

all be reciprocal to some screw z =

(

a

u

)

,

zTQ0s = 0

where Q0 =

(

0 I3

I3 0

)

, the Klein form on the Lie

algebra.
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Substituting into the above equation gives,

u · ω + (1/2)a · ((x + y) × ω) = 0

Use scalar triple product formula to rearrange,

ω · (u + (1/2)a × (x + y)) = 0

If true for all lines perpendicular to v = y − x

then,

u + (1/2)a × (x + y) = (γ/2)(y − x)

γ arbitrary
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Now substitute for y = Rx + t,

m = (1/2)(x + y) = (1/2)((R + I3)x + t)

and
v = (y − x) = (R − I3)x + t

Equation becomes,

u + (1/2)a× ((R + I3)x + t) = (γ/2)(R − I3)x + t.
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Cayley map again

Simple to solve for a and u if we write A for the
3 × 3 anti-symmetric matrix corresponding to a.

A = γ(R + I3)
−1(R − I3)

and

u = (1/2)γt − (1/2)a × t

= γ(R + I3)
−1t

γ not important so,
(

A u

0 0

)

= Cay−1

4

(

R t

0 1

)
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Another Cayley map on SE(3)

Unlike exponential map, Cayley map depends on
which representation of the group is used. Get a
different Cayley map using the 6 × 6 adjoint rep.

Group elements, H =

(

R 0
TR R

)

,

T 3 × 3 anti-symmetric matrix corresponding to t.

Lie algebra elements, ad(s) =

(

A 0
B A

)

,

A and B both 3 × 3 anti-symmetric.
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Another Cayley map (cont.)

Definition

Cay6(ad(s)) = (I6 − ad(s))−1(I6 + ad(s))

can show that,

Cay
6
(ad(s)) =

(

Cay(A) 0

2(I3 − A)−1B(I3 − A)−1 Cay(A)

)

That is,

T = 2(I3 − A)−1B(I3 + A)−1
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Another Cayley map (cont.)

This map really is different from Cay4 defined
above. Can see this by comparing the
translational parts of the screws produced by the
inverse map.
as we saw,

u = q × a +
(θ/2)

tan(θ/2)

( p

2π

)

a

for Cay−1

6 can show that,

b = q × a +
θ

sin θ

( p

2π

)

a
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Conclusions

1. Cayley map depends on the representation,
get different Cayley maps for 4 × 4 and 6 × 6
representations. Other representations
possible.
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Conclusions

2. Connection between Cayley maps and line
complexes. Suppose there is a map that
associates a line complex to each element of
SE(3) then this determines a map from the
group to its Lie algebra. Works in other
direction too, a map from the group to its Lie
algebra also determines a line complex for
each group element.
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Conclusions

3. The Cayley map is rational, the exponential
map is only analytic. This makes it very useful
for numerical methods since there will be
fewer transcendental function calls. For
example, can be used to solving rigid body
dynamics problems and drawing differentiable
curves by solving Frenet-Serret equations.
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