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A B S T R A C T   

Stainless steel has many advantages when used in structures, however, the initial cost is high. Hence, it is 
essential to develop reliable and accurate design methods that can optimize the material. As novel, reliable soft 
computation methods, machine learning provided more accurate predictions than analytical formulae and solved 
highly complex problems. The present study aims to develop machine learning models to predict the cross- 
section resistance of circular hollow section stainless steel stub column. A parametric study is conducted by 
varying the diameter, thickness, length, and mechanical properties of the column. This database is used to train, 
validate, and test machine learning models, Artificial Neural Network (ANN), Decision Trees for Regression 
(DTR), Gene Expression Programming (GEP) and Support Vector Machine Regression (SVMR). Thereafter, results 
are compared with finite element models and Eurocode 3 (EC3) to assess their accuracy. It was concluded that 
the EC3 models provided conservative predictions with an average Predicted-to-Actual ratio of 0.698 and Root 
Mean Square Error (RMSE) of 437.3. The machine learning models presented the highest level of accuracy. 
However, the SVMR model based on RBF kernel presented a better performance than the ANN, GEP and DTR 
machine learning models, and RMSE value for SVMR, ANN, GEP and DTR is 22.6, 31.6, 152.84 and 29.07, 
respectively. The GEP leads to the lowest level of accuracy among the other three machine learning models, yet, 
it is more accurate than EC3. The machine learning models were implemented in a user-friendly tool, which can 
be used for design purposes.   

1. Introduction 

There are ever-increasing demands to improve the durability and the 
entire life performance of steel structures. In this context, stainless steel 
has recently emerged as a highly desirable option for structural appli-
cations owing to its distinctive characteristics which include 
outstanding corrosion resistance, long lifespan and recyclability (Rabi 
et al., 2022a). Moreover, stainless steel offers an attractive aesthetic 
appearance with excellent mechanical strength, significant strain 
hardening and great ductility. Although stainless steel has a relatively 
higher initial cost, it becomes a more competitive and efficient alter-
native design option than carbon steel, given the reduction in costs 

associated with regular inspections and maintenance and rehabilitation 
works (Rabi et al., 2022b). The use of stainless steel circular hollow 
sections (CHS) has widely increased in recent years, mainly due to its 
exceptional aesthetic appearance and excellence performance in 
compression, bi-axial bending resistance and torsional resistance. They 
have been used in a wide range of structural members such as columns, 
beams, arches, trusses, and wind turbine towers. This paper concerns the 
behaviour of stainless steel CHS. 

Stainless steel has a different constitutive behaviour than carbon 
steel, exhibiting a continuous rounded response from an early stage with 
an undefined yield point, while exhibiting substantial strain hardening 
and ductility. Conversely, carbon steel exhibits a linear relationship 
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within the elastic range with a well-defined yield point followed by a 
moderate degree of strain hardening (Rabi et al., 2020). Thus, the 
typical 0.2 % proof stress is typically adopted to determine the yield 
stress. Despite the difference in the material stress-strain behavior, 
various existing design standards (EN, 1993, 2006; SEI/ASCE 8-02, 
2002; AS/NZS 4673, 2001) limit the load carrying capacity of stain-
less steel to the 0.2 % proof stress, neglecting the pronounced strain 
hardening and large ductility. Given the high initial costs of stainless 
steel, it is imperative to develop a more accurate design approach, 
reflecting the actual material response. 

The rapid advancement of computerized artificial intelligence has 
provided an efficient and reliable approach for solving complex engi-
neering problems (Meng et al., 2023a, 2023b; Aye et al., 2019; Xu et al., 
2024; Anosri et al., 2023). Machine Learning methods have been 
employed in different structural applications through the development 
of design formulas that can account for various influential parameters 
including damage detection, reliability analysis and capacity prediction 
of structural elements. Artificial Neural Network (ANN) and Support 
Vector Machine (SVM) have been widely used in various applications 
including structures, energy, medicine (Ashraf et al., 2021; Huang et al., 
2017). They have been recognized in structural applications for accu-
rately predicting the behavior of structural elements (Malami et al., 
2021; Golafshani et al., 2012; Kari et al., 2018a; Nguyen et al., 2021a; 
Rabi, 2023). ANN operates on schematic procedures that involve pattern 
recognition and prediction. There are three typical layers in the ANN 
including the input layer, hidden layer, and output layer. The hidden 
layer comprises of several weighted connections that interconnect the 
input and output parameters. Support Vector Machine Regression (SVR) 
contains a subset of training samples that are used for the determination 
of the SVR model. The key aspect of SVR is to determine an optimal 
hyper-plane that most accurately fits the training data while enabling a 
certain margin of error. Others machine learning methods are also 
introduced for predicting complex engineering problems such as Gene 
Expression Programming (GEP) and Regression Trees (RT). Both of these 
supervised machine learning algorithms have excellent ability to 
generate predictive models with sufficient level of accuracy. The typical 
architectural form of the GEP is composed of individual chromosomes 
that create an expression tree of multiple genes (Jweihan et al., 2023; 
Jweihan, 2023; Almomani et al., 2023). The RT Gradient Boosting Trees 
(GBT) is an ensemble algorithm comprising numerous base models or 
learners. Each base learner is an individual tree model constructed by 
training on a bootstrap sample from the training data. The process in-
volves partitioning the feature space into a collection of regions and 
fitting a simple model for each region (Friedman, 2001, 2002) 

A series of experimental tests on stainless steel stub columns and 
beams has been previously conducted on various sections including I- 
sections (Yuan et al., 2014; Yang et al., 2023; Saliba and Gardner, 2013), 
square and rectangular hollow sections (Zhou and Young, 2005; Theo-
fanous and Gardner, 2010; Huang and Young, 2013; Shu et al., 2013; 
Afshan and Gardner, 2013a), angle sections (Kuwamura, 2003; Theo-
fanous et al., 2015) and channel sections (Becque and Rasmussen, 2009; 
Rossi et al., 2010; Niu et al., 2014). A limited number of research focused 
on the stainless steel circular hollow sections (CHS) stub columns 
(Young and Hartono, 2002; Kiymaz, 2005; Bardi and Kyriakides, 2006; 
Buchanan et al., 2018). Young and Hartono (2002) examined the 
behaviour of stainless steel circular hollow section (CHS) columns sub-
jected to compression loading. Various column length was considered to 
develop local and global buckling failure. A comparison of the ultimate 
test strengths and corresponding international design values was pre-
sented. The results indicated conservative predictions of the tested 
specimen. Kiymaz (2005) conducted a series of experimental tests on the 
stainless steel circular hollow sections subjected to bending using 
austenitic and duplex stainless steel. Over-conservative predictions of 
the ultimate capacity were reported. Bardi and Kyriakides (2006) car-
ried fifteen stainless steel stub columns using CHS sections. The speci-
mens were tested in pure compression. More recently, Buchanan et al. 

(2018) tested a total of 47 stainless steel CHS columns and conducted a 
large parametric study. The tests included austenitic, duplex and ferritic 
grades. It was observed that the current design approach given in the 
Eurocode 3 provided conservative predictions of the ultimate capacity of 
the section. These studies revealed that the codified capacity predictions 
tend to be very conservative when compared with the corresponding 
experimental results. Some research studies have proposed an analytical 
approach to improve the efficiency of the design predictions of 
stainless-steel sections such as the continuous strength method (Ashraf 
et al., 2008; Afshan and Gardner, 2013b; Buchanan et al., 2016; Liew 
and Gardner, 2015; Rabi et al., 2019, 2021; Shamass and Cashell, 2019). 

Machine learning methods have been widely implemented to study 
the behavior of various structural steel elements including beam- 
columns (Toffolon et al., 2021; Müller et al., 2022; Müller and Taras, 
2022a, 2022b; Rabi et al., 2023a), beams (Dai et al., 2022a; Dai et al., 
2022b; Fang et al., 2022; Fang et al., 2021a; Fang et al., 2021b; Güneyisi 
et al., 2014; D’Aniello et al., 2015), plates (Tohidi and Sharifi, 2016; 
Sharifi et al., 2016; Pu and Mesbahi, 2006), cellular and castellated 
beam (Hosseinpour et al., 2020; Limbachiya and Shamass, 2021; Fer-
reira et al., 2022; Tohidi and Sharifi, 2015; Nguyen et al., 2020; Gho-
lizadeh et al., 2011) and columns (Dai et al., 2022b; Fang et al., 2021a, 
2022). However, there is very limited research on the behavior of 
stainless steel beams (Nguyen et al., 2021b; Du et al., 2017; Zarringol 
et al., 2021; Graciano et al., 2021; Dissanayake et al., 2022) and columns 
(Xu et al., 2021). Therefore, the present paper aims to predict the 
cross-section capacity of a stainless steel CHS column based on the most 
popular machine learning methods, particularly the Artificial Neural 
Network (ANN), the Support Vector Machine Regression (SVR), Gene 
Expression Programming (GEP), and Decision Tress for Regression 
(DTR). A finite element (FE) model was developed and validated using 
available test data. An extensive parametric study with a total of 1524 
data points was conducted to train and validate the ANN, SVR, GEP and 
DTR models. Moreover, the accuracy of the current design rules in the 
prEN 1993-1-4:2006 (EN, 1993, 2006) is assessed through a compara-
tive study with the results obtained from the FE model and various ML 
models. 

2. Eurocode 3 design rules 

In this section, the current design rules given in the Eurocode 3 prEN 
1993-1-4:2006 (EN, 1993, 2006) for stainless steel CHS stub column are 
examined. It is worth noting that the current design rules in prEN 
1993-1-4:2006 (EN, 1993, 2006) for structural stainless steel CHS 
members under compression load adopts relatively the same design 
provisions given in prEN 1993-1-1:2020 (European Committee for 
Standardization, 2020) for members made from carbon steel. According 
to Eurocode 3, the cross-sections are classified into four different classes 
based on the susceptibility to local buckling and deformation capacity, 
under a given load. Class 1 and 2 cross-sections can reach the full plastic 
sectional resistance, whereas class 3 cross-sections only reach the elastic 
sectional resistance and do not attain the full plastic resistance owing to 
inelastic local buckling failure. The most sensitive cross-sections to local 
buckling are classified as class 4 cross-sections, which fail prior to 
reaching the elastic sectional resistance. A specified slenderness limit for 
stainless steel CHS (D/tε2) is given in Eurocode 3 (EN, 1993, 2006) for 
each class, in which D and t are the outer diameter and the thickness of 
the member, respectively, and ε is a parameter defined as given Eq. (1) 
for stainless steel members. These limits for class 1 to 3 cross-sections are 
set to be 50, 70, 90, respectively. The upper bound of the slenderness 
limit for class 4 cross-sections is 240. 

The designed cross-sectional capacity is calculated from Eq. (2), 
where NEd and Nc,Rd represent the design ultimate compression load and 
the cross-sectional resistances to compression, respectively, γM0 is the 
partial safety factor taken as 1.1 for stainless steel members. For class 1 
to 3 cross-sections, Nc,Rd is equal to the product of the 0.2 % proof stress 
(σ0.2) and the gross cross-sectional area (A). Where on other hand for 
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class 4 sections, the effective cross-sectional area (Aeff) is implemented 
instead of the gross cross-sectional and is calculated from Eq. (3). 

ε=
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3. Finite element method: Validation and parametric study 

For development of the numerical model, Abaqus software (Dassault 
Systèmes Simulia, 2016) is used. Processing is carried out in two steps, 
considering buckling and post-buckling analyses. The first buckling 
mode is then used as the initial geometric imperfection. In this context, 
the initial geometric imperfection is applied in the post buckling analysis 
using the *IMPERFECTION command, by a factor equal to t/100. Re-
sidual stresses were not considered, as reported in Zhao et al., 2016a, 
2016b. 

3.1. Tests 

Three different types of cross section, length, diameter, and thickness 
are considered, as shown in Table 1. In total, four stub columns are 
validated against the finite element model. 

3.2. Material 

The constitutive model used for the validation study is presented in 
(Rasmussen, 2003), according to Eqs. 04–08. Table 2 presents the 
physical properties of the material. The implementation of the 
stress-strain relationship must be done considering true stresses and true 
plastic strains. 

ε=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩
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E0
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−
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3.3. Boundary conditions and discretization 

In the numerical model, two planes of symmetry were adopted, 
aiming at reducing the computational cost (Fig. 1). This modeling 
technique has been adopted in several research papers (Zhao et al., 
2016a, 2016b, 2016c; Meng et al., 2020). The discretization of the stub 
columns was performed using the S4R element available in the Abaqus 
software library (Dassault Systèmes Simulia, 2016). It is a quadrilateral 
element with four nodes and reduced integration, a factor that reduces 
processing time. S4R has six degrees of freedom per node - three rota-
tions and three translations. The dimension of the elements was taken 
equal to the thickness (t) of the stub columns (Zhao et al., 2016a). 

3.4. Validation results 

Fig. 2 shows the validation results against tests performed by Zhao 
et al. (2016a). According to this reference, all the stub columns failed by 
inelastic local buckling with an elephant foot pattern. This failure mode 
was also a characteristic of the developed numerical models. 

It can be observed from Table 3 that the percentage differences in the 
ultimate bearing capacity between the FE model and test results vary 
between 6 % and 10 % (on the conservative side) with an average of 5 % 
and coefficient of variation of 0.14 %. It can be concluded that the FE 
model adopted is capable of providing an accurate prediction of the 
behaviour of stainless steel stub columns and will be used for further 
parametric studies to predict the load capacity. 

3.5. Parametric study 

In the parametric study, six diameters (60, 90, 120, 180, 240, and 
300 mm), seven thicknesses (2, 3, 4, 5, 6, 7, and 8 mm) and eight length 
values (180, 270, 360, 450, 600, 900, 1200, and 1500 mm) were 
considered. The diameter-to-thickness (D/t) ratio ranges between 7.5 
and 150 and the length-to-diameter (L/D) ratio ranges between 0.6 and 
25. In total, five stainless steels were considered, and the mechanical 
properties are shown in Table 4. Python scripting is used to carry out 
parametric study and post-process the results. 

4. Machine learning algorithms 

In this paper, four machine learning algorithms, namely Support 
Vector Machine Regression, Artificial Neural Network, Gene Expression 

Table 1 
Geometric properties of models tested by Zhao et al. (2016a)  

Cross-section L (mm) D (mm) t (mm) 

CHS 60.5 x 2.8 200.2 60.40 2.78 
CHS 76.3 x 3.0 240.0 76.42 2.98 
CHS 114.3 x 3.0 360.1 114.52 2.89 
CHS 139.4 x 3.0 434.8 139.80 2.92  

Table 2 
Physical properties of models tested by Zhao et al. (2016a)  

Cross-section E0 (GPa) σ0.2 (MPa) σu (MPa) εtu ( %) R-O 
coefficient 

n n’0.2,u 

CHS 60.5 x 2.8 190 355 780 47 5.3 1.9 
CHS 76.3 x 3.0 195 302 784 48 7.3 1.9 
CHS 114.3 x 3.0 187 290 799 45 7.8 1.6 
CHS 139.4 x 3.0 188 323 757 52 4.9 1.8  

Fig. 1. Boundary conditions.  
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Programming and Decision Trees for Regression will be used to predict 
the ultimate load capacity of the stainless steel columns. The data 
generated from the parametric study will be used to test, train, and 
validate the machine leaning methods. It is worth pointing out that 
linear, polynomial, Radial Basis Function RBF and sigmoid kernel 
functions are tested and discussed when using SVM. Six inputs variables 
were chosen for the machine learning, namely, the outer diameter (D), 
the thickness (t), the length (L), the yield strength at 0.2 % offset (f0.2), 
the ultimate strength (fu), and the Romberg-Osgood exponent (n). The 
output variable of the machine learning is the cross-section resistance of 
the CHS stainless steel stub columns (Nu). 

Fig. 2. Finite element method vs. tests by load-end shortening relationship.  

Table 3 
Summary of validation results.  

Cross-section Nu (kN) NFE (kN) Nu/NFE 

CHS 60.5 x 2.8 283.6 258.1 1.10 
CHS 76.3 x 3.0 329.5 308.5 1.07 
CHS 114.3 x 3.0 382.7 362.6 1.06 
CHS 139.4 x 3.0 456.3 457.5 1.00   

Average 1.05   
S. D. 0.04   
Var. 0.14 %  
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4.1. Support Vector Machines 

4.1.1. Theoretical background 
Support Vector Machine is a supervised machine learning method 

originally created in the 90s by Vapnik, 1995, 1998, 1999 and has 
gained significant popularity over the last decades due to its reliability 
and effectiveness (Kari et al., 2018b; Nguyen et al., 2021c). SVM was 
originally created for classification problems and is known as Support 
Vector Classification (SVC) and has been then extended to regression 
tasks and referred to as Support Vector Regression (SVR). The key aspect 
of SVR is to determine an optimal hyper-plane that most accurately fits 
the training data while enabling a certain margin of error, denoted ε, as 
indicated Fig. 3. Predictions that fall within the ε-insensitive tube are 
assumed to have acceptable deviations from the target values, however, 
any deviation greater than ε are penalized (Awad et al., 2015). Support 
vectors (SVs) are a subset of training samples that have a significant 
impact in determining the SVR model as they directly influence its ac-
curacy and generalization capability. While the computational 
complexity of ANN model is influenced by the number of layers, neurons 
per layer and the type of activation functions used, the complexity of 
SVR depends primarily on the number of support vectors. This means 
that, the more support vectors there are, the more computationally 
challenging the SVR model becomes (Lin and Lin, 2003). 

In many practical applications, the relationship between input and 
output is often not simply linear in the original input space. For this 
purpose, SVR relies on the concept of the kernel trick to map the input 

data into a higher dimensional space where nonlinear relationship in the 
original input space can be captured by a linear decision surface (i.e., 
hyper-plane). This can be achieved using kernel function that enables 
SVR to deal with complex non-linear data and make accurate pre-
dictions. Indeed, the right choice of kernel function is also very impor-
tant for an effective model performance. A brief overview of the 
theoretical background of the SVR is presented in this paper. Further 
detailed descriptions are found in (Smola and Schölkopf, 2004; Fletcher, 
2009). 

Considering a set of training data with N input x1,…xN and corre-
sponding observed values y1,…yN, where xi ∈ Rn and yi ∈ R, with i = (1,
2,…,N). The mathematical intuition behind SVR is to find a prediction 
model with the following form: 

f (x) = wT ϕ(x) + b (09) 

While minimizing the following objective function: 

min
w,b

1
2
‖w‖2 (10) 

Subjected to: yi − wTϕ(xi) − b ≤ ε
wTϕ(xi) + b − yi ≤ ε . 

where w and b represent the regression function coefficients, and 
ϕ(x) represents the mapping function of the input data to a higher- 
dimensional input space. 

In certain cases, there is no optimal solution for the optimization 
problem defined by Eq. (10), because the imposed constraints are very 
strict, which require that all observation must lie inside the ε-insensitive 
tube as illustrated in Fig. 3. Hence, any violation outside the margin 
leads to its infeasibility (Smola and Schölkopf, 2004; Fletcher, 2009; 
Cortes and Vapnik, 1995). In order to address this issue, the concept of 
soft margin was introduced by Cortes and Vapnik (1995), which enables 
to tolerate and deal with some degree of error in the model, this is done 
by incorporating slack variables ξi, ξ′

i, which represent the upper and 
lower training deviations, respectively, outside ε-insensitive tube, as 
shown in Fig. 3. Hence, the optimization problem can be reformulated as 
follows: 

min
w,b,ξi ,ξ′

i

1
2
‖w‖2

+ C
∑N

i=1

(
ξi + ξ′

i

)
(11) 

Su.bjected to: 
yi − wTϕ(xi) − b ≤ ε + ξi

wTϕ(xi) + b − yi ≤ ε + ξ’
i 

ξi, ξ′
i ≥ 0; i = 1,2,3…,N. 

where C represents the cost factor and is a positive parameter that 
determines the trade-off between the flatness of the regression function f 
and the error tolerance (Smola and Schölkopf, 2004; Fletcher, 2009), 
and ε is the error tolerance. Both C and ε are hyper-parameters that need 
to be optimized during training process to ensure a good performance of 
SVR model. 

Then, the optimization problem can be reformulated by introducing 
Lagrange multipliers αi and α∗

i as follows: 

max
αi ,α∗

i

∑N

i=1
yi
(
αi − α∗

i

)
− ε

∑N

i=1

(
αi + α∗

i

)
−

1
2
∑N

i,j=1

(
αi − α∗

i

)(
αj

− α∗
j

)
ϕ(xi)

T ϕ
(
xj
)

(12) 

Subjected to: 
∑N

i=1(αi − α∗
i )= 0 αi,α′

i ∈ [0,C]; i = 1,2,3…,N. 
Therefore, the prediction model can be rewritten as: 

f (x) =
∑N

i=1

(
αi − α∗

i

)
ϕ(xi)

T
.ϕ(x) + b (13)  

where; w =
∑N

i=1
(
αi − α∗

i
)
ϕ(xi)

T. 
The solution for Lagrange multiplier coefficients (αi − α∗

i ) may 
include both zero and non-zero values. The non-null terms correspond to 
the SVs and only these latter contribute to the final regression function. 

Table 4 
Physical properties of stainless steel used for the parametric study.  

Grade E0 

(GPa) 
σ0.2 

(MPa) 
σu 

(MPa) 
εtu ( 
%) 

R-O 
coefficient 

n n’0.2, 

u 

Austenitic (Sharifi 
et al., 2016) 

190 355 780 47 5.3 1.9 

Austenitic (Sharifi 
et al., 2016) 

187 290 799 45 7.8 1.6 

Austenitic (Sharifi 
et al., 2016) 

188 323 757 52 4.9 1.8 

Austenitic (Pu and 
Mesbahi, 2006) 

195 302 784 85 7.3 1.9 

Duplex (Pu and 
Mesbahi, 2006) 

199 519 728 65 5.3 3.7 

Ferritic (Pu and 
Mesbahi, 2006) 

190 466 515 68 6.6 7.6  

Fig. 3. ε-insensitive tube for SVR, with green points correspond to margin SVs, 
and yellow points represent data with non-zero slack variables. 
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Hence, Eq. (13), can be re-expressed as: 

f (x)=
∑nSVs

k=1

(
αk − α∗

k

)
K(xk, x) + b (14)  

In this equation, x represents the input vector, xk denotes the support 
vectors, nSVs is the number of support vectors, b is the bias, and 
K(xk, x) = ϕ(xk)

T
.ϕ(x) represents the kernel function. The most used 

kernels are linear, polynomial, the radial basis function (RBF) kernel, 
and sigmoid kernel, of which the mathematical expressions are reported 
in Table 5 together with the corresponding hyper-parameters that 
should be optimized. Accordingly, this research paper aims to predict 
the cross-section resistance (Nu ) of CHS stainless steel stub columns 
using ε-SVR with aforementioned kernels. 

4.1.2. Data pre-processing 
In this paper, 1524 datasets obtained from the parametric study are 

used to train, validate and test the performance of SVR model using 
fitrsvm function available in statistics and machine learning toolbox in 
MATLAB 2020a (MATLAB and Statistics Toolbox Release, 2019). Each 
data pair consists of six input variables, (D), (t), (L), (f0.2) (fu), and (n)
while the output is the cross-section resistance (Nu). Since these vari-
ables have different units and quantity limits as shown in Table 6, the 
input and output are normalized to ensure that all values are scaled in a 
consistent interval range, between 0 and 1. For this purpose, the 
following equation is used: 

xn
i =

xi − xmin
i

xmax
i − xmin

i
(15)  

where xi and xn
i denote the original and normalized values of the i-th 

component in the input vector, xmin
i and xmax

i represent the minimum and 
maximum values, respectively, for the i-th component of the input vector 
xi before normalization. 

It should be noted that 70 % of datasets are devoted for training the 
SVR models in which the model is evaluated in response to statistical 
metrics. Furthermore, 15 % is reserved for validation purposes, where 
the performance and generalization capacity of the SVR models is 
examined, and the remaining 15 % is used for testing unseen dataset by 
the model. 

4.1.3. Performance evaluation 
In order to examine the performance and accuracy of SVR models, 

statistical metrics such as coefficient of determination (R2), the Root 
Mean Square Error (RMSE) and the Mean Absolute Error (MAE) are used 
and are expressed by Eqs. (16a), (16b), and (16c), respectively. These 
measures enable to make a direct comparison between the predicted and 
actual outputs. 

R2 = 1 −

∑m

i=1
(yi − ŷi)

2

∑m

i=1
(yi − y)2

(16a)  

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
m

∑m

i=1
(yi − ŷi)

2

√

(16b)  

MAE=
1
m

∑m

i=1
|yi − ŷi| (16c)  

where, yi and ŷi denote the ith actual and predicted output respectively, 
y represent the average of yi and m is the number of data point. To 
achieve excellent SVR model accuracy, the value of (R2) should be close 
to 1, and (RMSE) and (MAE) must be minimal. 

On the other hand, the correlation between input variables and the 
output is examined using Pearson’s approach (Pearson, 1895). This 
analysis gives insights into the strength and direction of linear 
inter-independence between input variables, as well as their impact on 
the output parameter. Pearson’s correlation coefficient (ρ) can be 
calculated using the following expression for two variables X and Y: 

ρ=

∑

i
(Xi − X)(Yi − Y)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅∑

i
(Xi − X)2∑

i
(Yi − Y)2

√ (17)  

in which, Xi and Yi are the values of the variable X and Y, respectively, 
for ith observation. X and Y are the average values of the variables X and 
Y, respectively. Pearson’s correlation coefficient ranges between − 1 and 
1. ρ equals to 1 (or alternatively, − 1) indicates a strong positive (or 
negative) correlation, which mean as X increases, Y increases (or de-
creases). When ρ is 0, indicates no correlation between the two variables 
X and Y. 

4.1.4. Grid search method 
To find the optimal combination of the hyper-parameters specified in 

Table 5 for the SVR models, considering different kernel types, grid 
search technique with cross validation is used to tune these hyper- 
parameters. Although this technique is exhaustive and computation-
ally time-consuming, especially if the search range is large, it is widely 
used in literature due to its high accuracy (Syarif et al., 2016). To reduce 
the computational time, as recommended in the practical guide (Hsu 

Table 5 
Common kernels functions (Karatzoglou et al., 2006).  

Kernel Function Mathematical Formula Hyper-parameters 

Linear K(xk,x) = xT
k x C and ε 

Polynomial K(xk,x) = (xT
k x + r)d C , d, r and ε 

RBF K(xk,x) = exp( − γ‖xk − x‖2
) C , γ and ε 

Sigmoid K(xk,x) = tanh(γxT
k x + r) C , γ, r and ε 

C: cost; ε: error tolerance; γ: coefficient; r: offset; d: degree.  

Table 6 
Range of the input and output parameters.   

D (mm) t (mm) L(mm) f0.2(MPa) f u(MPa) n Nu(kN)

Lower limit 60 2 180 290 515 4.9 112.07 
Upper limit 300 8 1500 519 799 7.8 4430.70  

Table 7 
Hyper-parameters range.   

Kernel type Min Max Step 
size 

Type Scale 

C linear, polynomial, RBF, 
sigmoid 

2− 5 215 1** real power 

ε linear, polynomial, RBF, 
sigmoid 

2− 15 2− 1 1** real power 

γ RBF, sigmoid 2− 11 23 1** real power 
d polynomial 1 10 1 integer linear 
r∗ polynomial, sigmoid - - - - - 

*r is set to 1, 
**the step is reduced to 0.25 in finer grid search.  
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et al., 2003), this paper employs a two-step grid search approach. First, a 
coarse grid search was conducted, consisting of a wide range of values 
with a larger step size, this enables the identification of the interval 
where the optimal hyper-parameters are located. Then, a refined grid 
search was performed to find the best combination of the 
hyper-parameters, in which the step is reduced. Table 7 presents the 
considered range for the hyper-parameters for each SVR model’s kernel 
type. 

To prevent overfitting during the training process and ensure a more 
reliable performance estimate, the most commonly recommended 
technique is the 10-fold cross-validation (Sharifmousavi and Borhani, 
2020). In the present study, this approach is implemented for each 
combination of hyper-parameters. The process involves dividing the 
data into 10 equal subsets, in each iteration one fold is used as a testing 
set while the remaining 9 folds serve as the training set, as schematically 
explained in Fig. 4. This process is repeated 10 times to ensure accurate 
results, in which the trained model is iteratively evaluated on the testing 
subset, and the average statistical metrics are recorded. Hence, 
the10-fold cross-validation is performed for each combination across the 
specified range, and the combination of hyper-parameters that yields to 
a higher R2 value and minimal RMSE is selected as the best combination. 

4.2. Artificial Neural Network 

4.2.1. Neural network architecture 
A Multi-Layer Perceptron Network (MLPN) that solved an input- 

output fitting problem with a two-layer feedforward neural network 
was used in this study to predict the ultimate resistance of CHS sections. 
Fig. 5 provides an example of a neural network architecture with three 
neurones. The overall aim of the neural network is to assign weights to 
the neurons in the hidden layer and bias values the hidden and output 
layer to determine connections between the input and output parame-
ters. For this study, ANN models with 4, 6, 8 and 10 neurons in the 
hidden layer were created. The reason for this was firstly, an increase in 
the number of neurons in the hidden layer could result in overfitting of 
the data which would result in an inaccurate overview of the impact of 
input parameters. Secondly, as the number of neurons increases, the 
complexity of the equation increases, and the aim was to provide the 
simplest calculation to achieve a high level of accuracy. 

4.2.2. Setting up Artificial Neural Network 
The ANN initially divides the data into 3 categories. Training data 

(70 %) is used to train the network and adjust according to the errors, 
validation data (15 %) is used to measure network generalisation and 
stop the training when it stops improving and testing data (15 %) is data 
that has not been used in training or validation to independently assess 
the accuracy of the model (MATLAB and Statistics Toolbox Release, 
2019). Due to the high level of accuracy for small to medium sized 
problems, the Levenberg-Marquardt backpropagation training algo-
rithm was adopted (Nguyen et al., 2023; Tohidi and Sharifi, 2014; 
Sharifi et al., 2019; Rabi et al., 2023b). 

All data variables were normalized using mapminmax method to get 
the data to range between -1 and 1. To do this, Eq. (18) was applied to all 
input and target parameters. 

xn
i =

(ymax − ymin)
(
xi − xmin

i

)

xmax
i − xmin

i
+ ymin (18)  

Where xn
i represents the normalized value, ymin and ymax represent the 

normalized data range of -1 and 1 respectively. Table 6 provides the 
minimum and maximum values of the parameters. 

In total, 4 ANN models were produced. All had the same input and 
output parameters and the number of neurons ranged from 4 to 10. The 
choice of activation function involved experimentation and the char-
acterization of the used data. Apicella et al. (2021) described a survey of 
trainable activation function in the neural network, highlighting general 
and unique properties of the recent and past approach. Eqs. (19) and 
(20) provide the Hyperbolic tangent sigmoid transfer function needed to 
predict the output parameter based normalized values (Gupta et al., 
2019). This transfer function was chosen as it provided accurate pre-
dictions when it was used in other research studies (Jweihan et al., 2023; 
Rabi et al., 2023a; Limbachiya and Shamass, 2021; Ferreira et al., 2022). 
It is one of the most widely used transfer functions when constructing 
neural networks (Rabi et al., 2024). 

Os =Bs
1 +

∑r

k=1
who

k,l.

(
2

1 + e− 2Hk
− 1
)

(19)  

Hk =Bk
2 +

∑q

j=1
wih

j,k. Ij (20)  

Where, Os represents the normalized output value, q is the number of 
input parameters; r is the number of hidden neurons; s is the number of 
output parameters; Bs

1 and Bk
2 are the biases of sth output neuron and kth 

hidden neuron (Hk), respectively; wih
j,k is the weights of the connection 

between Ij and Hk; woh
k,l are the weights of the connection between Hk and 

Os. 

Fig. 4. A schematic representation of 10-fold cross-validation.  

Fig. 5. ANN Model with 3 neurons in the hidden layer.  
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4.2.3. Assessing accuracy of neural network output 
To assess the accuracy of the output the coefficient of determination 

(R2), Root Mean Square Error (RMSE) and Mean Absolute Error (MAE) 
were calculated using Eqs (16a), (16b) and (16c) respectively. 

Since neural network models provide no explanation for how input 
signals contribute to the prediction process, they are commonly referred 
to as “black boxes" (Abellán-García, 2020). Therefore, to further assess 
the accuracy of the model, the impact of each input parameter was 
analysed using the Connection Weight Approach and Garson Algorithm 
(Garson, 1991). The Connection Weight Approach determines each 
input variable’s contribution and the direction of its relationship to the 
response variable with the use of raw connection weights (Iqbal et al., 
2023). This results in the correct identification of variable contribution 
(Olden et al., 2004). The advantage of this approach is that it will 
determine whether the input parameter has a positive or negative 
impact on the output parameter. A positive impact will determine that 
an increase in the input parameter will increase the value of the output 
parameter and vice versa for a negative impact value. Eq. (21) provides 
the calculation process used in the connection weight approach in which 
Inputx represents the relative importance of the input variable, XY 
represents the connection weight between the input and hidden layer, 
and Hidden represents the connection weight between the hidden and 
output layer 

Inputx =
∑E

Y=A
HiddenXY (21) 

To further assess the accuracy, Garson’s Algorithm (Garson, 1991) 
was used to determine the impact of input parameters. Garson’s Algo-
rithm assesses the relative significance of every input variable on the 
outcome, to partition the weight of the neural network link. The weights 
associated with hidden input and hidden output are divided, and the 
significant input variables are chosen based on the weights’ absolute 
values (Lau et al., 2023). By adopting both approaches, the study would 
be able to confidently determine the input parameters with significant 
impact. Eq. (22) provides the calculation used for Garson Algorithm 
(Olden et al., 2004). The subscripts k, m, and n denote input, hidden, and 
output neurons, respectively, whereas the superscripts i, h, and o denote 
input, hidden, and output layers, respectively. Ni and Nh are the numbers 
of neurons in the input and hidden layers, respectively; w represents 
connection weights. 

Ij =

∑m=Nh

m=1

⎛

⎜
⎜
⎝

wih
jm

∑Ni

k=1
wih

km

who
mn

⎞

⎟
⎟
⎠

∑k=Ni

k=1

⎡

⎢
⎢
⎣
∑m=Nh

m=1

⎛

⎜
⎜
⎝

wih
km

∑Ni

k=1
wih

km

who
mn

⎞

⎟
⎟
⎠

⎤

⎥
⎥
⎦

(22)  

4.3. Gene Expression Programming 

GEP is one of the most popular machine learning (ML) tools that are 

Fig. 6. Process of developing the GEP model.  
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widely harnessed by researchers for developing sophisticated models for 
predicting complex engineering problems with high accuracy (Jweihan, 
2023; Almomani et al., 2023). The GEP outweighs other (ML) tools by 
means of its simplicity and superior ability to generate predictive models 
in the form of a direct mathematical equation. A GEP model is typically 
composed of individual chromosomes that create an expression tree (ET) 
of multiple genes. Basic mathematical functions like addition, multi-
plication, subtraction, and division are used as linking functions among 
these genes. Further information about the GEP approach can be found 
in Ferreira, 2001, 2002. 

GeneXproTools software (Gene, 2000) has been utilized in this study 
to develop a GEP model. It is worth mentioning that developing a GEP 
model needs multiple trials to select the ideal parameters for the 
best-fitted predictive model. Previous studies indicated that the number 
of used chromosomes (NC) number of genes (Ng), and head size (HS) of 
genes are crucial parameters in the software that control the accuracy 
and performance of a GEP model (Raheel et al., 2023; Khan et al., 2022). 
Thus, a sequential approach has been adopted in this study by inter-
changing (NC), (Ng), and (HS) parameters to achieve the optimal GEP 
model. The (NC)were varied from 30 to 90, (Ng) from 3 to 5, and Hs from 
8 to 10, as illustrated in Fig. 6. 

Similar to the previous models in this study, the GEP model considers 
the selected six input variables of the outer diameter (D), the thickness 
(t), the length (L), the yield strength at 0.2 % offset (f0.2), the ultimate 
strength (fu), and the Romberg-Osgood exponent (n) of the CHS stainless 
steel stub columns to predict the output variable of the columns’ cross- 
section resistance (Nu). The total database has been divided randomly by 
the GEP software into 70 % for training and 30 % for validation. 
Exploration trials on the software screened that the addition function is 
the most suitable linking function for developing a GEP model with high 
accuracy. The best-fitted and most accurate GEP model has been 
assigned after conducting many trials by changing the values of (Nc), 

(HS) and (HS) parameters. 

4.4. Decision Trees for regression 

Decision Trees for regression, or Regression Trees (RT) is a super-
vised machine learning algorithm which consists of finding the optimal 
way to split the dataset as to successfully reduce the variance of the sub 
datasets (Breiman, 2017). In each node of a RT, a Yes-or-No question is 
established to split the dataset, for example, “is the diameter greater 
than 63 mm?“. By sequentially applying these nodes, a tree structure 
emerges that can be used to predict new points, as shown in Fig. 7. 

The complexity of the tree is determined by its depth, the amount of 
vertical levels in the tree, and the number of leaves, which represent the 
end nodes without a decision. Fig. 7 shows a tree with 4 levels and 6 
leaves. Also in Fig. 7, the top node asks the question “is the thickness less 
or equal than 5.0 mm?” where, at that stage, the dataset has a MSE of 
88699.337. By answering that Yes-or-No question, the decision proceeds 
down the tree where further questions are answered. Note that the MSE 
reduces at each step until a node represents a single data point. 

The optimal way to split the dataset is the one that minimised the 
MSE, which represents how the training values deviate from the nodal. 
To examine the performance of RTs, coefficient of determination R2 is 
determined. It is worth mentioning that the software used to perform the 
Decision Tree Regression algorithm was Python, specifically the scikit- 
learn library (Pedregosa et al., 2011). 

5. Results and discussion 

5.1. Eurocode 3 

The results presented in this section are shown considering the type 
of stainless steel (Fig. 8), as well as the cross-section class (1-4), 

Fig. 7. Example of a regression tree.  
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according to Fig. (9). For austenitic, duplex, and ferritic stainless steels, 
867, 333 and 324 finite element models were developed, respectively. 
For austenitic stainless steel (Fig. 8a), it was verified that all observa-
tions are in favor of safety (NEC3/NFE<1.0). The maximum and minimum 
relative errors (NEC3/NFE-1) were equal to -8 % and -77 %, respectively. 
For duplex stainless steel (Fig. 8b), the analysis was similar, all obser-
vations are in favor of safety (NEC3/NFE<1.0). However, for these models 
it was verified that the maximum and minimum relative errors were 
equal to -19 % and -57 %, respectively. On ferritic stainless steel 
(Fig. 8c), most of the analyses were also in favor of safety, with only one 
model being against safety. The values of relative errors were lower, the 
maximum and minimum relative errors were equal to 4 % and -51 %, 
respectively. These results showed that the calculation model presented 
by EC3 underestimates the cross-section resistance of a CHS stainless 
steel stub column. Table 8 presents the statistical analysis values. 

The same comparative analysis performed previously can be done 
considering the class of the cross-section, as can be seen in the Fig. 9a, b 
and c. Similar to the previous analysis, the EC3 provides conservative 
predictions compared with corresponding numerical counterparts. The 
maximum and minimum relative errors (NEC3/NFE-1) were 4.5 % and 
-76.9 % for class 1and 2, -13.4 % and -23.4 % for class 3 and -14.9 % and 
-53.4 % for class 4, respectively. The values of the statistical analyses are 
presented in Table 9. 

5.2. Prediction-based support Vector Machines regression 

The correlation between the six input variables, namely (D), (t), (L), 
(f0.2), (fu), and (n) employed in the SVR models as well as with the 
output (Nu) is depicted in Fig. 10. It can be observed from the Pearson’s 
correlation matrix, there is no linear correlation between some input 
parameters such as (D) and (L), (D) and (fu), and (t) and (n), while a 
weak linear correlation is shown between some inputs such as (D) and 

(f0.2), and (D) and (t) with correlation coefficients of − 0.02 and 0.05, 
respectively. Furthermore, according to the present dataset, a strong 
negative correlation is observed between (fu) and (f0.2), and (f0.2) and (n)
with correlation coefficients of − 0.6 and − 0.5, respectively. This could 
be attributed to the significant strain hardening and great ductility of 
stainless steel. On the other hand, a correlation coefficient of 0.74 be-
tween (Nu) and (t), and a correlation coefficient of 0.58 between (Nu)

and (D), indicating a high linear relationship and influence between 
these input variables and the output. However, a low correlation coef-
ficient between (Nu) and (L) as well as between (Nu) and (fu), (Nu) and 
(n) meaning a weak linear correlation and minimal impact on the 
output. There is therefore a complex non-linear relationship between the 
cross-section resistance and the considered input variables, which is 
hard to express using a simple empirical equation. 

As stated earlier, to optimize the performance of SVR models, a grid 
search was applied on the normalized data and the best combination of 
the hyper-parameters is identified for each kernel type. Table 10 pre-
sents the final optimal combination for each SVR model’s kernel type 
along with the corresponding the best ( R2) and (RMSE) obtained during 
finer grid search. For instance, in RBF SVR model, 4725 number of 
combinations of hyper-parameters is considered during coarse grid 
search, and region with the optimal solution was identified. Fig. 11, 
presents the evolution of the hyper-parameters (C) , (ε) and (γ) in 
function of ( R2) and (RMSE), while the remaining two hyper- 
parameters are at their optimal values. the best combination corre-
sponds to the pairs (C, ε, γ ) that have simultaneously the highest 
possible (R2) and the lowest (RMSE). For example, as observed in 
Fig. 11a and b, (C) reaches its minimal (RMSE) and higher (R2) in the 
interval between 21 and 23. Hence, a finer grid search was conducted in 
this interval with a step size of 0.25 in the power scale to find the final 
optimal solution. Similarly, for (γ), a finer grid search was performed in 
the interval of 2− 1 and 21 with a step size of 0.25 in the power scale. 

Fig. 8. Comparison of results considering the type of stainless steel.  
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Moreover, (ε) achieves minimal (RMSE) and maximal (R2) all through 
the interval from 2− 15 up to 2− 8, and both performance metrics remain 
constant within this range, as depicted in Fig. 11e and f. As illustrated in 
Fig. 12, there is a strong correlation between error tolerance (ε) and the 
percentage (or number) of support vectors. Specifically, increasing (ε)
while (C) and (γ) are fixed at their optimal values, leads to a decrease in 
the number of support vectors, resulting in a less complicated SVR 
model. This highlights the findings of other research studies such as (Wei 
and He, 2023; Chen and Yu, 2007). Fig. 12 also depicts the evolution of 
(RMSE) with respect to (ε) while the remaining two hyper-parameters 
are fixed. Accordingly, a refined grid search is conducted in interval of 
2− 11 and 2− 8 with a step size of 0.25 in the power scale, and the optimal 
value of (ε) was selected within this range based on three criteria: 
minimal (RMSE), higher (R2) and reduced number of SVs. 

Fig. 13 shows comparisons between the predicted the cross-section 

Fig. 9. Comparison of results considering the class of cross-section.  

Table 8 
Statistical analysis for the NEC3/NFE ratio considering the type of stainless steel.  

Stainless steel Mean S.D ( %) CoV ( %) R2 

Austenitic 0.668 13.2 % 19.8 % 0.8978 
Duplex 0.698 9.7 % 13.8 % 0.9735 
Ferritic 0.777 10.1 % 12.9 % 0.9776  

Table 9 
Statistical analysis for the NEC3/NFE ratio considering the class of cross-section.  

Class Mean S.D ( %) CoV ( %) R2 

1 and 2 0.674 13.8 % 20.4 % 0.8969 
3 0.817 2.6 % 3.1 % 0.9965 
4 0.693 9.4 % 13.6 % 0.9719  

Fig. 10. Pearson’s correlation matrix for the current dataset.  

Table 10 
Optimal hyper-parameters and corresponding RMSE and R2 * RSME corresponds 
to normalized data.  

Kernel type C ε γ d RMSE∗ R2 

Linear 2− 4.75 2− 3.75 - - 0.059740 0.901605 
Polynomial 2− 5 2− 7.75 - 6 0.006324 0.998765 
RBF 22 2− 8.25 20 - 0.006315 0.998770 
Sigmoid 26 2− 8.75 2− 5 - 0.005959 0.998883  
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Fig. 11. Determination of optimal hyper-parameters for SVR model with RBF.  
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resistance (NSVR) using SVR with linear, polynomial, RBF, and sigmoid 
kernels, and those obtained from FEA (NFE), which are considered as the 
actual the cross-section resistance. It is clear from this figure, that there 
is excellent agreement between the actual and predicted results when 
using SVR with RBF and sigmoid kernels, followed by polynomial SVR 
model. Nevertheless, SVR with linear kernel falls short in accurately 
predicting the cross-section resistance, which is obvoius due to the non- 
linearity of the problem. On the other hand, Polynomial SVR model 
provides a higher level accuraccy, with an (R2) of 99.91 %, along with a 
(RMSE) and (MAE) of 0.0057 and 0.0035, respectively, as illustrated in 
Table 11. Additionally, this model acheives a percentage of support 
vectors of 23.73 %. Both RBF and sigmoid SVR models exhibit excep-
tional accuracy with an (R2) of 99.93 %. Furthermore, they provide the 
lowest (RMSE) of approximately 0.05 and (MAE) values of 0.0029 and 
0.025, respectively. However, it is worth noting that SVR with RBF uses 
only 32.65 % of support vectors while with sigmoid kernel uses 35.83 %, 
which means the sigmoid SVR model yields a quite more complex SVR 
model for approximalty a similar level of accuracy. Furthermore, the 
SVR model with sigmoid kernel uses a higher number of hyper-
parameters, namely (C, ε, γ, r), compared to the SVR model with RBF. 
Optimizing these hyperparameters can be time-consuming and involves 
higher computational resources. The same applies to the Polynomial 

Fig. 12. Evolution of percentage of SVs and RSME as a function of ε.  

Fig. 13. Comparison between the FE and predicted results using SVR.  

Table 11 
Performance metrics.  

Kernel 
Function 

Training Validation Testing All data 

R2 RMSE R2 RMSE R2 RMSE R2 RMSE MAE 

Linear 0.9033 0.0595 0.8982 0.0609 0.8970 0.0628 0.9035 0.0602 0.0451 
Polynomial 0.9993 0.0052 0.9983 0.0078 0.9993 0.0054 0.9991 0.0057 0.0035 
RBF 0.9995 0.0043 0.9981 0.0083 0.9993 0.0053 0.9993 0.0052 0.0029 
Sigmoid 0.9995 0.0042 0.9981 0.0082 0.9993 0.0051 0.9993 0.0051 0.0025  
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SVR model, which requires also the optimization of several hyper- 
parameters (C, ε, d, r). Hence, based on the present investigation, the 
SVR model with the RBF kernel is recommended to be used in order to 
accurately predict the cross-section resistance of CHS stainless steel stub 
columns. Accordingly, this model has been implemented in the Graph-
ical User Interface (GUI) called the cross-section resistance Calculator’ 
using Matlab (MATLAB and Statistics Toolbox Release, 2019). As shown 
in Fig. 14, the user is prompted to enter the required input parameters 
within the range specified in Table 6 to ensure the accuracy of the re-
sults. Afterwards, the user can press the ‘calculate’ button to obtain the 
corresponding the cross-section resistance. All the installation resources 
to install the GUI can be found at: https://github.com/IkramAB 

ARKAN/SVR 

5.3. Prediction-based Artificial Neural Networks 

Table 12 provides the regression values for the training, validation, 
and testing data sets. Overall, the results show a very accurate model for 
predicting the ultimate resistance of CHS sections. The table provides 
the ( R2), (MAE) and (RMSE) of results when predicted results are 
compared to actual results. The trends that are noted in Tables 12, in 
which as the number of neurons in the model increase, there is an in-
crease in the accuracy of the output. The increase in neurons also leads 
to more complicated formulas and potentially produces a model that is 
overtraining. However, using 8 neurons provides great accuracy with 
( R2), (MAE) and (RMSE) were 0.9985, 19.0, and 31.6, respectively. This 
model was converged at 180 epochs corresponding. 

Fig. 15 provides the impact of input parameters using the Connection 
Weight Approach. For all models analysed, results show that as the 
values of (D), (t), (f0.2) and (fu) increase, there is an increase in the cross- 
section resistance and as n increases, there is a decrease in the cross- 
section resistance. This is physically expected as the cross-section 
resistance of the stainless steel CHS stub column by increasing the 
diameter, thickness, yield and ultimate stresses of the stainless steel. 

Fig. 14. Graphical user interface for SVR.  

Table 12 
Regression values for training, validation and testing data sets.  

No. of Neurons R2 All data 

Training Validation Testing R2 MAE RMSE 

4 0.9981 0.9983 0.9975 0.9961 37.3 51.6 
6 0.9989 0.9984 0.9987 0.9971 27.2 40.2 
8 0.9994 0.9983 0.9992 0.9985 19.0 31.6 
10 0.9995 0.9992 0.9993 0.9989 15.8 27.9  

Fig. 15. Impact of input parameters- Connection Weight Approach.  
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Furthermore, the diameter, thickness, and yield stress were shown to 
have the largest impact on cross-section resistance, while the length has 
insignificant impact on the capacity. 

Fig. 16 illustrates the importance of the input parameters. The most 
important input corresponds to highest contribution value calculated 
using Garson algorithm as explained in section 4.2.3. It can be observed 
that the column diameter, yield stress and ultimate stress of the stainless 
steel are the significant parameters on the cross-section resistance, while 
the length has less effect on the resistance. The contribution of the input 
parameters (D), (L), t, (f0.2), (fu) and (n) is 24.3 %, 3.9 %, 13.1 %, 19.7 %, 
23.7 %, and 15.2 %, respectively. In conclusion, as the ANN model with 
eight neurons provides predictions with high level of accuracy and the 
impact of the inputs on the resistance is as physically expected, it will be 
used in the following sections. 

The ANN model and its parameters has been implemented in user- 
friendly excel sheet. The user is prompted to enter the required input 
parameters within the range specified in Table 6 to ensure the accuracy 
of the results. The sheet can be found at: https://github.com/Rabee 
-Shamass/ANN-for-Stainless-Steel-sub-column. 

5.4. Prediction-based Gene Expression Programming 

Table 13 shows the performance results of the tried GEP model. 
Seven models were developed to achieve the most accurate and best- 
fitted model for predicting the (Nu) of the CHS stainless steel stub col-
umns. Statistical measurements were also calculated to assess the per-
formance of each model. A model with the highest (R2) and lowest errors 
of (RMSE) and (MAE) values of both datasets was considered the optimal 
GEP model in this study. It can be seen that the GEP 6 is the best model 
among all trialed GEP models. It has been generated using (Nc) of 60, 
(HS) of 8, and (Ng) of 4. 

The regression plot of the optimal (GEP6) model utilizing the com-
bined datasets is shown in Fig. 17. The model results with (R2) of 96.6 %, 
(RMSE) of 152.8, and (MAE) of 109.5. Further, the proposed model re-
sults in an average ratio of (1.08) for the “measured-to-predicted” (Nu)

values and with a 64.8 coefficient of variation. A stable level of 
convergence was reached at 395 iterations. The consistency of the sta-
tistical results among the training, validation, and combined datasets as 
well as the unity of the average ratio prove the accuracy of this model for 
predicting the (Nu) values of the CHS stainless steel stub columns. 

Fig. 18 shows the generated expression tree from the proposed GEP 
model. It consists of four genes (Sub-ET1 to Sub-ET4) that are linked 
together by the addition function. The symbols d0, d1, d2, d3, d4, and d5 
represent the input variables (D), (L), (t), (f0.2), (fu), and ( n), respec-
tively. The tree is also composed of constant values including: C5 =

8.6254 in the first gene (Sub-ET1), C4 = 8.5698 in the second gene (Sub- 
ET2), and C0 = − 2.2036 in the fourth gene (Sub-ET4). The tree is 
simplified mathematically in Eq. (23), which can be used to predict the 
Nu (kN) of the CHS stainless steel stub columns. 

Nu =
(
tan((− fu)×8.6254× ln(D))

2)
+

(
1.0

n×
[
(t − (n+8.5698))3]

)

+

⎛

⎝

√
√
√
√3

(
D3 − (fu ×L)
(f0.2 − fu)

2

)2
⎞

⎠+

((

(t×D)+

(
D

− 2.2036

)

+ t3+ f0.2

))

(23)  

5.5. Prediction-based Decision Tree for regression 

In this paper, the Decision Tree for Regression used had no limita-
tions on the number of levels or the number of leaves. Consequently, the 
tree will have the same number of leaves as the length of the training 
dataset. Table 14 demonstrates the influence of the length of the training 
dataset in the overall performance of the DTR, under this architecture. 

Fig. 19 shows a comparison between the predicted values of ultimate 
capacity (Nu) using DTR and the values obtained from FEA. As it is 
evident from this Figure, the DTR algorithm is successful at predicting 
the FE results with an (R2) of 99.88 % and (MAE) and ( RMSE) of 11.82 
and 29.07, respectevely. Based on this study, the tree arising from a 50- 

Fig. 16. Contribution ( %) of input parameters to the resistance (8 neurons).  

Table 13 
Performance measures of the GEP models.  

Trials Setting Parameters Statistical Measures Used variables (*) 

Training dataset (70 %) Validation dataset (30 %) 

Nc Hs Ng RMSE MAE R2 RMSE MAE R2 

GEP1 30 8 3 182.91 136.41 0.949 195.69 144.56 0.948 4 
GEP2 60 8 3 183.60 136.08 0.953 175.62 132.25 0.954 6 
GEP3 90 8 3 188.57 136.25 0.951 178.08 128.03 0.953 6 
GEP4 60 9 3 183.81 129.68 0.953 177.19 123.18 0.954 5 
GEP5 60 10 3 187.94 143.46 0.949 196.45 150.67 0.943 5 
GEP6 60 8 4 149.31 107.15 0.967 160.79 115.05 0.963 6 
GEP7 60 8 5 180.55 132.97 0.953 174.42 129.70 0.955 6 

Note: The bold row indicates the ideal GEP model; (*) An ideal model should consider the six input variables. 

Fig. 17. Comparison between the FE and predicted results using GEP.  
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50 split of training data and test data has been considered for the 
comparisons with EC3 and other machine learning algorithms. The Py-
thon code for the DTR can be found here: 

6. Comparison between Eurocode 3, ANN, SVR, GEP and DTR 
predictions 

In this section, the predicted models presented previously are 
compared with finite element models (Fig. 20). Considering the EC3 
predictions in comparison with the finite element models (Fig. 20a), it 
was verified that the calculation model of EC3 underestimates the 
resistance of the CHS, with the minimum and maximum values of the 
relative error reaching -77 % and 5 %, respectively. Figs. 20b and c show 
the results of machine learning models, considering the ANN and SVR, 
respectively. According to the illustrations, both machine learning 
models accurately predict the resistance of CHS. The maximum relative 
error found for ANN and SVR was 54.7 % and 28.6 %, respectively, 
while the minimum relative error was -24.2 % and -19.8 %, considering 
ANN and SVR, respectively. Fig. 20d shows the comparisons between 
GEP and finite element models. The minimum and maximum relative 
errors were -91,1 % and 94,4 %, respectively, thus showing that the 
results predicted by GEP underestimate and overestimate CHS resis-
tance. In relation to DTR model predictions (Fig. 20e), better predictions 

Fig. 18. Gene Expression Programming tree.  

Table 14 
Influence of train-test split on the accuracy of the regression trees.  

Split 10-90 20-80 30-70 40-60 50-50 60-40 70-30 80-20 90-10 

Training size 1371 1219 1066 914 762 609 457 304 152 
Test size 153 305 458 610 762 915 1067 1220 1372 
No. levels 16 15 15 16 16 14 13 12 12 
No. leaves 1371 1219 1066 914 762 609 457 304 152 
R2 0.9979 0.9984 0.9990 0.9983 0.9988 0.9889 0.9829 0.9618 0.9123  

Fig. 19. Comparison between the FE and predicted results using DTR.  
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Fig. 20. Comparison between EC3, ANN, SVR, GEP and DTR predictions with finite element models.  

I. Abarkan et al.                                                                                                                                                                                                                                



Engineering Applications of Artificial Intelligence 132 (2024) 107952

18

were identified compared to the GEP model, since the minimum and 
maximum relative errors were equal to -24.5 % and 49.8 %, respec-
tively. Table 15 presents the statistical results of the five prediction 
models. It can be noted that both machine learning algorithms provided 
better predictions than EC3 since the (RMSE) and (MAE ) values for the 
EC3 predictions were much higher than those for the ANN, SVR, GEP 
and DTR predictions. 

7. Reliability analysis based on annex D EN 1990 

In this section, reliability analysis based on Annex D EN 1990 (2002) 
(European committee for standardization) has been conducted to assess 
the reliability of the machine learning method and EC3 prediction and 
propose a partial safety factor for the cross-section resistance of a cir-
cular hollow section (CHS) stainless steel stub column. In the framework 
of the present study the statistical evaluation of the proposed prediction 
models is done here against the finite element results. Table 16 illus-
trates the key statistical parameters, including the number of data, n, the 
design fractile factor (ultimate limit state), kd,n, the characteristic fractile 
factor, kn the average ratio of FE to resistance model predictions based 
on the least squares fit to the data, b, the combined coefficient of vari-
ation incorporating both resistance model and basic variable un-
certainties, Vr, and the partial safety factor for resistance γM0. The COV 
of geometric dimensions of steel is 0.05 (Afshan et al., 2015). The COV of 
the yield strength of stainless steel, and ultimate strength of the stainless 
steel were assumed equal to 0.06 (Afshan et al., 2015) and 0.035 (Afshan 
et al., 2015), respectively. The COV between the experimental and the 
numerical results, which was found equal to 0.0381, was also consid-
ered. Performing First Order Reliability Method (FORM) in accordance 
with the Eurocode target reliability requirements, the partial factors γM0 
were evaluated for all ML models and EC3 prediction. As can be seen 
from Table 16, the partial factor for the cross-section capacity based on 
the GEP algorithm is the highest among the other ML models while it is 
1.15 based on the ANN, SVR and DTR. The partial factor based on the 
EC3 is 1.38. It can be concluded that ANN, SVR and DTR provided the 
better prediction than that EC3 and GEP. 

8. Concluding remarks 

This paper studied the cross-section resistance of stainless steel CHS 

stub columns subjected to axial loadings. Firstly, numerical modeling 
was conducted to validate the FE models. Based on this validation, a 
parametric study was carried out to extend the data range, resulting in a 
dataset of 1524 samples with various geometrical dimensions, material 
grades, and properties. This data was used to train, validate, and test the 
ANN, GEP, DTR models, and SVR models with four kernels: linear, 
polynomial, RBF, and sigmoid. Although stainless steel material has 
many advantages when used in structural members, the initial cost is 
very high. Therefore, machine learning models have been utilized to 
suggest design that optimizes material usage and improves efficiency. 
The predicted results using ANN, SVR, GEP and DTR were compared 
with FE and EC3 to assess their accuracy. Accordingly, the following 
conclusions are made:  

i. The EC3 provides very conservative predictions of the numerical 
counterparts with the mean and CoV values of the NEC3/NFE ratio 
were around 0.67 and 19.8 % for austenitic stainless steel, 0.70 
and 13.8 % for duplex stainless steel and 0.78 and 12.9 % for 
ferritic stainless steel. This is mainly owing to neglecting the 
blatant difference in the material stress-strain behavior of stain-
less steel compared with that of carbon steel.  

ii. Among the SVR models, those with RBF and sigmoid kernels 
achieved the highest level of accuracy, with an (R2) value of 
0.9993 and (RMSE) of 0.005. The polynomial kernel also per-
formed well, with an (R2) value of 0.9991 and an (RMSE) of 
0.0057. However, the linear kernel failed to accurately predict 
the cross-section resistance. The SVR model with RBF was found 
to provide the most accurate results with less computational 
complexity compared to other kernels.  

iii. The ANN model accurately predicts the cross-section resistance of 
the stainless steel stub columns with an R2 value of 0.9985 and 
RMSE and MAE values equal 31.6 and 19.0, respectively. How-
ever, SVR with RBF performed better than ANN, GEP, and DTR 
with (R2), (RMSE) and (MAE) values of 0.9993, 22.6 and 12.7, 
respectively. GEP provided the lowest level of accuracy than that 
for the other three machine learning methods. 

iv. The machine learning algorithms investigated in this study per-
formed much better than the EC3 design, in which (R2), (RMSE)
and (MAE) values for the latter are 0.9406, 437.3 and 363.15, 
respectively. Therefore, SVR was implemented in the GUI, and 
ANN was implemented in user-friendly excel sheet enabling en-
gineering practitioner to predict easily the cross-section resis-
tance of CHS stainless steel stub columns. A straightforward 
equation (i.e. Eq. (23)) generated from GEP method can also be 
used to predict the capacity. It should be noted that the load 
capacity calculated should be divided by the partial factors pro-
posed in Table 16.  

v. Further research study is application of machine learning to 
predict the capacity of other stainless steel members such as 
columns under eccentric loading. Another interesting study is to 
use the ML to classify the failure mode of structural stainless steel 
members. 
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