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Abstract
We propose a genetic programming markup language (GPML), an XML-based 
standard for the interchange of genetic programming trees, and outline the benefits 
such a format would bring in allowing the deployment of trained genetic program-
ming (GP) models in applications as well as the subsidiary benefit of allowing GP 
researchers to directly share trained trees. We present a formal definition of this 
standard and describe details of an implementation. In addition, we present a case 
study where GPML is used to implement a model predictive controller for the con-
trol of a building heating plant.
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1  Introduction

Genetic programming (GP) has progressed to a point of maturity where real-
world applications are beginning to emerge—see, for example, [7]. Many indus-
trial and related processes require an empirical model of the process, and a sig-
nificant challenge in this is identifying a suitable model structure  [22]. Since 
searching over the space of all models is typically a non-deterministic polyno-
mial (NP) problem, evolutionary methods, and GP in particular, are a valuable 
means of finding ‘engineering’ applicable models. Even though GP is well-suited 
to identifying near-optimal model structures, in common with other machine 
learning approaches, a significant amount of fine-tuning, validation, etc. is often 
required to generate the final model for deployment, although some progress is 
being made on automated pipelines, for example, [20].

Despite progress on the modelling aspects, one very real challenge remains the 
widespread deployment of GP in real-world applications. Invariably, trained GP 
models exist in the form of data structures (trees, lists, etc.) in the memory space 
of the computer implementing the learning procedure. While perfectly fine in a 
research setting, for real-world deployment of the trained GP model, this repre-
sents a difficulty, as illustrated in Fig. 1. (We use examples here of control appli-
cations since that is our principal interest, but identical arguments apply to clas-
sification/detection and other systems.)

The conceptually simplest set up is to use the same physical computer for both 
the training and the control application in which case the in-memory data struc-
ture containing the trained GP model can simply be accessed by both the training 
and control portions of a single program. This organization, however, has two 
major drawbacks:

•	 GP training (the left side of Fig. 1) typically requires a workstation, comput-
ing cluster or even a graphical processing unit (GPU) system whereas the con-
trol application may only require a microcontroller or small single-board com-
puter.

•	 If the single physical computer hosting both processes in Fig. 1 crashes, the GP 
model will need to be recreated (retrained) before control can be re-established. 
This lengthy delay may be completely unacceptable in terms of cost, safety, etc.

Clearly what is required is an intermediate interchange format for the trained 
GP model, as illustrated in Fig.  2 whereby the results of the training phase are 
stored in a non-volatile way for repeated reuse, or indeed distribution to a number 
of identical controllers. This alternative system architecture addresses both the 
bullet points above:

Fig. 1   Implementation of a GP 
application on the same physical 
computer
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•	 The existence of an interchange format means that the GP training and the con-
trol application can be easily implemented on physically different, appropriately-
sized and even geographically-separated computer systems.

•	 If the control computer system crashes, the control system can be rebooted, the 
GP model simply reloaded from the interchange format, and control rapidly re-
established.

Having identified the need for a GP interchange format, we turn to a suitable mech-
anism. Although a custom binary format, perhaps mirroring the in-memory data 
structure of the trained GP model, would be time and space-efficient,1 the drawbacks 
of binary formats are many: different mappings between data types (signed versus 
unsigned byte-wide character types, different endian-ness of floating-point quanti-
ties, etc.), and different file system implementations all present significant problems 
when the training and control systems are two different computers, or even the same 
type of computer but using different implementation software for each of the two 
components. Clearly an easily-transportable, text-based format is mandated. It is 
worth remarking that, driven by the requirements of inter-operability, most commer-
cial and open-source word processors have abandoned (proprietary) binary formats 
in favor of open, text-based formats in recent years.

If the interchange format (depicted in Fig. 2) is a human-readable, text-based for-
mat, a trained GP model becomes a ‘plug-in’ component that can be easily improved 
and/or updated off-line to track, say, process ‘drift’ and then very quickly deployed 
in the application system. Furthermore, in software engineering terms, decoupling 
the training and application functions conforms to recognized good practice.

As to a suitable form for the text-based interchange information, rather than 
devise a new format, we argue that it makes good sense to adopt one of the estab-
lished, general-purpose markup languages. These have the benefits of a large user 
base, standardization and widespread software support across a range of platforms. 
We consider the requirements and trade-offs in selecting a suitable markup stand-
ard in Sect. 2: to pre-empt that discussion, we have based our standard interchange 
format on the eXtensible Markup Language (XML) [32]. This paper presents what 
is, as far as the authors are aware, the first definition of a standard, text-based inter-
change format for GP models. As we have argued above, this provides a key, but 

Fig. 2   Implementation of a GP 
application with an intermediate 
interchange format; note that the 
two computational processes no 
longer have to be implemented 
on the same physical computer

1  Such as the checkpointing facility in DEAP (https​://deap.readt​hedoc​s.io/en/maste​r/tutor​ials/advan​ced/
check​point​.html) that serializes the Python data structure using the Python pickle module.

https://deap.readthedocs.io/en/master/tutorials/advanced/checkpoint.html
https://deap.readthedocs.io/en/master/tutorials/advanced/checkpoint.html
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hitherto missing, component for the wider take-up of genetic programming models 
in real-world applications.

Section 2 discusses the rationale for our choice of markup language from which 
we conclude that XML fits our requirements. In Sect. 3, we briefly describe the rel-
evant features of XML and its accompanying validation framework, XML Schemas. 
We describe an XML representation of a GP tree in Sect. 4, and an example imple-
mentation in Sect. 5. In Sect. 6 we describe an application of GPML to embedding a 
trained GP model in a building control application. Although principally intended to 
facilitate the deployment of GP in real-world applications, an open interchange for-
mat for trained GP models also has the subsidiary benefit of allowing the exchange 
of GP models between researchers; we discuss this potential further use in Sect. 7. 
In addition, we develop the material in this paper assuming ‘standard GP’ [18], that 
is a genetic programming system based on tree data structures. We discuss the appli-
cation of GP to other genetic programming formulations in Sect. 7. Section 8 con-
cludes the paper.

2 � Choice of markup language

Having motivated the requirement for a text-based interchange format for trained GP 
models in Sect. 1, we turn now to practical implementation. It would clearly be sen-
sible to adopt an existing serialization standard rather than devise a new format—
many potential serialization models exist. For example, one of the reviewers of this 
paper suggested the Extensible Data Notation (EDN)2 since this natively represents 
Lisp s-expressions that were historically used in Koza’s early work to represent GP 
trees. We have not considered EDN because, at time of writing, it is casually rather 
than formally specified and therefore lacks the standardization we require. Similar 
comments could be made about the large number of sometimes experimental, com-
peting serialization formats, many of which have technical merits, but currently lack 
standardization and/or wide-ranging support across a range of software platforms.

Since we judge it important to build on an existing standard with good software 
support, two main options present: the Extensible Markup Language (XML) and 
the JavaScript Object Notation (JSON). Both are widely used in web and other 
technologies.

XML was derived from the earlier Standard Generalized Markup Language 
(SGML), an ISO-standard document description system. XML meets all our require-
ments of stability and standardization [32], and of tool support. In addition, it has a 
large and mature ‘eco’-system comprising:

•	 XML Schema, an XML-compliant validation framework [33]
•	 XQuery and XPath for database-like queries and node referencing of an XML 

document—see https​://www.w3.org/XML/Query​/ and https​://www.w3.org/TR/
xpath​-10/.

2  https​://githu​b.com/edn-forma​t/edn.

https://www.w3.org/XML/Query/
https://www.w3.org/TR/xpath-10/
https://www.w3.org/TR/xpath-10/
https://github.com/edn-format/edn
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•	 eXtensible Stylesheet Language Transformations (XSLT), a stylesheet system 
for transforming XML documents to other formats  (see https​://www.w3.org/
stand​ards/xml/trans​forma​tion)

•	 Standardized application programming interfaces (APIs), such as the Document 
Object Model (DOM)—see https​://dom.spec.whatw​g.org/.

JSON was developed as a ‘lightweight’ alternative to XML, and subsequently, sup-
port analogous to XML’s XQuery, XPath and validation schema have been devel-
oped. These, however, currently lack the stability and maturity of their XML coun-
terparts. In particular, the JSON Schema that permits the validation of the serialized 
data is, at time of writing, still at the draft proposal stage and therefore lacks the 
maturity and stability of XML Schema. A further, minor point is that XML allows 
comments whereas JSON does not.

Two of the oft-stated advantages of JSON over XML are i) smaller file size and 
ii) human readability. In a comprehensive series of real-world studies of web appli-
cations, however, Lee  [14] has shown that the size and processing-speed advan-
tages of JSON are largely unsubstantiated and mostly “myth”. As to the superior 
human readability of JSON, this is a very subjective property, and one with which 
we disagree. In particular, we consider that for deeply nested structures, JSON’s 
heavy ‘overloading’ of the three ASCII bracket forms—“()”, “{}” and “[]” produces 
a less readable document. On the other hand, we consider that XML’s delineation of 
‘clauses’ with unique tags greatly aids readability; it is, of course, this use of more 
verbose tagging that tends to make XML files slightly larger but highlights a trade-
off between readability and terseness. Others may hold a contrary opinion on read-
ability, but human readability is a fairly minor consideration in the present situation.

We should, in passing, also mention the recursively-named YAML Ain’t Markup 
Language (YAML).3 which can be considered a superset of JSON with arguably 
superior type derivation. At time of writing, YAML would appear even less mature 
than JSON.

In summary, after weighing up all factors, we have based our interchange for-
mat on XML due to its stability, standardization and maturity, its widespread soft-
ware support, and the stability/maturity of the accompanying support, particularly 
the XML Schema validation standard. This design decision, however, is not irrev-
ocable—XML and JSON representations must logically contain identical infor-
mation  [14]. Indeed a number of XML-to-JSON (and vice versa) converters are 
available.

3 � Extensible markup language (XML)

The intrinsic hierarchy in XML lends itself perfectly to describing GP trees, 
which are, of course, typically represented as acyclic hierarchical graphs. Further, 
the syntax of XML is very intuitive although human readability is probably a 

3  See https​://yaml.org/.

https://www.w3.org/standards/xml/transformation
https://www.w3.org/standards/xml/transformation
https://dom.spec.whatwg.org/
https://yaml.org/
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secondary consideration here since we envisage trees being written/read mainly 
by computer. Nonetheless, the ability to visually inspect the tree structure is valu-
able, and often requested by paper reviewers. We give some simple examples of 
GP trees represented with XML in Sect. 4.

In XML, an element is specified by a syntax such as: 

where "elementName" and "option" are user-defined identifiers, the latter 
specifying an attribute, and "A" is a quoted text string. Alternatively, an equiva-
lent single-line version where the element does not nest other elements is: 

Crucially for the present application, XML elements can also embed other 
XML elements, as in: 

and so on to arbitrary levels of nesting. XML can thus straightforwardly represent 
hierarchical structures. See  [8] for a concise but comprehensive introduction to 
XML.

In a given application, an XML file has to conform to a specified structure—
that is, to be well-formed. The need for validating XML files has led to the devel-
opment of XML Schemas  [8, 29, 33] for this purpose. XML Schemas—them-
selves XML-compliant—are able to specify an XML file structure using a syntax 
reminiscent of the extended Backus Naur format (EBNF) widely used for specify-
ing the grammar of programming languages; importantly for the present applica-
tion, XML Schemas are able to specify recursive structures for validation.

In terms of implementation, a large number of proprietary and mature open 
source XML libraries are available, for example, Xerces  [1], with bindings to a 
range of programming languages. In addition, many XML implementations for 
Matlab are available (e.g. [16]). Consequently, there seems no technical impedi-
ment to adopting XML as an interchange format.

We term the interchange format proposed here a Genetic Programming Markup 
Language (GPML) to denote its GP-specialisation over plain XML.

To date, XML has found little application in the GP community. In a rare 
example, Tanev and Shimohara  [28] have used the Document Object Model 
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(DOM)  [30], a representation of an XML structure in memory, directly for GP 
evolution although the DOM is probably not ideal for this purpose.

4 � GPML specification

In this section, we describe GPML, a standardised XML-based interchange format.
Making use of the intrinsic hierarchy, GPML recursively encodes the tree struc-

ture. Different types of nodes and their corresponding information are identified and 
recorded in various elements and attributes in GPML. By recursively interpreting 
the element name and attribute information of each node starting from the root node 
down, the GP tree can be saved and restored.

With elements and attributes arranged in a nested, hierarchical fashion, GPML 
can be used to describe GP trees intuitively. We consider a GP tree representing the 
quite general mapping:

where co-domain y ∈ �  is a set of either: booleans, signed integers, doubles, char-
acters or character strings. The domain � is an N-tuple drawn from the Cartesian 
product � ×� ×… . The sets � , � , etc. are, in turn, sets of either: booleans, signed 
integers, doubles, characters or character strings. Often, � ∈ ℝ

N when, of course, the 
input will become a conventional vector of reals.

The nodes in GP trees can be classified as one of a number of types: inputs (i.e. 
leaf nodes), constant nodes, nodes calling automatically-defined functions (ADFs), 
unary nodes, binary nodes, ternary nodes, and the more general n-ary node. These 
different nodes correspond to eight basic elements within GPML, namely, "input", 
"inputTuple", "constant", "adfCall", "unary", "binary", "ternary" 
and "nAry" with user-specified information described in their respective attributes.

For the purpose of initial illustration, consider the simple GP tree shown in Fig. 3 
that represents the mapping y = f (�) where y ∈ ℝ and � ∈ ℝ

N (although there is 
no restriction with GPML on the input/output being real numbers, or indeed that 
the elements of � are even of the same type). This mapping can be directly repre-
sented by the GPML code shown in Listing 1 which incorporates the hierarchy of 
the GP tree. The whole enclosing structure representing the single instance of the 
tree ("gpTree") has the binary addition (" binary operation=“+”>") node 

(1)�

f
→ y

Fig. 3   Simple example GP tree
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as its root. The two children of this root node element are represented as two child 
elements in GPML: the unary "-" node and the binary " ×" node. Each of these 
child elements has child elements in turn. In the case of the unary node, its child ele-
ment is a terminal constant node returning a (default "double") value of 0.2; the 
two children on the binary " ×" are the terminal "input" nodes returning the first 
and second elements of the input tuple, respectively.

In Fig. 3, terminal nodes in the GP tree indicate elements of the input vector. We have 
used the "tupleIndex" attributes of the "input" elements as indices into the input 
tuple (vector) � . For constant nodes, the exact values are specified in the content of the 
GPML element.

In GP, each unary node has a single child node, which could be any type of node, 
including another unary node type. In GPML, a unary node is represented by an element 
"unary", and its operator is specified by its attribute. Similarly, binary, ternary and n-ary 
nodes have two, three or n child nodes, respectively. In GPML, node operators are speci-
fied by their attributes, like the nodes shown in Fig. 3 and their GPML representations in 
Listing 1.

Note that each GPML document has exactly one root element, which encloses all 
the other elements. In GPML, the element name of the XML root node is "gpTree". 
The "noTupleElements" attribute of the root node defines the number of inde-
pendent variables used in the mapping, which can be exploited for validation of 
a GPML document. The indices of terminal nodes in GPML are restricted to the 
ranges of either [0…(ε���������������ε − 1)] or [1…ε���������������ε] , 
depending on the (implementation-defined) convention adopted for indexing tuples 
in the actual implementation. Consequently, the attribute "firstIndex" ∈ {‘0’|‘1’} 
unambiguously associates tree inputs with elements in the input tuple. The value of 
"tupleIndex" in a "input" element needs to fall in the appropriate range other-
wise a validation error occurs that can be straightforwardly detected and notified to the 
user. It is also a trivial matter to use a tree that has been trained in a system with zero-
index tuples in a (separate) system using tuples indexed from unity, and vice versa.
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4.1 � Formal definition of GPML

In terms of extended Backus–Naur form [12] typically used to specify program-
ming languages, we can formally describe the topmost-level "gpTree" element 
of GPML using: 

The terminal symbol "noTupleElements" is an XML-defined primitive of 
positive integer type  [33], i.e. a number ∈ ℕ

+ denoting the number of elements 
in the input tuple; the GP mapping is presumed to have at least one input. The 
non-terminal symbol xml-positive-integer value indicates the number of elements 
in the tuple of input variables for the mapping described by the GP tree. As dis-
cussed above, the "firstIndex" attribute denotes whether the described GP tree 
indexs the input tuple starting from zero or one.

GPML is able to embed an arbitrary number of automatically defined functions 
(ADFs)  [13] as (optional) definitions within the enclosing "gpTree" structure; 
as shown above using: 

that is, zero or more adf-definition types.
A single ADF definition resembles that of a "gpTree" as: 

where "name" specifies the textual name of the ADF instance; we have adopted the 
usual C identifier naming convention of an alphabetical character or underscore fol-
lowed by any number of alphanumeric characters or underscores. An adfNameType 
is derived from an xml-token, an XML string primitive, with the additional restric-
tion that it conforms to the lexical constraints on the ADF’s name. Note that the 
above adfDefinition does not allow ADFs to be defined inside other ADFs in keep-
ing with a common convention in programming languages.

Note that neither a gpTree nor an adf is constrained to return a scalar result—
either could, for example, return a string or indeed a tuple of quite general form—
although the example trees we show in this paper return real values for simplicity of 
presentation. We reiterate that GPML is concerned solely with representing trained, 
semantically-correct GP trees. GPML is wholly agnostic about how these trees are 
produced, as should be the case for a general-purpose representation format. To 
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produce semantically-meaningful trees, mixing data types in the same tree clearly 
requires an evolution mechanism that is type aware. Discussion of this, however, is 
out of the scope of the present paper.

The types of scalar data allowable within GPML are defined by: 

the meaning of most of which are obvious from the XML standard; the character 
type is an xml-string that is restricted to a length of one since XML does not define 
an explicit character type.

A tuple is defined recursively as: 

That is, within a tuple, a string literal is demarcated by single quote marks. If it 
is necessary to include literal single quote marks within the string then these must 
be included in their XML-specified escaped form (as "&apos")—see https​://www.
w3.org/TR/REC-xml/#synta​x. A tuple thus contains one or more scalar-type ele-
ments, i.e. booleans, signed integers, etc. Note also that tuples can be heterogeneous, 
namely, they can contain elements of different types.

The non-terminal symbol node is defined as: 

where a node is one of either: an input node, a constant node, an ADF call node, 
a unary node, a binary node, a ternary node or an n-ary node. This set, which we 
believe currently covers the practical range of useful node types in genetic program-
ming,4 are formally defined by: 

where xml-non-negative-integer is again an XML-defined primitive type for an inte-
ger quantity ≥ 0 (i.e. ∈ ℕ

0).
Alternatively, an input-tuple-node is a terminal that returns the whole of the input 

tuple �—see (1)—and is defined as:

A constant-node is a terminal node that can return either a scalar-type or a tuple-
type. Hence, we define the type of the data returned by a constant-node as: 

4  Like any standard, we naturally envisage GPML evolving with time to suit new, changed circum-
stances.

https://www.w3.org/TR/REC-xml/#syntax
https://www.w3.org/TR/REC-xml/#syntax
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and a constant-node is defined as:

where data-type is defined above, and specifies the returned type of a constant node. 
Specifying a data-type is optional (as denoted by enclosure in square brackets in the 
EBNF statement above) and defaults to "double" if omitted since this is probably 
the most common use case. The value field represents the constant value in type-
appropriate form. e.g. "true" for "boolean", etc. If the constant node returns a 
tuple, this is represented as a whitespace-separated list of elements; string tuple ele-
ments are demarcated by single quote marks.

An adf-call-node is a form of terminal defined by:

and can occur in a tree anywhere an "input", "inputTuple" or "constant" 
node can occur.

Consistent with the naming convention set out above for an ADF, "name" is a 
string starting with an underscore or alphabetic character followed by any number of 
alphanumeric characters or underscores.

A unary node is defined by EBNF as: 

in which operation is an XML-defined token type (i.e. a character string), and 
parameterString is an optional xml-string type. The "operation" element indi-
cates the (implementation dependent) operation executed by the unary node; for a 
unary minus, for example, this might be "-", or for an exponential function "exp".

For the cases where a unary node may take some (arbitrary number of additional) 
parameters, these can be specified using the (optional) ‘"parameterString"’ by 
concatenating all the function’s parameters in, say, a comma or whitespace-separated 
list. These parameters can then be simply ‘unpacked’ by the implementation code. 
This method of passing any additional parameters is a carefully considered design 
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decision for GPML, striking a balance between simplicity, generality and clarity of 
GPML syntax. For example, the GP induction of a decision tree [4] would typically 
contain (only) binary nodes that test the state of an element in the input vector and 
follow the left or right child subtrees, respectively depending on whether the given 
input element was < than or ≥ than some decision threshold. For this application, 
one possible implementation would be for a node’s threshold value to be passed in 
the optional parameter attribute and extracted by the implementation code.

A range of quotient-type binary operators are commonly used in GP: at least two 
variants of protected division, analytic quotient [19], and unprotected division. Each 
can be uniquely distinguished by an (implementation-dependent) operation field, 
and indeed could easily be mixed in the same tree, if desired.

The binary-node, ternary-node, and n-ary-node types in GPML are defined by: 

where a node-list is sequence of one or more node types recursively defined by:

One potential use of an n-ary node type is to represent the iterative structures that 
have been previously employed in GP [25]. For example, considering a prototypical 
for-loop:

���(� = �;� < ��;� + +){�}and defining a 4-ary node, the first child could stipu-
late the initial value of the index (i=0), the second child the termination criterion on 
the index (i ≥ 10), the third the increment on i, and the fourth child the sequence to 
be executed (s). Except, of course, in a GP environment, each of these values could 
be generated by child sub-trees.

Yet again, operation indicates the operation to be performed by the binary, ter-
nary or n-ary nodes, respectively, and the optional parameter-string conveys any 
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additional parameters required. An n-ary node must have at least one child. Rather 
than define only n-ary nodes with one, two or three children to represent, unary, 
binary and ternary nodes, respectively, we have retained specific unary, binary 
and ternary nodes since, in our view, this improves interpretability of the resulting 
GPML file. Their use, however, is optional—either method of specifying a binary 
node, say, could be used.

Furthermore, ADFs are sometimes required to take arguments. Rather than intro-
duce new argument terminals that would need to have multiple types and that could 
only appear in ADFs, we concluded that it would be simpler to exploit an (imple-
mentation-dependent) n-ary node where the first sub-tree is a call to an ADF, and 
the remaining (n − 1) subtrees evaluate the arguments that are then passed to the 
ADF in the normal way and form the values to be used as that ADF’s terminal vari-
ables. So when such an n-ary (function) node is evaluated, it first evaluates the argu-
ment subtrees, passes the argument list to the ADF, and finally returns the result to 
the parent of the n-ary node. This mechanism then looks rather like the conventional 
representation of a function as f (�).

The operations specified by the above internal node types are deliberately left 
undefined by GPML, and are implementation-dependent. Typically, in a regression 
problem, the unary operation will be one of: unary minus, exponential function, sine 
function, etc. Similarly, the binary operations implemented will be one of: addition, 
subtraction, multiplication, (protected) division, or analytic quotient  [19], while 
the ternary operation will typically be if-then-else. When learning a boolean 
problem, on the other hand, the only unary operator would typically be the NOT 
operation, and the binary operations would comprise: AND, OR, XOR, etc. This facil-
ity means that GPML can be expanded to include arbitrary, domain-specific opera-
tions, possibly parameterized via "parameterString" elements.

Note also how a "binary" node, for example, ‘embeds’ two node types, each 
of which is defined as being one of a: "input", "inputTuple", "constant", 
"adfCall", "unary", (another) "binary", "ternary" , or "nAry" node. The 
GPML syntax is thus able to recursively define a GP tree of unbounded extent. 
Similarly, a gp-tree ‘embeds’ a single node implying a single root node for the par-
ent tree. Trees defined as ADFs are thus embedded consistently as subroutine-like 
objects within GPML.

A user is, of course, free to add XML-compliant comments to a GPML file since 
these will be subsequently ignored by any XML parser.

4.2 � An example tree containing an ADF

To further illustrate the utility of GPML, we show in Listing 2 a simple example of a 
GPML definition of a tree containing a single ADF.

It should be clear that the tree in Listing 2 implements a mapping � → y where 
� ∈ ℝ

2 and y ∈ ℝ . The GPML listing defines an ADF called "myADF" (in lines 
3–8) that returns x2

1
 . The ‘main’ program starts at line 11 and calls the ADF at line 

12. The function implemented by the whole GP tree is y = x2
1
+ x2 . In keeping with 



	 Genetic Programming and Evolvable Machines

1 3

the general philosophy of GPML, we impose no restrictions on how any ADF is 
generated.

5 � Implementation

Quite deliberately, we do not specify or indeed restrict implementation details 
for GPML. In this section, we describe our initial implementation as a point of 
reference.

5.1 � Writing GPML

Given a (trained) GP tree in memory, writing a valid GPML file involves a fairly 
straightforward recursive descent of the tree. With reference to Listing 1, the first 
task is to output the preamble of the GPML file that comprises the "gpTree" 
information, the "noTupleElements" and "firstIndex" attributes, and the 
closing ε>ε character. At this stage, the writing procedure recursively descends 
the tree (in whatever form this has been implemented) and on ‘entering’ a node, 
it emits the appropriate GPML element definition ( ε< �����ε , ε< ����������ε , 
ε< ��������ε , ε< �����ε , ε< ������ε , ε< �������ε or ε< ����ε ). Then:

•	 If the GP node is a terminal (either an ε< �����ε , ε< �������ε or 
ε< ��������ε ) then it remains only to emit either the "tupleIndex" or other 
attributes and values, and a tag terminating sequence before return from the 
recursive call.

•	 An "inputTuple" is an empty element and is terminated with ε∕ >ε before 
return from the recursive call.
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•	 If the current node is a non-terminal GP node, the "operation" attribute field 
together with the optional "parameterString" field are emitted, and then 
the appropriate number of further recursive calls made to visit the children of 
the current node. On return from the last of these recursive calls, the function 
needs to emit a closing ε< ∕����� >ε , ε< ∕������ >ε , ε< ∕������� >ε or 
ε< ∕���� >ε field, and then return.

When the chain of recursive calls finally ends, the only remaining task is to emit the 
ε< ∕������ >ε terminating tag.

If the tree contains ADFs, these need to be emitted after the "gpTree" line and 
before the first node description of the ‘main’ program. The use of conventional 
symbol tables  [23] would be one possible implementation mechanism, but this 
would ultimately depend on the internal organisation of the system that has trained 
the GP tree.

5.2 � Reading GPML

We have implemented our initial GPML system using the lightweight pugixml 
XML library,5 largely for simplicity and convenience. The pugixml library reads 
the specified XML file into memory as a Document Object Model (DOM)  [30], 
a hierarchical structure that can be traversed using functions built into the XML 
library. Implementation in terms of a DOM is not the only possible approach; the 
Simple API for XML (SAX) model is equally viable and possibly faster in execution 
although its use tends to be more involved. Having created a DOM of the tree, it is a 
straightforward matter to traverse this data structure, creating and linking GP nodes 
in an implementation-dependent manner. Again, conventional symbol tables  [23] 
provide a possible implementation method in the case where the tree contains ADFs.

5.3 � Validating GPML

One of the important elements presented in this work is a well-developed XML 
Schema for the validation of GPML. The simple pugixml library we have used 
does not provide validating facilities although these are provided by other XML 
libraries, for example, Xerces [1]. These more sophisticated libraries tend, however, 
to be more complicated to use. In practice, a range of other, convenient validation 
tools are available, for example: the xmllint6 command-line validator, which is 
part of the libxml library. Alternatively, the open-source jEdit7 text editor has 
an XML plugin that performs validation against a specified schema. Finally, a num-
ber of free-to-use XML validators are available online, for example, http://www.utili​
ties-onlin​e.info/xsdva​lidat​ion/.

5  http://pugix​ml.org/.
6  http://xmlso​ft.org/xmlli​nt.html.
7  http://www.jedit​.org/.

http://www.utilities-online.info/xsdvalidation/
http://www.utilities-online.info/xsdvalidation/
http://pugixml.org/
http://xmlsoft.org/xmllint.html
http://www.jedit.org/


	 Genetic Programming and Evolvable Machines

1 3

In addition to validating the structure set out in Sect. 4, we have exploited a num-
ber of features of XML Schema to add checks that:

•	 The names given to any ADFs are unique and conform to the specified pattern of 
an alphabetic character or underscore followed by any number of alphanumeric 
characters or underscores.

•	 The "noTupleElements" attribute is a positive integer.
•	 The "firstIndex" attribute specifying the index of the first tuple element has a 

value of either 0 or 1.
•	 The arity of an "nAryNode" is at least one.

It is, however, advisable for any implementation of the GPML ‘reader’ software 
(Sect. 5.2) to check that:

•	 The tuple indices specified in all of the "input" attributes are within the range 
of ≥ "firstIndex" and < "firstIndex" + "noTupleElements", i.e. that 
they index a valid tuple element.

•	 That the value specified in a "constant" can be converted to the appropriate 
data type.

We have made an XML Schema for GPML available under a Gnu Public Licence 
(GPL-3) on the GitHub repository (https​://githu​b.com/pirli​te2/gpml-schem​a).

6 � Case study: model predictive control of building heating

In order to demonstrate the value and extensibility of GPML, we describe a case 
study of using genetic programming to learn the dynamics of a single-zone building, 
and to implement a model predictive control (MPC) scheme for the heating system 
to provide comfortable internal conditions.

MPC [3, 15] requires the ability to predict the response of a system at times in the 
(near) future. To compactly learn the dynamics of most systems, it is usually desir-
able to construct an autoregressive model to predict the system’s output at discrete 
time steps; an autoregressive model is one in which values of the system output at 
previous time steps are used as inputs at the current time step thereby compactly 
encoding the system’s‘memory’ or inertia. A dynamical model predicting, say, 
internal temperature, y one time step ahead (OSA) can be represented by [24]:

where k is the current time step, �k, �k−1,… , �k−n is the set of n delayed (or lagged) 
input variables, and yk, yk−1,… , yk−m is the set of m lagged autoregressive outputs. 
The modeling challenge is to determine the function f along with n and m, the sizes 
of the lag sets [24], which amounts to a search over a very large space of options. 
This challenging search problem motivates our use of genetic programming.

(2)ŷk+1 = f (�k, �k−1,… , �k−n, yk, yk−1,… , yk−m)

https://github.com/pirlite2/gpml-schema
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To implement dynamical models using GP, it is necessary to introduce time delay 
operators into the GP function set as was done very successfully by Hinchliffe and 
Willis  [10] in a conventional GP setting. The significant advantage of the formu-
lation in [10] is that the sets of delayed inputs and outputs, the so-called lag set, 
are evolved alongside the functional mapping f rather than having to be specified in 
advance, as in [9], for example.

In the context of GPML, we can easily introduce unit time delays by defining a 
new type of the unary node �1 such that given variable yk measured at the k-th time 
step, the value of the regressor at time step (k − 1) is given by:

That is, the unit delay operator �1 returns the value of the same variable at the pre-
vious time step. In fact, following the work of Hinchliffe and Willis, we define 
time delay operators for one, two and three unit delays. �1 is defined in (3) above, 
�2(yk) → yk−2 , and �3(yk) → yk−3 . GP evolution is then able concatenate these delay 
operators to produce delays longer than three time steps, if required. These delay 
operations can be straightforwardly incorporated in GPML as:

i.e. defining a new operation for a time lag of one unit, and so on for lags of two 
("delay2") and three ("delay3") units of time. These delayed regressors can, of 
course, be evaluated from previous outputs of the GP tree.

Given a dynamical model—in the present case implemented with GP—MPC pro-
ceeds by explicitly optimizing the set of N future inputs X = {�k+1, �k+2,… , �k+N} 
over a predetermined prediction horizon N time steps into the future such that the 
system produces some pre-specified schedule of internal temperature as closely as 
possible. Note that at time k, (2) predicts only one step ahead, but the temperature 
prediction ŷk+2 requires the autoregressive input yk+1 , which is unknown at time k 
since at that point it lies in the future. Consequently, yk+1 is approximated by ŷk+1 , 
the predicted quantity from the previous time step. Similarly, predicting ŷk+3 uti-
lizes ŷk+1 and ŷk+2 , and so on. The requirement on the prediction accuracy of the 
model is thus quite stringent; in fact, selecting and calibrating the predictive model 
is widely quoted as consuming 75% of the cost of a conventional MPC project [11]. 
The details of the training of the GP dynamical models and their performance on 
MPC fall outside the scope of the present paper and will be published elsewhere.

The quite general simulation framework we have employed is shown in Fig. 4, 
and is based on the widely-used EnergyPlus building simulator  [5] (Block 1) that 
allows external monitoring and control of its internal states via Functional Mockup 
Interfaces (FMIs) [2] (Block 2). The training of the GP model, usually termed sys-
tem identification in the control literature, was performed using data obtained by 
exciting the (simulated) building in so-called open loop, that is, without any feed-
back control (Blocks 1 and 3). Once trained and validated (Blocks 4 and 5), the 
GP model was employed in an MPC framework as outlined above (Blocks 1 and 
6). It would be extremely inconvenient and cumbersome to embed the GP training 
and validation procedures within the building simulation and control framework in 

(3)�1(yk) → yk−1



	 Genetic Programming and Evolvable Machines

1 3

Fig. 4. The complexity of the resulting software would be very high and difficult to 
manage. Further, incorporating non-GP comparator models would add to this com-
plexity. We have thus chosen to modularize the software and employ GPML for the 
interchange of GP models. The building simulator was configured to independently 
generate the open-loop excitation data, which was passed to a fairly conventional 
GP training framework (shown within the dashed box at the bottom right of Fig. 4 
(Blocks 3, 4 and 5). The resulting trained and validated dynamical GP model was 
then emitted as a textual GPML file, and this used as an input to the (separate) MPC 
program (Block 6). It is thus clear that GPML has facilitated a high degree of soft-
ware modularity as well as exposing the key predictive dynamical model to inde-
pendent scrutiny.

An example of of the results of the model predictive control of a simulated sin-
gle-zone building are shown in Fig. 5. The upper plot is the controlled internal tem-
perature and shows that this quantity is being credibly maintained within a ±2 C 
tolerance band during the specified occupied periods of the building. A full, com-
prehensive account of the GP training procedures as well as complete MPC results 
will be published elsewhere. The best model presented in GPML form can be found 
at: https​://figsh​are.com/artic​les/gpTre​eCons​tantW​FInVa​ll_xml/73987​97.

7 � Discussion

Throughout this paper we have repeatedly talked about “trained GP models” but we 
have remained deliberately agnostic about how such ‘models’ might be ‘trained’. We 
have implicitly assumed that the trained GP model is available in memory as a tree 
data structure—what has previously been termed “standard GP”  [18]—although a 
number of other approaches to GP training have been explored, such as stack-based 
GP  [26] and grammar-guided GP  [18] (and references in those two papers). The 
PushGP system  [26], for example, provides an elegant way of incorporating mul-
tiple data types within GP and defining semantically-meaningful operations over 
these types. Thus, “"INTEGER.="” specifies a comparison between integers 
whereas “"FLOAT.="” signifies a comparison between floats, and so on. Such 
typed operations can be straightforwardly accommodated by GPML. For example, 
in a "binary" node comparison, the "operation" attribute could be specified 
as (quite literally) "INTEGER.=" for integer comparison, and "FLOAT.=" for float 
comparison, and so on. PushGP genotypes, however, are allowed to contain redun-
dant (unused) items as well as embedding control structures. For PushGP programs 
containing redundant elements but without embedded control structures, it is fairly 
straightforward to transform a PushGP genotype into a conventional tree structure 
that could be represented using GPML by tracing the sequence of stack operations 
used in the genotype’s evaluation. GPML representation of PushGP genotypes that 
include control structures is more involved. We have suggested how n-ary nodes 
could be used to represent looping structures in Sect. 4 although detailed implemen-
tation would require further research that is out-of-scope of the present paper.

Grammar-guided GP  [18] typically uses genotypes either in the form of trees 
or linear lists that are then transformed to a phenotype tree for evaluation. In the 

https://figshare.com/articles/gpTreeConstantWFInVall_xml/7398797
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context of GP interchange (Fig. 2), it is the phenotype tree that is of interest here and 
which can be straightforwardly encoded in GPML.

More generally—and anticipating future GP developments—we can consider GP 
as a quite general deterministic mapping (a composition of functions) that maps ele-
ments in Cartesian product spaces to other sets of Cartesian product spaces. In the 
sense that a graph can represent transitions, it would seem that any semantically-
meaningful, deterministic mapping can be represented with a tree. (This does not, 

Fig. 4   Overview of the process 
employed in this work for MPC

Fig. 5   Typical results of MPC controlling a single-zone building for the (test) month of February. The 
upper plot is the internal zone temperature, and the lower plot the controlled variable of mass flow rate of 
water through a radiator. The rectangular upper plot represents the temperature schedule along with a ±2 
C comfort tolerance band
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however, imply any judgment on whether genotype representations of non-tree form 
may be advantageous for learning.) Since GPML is able to represent hierarchical 
tree structures, it would thus appear able to represent any GP phenotype.

Although we have proposed GPML with the principal motivation of moving 
genetic programming into real-world applications, it also has the potential subsidi-
ary use of allowing researchers to share trained models amongst themselves for the 
purposes of direct comparison as opposed to individual researchers trying to repro-
duce each others’ work. Extending this further, since journals, and an increasing 
number of conferences, provide repositories for supplementary material, it would 
seem straightforward for authors to deposit, and thereby archive, information fully 
describing actual GP trees that could be accessed and used by other researchers. At 
the suggestion of a reviewer, we also need to explicitly point out that while GPML 
faithfully describes the syntax of a tree, there is an important distinction to be made 
between syntax and semantics. Unless operations are identically defined on both 
training and target machines, we cannot expect reproducibility.

A great many of the studies published in evolutionary computing, includ-
ing genetic programming, are—perforce—both empirical and stochastic, and this 
imposes a particular difficulty from the point of view of replication. In the genetic 
programming community it has become the universal practice to include algorithm 
parameters such as population size, crossover and mutation rates, etc. in all publica-
tions. Although this is welcome, it generally does not give complete information 
to allow accurate replication of the experiments being reported. For example, com-
plete reporting would require details of the random number generator algorithms 
employed, their seed values and other details characterizing the stochastic experi-
ments. It could be argued that an adequate number of repetitions of the experiments 
‘average out’ stochastic effects, but the generality of this claim is far from clear: 
averages are not always good measures of central tendency. In addition, Demšar [6] 
has pointed out the possible pitfalls of the null hypothesis statistical tests that are 
now frequently included in GP papers, and the difficulties inherent in GP compar-
isons have been discussed in  [17]. The ability easily share GP trees may address 
some of these difficulties.

A similar initiative on standardization has already been taken on GP benchmark-
ing problems  [31]. Meanwhile, Orzechowski et  al.  [21] have advocated standard 
methods to exchange benchmark results in the GP community. Further afield, Swan 
et al. [27] have advocated standardized interchange in the metaheuristics community 
arguing that this would speed research progress. A community-led effort has also 
recently been announced for the exchange of deep learning models.8 Although not 
directly inspired by [27], we see the present work as very much in sympathy to this 
view.

Finally, as with any standard, there is scope within GPML for revision and expan-
sion. In fact, the reviewers of this paper suggested a number of extensions to GPML 
that we have implemented with gratifying ease. Further, we suggest that any data 
structure (e.g. matrices, tensors, quaternions, etc.) that can be represented with XML 
could be straightforwardly incorporated into GPML should the requirement arise.

8  https​://onnx.ai/.

https://onnx.ai/
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8 � Conclusions

We have proposed an XML-based standard for the interchange of genetic program-
ming trees with the objective of facilitating practical, real-world application of 
genetic programming. This proposed standard, GPML, allows the interchange in a 
text-based format of trained-and-validated GP models, in essence treating them as 
‘plug-in’ components. We have demonstrated this capability by developing a dynam-
ical model for a single-zone building model and using this model to successfully 
implement model predictive control of the building’s internal environment. This 
case study illustrates the practical flexibility of GPML as an interchange format.

In terms of implementation, due to its hierarchical structure, GPML can be flex-
ibly represented in XML for which a number of mature, open source XML librar-
ies are available. We have further proposed an XML Schema for the validation of 
GPML, which is available under a GPL licence at:

https​://githu​b.com/pirli​te2/gpml-schem​a.
As with all standards, we anticipate this definition evolving in the light of practi-

cal use and to meet new circumstances. The present authors will be happy to col-
laborate with the community to evolve this standard.
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