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Abstract—Big Data and Artificial Intelligence are new tech-
nologies to improve indoor localization. It focuses on the use
of machine learning probabilistic algorithms to extract, model
and analyse live and historical signal data obtained from several
sources. In this respect, the data generated by 5G network and the
Internet of Things is quintessential for precise indoor positioning
in complex building environments. In this paper, we present a
new architecture for assets and personnel location management
in 5G network with an emphasis on vertical sectors in smart
cities. Moreover, we explain how Big Data and Machine learning
can be used to offer positioning as service. Additionally, we
implement a new deep learning model for 3D positioning using
the proposed architecture. The performance of the proposed
model is compared against other Machine Learning algorithms.

Index Terms—Indoor Positioning, Internet of Things, 5G, Deep
Learning, Big Data, RSS, Radiomap

I. INTRODUCTION

THe 5G NR (New Radio Technologies) and IoT (Internet
of Things) are indispensable for the provisioning of

improved decentralized distributed services across smart cities.
Propped up by AI (Artificial Intelligence) and Big Data,
several vertical sectors witnessed waves of radical changes
aiming to transform the way in which core processes are
conducted. According to Cisco, IoT technologies are expected
to be bandwidth and traffic-intensive reaching 3.9 billion
connected M2M devices by 2022 [1]. It is undeniable that
these breakthroughs are very beneficial to the several vertical
sectors. However, little has been done to address the issue
of positioning in smart cities with massively deployed IoT
networks. A recent 5GPPP technical report set out detailed
positioning requirements for vertical sectors such as: Smart
manufacturing, transportation and e-agriculture[2]. The report

discusses context-aware applications that should offer real-
time tracking for valuable assets in factories like UAV (Un-
manned Ariel Vehicles), AGV (Automated Guided Vehicles)
and other geo-tagged expensive goods. Position-tracking sys-
tems are expected to perform around 1 meter accuracy in
3D environment and must rely on existing and emerging
technologies like WiFi 6 and WiFi 7 wireless networks, BLE
(Bluetooth Low Energy) and WSN (Wireless Sensors Net-
work). In this paper, we propose an architecture for multiple
tracked tenants in 5G IoT network using Machine Learning
and Big Data. We discuss an implementation of the Deep
Learning 3D positioning model for tracking assets and people
based on the suggested architecture. The rest of this paper is
structured as follow: Section II covers current research status

and our contributions. Section III describes a five tier architec-
ture for positioning concept. Section IV explains the different
functionalities of the proposed knowledge plane. Section IV-F
deals with a 3D positioning algorithm implemented on 5G
emulated environment. Section V summarizes the findings and
future work.

II. STATE OF THE ART

Indoor positioning in 5G IoT networks is still a very
new research area. It involves making use of new emerging
radio technologies to improve the location accuracy. Michal
et al.[3] have proposed an architecture for real-time location
tracking using information fusion from both Wi-Fi and dead
reckoning sources. However, since the current position of
the tracked is calculated using the previous location, the
distance error becomes cumulative and grows over the time.
Moreover, this system does not offer 3D positioning which
critical nowadays for indoor settings. Additionally, it suffers
from attenuation and additional hardware is always required
to support the accuracy. Therefore, it is not effective for
tracking multiple agents in complex environments. on the
concept of data fusion can be found on [4]. Similarly, to
recognise the item location inside a warehouse, authors in [5]
a passive radio-frequency localization system which utilises
passive RFID (Radio-frequency identification). This solution
is costly to setup and maintain especially for mega-warehouses
and massively stored assets. Another interesting system for
positioning called SnapLoc has been presented in [6]. Authors
have implemented UWB (Ultra Wide-Band) system which
they claim to be scalable to unlimited tags. However, UWB is
known for slower adoption are, high cost for implementation

and signal penetration especially inside complex buildings [7].
A survey of similar applications and system can be found
in [8]. Despite the existence of encouraging works in the
literature like [9] and [10], most of the existing literature does
not high-light the role of 5G, machine learning and big data
to cater for massive indoor positioning. This is one of the
motivations for proposing this architecture. The second motive
is the lack of 3D positioning for complex environments. In this
research paper we contribute with following:

• A solid scalable and expandable architecture for decen-
tralized positioning in 5G enabled environment such as
warehouses, malls and factories.

• A big data and machine learning enabled positioning for
continuous improved learning.



Fig. 1. Positioning as a Service for 5G IoT networks

• An implementation use case of vertical and horizontal
positioning model for massively deployed positioning in
complex buildings.

The following section covers in details these elements.

III. FIVE TIERS ARCHITECTURE FOR 5G SMART CITIES

There is no doubt that 5G is going to connect IoT device
and transform dummy equipment into smart ones. However,
smart warehouses, malls and factories are currently facing
major challenges managing their assets especially when they
are scattered around the entire sites unattended. To prevent
these scenarios from happening, we propose an architecture
for positioning as a service for complex environment. In this
section, a five tier novel architecture is presented for location
management using Big Data and machine learning. Figure
1 depicts different components of this architecture. These
different components belong to different planes as shown in
Figure 2.

A. Data Plane

The Data plane, as suggested by 5GPPP [2], works by
decoupling the hardware and software components. From an
SDN (Software Defined Network) prospective, the aim of
this separation is to move certain network functionalities to
a distributed softwarized subsystems. Thus, the softwarized
programmable networks can be realized. The new 5G C-RAN
architecture is one example of this decoupling concept where
several RRH (Remote Radio Heads) antennas are deployed and
interconnected to a single BBU (Base Band Unit). This plane
provides data links to connected network hosts.It consists of
a set of hardware and software nodes. A software node can
either be a virtual switch like Open Vswitch [11] or a cloud-
based BBU (Base Band Unit) while a hardware node can
be a C-RAN (Cloud-Radio Access Network) RRH antenna,
a WSN (Wireless Sensor Network), a WiFi 6 hotpot, a BAN
(Body Area Network). In Figure 2, the data plane represents
all elements from tier one to tier three illustrated in Figure 1.

1) Network Edge: : the network edge slice compromises of
network connected hosts such as inventory scanning devices,
indoor operating vehicles(Autonomous and semi-autonomous)
and tagged personnel. The tracked devices usually come with
RFID, WiFi or BLE capabilities enabled in them. The slice
acts as a signal transmitter for the positioning service in the
knowledge plane.

2) Network Access: In the second tier, network access
consists of a set of networks such as Wireless Sensors (tem-
peratures, humidity etc.), BLE and WiFi Networks. These
Wireless networks bands in 5G are expected to range between
1Ghz and 6 Ghz. These technologies can either be used
together or separately during the radio planning process of
the positioning. It is suggested a combination of two or three
from these technologies to get better accuracy in [4].

3) Network Core: The third tier consists of 5G Cloud
Radio Access Network. This a unique 5G concept divides
the Radio Access Network into two separate entities: an RRH
antenna and BBU unit placed on the cloud. An implementation
of this concept is mentioned in Section IV-F.

B. Control Plane

This plane, as proposed by 5GPPP [2], includes Software
Defined controllers responsible for orchestrating the network
and managing the packets flow. Usually, this plane is reserved
for SDN controllers like OpenDaylight [12]. Its functionalities
can be further expanded to include event-triggered geo-fencing
options through out writing or blocking flows to a specific
connected device based on previously defined geographical
fences.

1) Network Control: The Software defined nature of 5G
makes it necessary to have a control plane. Tier four includes
an SDN (Software Defined Network) Controller responsible
for managing network flows and packing matching and block-
ing. The role of this slice is to patrol the incoming and
outgoing traffic in a 5G environment.

C. Application Plane

From the SDN architecture, an application plane includes
application built on top control plane. As shown in Figure 2,



we developed an application to collect signal data and
aggregates them. The functionalities of this application are

discussed further in Section IV.

D. Knowledge Plane

This plane has been added to the original architecture to
serve the purpose of decentralized positioning. As depicted
on Figure 2, this plane is made up of four components: Data
Aggregation and Standardization Gate, Position Visualizer,
Historical Big Data Aggregator and Machine Learning Engine.

1) Knowledge: The knowledge plane is a member of
last tier. Tier five concerns the positioning service or the
knowledge plane and the service/alerted users. The knowledge
slice consists of three main components: Machine Learning/AI
engine that conducts the modeling, a positioning service for
both live and historical location tracking and a Big Data
component to store both historical data and the positioning
model parameters.

2) Alerted Users: The alerted users are the second mem-
bers of tier 5. They are the system users and they have
direct access to the positioning service but no direct access
to the Machine Learning engine or the Big Data repository.
The alerted users can be systems like a mall management
system, a smart factory operation application or a smart home
application. The next section covers the functional architecture
of this framework and the different interactions between each
component.

IV. KNOWLEDGE PLANE FRAMEWORK
COMPONENTS:

In this section, as previously mentioned, we have extended
the original architecture introduced in [2]. Furthermore, we
demonstrate the different components of the knowledge plane
and their functionalities. The plane collects and store signal
data from various 5G IoT sources using client collector to pro-
vide positioning as a service. Figure 2 illustrates the proposed
plane along with its interconnections with data, control and
application planes.

A. Clients Collector

This application is deployed on the UE (User-Equipment) on
the edge of the network with the purpose of collecting wireless
signal data and send it to the master collector periodically. It
runs as a daemon while establishing a reliable secure shell
connection with the Master Collector application. The main
function of this component is sending RSS and other signal
data to the Master Collector to be aggregated.

B. Master Collector
The Master Collector receives RSS signal data from several

IoT application collectors. First, it establishes and maintains a
reliable and secure (TCP, SSH) connection with one or mul-
tiple client collector on the Data plane. Second, it aggregates
the fetched data and stores centrally for location estimation
and visualization at the knowledge plane level.

C. Data Aggregation and Standardization Gate
An API (Application Programming Interface) platform has

been created to service data in a structure manner to the
different components of the knowledge plane. The platform
has been created used Flask web-server on Python version 2.7.
The API acts as a link between the application plane and the
positioning knowledge plane. This component receives data
via a POST request and serve the available data via a GET
request.

D. Machine Learning Engine

This component performs data pre-processing, offline and
online training. The end results is an accurate location for each
tracked device. The tasks involved in this components are:
Pre-processing, offline training, online training, positioning
modeling.

• Pre-processing: In this sub-component, a staging area is
created for the model the training units. It performs data
acquisition, data quality checks and validations, imputing
and standardization. Typically, 70% of the overall process
time is spent on this phase.

• Offline Training: Once the pre-processing tasks are com-
pleted, the offline training starts by dividing the data into
training, validation and testing for the machine learning
model.

• Online Training: This sub-component validates the posi-
tioning accuracy of the model built during offline training.
This can be in the form of real-time signal data fed from
the client collector of the IoT devices.

• Position Modelling: positioning modelling constructs a
model using a machine learning library such as Keras,
Pytorch or Tensorflow [13]. It learns from the fed dataset,
and generates a model for online position estimation.

E. Historical Big Data Aggregator

In this plane, Big Data supports two use cases. On one
hand, it stores offline training and prediction performed by
machine learning engine in a data repository. Network signal
data collected from the Aggregator API are processed into a
individual time-series and stored centrally. On the other hand,
the repository provides the historical visualizer with time-
stamped locations of the devices connected to the positioning
service. A Cloudera-HBase server is used for this purpose.

F. Live/Historical Position Visualizer

A web-based data visualization / dashboard tool has been
developed to have a global view of assets tracking. The
main two services offered are the following: live location and
historical location of people and devices.

G. Network Setup
The network setup provided in this experiment consists of

a set of hardware and software components put together to
emulate an IoT network in 5G environment. The setup is used
to leverage signal data for the purpose of 3D positioning.



Fig. 2. Positioning as a Service Architecture for 5G IoT Network
1) 5G Wireless IoT Network: In this test environment, we

consider an outdoor to indoor 5G wireless network, emulated
by typical IoT network with Zolertia RE-Mote Revision B
nodes. This WSN is a typical network found in a smart
buildings as illustrated in tier 2 Figure 1. We have deployed
five nodes in this testbed. We have constructed a radiomap
from this environment following the steps mentioned in [14].
The database of RSS signal with corresponding reference
points have been used to create a positioning model.

2) 5G C-RAN on GNS3 Emulator: 5G C-RAN is made
up of two main components: A RRH and a BBU (BaseBand
Unit). The former is responsible for handling the analogue
signal processing functionality while the later performs digital
packets processing. To build this concept, we have used GNS3
version 2.2.6 [15], an open source network emulator. The
latter, as shown on Figure 3(a), the BBU component is placed
on a cloud environment connecting it to the core network.

3) OpenDaylight Controller: The OpenDaylight [12] is a
controller used to patrol the incoming and the outgoing traffic
in a network. To make the testbed support a SDN (Software
Defined Network), each node has Open vSwitch [11] installed
on it. Each Open vSwitch on the C-RAN is connected to
the OpenDaylight controller via the openflow port number
6633. Figure 3(b) shows how a group of 5 Zolertia RE-
Mote Revision B node is connected to the C-RAN in blue.
The interface shown is from the controller topology view of
OpenDaylight.

H. 3D positioning simulation

The concept of Indoor Positioning can be implemented on
various types of environments and usage scenarios involving
both person and asset tracking in complex building environ-
ment. In this 3D positioning simulation, a DNN (Deep Neural
Networks) and RSS fingerprint-based localization approach
has been implemented in a 5G IoT setup testbed explained
in previous section. Without loss of generality, we consider an
indoor 5G wireless network, emulated by typical IoT network
with Zolertia RE-Mote Revision B.

1) Data Collection: Our radiomap consists of 2880 3D
reference points associated with RSS values from five different
WSN Access Points(APs). The total number of features used
to create the model is eight. The environment fingerprints
radiomap is generated through the use of fully deterministic
3D simulator called TrueNet [16]. To ensure there is no
redundancy in the information collected, we conducted a
Pearson correlation test between each access point.

2) Data Pre-prossessing: Before going through modelling,
the data collected during this experiment have to undergo
certain pre-processing step. First, the vertical plane of the
radio map represented by a column called Z in the radio map
has three distinct values. These values have been transformed
to three columns using One-hot-Encoding technique. The
output columns are to be used later a target variables for
the vertical location classification model. Second, to make the
learning easier and faster for each model, the original values



(a) 5G emulated C-RAN testbed on GNS3
(b) WSN and GNS3 emulated 5G C-RANconnected on OpenDaylight

Fig. 3. 5G C-RAN setup on GNS3 and Wireless Sensor Network connected to OpenDaylight SDN controller

(a) Vertical positioning misclassification
count for each Model

(b) Positioning model mean euclidean distance error in meter (m) vs the
number of epochs

(c) 2D positioning model comparison: DNN VS KNN VS SVM

Fig. 4. 3D Positioning using 5G C-RAN and Wireless Sensors Network machine learning results

of each access points have been normalized using Min-Max
normalization method.

3) Modelling: In this simulation, a multi-layered radiomap
dataset on two DNN [13] models have been trained to ac-
curately predict the 3D location of a user equipment. The
first model consists of 3 hidden layers with 300 neurons

each and two output variables X and Y location. The second
neural network has also 3 hidden layers and 270 neurons but
with 3 classes each representing a vertical height in meter
(0.25m, 0.75m and 1.75m). The two trained networks have
been compared with industry used machine learning models
KNN and Support Vertor Machine. The result analysis of this



comparison is later discussed in the following subsections.
4) Off-line Training: During the off-line training, each

model has been propped with a layer of batch normalization to
speed up the process of the learning. Firstly, the optimization
algorithm used to train both networks is ADAM (Adaptive Mo-
ment Estimation) [13]. Secondly, as illustrated in Figure4(b),
to make sure each model is trained properly, the first model
has been trained using MED( Mean Euclidean Distance) error
cost function [13]. Finally, after 3000 epochs, the 2D model
has reached a 1.6 meter MED error.

5) Results Analysis:

• 2D Positioning Model Analysis: Using 180 random
samples [16], the proposed 2D Neural Network model is
benchmarked against SVR (Support Vector Regression)
and KNN (K-Nearest Neighbor). A full comparison is
provided in Figure 4(c). SVR has scored a the highest
error distribution where the peak of its distribution ranges
between four and six meters error. KNN has performed
slightly better compared to SVR. However, a large pro-
portion of the distribution error falls between 3 and 5
meters, which makes it the second worse performing after
SVR. The proposed 2D positioning model has given the
best performance. The peak of its distribution error falls
between zero and two meters with a mean error of 1.6m.

• Vertical Positioning Model Analysis: Using 180 ran-
dom samples as previously, we estimated the vertical
positioning of the UE. The results in Figure 4(a)shows
a visual comparison of our proposed model (DNN), SVC
( Support Vector Classification) and KNN. Each model
has been given an equal number of three classes 0.25m,
1.25m and 1.75m. We have calculated the misclassi-
fication count for each of these models as shown in
Figure 4(a). At first glance, Figure 9 shows that SVC
has performed very badly in terms of classification of
observations.The model has failed to accurately classify
during the online phase. More than 66% - circa 120
samples- were wrongly classified. With a total of 40 mis-
classified samples, KNN has performed better than SVC
but still does not differentiate between certain classes
properly. Our proposed 2 model of DNN, have made
excellent classification compared to both later models.
100% samples of 1.75m layer have been accurately
classified while more than 95% samples of the other
two classes, 0.25m and 0.75m, have been also correctly
predicted. The total number of misclassified samples
has been 20 samples.The results has shown that vertical
positioning DNN model has outperformed other models
with the lowest classification rate. KNN is the second
best performing model. Finally, SVC has performed very
badly.

Using multi-layered fingerprint database, we have demon-
strated how the proposed 3D model has outperformed KNN
and SVM. We have accurately implemented this model to
our indoor environment and illustrated how this can be im-
plemented.

V. CONCLUSION
Throughout this paper, we have introduced the knowledge

plane to provide positioning as a service for the 5G IoT
network in an indoor environment. We have also demonstrated
how this can be implemented in the use case of positioning
as a service for complex building. This concept can be also
implemented to other smart city use cases such as stadiums,
malls navigation systems and indoor AGV control. As for
future work, BLE and Wifi data fusion positioning will be
implemented to the data plane of this architecture.
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