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Abstract 

Studies have shown that capacitance sensors can be used for skin hydration imaging, 

surface analysis and skin micro relief measurements. In this report, development of a 

hardware measurement instrument and accompanying software that was made is 

discussed. Work then focussed on stratum corneum (SC) dynamic water 

concentration measurements using the capacitance sensor. To further validate the 

measurement results, the capacitance sensors SC surface hydration results are 

compared with the opto-­thermal transient emission radiometry (OTTER) and trans-­

epidermal water loss (TEWL) results measured by using the condenser-­chamber 

TEWL method. 

To achieve the aim of this project, a hand-­held probe, based on the FingerPrint Card 

area sensor development kit (FPC-­SMD 5410, FPC-­AMD 6410 and then on the 

FUJITSU MBF-­200), has been developed and used in this research. The development 

kit contains an array area sensor chip, a processor board and a serial/USB 

connecting cable for connecting to a PC. 

Dedicated JAVA, C++ and Mathworks MatLab programs have also been developed, 

which can capture the images, process the images, perform grayscale value 

calculation and display the images. A secondary program was developed in MatLab 

that allows extraction of data from raw image files created by the sensor. These data 

are then processed to show mathematical calculations and image profiling of the 

subject skin site. Additionally, the MBF-­200 sensor is able to record live video files of 

the skin. 

The precision of the resulting data is analysed and multiple experiments are 

conducted to test the viability and usage of the capacitance sensor in different areas 

of research such as skin hydration, occlusion, depilation and scar measurement. 

Further test were also conducted on a multitude of hydrated surfaces both live an 

non-­live. 
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CHAPTER 1:  INTRODUCTION  

 

The human skin is the largest organ and comprises more than 10% of the body mass. 

Its main functions, to act as a protective barrier between the body and the 

environment, to prevent fluid loss and to exclude environmental toxins, are 

fundamental to life.  

 

Despite this, little is known of how the barrier works and how environmental and 

metabolic factors influence it. Although various techniques have been used such as 

electrical measurements, evaporimetry, infrared spectroscopy, photoacoustic 

spectroscopy, photothermal imaging, all of them have limitations that impede a good 

understanding of the skin (Frodin T, Helander P, Molin L, Skogh M, 1988).  

 

Technologies that have helped to better understand how the barrier works;; among 

others are the OTTER (opto-­thermal transient emission radiometry) and (AquaFlux) 

a more accurate method of measuring trans-­epidermal water loss.   

 

The main aim of the investigation is to develop a novel prototype device employing 

the technique of capacitance sensors that is quick, cheap and small albeit not as 

sensitive as the AquaFlux or OTTER for measuring skin surface water and its benefits 

in a multitude of applications.  

 

This research will then focus on testing the feasibility and accuracy of the device by 

developing software analysis tools to measure the instrumentation range;; and 

conducting necessary skin experiments on test subjects.  

 

This chapter presents a brief introduction to the structure and properties of human 

skin together with a short review of the methods used to measure skin hydration and 

TEWL using OTTER and AquaFlux. Finally a brief introduction of the chapters in 

this report is given. 
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1.1  Skin 
 

The skin is the largest specialised organ in the body with area of about 1.5 m2 to 2 m2 

of the surface area providing a protective barrier against water loss and poisoning by 

external chemicals, mechanical protection, temperature regulation and repair after 

trauma. It is the first line of defence against pollution, micro-­organisms, radiation 

and physical trauma. It is also a sensory organ containing many nerve endings which 

enable us to sense heat, pressure, temperature, pain and touch (Swarbrick  J, Boylan 

J.C, 1995). Skin varies in texture, structure and thickness and is made up of three 

main layers: namely the epidermis, the dermis and the subcutaneous layer (or 

hypodermis), as illustrated in Figure 1.1. 

 

 

 

 

 

 

 

 

 

 

 

F igure 1.1:   Structure of the skin (reproduced from [6]). 

1.1.1  Epidermis 
The epidermis is the uppermost epithelial layer of the skin. It usually measures less 

than 1mm in thickness and is thickest on the palms and soles and thinnest on the 

eyelids.  It is thickest on the sole as it has nearly constant contact with the ground 

and supports the total weight of the body. Palms have a large role of having contact 

with materials that the human holds and touches with the hand.  
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The skin on the palm and soles also has friction ridges and they have a biological 

function to allow grasping and holding of objects. The epidermis can be subdivided 

into five layers: stratum basale, stratum spinosum, stratum granulosum, stratum 

lucidum and stratum corneum (SC), as shown in Fig.1.2. 

 

Figure 1.2:  Epidermis structure (reproduced from [22]). 

 

The stratum lucidum, a thin and clear layer is found only in the epidermis of the 

palm and soles. 

 

Cell division occurs in the basal layer of the epidermis. The basal keratinocytes are 

one of the most actively dividing cells in the body. They produce new keratinocytes 

which move upwards pushing the older cells above towards the surface of the skin. 

In the next layer, the stratum spinosum, the cells begin to flatten and take on a 

polygonal shape.  

 

As they enter the stratum granulosum, the cells form keratohyalin granule. As the 

cells continue to move up, these granules are converted into keratin by an enzyme. 

The nuclei then disappear and the cells die and become hard (the process is called 

keratinisation). When they arrive at the SC, the most superficial layer of the skin, they 

are fully keratinized and dead. SC cells are constantly exposed to and damaged by 

external factors and need to be shed and replaced by newer cells from below. It takes 

approximately 28 days for the new cells to reach the surface of the skin and to be 
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shed as scales (Plewing G, Jansen T, 1997). The SC is the last stage of the basal cells 

but not the least important stage, because it is the main protective barrier of the skin. 

1.1.2  Stratum Corneum 
 

The SC is a horny or cornified layer located on the outer surface of the skin and 

comprises 25 to 30 layers of dead cells with approximately 10-­20 m thickness. It is 

made up of keratinized flat, roughly hexagonally shaped, partly overlapping cells 

embedded in a lipid matrix. Its main constituents are proteins (70% of the total dry 

weight), lipids (5-­15%) and water (10-­20%). The proteins are composed of -­keratin, 

-­keratin and cell envelope. The lipids consist of neutral lipids (75%), sphingolipids 

(18%), polar lipids (5%) and cholesterol sulphate (2%) (Lampe, M.A., Burligame A.L., 

1983).  

 

The structure of the SC itself can be explained in terms of the so-­

while the intercellular lipids and water-­retaining natural moisturizing factors (NMF) 

act as the mortar (Fig.1.3) (Elias P.M.,1981). 

 

 

 

 

 

 

 

 

 

 

  

 

Figure 1.3:  Schematic diagram of the brick and mortar model of the SC (reproduced from [40]). 
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Experimental work has shown the importance of the SC as the barrier between the 

living cells and the surrounding environment (Forslind B, Engstrom S, 1997). Thus, it 

prevents water loss from the inner layers of the skin to the ambient environment and 

it is a barrier against the entry of xenobiotics from the environment. Investigations 

have shown that the barrier property resides in the lipids covalently bound to the 

surface of the cornecytes. 

 

The SC contains water, which is necessary to maintain its flexibility. Diseased skin is 

often associated with a dry and scaly appearance. Research demonstrates that the 

water-­soluble materials or NMF are responsible for water uptake. The NMF are 

intracellular components (within corneocytes), composed of free amino acids and 

polypeptides, minerals, pyrrolidone carboxilic acid, sodium lactate, urea, 

carbohydrates and sodium citrate (Harding, C.R., Watkinson, A, 2000). 

 

1.1.3 Dermis 
 

The dermis is the second connective layer of the skin and acts as a supportive layer 

for the epidermis. It has the role of regulating temperature and providing 

nourishment to the epidermis. It is comprised of a matrix of connective tissue that 

contains collagen fibres interlaced with elastic fibres structure as illustrated in Fig. 

1.4.  

Figure 1.4:  Structure of the dermis (reproduced from [40]). 
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The dermis is divided into two layers: papillary and reticular layer. The papillary 

dermis is the outermost part of the dermis in direct contact with the epidermis. It is 

irregular in shape with protrusions into the epidermis called papillae, containing the 

elastin and collagen fibers and also the lymphatic and blood vessels. In some of these 

there are connective tissue cells and inter-­fibrillar gel in the papillary dermis. The 

reticular dermis is under the papillary dermis and is found to have fewer cells, 

relatively few blood vessels, dense collagen bundles and coarse elastin fibres and the 

Pacinian Corpuscles serving the sense of pressure such as poking the skin. 

 

Basically, the components of the connective tissue are collagen, elastin, reticulin 

fibres and ground substance. Collagen is the most abundant protein in the body and 

forms the structural network of the skin. Collagen fibres are wavy structures that 

interlock with each other, providing firmness (tensile strength) and also allow the 

skin to be stretched without tearing.  

 

Elastin fibres are similar to collagen but are more stretchable protein. They are 

loosely interwoven like a latticework and can be stretched and yet return to their 

original shape and length, providing elasticity and resilience to the skin. Together, 

collagen and elastin are the main proteins responsible for elasticity, tone and texture 

of the skin. These proteins give the skin its firmness, elasticity and strength. Reticulin 

fibres run in between and through the collagen and elastin fibres and help to support 

and keep these fibres in place. Ground substance is composed of complexes of 

proteins and sugars called mucopolysaccharides. They provide support for the 

connective tissue and have good water-­binding abilities (Katz, M. and Poulsen, B.J., 

1971). 

 

The dermis also contains hair follicles, sebaceous glands, sweat glands, nerve 

endings, lymphatic vessels and blood vessels. The nerve endings provide sensory 
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perception for heat, pressure, pain and touch. They keep the body informed of 

changes in the environment and impending danger. Blood vessels provide the skin 

with nutrients and oxygen and remove waste products as carbon dioxide. They also 

play a vital part in temperature regulation and skin self-­repair. Lymphatic vessels are 

throughout the body and help defend the body against infection and other foreign 

invaders. 

 

The depth of the dermis is about 3-­5 mm in thick skin and is about 1-­2mm in thin 

skin (Katz, M. and Poulsen, B.J., 1971). 

      

1.1.4 The Hypodermis 
 
Usually considered part of the skin, the hypodermis subcutaneous  layer (see Fig.1.1) 

consists mainly of cells which produce and store fat, but it also contains blood 

vessels, sebaceous glands, sweat glands and arrector pili muscles for the hair. It acts 

as a shock absorber, protecting deeper structures, insulating against heat loss and 

also acting as an energy reserve. The layer thickness is variable from part to part, all 

over the body (Fuchs E., 2007). 

 

 

1.2  Measurement Methods of Skin Hydration and TEWL using OTTER and 
AquaFlux 
 

The two main techniques for skin measurement used in this project are Opto-­

Thermal Transient Emission Radiometry (OTTER) and the AquaFlux. In this chapter, 

these two techniques are discussed: 

 

1.2.1 Opto-­Thermal Transient Emission Radiometry Technique (OTTER) 
 
Opto-­thermal transient emission radiometry technique (Imhof, R.E., Birch, D.J.S, 
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1984) is a relatively new technique that can be used to study SC hydration (Bindra R 

M S, Imhof R E, 1994). Its main practical features of remote sensing, non-­contact and 

non-­invasive measurement makes it particularly attractive for in-­vivo measurements. 

A schematic diagram of the technique is shown in Fig. 1.5 below. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.5: Schematic diagram of the Opto-­Thermal Transient Emission Radiometry (OTTER). 

 

An IR pulsed laser is used to heat a small volume of the sample, causing the 

temperature near the surface to jump to the order of a few °C and then decay back to 

ambient temperature. A high-­speed detector senses the corresponding transient in 

thermal infrared emission. (Xiao P, Zheng X, Imhof R.E., Hirata K, McAuley W.J., 

Mateus R, Hadgraft J., Lane M.E., 2011) 
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The opto-­thermal impulse response is related to the optical and thermal properties of 

the sample, namely: optical excitation absorption, optical emission absorption and 

thermal diffusivity. 

 

1.2.2  AquaFlux 
 

The term transepidermal water loss generally refers to the total amount of water 

vapour lost through the skin. However, TEWL is a true reflection of the SC barrier 

function only when there is no activity of the sweat glands. TEWL is a consequence 

of the fact that the skin is dry at its surface and wet at its base. Thus, a concentration 

gradient exists within the SC, which results in a continuing diffusion of water from 

within the body through the skin into the environment. If the diffusion of the water 

through the SC is assumed to be passive (Blank, I.H., Moloney, J, 1984), then TEWL 

values will be proportional to the gradient of water concentration within the SC.  

 

TEWL measurements have wide applications including: cosmetics testing (to 

evaluate moisturiser efficacy, irritation and barrier destruction by soaps, detergents 

and solvents)(Loden M, Lindberg M, 1994), dermatology (to test skin damage, the 

effects of drugs and other substances on the skin (Serup J, 1994)), neonatal research 

(SC formation in premature infants (Edwards C, Marks R, 1994)) and in the textile 

industry (to examine occlusive effects of fabrics)(Akin F, Lemmen J, 1997). 

 

The AquaFlux uses the patented Condenser-­Chamber method for measuring water 

vapour flux in general and TEWL in particular. Figure 1.6 below shows a cut-­out 

view of the AquaFlux chamber. 
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Figure 1.6: Cut-­out view of the AquaFlux showing the closed chamber, condenser, sensor & the test surface. 

(Reproduced from [30]) 

The measurement chamber is a hollow cylinder whose lower end acts as a 

measurement orifice that is placed into contact with the test surface. Its upper end is 

closed with an aluminium condenser that is maintained below the freezing 

temperature of water by means of an electronic Peltier cooler (Xiao, P. and Imhof, 

R.E, 1998). 

When in contact with the test surface, the chamber is closed and the air within it is 

protected from disturbance from ambient air movements. The condenser controls the 

humidity in the chamber independently of ambient conditions. It acts as a vapour 

sink by forming ice on its surface, thus creating a zone of low humidity in its 

immediate vicinity. By contrast, the test surface acts as a vapour source, creating a 

zone of higher humidity in its immediate vicinity. This humidity difference causes 

water vapour to migrate from source to sink by passive diffusion, leading to a linear 

distribution of humidity parallel to the axis of the chamber under steady conditions. 

The water vapour flux is calculated from measurements of this humidity gradient 

and Fick's first law1 of diffusion (Imhof R.E., Berg E.P., Chilcott R.P., Ciortea L.I., 

Pascut F.C., 2002). 

 
 
                                                 
1 Fick's first law relates the diffusive flux to the concentration under the assumption of steady state. It 
postulates that the flux goes from regions of high concentration to regions of low concentration, with a 
magnitude that is proportional to the concentration gradient (spatial derivative). 
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1.3  Introduction of the Chapters 
 

This report is arranged into 8 chapters altogether. In this chapter, a general 

discussion was done on the skin mainly on the layers;; Epidermis, Stratum Corneum, 

Dermis and Hypodermis. Subsequently, existing technologies measurement methods 

of skin hydration and TEWL using OTTER and AquaFlux were looked at. 

 

In Chapter 2 a closer look is taken at the theory and techniques for skin measurement 

among others the optical sensors, radio frequency, thermal detection and 

capacitance. Then, a comprehensive look at existing capacitance & conductance 

based hydration measuring instruments is done. Finally the OTTER AquaFlux 

instrumentation is looked at in detail. The main findings of this chapter is that 

hydration of the skin can be measured using different instrumentation. 

 

In Chapter 3, the theory of capacitance and its properties as an imaging medium is 

discussed in detail. Then, discussion focuses on the FPC-­SMD capacitance kits used 

in the experiments for this report. Finally experiments and results of the use of the 

capacitance sensors are shown and this finding establishes the viability of the 

technology to be used as a hydration measurement instrument. Additionally, 

modifications that have been done to these kits to analyse skin images are also 

shown. 

 

In Chapter 4, a comprehensive analysis of the capacitance sensor is undertaken;; 

software techniques used in capturing the images, images processing techniques and 

data analysis. A specific program written in MATLAB to analyse the capacitance 

images data is discussed and its outputs are shown. To further strengthen the 

capacitance sensors readings, data showing comparison between AquaFlux and 

OTTER instrumentation is discussed. Co-­relationships between capacitance sensor 

and AquaFlux  and capacitance sensor and OTTER is shown. 
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Chapter 5 focuses on occlusion, moisturisers and other skin tests that have been 

carried out with the capacitance sensors. Measurements relating to 3D profiling, co-­

relation and quantified charts shows in detail how data from the capacitance images 

can be processed to show a variety of information rich data sets. 

 

Chapter 6 is dedicated entirely on the study of scars and scabs using the capacitance 

sensor. Different types of scars are profiled using the capacitance sensor and then 

measured using the existing dedicated software written in MATLAB as discussed in 

Chapter 4.  

 

Chapter 7 looks at RGB imaging and capacitance video imaging of the skin. Real-­time 

video images are recorded of the skin. The main function is not only for 

measurements of the skin hydration but also for other materials measurements such 

as textile and membranes. Additionally an algorithm for skin location re-­positioning 

was developed to find the exact location of the skin site on two different images. 

 

Chapter 8 concludes this research report and looks at possible and additional work 

that will be carried our in the future.  

  

 

With the conclusion of Chapter 1, Chapter 2 discusses the theory and techniques of 

skin measurement. 
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CHAPTER 2:  SKIN MEASUREMENT TECHNIQUES 

In non-­invasive research methods of the skin surface, hydration quantification is an 

important area of study. At present, both OTTER and Aquaflux are in vivo skin 

measurements. Micro-­relief of the skin surface holds vast amount of data when 

processed. The skin surface can be mapped and a topography of the surface created. 

On the most basic level, the surface can be compared with other samples to show 

consistency (or non-­consistency) with an initial sample.  

As discussed in Chapter One, one of the aims of this research is the measurement of 

skin surface hydration. In this chapter, a closer look is taken at the available 

techniques for skin measurement and the reasoning for selecting a particular 

technology for this research is explained. 

 

2.1 Theory of Available Techniques 

The following are some of the common techniques that could be used in skin 

measurement and quantification:  

 

2.1.1 Optical Sensors 

In an optical sensor a prism is used where a light source is reflected through the 

prism and the skin touches the prism on the second plane (direct in-­line with the 

source light). As shown in Figure 2.1, the skin is illuminated and the optics lenses are 

used to focus the reflection into a camera. This image is passed on through a video 

signal to a frame grabber PCI/ISA card and the image is then stored in a computer.  

Optical sensors are one of the most commonly available technologies used in 

fingerprint scanning. A similar concept with the same underlying principles is the 

use of a micro collimator. A micro collimator uses a LED to shine the skin surface. 

The resulting light reflected from the skin is passed through a group of tilted walls 
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fabricated with a multi-­step etching process of silicon. The brightness of the skin 

image is adjusted and captured on a camera. 

 

 

 

 

 

 

 
Figure 2.1:  Diagrammatic layout of an Optical Sensor 

Then, the skin relief1 analysis can be done on the captured image. However, light 

source detection is frequently subject to moiré effect2 and that skin is transparent to 

close and focused light (Creath K, Wyant J.C, 2002). 

2.1.2  Radio Frequency 

A low radio frequency (RF) signal is injected into the skin. The subsequent bouncing 

 panel that functions as 

tiny multiple antennas. The signal strength is dependent on the ridges and valley on 

the skin. The attenuation of the signal level is calculated by a sensory array and a 

skin image structure is produced. 

Since there is minimal or no contact between the skin and the sensor, the skin 

remains relatively in its original form and the chances of occlusion3 is minimised. 

Figure 2.2 shows the signal generator located on the left of the instrument which 

sends a radio frequency through the filter ring into the skin. The subsequent signal 

                                                 
1 Is the overall pattern of the skin that allows the skin to move along with the limb movement and 
major surface parts of the human body.  
2 A pattern produced in optics due to two or more lines having approximately equal spacing. 
Commonly seen in camera pictures where group of lines appear as a solid coloured surface. 
3 Prolonged continuous contact with a surface results in the skin water being trapped in between the 
surface and the skin. This results in an increased reading in hydration measurements. 

Skin surface 

Camera captures 
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travels through the skin and moves towards the ground plane of the radio frequency 

instrument.  The AC sensor detects the strength of the radio frequency. 

 

 

 

 

 

Figure 2.2:  Diagrammatic layout of a Radio Frequency detector 

 

2.1.3 Thermal Detection 

In a thermal sensor, a small heating element is used to heat the skin surface and 

adjacent sets of thermal sensors are used to measure the heat reflected off the skin. 

Ridges and valleys of the skin surface will produce differential heat emission and the 

detectors will measure the differential heat gradient as patterns of the skin surface. 

Initially, the skin passes over the heating element and the skin surface will be heated. 

An image of the skin surface is made based on the differentials in heat emission from 

the valleys and ridges of the skin surface. 

Another type of thermal detector is a pyroelectric 4  detector. Here, a change in 

temperature will create a change in electrical polarisation. A current is only produced 

if there is a rise or fall in the temperature of the skin surface. If the surface 

temperature is constant, no current will be produced. 

A major drawback of this technique is that consumption of power is high and 

accuracy drops in hot environments or hotter days. This is due to temperature 

                                                 
4 Ability of certain materials to generate a temporary voltage when heated or cooled. 
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differential is not being as high between the ridges and the valleys (Dereniak E.L, 

Boreman G.D, 1998). 

As shown in Figure 2.3, the charge plates generate heat and the resulting heat returns 

from the skin surface and is detected by the DC sensors. 

 

 

 

Figure 2.3:  Diagrammatic layout of a thermal detector 

2.1.4 Photo Imaging RGB Camera 

The use of light that can be measured with photo imaging is another new technique 

in skin measurement. A photo image of the skin site is taken using a RGB digital 

camera and this image is the processed using special software to separate into red, 

green and blue filter. Then each colour change is measured to assess changes in the 

skin surface. 

 

2.1.5 Capacitance Sensor 

Capacitance is the ability to hold an electrical charge. The parallel plate capacitor is 

split and moved to a coplanar position;; the fringing electric field will continue to 

create a field between the two plates. 

 

Figure 2.4:  Two parallel capacitor plates are moved into coplanar position with fringing electric fields. 

Reproduced from [23] 
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Each set of a parallel plate is known as a cell and each cell in turn contains a feedback 

capacitance known as a sensor plate. A side-­by-­side array of alternating charged and 

sensor conductor plates are created. The alternating plates form the two plates of the 

capacitor, and any interference in between the plates causes the dielectric fields to 

change between the conductor plates. One set of conductor plates makes a single cell. 

The size of a single cell is larger than the width of one ridge5 on the skin. The sensor 

detects variance in dielectric constants between the two to create the print image. 

Each set of this conductor plates (or cells) contain their own electrical circuit thus 

making them tiny groups of semiconductor chips. The electrical circuit creates an 

inverting operational amplifier that alters the voltage being supplied. The altered 

voltage is relative to the inverting terminal input and the non-­inverting terminal 

input is connected to a reference voltage supply and a feedback loop. This feedback 

loop is in turn connected to the amplifier output that includes two conductor plates. 

(H Singh, P Xiao, E.P Berg, R.E Imhof, 2006) 

A set of these plates acts as a capacitor while the skin acts as the third capacitor plate. 

The varying distance between the capacitor plates and the skin changes the total 

capacitance of the capacitor. So, a space between the skin and the capacitor (e.g. 

valley) has lower capacitance compared to say a full contact with the skin (e.g. ridge). 

To scan the skin, the processor first closes the reset switch for each cell, which shorts 

each amplifier's input and output to "balance" the integrator circuit. When the switch 

is opened again, and the processor applies a fixed charge to the integrator circuit, the 

capacitors charge up. The capacitance of the feedback loop's capacitor affects the 

voltage at the amplifier's input, which affects the amplifier's output. Since the 

distance to the skin alters capacitance, a skin ridge will result in a different supply 

voltage output than a skin valley that is made up of micro-­relief6 structure. 

                                                 
5 A ridge is an elevation of the skin mainly on the palms and soles and they correspond to one 
primary epidermal ridge (glandular fold) formed directly beneath each pore opening.   
6 A network of triangles and diamond shapes dotted with hair follicle and sebaceous gland openings. 
It allows the skin to expand or contract according to the overall skin movement. 
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The scanner processor reads this voltage output and determines whether it is 

characteristic of a ridge or a valley. By reading every cell in the sensor array, the 

processor can put together an overall picture of the skin map, similar to the image 

captured by an optical scanner. 

Material with different dielectric properties can be in contact between these two 

plates. Water has high dielectric properties in comparison with other skin building 

blocks and therefore an increased presence of water can be measured.  

Compared with thermal sensors, capacitor technology offers better image quality 

with a wider range of operating conditions.  

Capacitive sensors are manufactured the same way as silicon materials and standard 

ICs. The low thickness of the ICs results in lower power consumption. For this 

research, the FPC-­SMD Fingerprints Card Development Kit is used. 

 

2.2 Existing Capacitance & Conductance based Hydration Measuring 

Instruments 

2.2.1   Corneometer 
 

The Corneometer measures changes in capacitance using a contacting probe that 

forms a capacitor with the skin under the test. Since the dielectric permittivity7 of 

water is high compared with those of other skin constituents, the hydration of the 

skin in contact with the probe affects the capacitance sensed by the probe (Courage 

W, 1994). 

 

The instrument is made up of a hand-­held probe and a central processing unit, as 

shown in Figure 2.5 below. 

                                                 
7 A measure of the ability of a material to resist the formation of an electric field within it. 
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Figure 2.5:   Corneometer instrument and probe. 

 

The probe head is made-­up of a 7x7-­mm size ceramic base with gold-­plated 

conductor lines forming an interlaced grid pattern with spacing of 75 m and a 

surface area of 0.5 cm2.  

 

A view of the probe head with a cross section view is shown in Figure 2.6. The 

conductor tracks are protected by a separation glass where the test skin surface will 

be in contact. The glass cover is of 20 m thickness. 

 

 
 

 

 



              Chapter 2.  Skin Measurement Techniques 
 
 

20 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2.6: Corneometer probe head design;; conductor track and cross section (reproduced from [40]. 

 

The track separation and the thickness of the glass cover limit the penetration depth 

of the electric field into the skin. Typically penetration depth is about 30-­40 µm. This 

depth will result in both the hydration of the SC and part of the upper layers of the 

epidermis to be detected. 

 

2.2.2 Skin Surface Hygrometer (Skicon) 
 

The Skicon is not fully a capacitance measuring device. It uses use two techniques to 

measure the skin hydration. A 3.5 MHz capacitance and a separate conductance of 

the skin are measured by the probe (Courage W, 1994).  

 

 

 



              Chapter 2.  Skin Measurement Techniques 
 
 

21 
 

 
 

Figure 2.7: the Skicon is an instrument designed to measure skin hydration based on separate measurements of 

skin conductance and capacitance at 3.5 MHz (reproduced from [4]). 

 

The probe consists of 2 concentric dry electrodes of 2 and 4-­mm diameter, 

respectively, separated by a dielectric. The conductance between the electrodes is 

detected as changes of resonance voltage of a tuning circuit. When the probe is 

placed on the skin, a rapid initial increase in conductance occurs for a few seconds 

followed by a gradual increase, if the contact is maintained. The initial sharp increase 

reflects the hydration state of the skin, while the gradual increase is due to water 

build-­up beneath the probe. It is claimed that there is a high correlation between 

conductance and SC hydration and according to the experimental results the 

hydration evaluated with this instrument seem to be those in the upper layers of the 

SC (Moseley H., 1985).  

 

2.2.3 Nova Dermal Phase Meter (DPM) 
 

The Nova Dermal Phase Meter shown in Figure 2.8 is another instrument that is 

designed to measure skin hydration using impedance8 measurement from which 

capacitance is extracted.  

 

                                                 
8 A measure of the total opposition to current flow in an alternating current circuit 
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The relationship between impedance and capacitance for this measurement is: 

 

Z = (R2 + (1/2 fC)2)½ 

 

where Z represents the impedance, f is the frequency of the applied alternating 

current, R and C represent the resistance and capacitance, respectively. 

 

 
Figure 2.8: The Nova DPM with a probe head 

 

The instrument is equipped with a probe with two concentric brass ring electrodes 

separated by an insulator (outer/inner ring  8.76/4.34 mm) as shown in Figure 2.9. 

 

It measures impedance of the skin at pre-­selected frequencies up to 1 MHz. 

Capacitance is calculated from the signal-­phase delay. The values of the readout are 

in arbitrary units9 of DPM. It is assumed that the penetration depth is limited to the 

upper part of the SC by the AC frequency and the geometry of the probe (Distante F, 

Berardesca E, 1995). 

 

                                                 
9 A relative unit of measurement that shows the ratio of quantities based on a predetermined 
reference of measurement. Normally symbolised as AU or a.u. 
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Figure 2.9: View of the two concentric brass rings separated by an insulator. 

 

2.2.4 The Fingerprints Card Sensors 
 

The Fingerprints card sensor is an existing technology that allows for the detection of 

fingerprint ridges and valley using capacitance sensors. It is now a commonly used 

technology in airports, as a security check and in a multitude of companies where 

personnel access is controlled.  

 

2.3   Photo Imaging Camera 
 

For this research, the camera used is a Photo Physics Research LSBU camera model 

SONY DSC-­W55. The camera has a 7.2 Mega Pixels with 3X optical zoom shown in 

Figure 2.10. 
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Figure 2.10: View of the SONY DSC-­W55 camera used. 

 

 It also has a dedicated Dermlite II Epiluminescencemicroscopy light lamp that 

allows the skin surface to be illuminated for the image to be taken as shown in Figure 

2.11.  

 
Figure 2.11: View of the SONY DSC-­W55 camera Dermlite II Epiluminescencemicroscopy light lamp installed. 
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2.4     Electrical Measurements 
 

The technologies discussed in this chapter rely mainly on the dielectric constant or 

the lack of it in the keratin10  layers and epidermal lipids11 . Since the dielectric 

constant of stratum corneum is relatively low, the measurements are reliant mainly 

on the presence of water on the surface of the stratum corneum. The greater the 

water contents in the stratum corneum, the larger the dielectric constant. 

 

Since the skin is the dielectric material in capacitance measuring, there is a 

proportional relationship between the skin and the dielectric constant. There will be 

varying degrees of reading based on the state of hydration of the skin.  

 

In practice, owing to the absence of physical significance of this unit of measurement, 

this technique is confined to the measurement of variation in stratum corneum 

hydration between initial and final states (before and after).(Baran, Maibach, 2004) 

 

2.5 OTTER Instrumentation 

Opto-­Thermal Transient Emission Radiometry (OTTER) is a form of infrared remote 

sensing technique;; it uses a pulsed (or modulated) laser as heat source to heat up the 

sample and fast infrared detector to detect the consequent increase of blackbody 

radiation. OTTER is a very important means of Nondestructive Evaluation (NDE), 

which has been widely applied in industry and research (Imhof, R.E., Birch, D.J.S, 

1984), such as 

 Measurement of thermal properties 

 Measurement of optical properties 

 Measurement of thickness 

 Measurement of thermal resistance 
                                                 
10 A tough, insoluble protein substance that is the chief structural constituent of hair, nails, horns, and 
hooves. 
11 Any of a group of organic compounds, including the fats, oils, waxes, sterols, and triglycerides, that 
are insoluble in water. 
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 Material characterisation 

 Flaw detection and characterisation. 

 

The main advantages of OTTER are  

 Remote sensing  

 Non-­contact, non-­destructive 

 Low probing energy 

 Small probing area 

 Spectroscopic in nature  

 Direct measurement 

  

 Unaffected to the geometry and movement of sample 

 Quick and convenient to use 

 Work on arbitrary surface. 

The experiment is done in a controlled manner by conducting the experiments in a 

room with controlled room temperature and relative humidity. 

   

2.5.1 Measurement Method 

OTTER measures changes of heat radiation emitted by a sample after momentary 

near-­surface heating by a laser pulse (Xiao P, Cowen J A, and Imhof R, 2001). Figure 

2.12 shows a schematic diagram of OTTER apparatus. A Q-­switched pulsed laser is 

used as the excitation source. The absorption of the laser in the sample causes heating 

in the near-­surface region.  
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Figure 2.12:  Diagrammatic view of OTTER. Reproduced from [7] 

Heat radiation, in the mid-­infrared 5-­15µm wavelength region is focused by an 

aluminium ellipsoidal mirror from the sample onto a high speed, liquid nitrogen 

cooled Mercury Cadmium Telluride (MCT) detector, whose signal is captured by a 

digitising oscilloscope.  

A PC, linked to the transient recorder as digital oscilloscope through a high-­speed 

parallel interface, is used for signal averaging, data storage, display and analysis.  

A typical measurement consists of an average of 100 transients, collected at a laser 

pulse repetition frequency of 4Hz. Signal averaging is essential to give adequate 

signal to noise ratios without damaging delicate samples. Interference filters are used 

to select narrow spectral bands within the black body thermal emission envelope for 

detection. For stratum corneum hydration measurements, interference filters of 

6.05µm and 13.1µm transmission wavelength are normally used. At 6.05µm 

wavelength, strong absorption bands of water and amide coincide, whereas at 

13.1µm wavelength, water is the only strong absorber. (Imhof, R.E., Birch, D.J.S, 1984) 
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The collected data from the OTTER is stored as individual files. One file representing 

a certain amount of readings is passed as a binary format. 

 

2.6  AquaFlux Instrumentation 

As explained in chapter 1, AquaFlux is an infrared remote sensing technology for 

non-­contact and non-­destructive surface analysis of arbitrary samples. Its existing 

application is measuring skin hydration, skin pigments, trans-­dermal12 drug delivery, 

thermal diffusivity and paint coating thickness. Its main benefits are in that it is a 

surface technology resulting in easy depth profiling, short measurement time, 

insensitive to colour and spectroscopic in nature. A normal configuration of 

AquaFlux consists of the below components: 

 

1) Hand-­held probe 

2) Base unit 

3) Data cables 

4) Power supply 

5) Software 

6) Accessories 

 

The AquaFlux relies on an 

gradient measurement principle, the main difference being that it involves the 

continuous removal of water vapour from the chamber using a condensing surface 

opposite the measurement orifice.  

 

2.6.1  Measurement Method 

The AquaFlux uses the patented condenser-­chamber method for measuring water 

vapour flux. Figure 2.13 shows the schematic diagram of the AquaFlux measurement 

chamber. 

                                                 
12 Supplying a medication in a form for absorption through the skin into the bloodstream 
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Figure 2.13: Cut-­out view of the AquaFlux condenser-­chamber. Reproduced from [16] 

 

Looking at the above Figure, the lower bottom is open to contact with skin surface 

that will need to be measured. The upper end is sealed with an aluminum condenser 

and the temperature here is maintained at a constant -­13.4 °C by means of a Peltier 

cooler and associated heat sink. A peltier cooler is a cooler that uses a peltier element 

(Thermo Electric Cooler-­TEC). Peltier coolers consist of the peltier element itself, and 

a powerful heat-­sink/fan combination to cool the TEC. 

 

When the chamber is brought in contact with the skin surface, the chamber is sealed 

and the air within it is protected from disturbance from ambient air movement. Due 

to the internal dimensions of the chamber being very small, natural convection and 

other bulk air movements are brought down. In fluid dynamics terms, this requires 

the Rayleigh Number13 to be below the critical value for its geometry. Under these 

conditions, passive diffusion remains the only transport mechanism for the water 

vapour entering the chamber (Imhof RE, Berg EP, Chilcott RP, Ciortea LI, Pascut FC, 

Xiao P, 2002). 

 
                                                 
13 In fluid mechanics, the Rayleigh number for a fluid is a dimensionless number associated with 
buoyancy driven flow (also known as free convection or natural convection). When the Rayleigh 
number is below the critical value for that fluid, heat transfer is primarily in the form of conduction;; 
when it exceeds the critical value, heat transfer is primarily in the form of convection. 
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The condenser controls the absolute humidity in the measurement chamber 

independently of ambient conditions. It acts as a vapour sink by forming ice on its 

surface, thus creating a zone of low humidity in its immediate vicinity. By contrast, 

the test surface acts as a vapour source, creating a zone of higher humidity in its 

immediate vicinity. This humidity difference causes water vapour to migrate from 

source to sink by passive diffusion, leading to an approximately linear distribution of 

humidity parallel to the axis of the chamber under steady conditions. The water 

vapour flux is calculated from measurements of this humidity gradient and Fick's 

first law of diffusion (Kamaruddin H.D, Koros W.J, 1997). 

 

In the AquaFlux, the humidity immediately adjacent to the condenser is calculated as 

the thermodynamic equilibrium value for ice at the temperature of the condenser. 

The humidity gradient is determined from this value, together with the readings of 

RH & temperature from the sensor combination approximately half-­way between the 

condenser and the measurement orifice. 

 

2.7  OTTER/AquaFlux Experiment Results 

 

One of the major functions of skin is to prevent the loss of body fluids. In general, 

water is lost in two ways, by diffusion and by sweating. However, at temperatures 

below 29°C, few sweat glands are active, therefore only diffusion plays an active role 

in the water loss through the Stratum Corneum. Normally, the water distribution 

within the Stratum Corneum is determined by a dynamic equilibrium with wet and 

dry boundaries respectively at the air and epidermis interfaces. Water continuously 

diffuses through the Stratum Corneum, driven by this water concentration gradient. 

The rate of water loss is determined by the concentration of water in the adjoining 

epidermis and the external environment, the diffusivity of water in the Stratum 

Corneum and its thickness. 
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This chapter presents the practical results gained from doing experiment on six 

different locations on the forearm mainly the bottom of hand, top of hand, bottom of 

finger, top of finger, lower arm and upper arm using the OTTER. From this 

experiment, two types of measurements are derived being the Hydration Gradient 

and the Surface Hydration. 

A second experiment is done using the AquaFlux that looks at the TransEpidermal 

Water Loss (TEWL).  

 

2.8  OTTER Experiments 

2.8.1 Surface Hydration Measurement 

Surface hydration is lowest on the bottom of the hand and highest on the upper arm. 

There is a gradual increase in the hydration level in between the lower hand and the 

upper hand, but the increase between the top of the finger and the bottom of the 

finger is marginal. These results are shown in the Figure 2.14. 

 

Figure 2.14:  Surface hydration measurement of 6 locations of arm. 
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2.8.2 Surface Hydration Gradient Measurement 

Gradient is the rate of change with respect to distance of a variable quantity, as 

temperature or pressure, in the direction of maximum change and hydration 

gradient shows the change in relation to the hydration level from the skin surface. 

The result for this test was derived from six different locations on the skin surface 

and the hydration gradients for the six different locations are shown in comparison 

to one another. These results are shown in the Figure 2.15. The subject is an oriental 

male aged 25 to 30 years.  Five measurements were repeated for each of the site. The 

hydration gradient is lowest on the bottom hand and highest on the lower arm.  

 

Figure 2.15: Hydration gradient measurements of 6 locations of arm. 

 

2.9 AquaFlux Experiment 

2.9.1 Trans-­epidermal Water Loss Experiment 

As discussed in point 1.3, water loss from the skin surface is measured in a chamber 

and this measurement is characterised in comparison in time to produce the chart in 
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Figure 2.16. For this experiment immersive hydration was done on an Asian 

patting down the finger, measurements were done with the AquaFlux probe over a 

period of six minutes with an average time interval between readings of one minute. 

Average ambient temperature is 29.930C and average relative humidity is 36.57%. 

 

Figure 2.16: Trans-­epidermal Water Loss from a hydrated index finger. 

 

The trans-­epidermal water loss between the first and second minute is 0.005% and 

increases steadily to 0.025% from the second to third minute, 0.163% from the third to 

fourth minute and slows down from fourth to fifth minute at 0.105% and 0.090% 

from fifth to sixth minute. 

This test shows the gradual loss of water as measured by the AquaFlux. 
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2.10 Conclusion and Findings 
 

In this chapter, existing technologies used in hydration measurement are discussed. 

It shows that there are many ways to measure hydration on multiple types of 

surfaces. Every measurement instrument has its own strength and weakness. 

 

Due to limitation of the size of the probes and measurement methods, these 

technologies are unable to re-­create a mapped image of the skin and thus are unable 

to show a visual view of the test skin site. An imaged map of the skin will better 

represent a cross section of the skin site and visually show the look of the skin.  

 

Therefore, this research will look at developing and modifying existing capacitance 

sensor technologies to create a larger surface area capacitance sensor where more 

information of the skin can be analysed and a richer information base can be 

manipulated to gain more understanding of the skin sites. 

 

The methods of OTTER and AquaFlux are some of the most accurate techniques to 

measure skin hydration and TEWL. However, due to limitation of portability in the 

case of the OTTER and speed in the case of AquaFlux, this research is developing a 

new technique employing capacitance sensors technology as a simpler, portable and 

quicker alternative where high precision is not a major requirement. 
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CHAPTER 3:  SKIN IMAGING WITH CAPACITANCE SENSORS 

Differential amounts of hydration in the skin can be recorded through a 

dielectric field that may be measured using the capacitance sensor (Leveque JL, 

2003). Material with different dielectric properties will have an effect on the 

dielectric field. Since water has high dielectric properties in comparison with 

other skin building blocks, an increased presence of water can be measured 

using capacitance sensors.  

 

3.1 Theory of Capacitance 

Commonly, a capacitor is used to store (hold) this electrical charge. A capacitor 

is constructed of two conductive parallel plates separated by a non-­conductive 

medium or the dielectric region.  Assuming that the parallel plates are charged 

with +Q and Q and that the voltage between the plates is V, the capacitance 

can be shown as: 

     

The unit of measurement used for measuring capacitance is farad, where 1 

farad is equal to 1 coulomb per volt (Stauffer L, 2008).  

The capacitor stores energy which is equal to the energy required to charge it 

and thus electrical energy is not dissipated. 

If a small element of charge (dq) is moved across the two plates against the 

potential difference V=q/C;; it will require the amount of energy dW.    

 

V
QC

q
C
qW dd
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This energy fluctuates depending on the interference of the dielectric medium.  

(Adkins C.J, 2008) 

 

3.2 Capacitance Imaging 

Capacitance sensors instrumentation is a complex semiconductor device 

consisting of transistors, resistors and capacitors.   

 

Figure 3.1:  Diagrammatic view of a capacitive sensor with two semiconductor chips. (Reproduced from 
[24]) 
 

As shown in Figure 3.1, the conductor plates in the co planar position are 

connected to an integrator, an electrical circuit built around an inverting 

operational amplifier.  

 

The inverting amplifier alters one current based on fluctuations in another 

current. Specifically, the inverting amplifier alters a supply voltage. The 

alteration is based on the relative voltage of two inputs, called the inverting 

terminal and the non-­inverting terminal. In this case, the non-­inverting terminal 

is connected to ground, and the inverting terminal is connected to a reference 
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voltage supply and a feedback loop. The feedback loop, which is also connected 

to the amplifier output, includes the two conductor plate

Quotations, 2008). 

 

These two conductor plates form a basic capacitor, and the surface of the skin 

acts as a third capacitor plate, separated by the insulating layers in the cell 

structure and, in the case of the skin micro-­relief valleys, a pocket of air (Walker 

C, 1990). Varying the distance between the capacitor plates changes the total 

capacitance (ability to store charge) of the capacitor. Due to this behaviour, the 

capacitor in a cell where there is higher moisture content underneath will have 

a greater capacitance than the capacitor in a cell under a valley with low or no 

moisture content. 

 

Each amplifier's input and output to "balance" the integrator circuit. When the 

switch is opened again, and the processor applies a fixed charge to the 

integrator circuit, the capacitors charge up. The capacitance of the feedback 

loop's capacitor affects the voltage at the amplifier's input, which affects the 

amplifier's output.  

 

Since the distance to skin and its moisture content alters the capacitance, a 

micro-­relief will result in a different voltage output than where the skin is 

having full contact with capacitance sensor surface. A disturbance in the supply 

level is caused by the disturbance of the skin resistance that in turn causes a 

change in the current readout.  

 

The possible range of change that can occur can be 0 to 255 corresponding to a 

gray-­scale from white to black. A 255 gray-­scale denotes no disturbances to the 

dielectric passage and allowing a complete black gray-­scale to be registered. A 0 

gray-­scale will denote a complete restriction to the dielectric passage and 
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allowing a complete white gray-­scale to be registered (Leveque, J.L, Querleux, B, 

2003). 

 
The scanner processor reads this voltage output and determines whether it is 

characteristic of a ridge or a valley. By reading every cell in the sensor array, the 

processor can put together an overall picture of the fingerprint, similar to the 

image captured by an optical scanner. 

 

A large group of capacitors and their sensors are placed in an array to form a 

large imaging sensor. Each couple of capacitor plates acts as a single pixel than 

can be read and stored along with its neighbouring capacitor plates.  

 

A single cell capacitance surface and the dielectric signal path is shown in 
Figure 3.2. 
 

 

Figure 3.2:  Diagrammatic view of a single cell capacitance surface and the dielectric signal path. 
 

Capacitance sensors are manufactured the same way as silicon materials and 

standard ICs. The low thickness of the ICs results in lower power consumption.  

For this research, the FPC-­SMD 5410 Fingerprints Card Development Kit, the 

-­200 

Capacitance Sensor are used.  
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3.3 The FPC SMD 5410 Development Kit 
 
The FPC SMD 5410 contains a FPC SMD array swipe sensor chip, a processor 

board, a connecting cable, and a main development board. The swipe sensor is 

mounted on the processor board, connected through a 10 pin, 0.5mm pitch, and 

ZIF connector. The processor board, which is connected to the main 

development board through a connecting cable, has the ASIC (Application 

Specific Integrated Circuit) for biometric operations and ATMEGA162 for 

external communications. On the main board, there is an incoming 5V power 

supply and a serial port, for connecting the board and the computer through 

RS232 interface.  

 

Extremely weak electrical charges are created, building a pattern between the 

finger's ridges or valleys and the sensor's plates. Using these charges the sensor 

measures the capacitance pattern across the surface.  

 

A protective coating helps the FPC sensors to withstand and sustain static 

electricity (ESD) and general wear and tear. 

 

The FPC-­SMD has some inherent benefits. Method of capturing images used by 

the Fingerprint Cards is called the active or reflective method, and it brings 

several advantages.  

 

1. Using the programmable logic internal to the capacitive sensor 

configuration, it is possible to read off and adjust the sensor reception to 

different skin types and conditions.  

 

2. Another important benefit is that the strengthened signal communications 

between the fingerprint surface and the sensor plates allows the use of a strong, 
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protective coating layer, up to 25-­30 times thicker on the sensor surface. This 

enables Fingerprint Cards to sustain up to and above the requirement for 15kV 

electrostatic discharge (ESD), as well as wear cycle tests for more than one 

million touches to the sensor. 

 

3. For communications, a standard serial port (FPC5410) and a USB port 

(FPC6410) is included.  

 

4. The FPC5410 has a surface area of 32 x 152 pixels1 while the FPC6410 

consists of 152 x 200 pixels. 

 

5. Finally, the FPC-­SMD can be controlled by using built-­in hardware based 

commands. This does not limit the use to a specific programming language thus 

making it easier to program in a language of choice.   

  

3.3.1 Modifications of the FPC-­SMD 5410 Development Kit 
 
For the initial purpose of this research, the FPC-­SMD 5410 Fingerprints Cards 

Development Kit was purchased and used in the initial studies to determine the 

feasibility of using a capacitance sensor as a means of measuring skin 

hydration.  Some modifications were necessary to allow a greater usability for 

skin imaging.  

 

The sensor was re-­mounted on a handheld probe and an additional flex data 

cable was used to lengthen the distance from the kit board to the sensor as seen 

in Figure 3.3. This allows a movable distance of about 3 feet from the kit board 

to the subject skin site.  

 

Additionally, the capacitance sensor head is inserted through a polyethylene 

sponge to allow flexible movement on uneven skin sites. The surrounding head 
                                                 
1 A picture element is the smallest addressable screen element or point in a display. The 
capacitance sensor can show an 8-­bit image gray-­scale point from 0 to 255 possible gray shades. 
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of the capacitance sensor is covered with a rubber tube to protect the electronic 

circuit board from dust, oil and water as shown in Figure 3.4.  

 
Figure 3.3:  FPC 5410 capacitance sensor mounted on a probe head. 

 
Figure 3.4: close up of FPC 5410 capacitance sensor mounting with cladding of a rubber tube to protect 

the PCB board.  
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3.4 Results using FPC-­SMD 5410 Development Kit 

The FPC-­SMD 5410 development kit has been used for measuring the skin 

surface hydration. These tests were aimed to investigate the FPC-­

capability of measuring the difference between a normal skin state and 

subsequently hydrated over time. To diminish possible scatter of data, primary 

experiments were performed on the same skin sites. 

All the measurements are performed under normal ambient laboratory 

conditions, i.e. 21°C, and 40% relative humidity (RH), and all volunteers are 

acclimatised in the laboratory for 20 minutes prior to the measurements being 

done. Three different types of experiments were done on the skin surface 

mainly to test the device capabilities in measuring different types of hydration: 

1. Immersive Hydration  where skin is immersed in water for a period of 

time before being tested.  

2. Moisturiser Test  moisturiser is introduced to normal skin and then 

tested. 

3. Occlusion  where normal skin is constantly kept on the device for a 

period of time without removing it from the device surface. At certain 

time intervals, images are captured.   

3.4.1 Hydration Immersion Test Method 
 
Method 
 
The first test is done on the distal phalange of left index finger of a male Asian 

volunteer before dipping in water, and then dipping in water for 20 minutes. 

 

 

Before dipping in water 

  
front of finger   back of finger 
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immediately after 20 minutes in water (0 min) 

  
front of finger   back of finger 

 

5 min 

  
front of finger  back of finger 

 

10 min front 

  
front of finger  back of finger 

15 min front 

  
front of finger  back of finger 

Figure 3.5: Images showing pre-­hydrated and hydrated skin over time. 

 

The first column of images in Figure 3.5 are showing the front of finger 

(fingerprints) and the second column of images are showing the back of finger 

 

The first two images on the top are before dipping in water.  Subsequently, the 

index finger is dipped in water for 20 minutes and then patted dry with cotton 

and tested. Then at intervals of 5 minutes, a new image is captured. Between 

capturing the images, the finger is lifted off the device. 

 

Results 
An initial visual comparison shows that an increase in water presence can be 

seen in both the front and back of finger by variations of darkness. This is 

clearly visible from the second row images showing an increased presence of 

water level on the skin can be seen as a darker shade.  
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After 5 minutes, the shade intensity is reduced and after 10 minutes, it has 

nearly returned to its original (pre water dipping) condition. Based on prior 

tests done using the Aquaflux and the OTTER instrumentation, it is understood 

that the skin should return to its pre-­soaking state after a period of time. 

However this is dependent on the age, type and properties of the skin of the 

subjects tested in these experiments. 

 

3.4.2  Moisturiser Application Test 
 
Method 
A second test was done on the distal phalange of the right index finger of a 

male Asian volunteer with application of moisturiser. 

 

 A water-­based moisturiser was applied to the skin and then wiped for any 

residual moisture. In this test, skin surface is compared as before and after the 

moisturiser only and no comparison is done over time. 

 
 

Before applying moisturiser 

    
front of finger      back of finger 

 

after applying water based moisturizer 

    
front of finger      back of finger 

Figure 3.6: Images showing pre-­moisturiser and moisturised skin 

 
Results 
An increase in intensity of gray is visible as compared to before application of 

moisturiser as seen in Figure 3.6. Micro-­relief of the front of the finger is visible 

after application.  
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3.4.3 Occlusion Test 
 

Method 
The third test was done on the middle front phalange of the index finger of a 

female Caucasian volunteer. This test requires the finger to be maintained in the 

same position on the device for a period of time in order to allow occlusion and 

to be able to capture images with increased water presence.   

 

The finger is kept stationary on the device and an image is taken every 5 

minutes for 20 minutes. 

 
Results 

The result shows an increase presence of water over time. This increase is 

visible in the darkening of the images seen in Figure 3.7. 

 

0 mins   5 mins   10 mins 

           
15 mins   20 mins 

      
 

Figure 3.7: Images showing occlusion of skin surface over time 
 

3.4.4 Additional Tests on non-­Live Skin Surfaces 

To further test the capability of the capacitance sensors reading, additional tests 

were done on non-­live skin.  
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2 and hydrophilic3 

behaviour were tested. The outer surface is scaly & hydrophobic while the inner 

surface is hydrophilic (Imhof  RE, Xiao P, Berg EP, Ciortea L, 2006). 

 
3.4.4.1 Snake Skin 
 
An initial test is done to test if shed snake skin when hydrated can be analysed 

by capacitance sensors. The snake skin is obtained from PhotoPhyiscs Research 

Centre, London South Bank University and the source of the skin is of the 

Brazilian snake. 

 

Method 
 
A first measurement is done on dry snake skin with a thickness measuring 

0.12mm. The tests are done at room temperature of 23oC and a relative 

humidity of 47%.  

 

The snake skin is then submerged in water for 10 minutes. A reading is taken 

from the outer skin surface (hydrophobic) and under-­skin surface (hydrophilic).  

 

Results 
The image results are shown in Figure 3.8 where a prominent water increase is 

visible in the hydrophilic skin surface compared with the hydrophilic surface.  

 
Prior to hydration, the snake skin is completely dry thus registering only a low 

gray-­scale (white) image. 

 
 
 
 
 
 
 
 
 
                                                 
2 Hydrophobic  material (live or non-­live) that have strong affinity or attraction towards water. 
3 Hydrophilic material (live or non-­live) that resist or having a lack of affinity towards water. 
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Shed snake skin-­hydrophobic (before hydration)                Shed snake skin-­hydrophilic (before hydration) 

         
  
Hydrophobic skin layer (after 10 min hydration)                Hydrophilic skin surface (after 10 min hydration) 

                   
Figure 3.8: Image of hydrophobic and hydrophilic snake skin before and after hydration for 10 minutes. 

 

 

3.4.4.2 In-­vitro Stratum Corneum 

 

These tests were done on an in-­vitro4 human Stratum Corneum (SC) sample 

which was then hydrated. The thickness of the SC is about 0.02mm. The tests 

are done at room temperature of 25oC and a relative humidity of 48%. The FPC 

5410 is used for these experiments. 

 

Method 
The Dry SC is dehydrated in a dehydration chamber for 48 hours prior to the 

test. Dry SC is measured first and then is submerged in water for 30 minutes. 

The SC is then patted dry and a measurement is taken. Consequently, 

measurements are taken every 2 minutes for 12 minutes and the images are 

reproduced in Figure 3.9. 

 

Before    0 minutes after hydration   after 2 minutes 

   
 
 
after 4 minutes    after 6 minutes    after 8 minutes 

    
 
after 10 minutes    after 12 minutes 

   
 

Figure 3.9: Image of dry stratum corneum  before and after hydration for 10 minutes. 
                                                 
4 studies conducted using components of an organism that have been isolated from their usual 
biological context in order to permit a more detailed or more convenient analysis than can be 
done with whole organisms. 
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Results 
 
As Figure 3.10 shows, the pre-­hydration has a lower gray-­scale average at 37.56. 

After hydration, the hydration has increased to 92.48 and subsequently drops 

over time to a value lower than the pre-­hydrated state at 33.67. 

 

 
 

Figure 3.10: Graph showing pre-­hydration and hydration measurement for 12 minutes of the in-­vitro SC 
 

 

3.4.4.3 Tissue, Cotton, Mix cotton and Paper 

 

These tests are done to ascertain if the FPC-­SMD 5410 can detect different 

hydrated materials. 

 

Method 
Various materials are applied with 2 drops of water on the back of the surface 

to be tested.  Application is by a glass pipette to drop 2 drops of water on the 

surface. For tissue paper, 2ply paper with 5 layers is used and only one drop of 

water is used.  
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The material is placed on a flat glass surface and the FPC5410 is used to take the 

reading. The process is repeated with the next material.  

All experiments are performed with the same room temperature at 26oC and 

relative humidity at 36%. Figure 3.11 shows the results before and after 

hydration on various materials. 

 

 

1.)  Material: Wet tissue paper of 10 layer (2 ply x 5 layers)  

 
Thickness: About 1 mm 

Before After 

  
 

2.) Material: 100% cotton cloth 

Thickness: About 1.5 mm 
Before After 

  
 

3.) Material: Cloth with 30% polyester 70% cotton 

 

Thickness: About 1 mm 
Before After 

  
 

4.) Material:  Paper (80g/m2) 

Before After 

  
 

Figure 3.11: Capacitance images for four different types of non-­organic materials before and after 

hydration. 
 
Results 
The results shows that pre-­hydrated material have very little water presence 

and are registering a uniform measurement. After hydration, tissue paper has 

the highest amount of hydration at 77.26 average gray-­scales, cloth with 30% 



                                                           Chapter 3. Skin Imaging with Capacitance Sensors 
 

 50 

polyester and 70% cotton has the second highest hydration at 48.74 average 

gray-­scales. 100% Cotton material shows a much level hydration at 41.25 

average gray-­scales while paper has increased minimally at 20.40 average gray-­

scales as can be seen from Figure 3.12. 

 

 
 
Figure 3.12: Comparison graph for four different types of non-­organic materials before and after 
hydration. 
 

3.5 The FPC-­AMD 6410 Area Sensor Development Kit 
 

Subsequently, the FPC-­AMD 6410 Fingerprints Cards Development Kit was 

purchased and a dedicated program is written in Visual C++ to capture and 

store the images.   

 

The FPC-­AMD 6410 card is a fully integrated system with a USB connection. 

The capacitance sensor is mounted onto the processor board and access for test 

is through a recessed window on the front plastic panel. 

 



                                                           Chapter 3. Skin Imaging with Capacitance Sensors 
 

 51 

A close-­up image of a group of capacitor plates of the FPC-­AMD 6410 can be 

seen in Figure 3.13. It is to be noted that the blemishes appearing in the image 

are not defects but debris of dust particles, remnants of sebaceous oil and water 

from constant contact with live skin and other surfaces during experiments. 

 

Figure 3.14 further focuses on a single cell of a capacitor where the plates are 

visible in their co-­planar position. 

 
Figure 3.13:  Close up array of capacitor sensors image taken with an electron microscope. 

 

 
 

Figure 3.14:  Close up of a single cell of capacitor with the plates in co-­planar position on a capacitance 

sensor chip.  
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3.5.1 Modifications of the FPC-­SMD 6410 Development Kit 
 

Modifications were done on the sensor mainly to allow direct contact with skin 

and to allow flexibility in moving the sensor head on uneven skin. A 

Polyethylene sponge was used to mount the capacitance head to allow 

flexibility in movement as seen in Figure 3.15.  

 
F igure 3.15:  FPC 6410 capacitance sensor mounted on PCB Kit Board. 

 

A conductive material is added around the capacitance sensor head to allow 

grounding of excess electrostatic discharge. 

 

3.6 Results using FPC-­SMD 6410 Development Kit 
 

The FPC-­SMD 6410 development kit is the second capacitance sensor used in 

this research. These tests were aimed to investigate the FPC-­

capability of measuring the difference between a normal state skin and 

subsequently hydrated over time and to see the difference between FPC-­SMD 

5410 development kit and FPC-­SMD 6410 development kit. 

Three different types of experiments were done on the skin surface mainly to 

test the device capabilities in measuring different types of hydration: 
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1. Immersive Hydration  where skin is immersed in water for a period of 

time before being tested. 

1. Moisturiser Test  the moisturiser consists of Parafinnum liquidum, 

methylparaben, butylparaben and aqua as the main contents. It  is 

introduced to normal skin and then tested. 

2. Occlusion  where normal skin is constantly kept on the device for a 

period of time without removing it from the device surface. At certain 

time intervals, images are captured.   

With the FPC6410, a graph showing the gray-­scale density is also produced. 

This quantification shows the change in gray-­scale values for the experiments 

carried-­out.  

3.6.1 Hydration Immersion Test 
 

Method 
The subject is an Oriental male aged 40 to 45 years of age. The skin sites used 

for the measurements are untreated, but were wiped clean with ETOH/H2O 

(95/5) solution. SC dynamic water distribution is achieved by immersing test 

skin sites in room temperature water for 20 minutes. The right cheek of the face 

is studied, and measurements are performed both before and periodically 

thereafter.  

 

 
Before dipping after  

(0 min) 

5 min 10 min 15 min 20 min 25 min 

       
 

Figure 3.16: Images showing pre-­hydrated and hydrated skin over time. 
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Results 
In the above Figure 3.16, prior to immersion, the skin site has a low gray-­scale 

level. After immersion the skin test area has darkened substantially.  

 

The skin recovery can be seen over a period of 25 minutes. After these 25 

minutes, the shade intensity has nearly returned to its original (pre water 

dipping) condition.  

 

3.6.2  Moisturiser Application Test 
 
Method 
A second test was done on the upper volar forearm of a male Caucasian 

volunteer with application of moisturiser. A water-­based moisturiser was 

applied to the skin and then wiped for any residual moisture. In this test, skin 

surface is compared as before and after the moisturiser only and no comparison 

is done over time. The capacitance images are shown in Figure 3.17. 

 

       Before applying moisturiser  after applying water based moisturiser 

    
Figure 3.17: Images showing pre-­moisturiser and moisturised skin 

 
Results 
An increase in intensity of gray-­scale is visible as compared to before the 

application of moisturiser. The total pixel points on the FPC6410 are 30400 

points (152 pixels width x 200 pixels length). In Figure 3.18, before the 

application of moisturiser, a larger amount of the gray-­scale values of 

individual pixels are located between about 50 to 180 gray-­scale producing a 
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typical bell curve. The highest amounts of pixels are in the middle consisting of 

about 500 pixels.  
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 Before applying moisturiser        after applying moisturiser 

 

Figure 3.18: Graph quantifying gray-­scale values of the pre-­moisturiser and moisturised skin 

 

After applying water-­based moisturiser, the gray-­scale value shifts towards the 

darker pixels. Now, the range is from about 50 to 255 gray-­scales. The highest 

amount of gray-­scale is the higher range nearing 255 with an amount of pixels 

reaching nearly 6000 pixels. 

  

3.6.3 Occlusion Test 
 

Method 
The third test was done on the upper volar forearm of a male Caucasian 

volunteer. This test requires the volar forearm to be maintained in the same 

position on the device for a period of time in order to allow occlusion and to be 

able to capture images with increased water presence. The finger is kept 

stationary on the device and an image is taken every 1 minute for 5 minutes. 

 
 
 

Q
ua

nt
ity

(p
ix

el
s)

 

Q
ua

nt
ity

(p
ix

el
s)

 



                                                           Chapter 3. Skin Imaging with Capacitance Sensors 
 

 56 

Results 
The result shows an increased presence of water over time. This increase is 

visible in the darkening of the images seen in the above Figure 3.19. 

The corresponding graph shows the quantification of the images in graph form. 

The first image has a normal bell-­curve with gray-­scale ranging from 30 to 200 

gray-­scale points.  

The maximum points for range are averaging at 300 pixels per gray-­scale. In the 

second image, the data has shifted towards the right showing an increasing 

gray-­scale and the average pixels have dropped to below 300. 

      
0 min 1 min 2 mins 3  mins 4 mins 5 mins 

      
 
Figure 3.19: Images showing occlusion of the upper volar forearm skin surface over time with 

corresponding gray-­scale density graphs below. 

In the third image shown in Figure 3.19, since the image has gone darker, it is 

reflected in the graph by a larger amount of pixels (reaching about 14500 points) 

populating the higher gray-­scale in the range of 250 gray-­scale.  

In the fourth, the lower gray-­scale values has nearly disappeared and much of 

the gray-­scale is above the range of 250 reaching 2.4 x 104.  
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The fifth image has a majority gray-­scale of 250 and above and a total points in 

this range reaching 2.5 x 104 with about 6400 points ranging from 60 to 250 

grayscale. 

In the sixth image, the gray-­scale above 250 has increased above 2.5 x 104. 

-­scale 

scattered throughout the 0 to 250 range as the higher end of the line is showing 

2.5 x 104 (which amounts to 25,000 leaving behind 5400 points that are 

registered as a low horizontal flat line in the graph). 

 

3.6.4  Banana Peel and Banana Fruit 
 

This test is conducted on a banana skin and the banana fruit itself using the 

FPC6410 capacitance sensor. The banana was kept in the test environment for 5 

hours prior to conducting the test. 

 
oC and relative humidity is 43%. Figure 

3.20 shows the 3 images recorded of the banana. The top 3 sets of images are 

RGB photo digital camera with 2 megapixels while the bottom 3 sets of images 

are capacitance sensor images of the same site as the photo images. 

 

Outer skin of banana Inner skin of banana Fruit surface 

   
RGB Photo Images   
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Capacitance sensor images 

 

Figure 3.20: Images of skin surface of banana outer, inner skin and the fruit. 

 

The first image shows an image of the outer skin surface, the second image 

being the inner skin of the banana surface and the last image of the exposed 

banana fruit surface.   

 

A visual glance shows that the outer skin surface has lower hydration while the 

fruit surface has higher level of hydration and that the banana is highly 

hydrated. 

 

In Figure 3.21, the quantification of the images shows similar results whereby 

the gray-­scale of the outer skin is lowest at about 2.2 x 104 while the inner skin is 

nearing 2.5 x 104. The fruit surface has the highest level of hydration 3 x 104. 
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Figure 3.21: Graph showing the quantification of skin surface of banana outer, inner skin and the fruit. 

 

 
These additional tests have further shown the capacity of the capacitance 

sensors in not only in reading live in-­vivo skin but also a variant of in-­vitro 

human skin, shed snake skin and fruit peel. 

 

3.6.5 Multiple Skin Sites of the Human Skin Surfaces 
 
Finally, multiple skin sites on the human body have been measured using the 

capacitance sensor to show variable differences in the human skin. The major 

sites that were measured were the forehead, cheek, neck, volar forearm, frontal 

bikini line, lower back pelvis (buttocks) and the lower leg.  

 

Each of these sites was chosen due to its distinct uniqueness in the human skin 

surface. For the first test, four sites;; the forehead, cheek, neck, volar forearm are 

measured on a female Caucasian subject aged 20 to 25 years old and is shown in 

Figure 3.22. 
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Forehead Right Cheek Right Neck Right Volar forearm 

Figure 3.22: Imaging using capacitance sensor of different skin sites of the human body. 

 

Quantitative analysis of these skin shows that the cheek has the lowest 

hydration at 67.82 grayscale. The forehead has a slightly higher value at 70.39 

grayscale and the neck is higher at 101.88 grayscale. The Volar forearm has the 

highest hydration level at over 176 gray-­scale values. This can be seen in Figure 

3.23 below. 
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Figure 3.23: Line chart showing gray-­scale values of four skin sites of a female Caucasian aged 20 to 25 

. 

The next two sites measured are the frontal bikini line, lower back pelvis 

(buttocks) and the lower leg of a female Caucasian aged 40 to 45 years old. The 



                                                           Chapter 3. Skin Imaging with Capacitance Sensors 
 

 61 

image of the bikini line shows shaved are of the skin and location of the hair 

follicle is showing and white as seen in Figure 3.24.  

 

The second image shows the buttocks area and skin surface shows a major 

difference that other skin sites in the form of larger and wider micro-­relief lines. 

The last image is of the lower leg showing a more uniform, hydrated skin 

surface. 

   

Frontal bikini line lower back pelvis (buttocks) lower leg 

Figure 3.24: Imaging using capacitance sensor of different skin sites of the human body. 

 

The data measured from these images is shown in Figure 3.25 and it can be seen 

that the bikini line has the lowest hydration levels, the buttocks has a higher 

level of hydration meanwhile the lower leg has the highest hydration from the 

three sites measured. 
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Figure 3.25: Line chart showing gray-­scale values of three skin sites of a female Caucasian aged 40 to 45 
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3.7 The Fujitsu MBF-­200 Capacitance Sensor 
 

Finally, a more robust and highly sensitive sensor the MBF-­200 developed by 

Fujitsu Corporation was used to analyse the skin. This sensor has the capability 

to measure images in video format where the changes in hydration can be 

measured as a video file. 

As seen in Figure 3.26, the width of the sensor is 1.3cm while the length is 1.5cm. 

A USB connector is used to carry signals from the sensor to the computer 

application for processing and display.  

  

Figure 3.26: View of the Fujitsu MBF-­200 capacitance sensor with an attached USB connector cable. 

 

3.8 Conclusion and Findings 
 
 

The capacitance sensor technology has shown promising results in measuring 

hydration in in-­vivo skins, in-­vitro skins and a multitude of other material both 

organic and non-­organic. 

 

The FPC-­5410 capacitance sensor was modified to suit it to skin measuring. The 

sensor head was re-­mounted onto a handheld probe so as to allow for easier 

handling and measurements of skin surface. Additionally the head was 
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supported with polyethylene sponge to allow for greater movement according 

to skin contours. 

 

It has been observed that the capacitance sensor along with the program written 

has been successful in imaging and measuring hydration of not only detecting 

hydration of the skin but also hydration on other materials such as cotton, 

tissue, paper, snake skin and fruits.  

 

Additionally, the capacitance sensor has also shown promising results in 

differentiation between different types of skin showing different structure of 

localised skin area such as forehead, cheek, neck and volar forearm. 

Quantification of the measured image has been attained by finding the average 

gray-­scale value of all the points within the image. 

 

It has been found that the capability of the capacitance sensor in both imaging 

and then on measurements from the data allows for a visual and data based 

results. This can be seen from images in Figure 3.24 showing distinct patterns of 

skin of three locations and then in Figure 3.25 showing the average hydration 

measurement values of the same sites. 

 

In chapter 4, more detailed analysis of the measurement data will be done to 

show the effectiveness of measurements using capacitance sensors.  
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CHAPTER 4:  DATA ANALYSIS OF CAPACITANCE SKIN IMAGING 

The FPC6410 was adopted as the default capacitance sensors for future experiments 

due to its larger contact surface area that is in contact with the test area compared to 

the FPC5410 swipe sensor. 

 

The area sensor chip of the FPC6410 unit has an array of 152 by 200 capacitive 

sensors, which generates a 30400 pixels in black and white skin capacitance image 

with a 50x50um special resolution. In the images, each pixel is represented by an 8 bit 

gray-­scale value, 0~255, with 0 represent white (low capacitance) and 255 represent 

black (high capacitance) (Xiao P, Singh H, 2007). 

 

The FPC6410 Development Kit contains standard software written in Visual C++ 

with functionality to capture and store the image in RAW format. A RAW format 

image is a file where the data has been processed minimally from that of the sensor.  

 

The file does not contain any additional header information as it is normally done in 

other graphics format files. Each element or pixel in a RAW format file is an 

individual 8 bit (1 byte) data. As each pixel is represented, the RAW file represents 

closely a high truer image of the actual site ( Steinmueller U, Gulbins J, 2006). 

 

 
 
 
In the diagram above, six values on the X-­axis from the top left of a file are shown. 

 

 

 

01111000   11111010   01110110   ..............  
01000101   01001110   11100110   ..............  
............................................  

120   250   118   .............................  
  69     78   230   .............................  
............................................  
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The original program supplied by FPC was modified to incorporate additional 

functionalities mainly: 

 

1. Time based capturing of the image (time intervals in seconds). 

2. Looping of the images being taken against time. 

 

4.1   Software Techniques Used in Image Capturing 

The FPC area sensor verification system consists of the following system 

components: 

 

1. A host processor 

2. A fingerprint processing device  

3. A fingerprint capturing device [area sensor] 

 

The purpose of the host processor is handling the management of templates created 

for recording the images, user interface and issuing commands for recording image. 

 

The fingerprint-­processing device then performs all calculations needed to 

enrol/verify the recorded image. It also acquires the fingerprint image from the 

fingerprint sensor.  

 

This means that there is no direct interaction between the host processor and the 

fingerprint-­capturing device (sensor). 
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The interface between the host and the processor is a parallel data/address-­bus. 

Figure 4.1 shows a diagrammatic view of capacitance sensor system process layout.  

 

 

 

 

Figure 4.1: System Layout from the Capacitance Sensor to the User Interface 

The user interface allows the user to record an image by applying the capacitance 

processor will capture the image and the values are passed to the Host which will 

then store the image in a .RAW format.   

As shown in Figure 4.2, the user has a few options to select from the User Interface. 

The image can either be captured as a single .RAW file or using the Loops option the 

user can specify the Time intervals(in seconds) and the total amount of loops 

required. 

Subsequently, the recorded image is stored as a RAW file and can be accessed with a 

multitude of applications for processing including Adobe Photoshop, IrfanView and 

 

User  
Interface  

 
Host  

 
Processor  

 
Sensor  

Storage  
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Figure 4.2: User interface of the FPC6410 showing the options available to the user 

For this project a specific program is written in MATLAB to allow the extraction of 

information from the RAW file data. Using this program, the extracted information 

can be analysed for closer details of gray-­scale, quantification of the image and for 

generating 3D skin surface profile.   

An assumption is made where all the pixels whose gray-­scale values are above the 

threshold have a good skin contact. By capping their gray-­scale values, 3D skin 

surface profiles can be produced.   

When an image is recorded by the capacitance sensor, the gray-­scale image is 

displayed in the user interface window and the raw image file is stored in the 

selected folder.  Figure 4.2 above shows a sample image of the left cheek of a male 

Caucasian aged 20-­25. 

In addition to recording a single image, the program has been modified to capture 

images in time interval and in loops that can be specified by the user. The images are 
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recorded individually and stored as different files in order to allow processing and 

analysis of individual file images. 

With the capability of time interval loop, the capacitance sensor can be placed 

directly on the subject test area for a period of time for continuous time interval 

imaging. This technique is useful where occluded images of the skin site need to be 

recorded separately and the images are stored the image as separate files for analysis 

later. 

4.2 MATLAB 

4.2.1 Definition 
 

MATLAB is a high-­level interactive programming language that allows rapid 

development of code to test and effectively process large volumes of data for 

scientific and engineering purposes. Typical uses include: 

 Math and computation 

 Algorithm development 

 Modelling, simulation, and prototyping 

 Data analysis, exploration, and visualization 

 Scientific and engineering graphics 

 Application development, including Graphical User Interface building[54]. 

4.2.2 MATLAB Interface 

MATLAB is an interactive application where users can input commands and 

instructions directly into a Command Window and the commands are carried out in 

real-­time. Commands may also be written as traditional programming language 

coding through an editor. The program can then be saved as a MATLAB format (.m) 

file and then processed. 
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One of its main strength as a development tool is that it contains easy to use tool 

boxes that allow manipulation of data based on numerical algorithms. In addition, 

processed data can be easily plotted in graphs and charts format using simple 

plotting techniques using these toolboxes. 

 

Figure 4.3: Image of a Mathworks MATLAB window showing the Current directory, Editor area, Details, 

Command Window, Workspace and Command History. 

In Figure 4.3 above, MATLAB has a conventional style window where on the menu 

options are standard graphical-­user interface based.    

4.3 Image Processing 

4.3.1  Three Dimension Profiling 
 
A three dimensional view of the image is rich in information and has the capacity to 
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display a clearer image of the skin profile compared with a 2 dimensional image. 

Additionally, a colour scheme is used whereby a closer to the surface pixel is 

coloured red while deeper valleys are coloured light blue. There is a range of 

spectrum colours from red to blue in between to show different depths of the micro-­

relief and skin surface indentation (Singh H, Xiao P, Berg EP, Imhof RE, 2008) 

Figure 4.4 show a site of the skin selected to be processed with the dedicated image 

processing program written in Mathworks MATLAB. The site is immersed in water 

for 20 minutes and the subsequent RAW image taken immediately after immersion.  

The third image has been taken 25 minutes after the immersion. These images are in 

RAW format and have been taken using the FPC-­SMD Fingerprints Card software 

prior to processing.  

  

 
 
 
 

 
 
 
 
 
 

Figure 4.4: RAW image of the face skin surface before and after immersion in water 

In Figure 4.5, the three images are of the first site processed by the MATLAB 

program and show a 3D profile from the RAW file as seen in Figure 4.4. (H. Singh 

and P. Xiao, 2008)  

 

   
Before After (0 min) 25 min 
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Before After (0 min) 25 min 

Figure 4.5: 3D Profile of the face skin surface before and after immersion in water 

4.3.2 Data Analysis 

In analysing the data, the average grayscale value and its standard deviation of an 

image are calculated by averaging all the pixel values which are above a certain 

threshold.  

   
 
Figure 4.6:  The capacitance images of three different skin sites (from top: face, thumb and volar forear) before 
and after a 20-­minute immersive hydration. 
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The capacitance images of the three different sites show varying degrees of gray-­

scale as seen in Figure 4.6. The values of the gray-­scale of each of the image are then 

calculated by the MATLAB program and a line chart showing the quantified values 

is then generated as shown in Figure 4.7.  

The results show that the thumb skin site has the most significant hydration increase 

during the immersive hydration;; it is also the quickest to recover to its normal 

hydration level. While face and volar forearm skin sites have also hydration 

increases, the face skin site is the slowest to recover. The different dynamic water 

holding/binding capabilities, thickness, porosity and its barrier functions. 
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Figure 4.7:  The capacitive images of three different skin sites (from top: face, thumb and volar forearm) before 

and after a 20-­minute immersive hydration. 

Assuming all the pixels whose gray-­scale values are above the threshold have a good 

skin contact, by capping their gray-­scale values, 3D skin surface profiles can be 

produced. Figure 4.8 shows the 3D skin surface profiles of three skin sites before and 
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after the immersive hydration by using the image data shown in Figure 4.6. 

The first column in Figure 4.8 shows 3D skin surface profile of 3 sites prior to 

hydration. Each of the skin sites shows different characteristics as recorded by the 

images. The second column shows the 3D skin profile after 20 minutes hydration. All 

three sites are highly hydrated with varying degrees of gray-­scale. In the third 

column, images have been recorded after 25 minutes since hydration. The most 

prominent change can be seen in the second row where the image of the thumb is 

recorded.  

 
Before After (0 min) 25 min 

Figure 4.8:  The 3D skin surface profiles of three different skin sites (from top: face, thumb and volar forearm) 

before and after a 20-­minute immersive hydration.  
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4.3.3 Data Analysis with OTTER and AquaFlux 

To further validate the gray-­scale values from the capacitive skin images, tests were 

also performed using the opto-­thermal transient emission radiometry (OTTER) and 

the AquaFlux condenser-­chamber TEWL method measurements at the same time.  

Figure 4.9(a) shows the skin surface hydration results before and after the immersive 

hydration and Figure 4.11 show the TEWL value results. The skin surface hydration 

results are generally in agreement with the gray-­scale value results.  
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(a) SC surface water concentration       (b) SC Trans-­Epidermal Water Loss values  

Figure 4.9: SC surface water concentration and SC TEWL values of three different skin sites. 

In the above Figure 4.9(a), the SC surface water concentration of three different skin 

sites is measured using the OTTER. An initial reading is taken and after a 20-­minute 

immersive hydration, 6 readings are taken every 5 minutes. 

Figure 4.9(b) is showing the stratum corneum trans-­epidermal water loss (TEWL) 

values of three different skin sites before and after a 20-­minute immersive hydration 

by using condenser-­chamber TEWL method. 

Both SC surface water concentration and SC TEWL values show increase;; and then a 
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drop towards recovery of the skin within the experiment duration. Subsequently, 

correlation between the gray-­scale values of the capacitance sensor is established 

against the surface hydration of the OTTER;; and then against the TEWL values of the 

AquaFlux. 

Figure 4.10 shows the correlation between SC surface hydration [%] and gray-­scale 

values and Figure 4.11 shows the correlation between gray-­scale values and TEWL 

values.  

Different skin sites clearly have a different correlation which reflects the different SC 

characteristics. With data from Figure 4.10 conversion from the gray-­scale values into 

hydration levels can now be done.  

 

 

 

 

 

Figure 4.10: The correlation between SC surface water concentration and gray-­scale values. 
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Figure 4.11: The correlation between gray-­scale values and TEWL values. 

The gray-­scale values of the SC capacitive images show that different skin sites react 

differently to the immersive hydration even under identical conditions.  

With these capacitive images, the skin surface 3D profile can be generated and show 

changes in the hydration level before and after the immersive hydration.  

Comparing with opto-­thermal transient emission radiometry (OTTER) results and 

condenser-­chamber TEWL (trans-­epidermal water loss) method results, calibration 

can also be done for the gray-­scale values of the images. 

 

4.3.4 Further Data Analysis of the Capacitance Image 

The dedicated MATLAB program is also generating data analysis of the gray-­scale of 

the skin, the total points used in a particular image, sum of value of all gray-­scale 

values between 0 to 255, the standard deviation of the particular image, entropy or 

statistical measure of randomness that can be used to characterise the texture of the 

image, gray-­scale values width, micro-­relief of the skin surface and the image 

threshold.  
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The images of a dry skin site are recorded and then the skin was occluded for 1300 

seconds (21 minutes). Then a second reading is taken at 1300 seconds as shown in 

Figure 4.12.  

 

 
 

Figure 4.12: Two skin sites (pre-­occlusion and occluded skin) with 3D skin profile. 

The images are then analysed with the MATLAB program and the data analysis is 

shown in Figure 4.13.    
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Figure 4.13: Data analysis of two skin sites (pre and occluded skin) showing multiple results analysis. 

Gray-­scale Chart 

The first graph shows the average gray-­scale values of each of the image taken as 

seen in the formula below: 

 

Where x1 to xn are the values of each pixel (152 pixels in width and 200 in length 

totalling 30400 pixels). However the n value is the total number of pixels that were 

used and does not represent the total value of all the pixels. This is done to weed out 
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pixels whose values are below the threshold of the calculation (i.e. non contact point 

and micro-­relief).  

All the needed pixels value are added and then divided by the total pixels taken into 

consideration. After progression over time, the gray-­scale value graph can be seen 

rising. 

Points Chart 

The second graph on the top right shows the total amount of points that were used in 

the image. The total points that can be used are 30400(3 x 104) as shown by the Y axis. 

The amount of points in use steadily rises over the duration of the time. 

Sum Chart 

The third graph shows the sum of all the pixels value in use added together. The 

formula below describes adding each value of x the total n (30400 pixels). n 

represents the total pixels in use. Each pixel is added toproduce the total summation 

of all the pixels.  

 

At 0 second, the total sum is about 1 x 106 and increases to about 3.5 x 106.  

Standard Deviation Chart 

The fourth graph shows the standard deviation of the gray-­scale values. Standard 

deviation measures variability of statistical population of the data. 
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s is the standard deviation of x(the gray-­scale values of each point) and n represents 

the total pixels in the image. 

Entropy Chart 

In the fifth graph E = entropy(I) returns the value E, which is a scalar value 

representing the entropy of gray-­scale of image I. Entropy is a statistical measure of 

randomness that can be used to characterize the texture of the input image. Entropy 

is defined as: 

sum(p .*log2(p)) 

where p contains the histogram count

The value of entropy increase over time as more of the gray-­scale values increases 

and spreads across the image. 

Gray-­scale Value Width Chart 

The sixth chart simply shows the gray-­scale value width range from the first image 

taken to the last image. As can be seen in this chart, the gray-­scale value has 

increased from about 80 gray-­scales to about 250 gray-­scales during this time period. 

Micro-­relief Chart 

The seventh chart shows the micro-­relief changes of the skin surface. The micro-­relief 

is measured by capping all values below 20 gray-­scales. A drop in this range over 
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time shows that the micro-­relief is being hydrated and that the space occupied by the 

micro-­relief in the capacitance image is being reduced. 

Threshold Value Chart 

The eighth graph shows the threshold1 value of the total image and is consistent 

based on the capping of the gray-­scale values.   

The increase in gray-­scale is seen in the graphs generated in Figure 4.13.  

There is an increase in values consistent with the gray-­scale increase as seen in Figure 

4.12 except for the micro-­relief of the skin that shows a decrease in value. 

4.4 Conclusion and Findings 

In this chapter, the work of writing program to process data extracted from the 

capacitance sensor is discussed. Formulas used in extracting and manipulating the 

data are shown. 

 It has been noted that the capacitance sensor, when applied on the skin for a period 

of time will naturally allow occlusion of the skin. This is because the surface of the 

capacitance sensor is in direct contact with the skin site and therefore surface water 

has no means of escape into the surrounding environment.  

This will result in the water occluding between the skin surface and the capacitance 

sensors head. This property of the capacitance sensor coupled with the software 

capability to measure images in a time loop allows for good study area of occlusion 

of the skin. 

                                                 
1 The point that must be exceeded to begin producing a given effect or result or to elicit a response 
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It has been found that a 3D surface image profile can be created using the dedicated 

MATLAB program. Additionally, the water loss can be seen from the hydrated 

surface as shown in Figure 4.5. 

The correlation between SC surface water concentration and gray-­scale values;; and 

the correlation between gray-­scale values and TEWL values has been established. 

Further detailed experiments and research on occlusion using capacitance are looked 

at in Chapter 5. 
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CHAPTER 5:  OCCLUSION, MOISTURISER AND OTHER SKIN 

MEASUREMENT 

 

Occlusion is the complete impairment of passive trans-­epidermal water loss at the 

application site. The main influence on the skin under occlusion seems to be the 

retention of water that is detectable by the trans-­epidermal water loss and the 

increase of water holding capacity. (Fluhr, Elsner, Berardesca, Maibach, 2005) 

 

As noted in Chapter 4, occlusion is achievable with the capacitance sensor as the 

contact surface of the sensor head with skin allows for impairment of the water loss 

from subject skin site. 

 

To analyse the feasibility of occlusion tests with the capacitance sensor, multiple 

tests were conducted with the FPC6410 capacitance sensor. A comparison was also 

done with RGB Digital Camera imaging to see if the occlusion could be recorded by 

means of photographic images. 

 

 
5.1 Occlusion with the Capacitance Sensor 

 
For the first test, the capacitance sensor was applied on the left volar forearm of an 

oriental female aged 20-­25 years. An initial image was measured and the 

capacitance sensor is maintained on the skin site to allow occlusion for 5 minutes. 

The occluding of skin will result in higher hydration levels that are trapped 

between the skin and glass surface of the capacitance sensor surface.  

 

Then a second image is measured as shown in Figure 5.1.   
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Figure 5.1: Capacitance image of the left volar forearm of an Oriental female aged 20-­25 before and after 
occlusion for 5 minutes. 
 
 
The image recorded prior to occlusion shows the skin surface with normal gray-­

scale ranging from 20 to about 230 points as shown in Figure 5.2. After occlusion for 

5 minutes, the gray-­scale level has increased vastly and the image now shows gray-­

scale values in the range of 250 to 255 points with pixels amount ranging at about 

2.7 x 104. A small amount of gray-­scale is visible below 0.1 x 104 ranging from about 

80 to 250 gray-­scales. 

 

The 3D profile image showing the water concentration between the pre-­occluded 

and occluded skin in Figure 5.3 shows a vast increase in occlusion. Variability of 

degrees exists in the depth of the pre-­occluded 3D profile showing a normal non-­

occluded skin.  However the same depth is nearly eradicated in the occluded 3D 

profile as the contact surface between the capacitance sensor and the skin is 

occluded.  

 

 

This inhibits the depth of penetration of the capacitance dielectric field thus 

showing the nearly complete occluded surface area between the skin site and the 

capacitance sensor.  
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Figure 5.2: Quantification comparison of the image of left volar forearm of an Oriental female aged 20-­25 
before and after occlusion for 5 minutes. 
 

 
Figure 5.3: 3D profile image of the left volar forearm of an Oriental female aged 20-­25 before and after 
occlusion for 2 minutes. 
 

On looking at the co-­relation between the two images;; a shift towards the upper 

gray-­scale values of the occluded skin site can be seen in Figure 5.4. As seen from 

this Figure, the co-­relation at the higher values (higher occlusion) over 100 gray-­

scale shows that there is a major shift towards the occluded skin (after 5 minutes). 
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This means that more of the surface area is now having a higher gray-­scale as 

compared to the pre-­occlusion measurement. 

  

 There are a small number of 0 to 100 gray-­scale pixel points which are consistent 

with lower end of the gray-­scale as seen in the chart in Figure 5.2. 

 
Figure 5.4: Co-­relation between the image of left volar forearm of an Oriental female aged 20-­25 before and 

after occlusion for 2 minutes. Pre-­occlusion is on X-­axis while occluded skin is Y-­axis. 

 
For the second occlusion test, the left frontal neck of an Asian male aged 35 to 40 is 

occluded and an image is recorded every one minute for three minutes as shown in 

Figure 5.5. The 3D profile for each of the image shows the surface is being occluded.  

 

However a more prominent change can be seen in the depth image view where at 0 

minutes, there is a higher reach (shown in red, yellow and blue) while in the 

consecutive images, the depth recedes until 3 minutes whereby it is at it lowest 

reach with a highly occluded surface.  

 



                                                Chapter 5. Occlusion, Moisturiser and O ther Skin Measurement 

 

 87 

 
Figure 5.5: Occlusion for 3 minutes of left frontal neck of an Asian male aged 35 to 40 with corresponding 3D 

profile of the occluded skin site. 

 

The gray-­scale quantification can be seen in Figure 5.6 where the first recording has 

a gray-­scale below 200 points and within the first minute has reached about 210 

points.  

 

 

 
Figure 5.6: Occlusion gray-­scale graph for 3 minutes of left frontal neck of an Asian male aged 

35 to 40. 

 

Within the second and third minute, the increase has slowed as the occluded area 

between the skin and the capacitance is saturated. 
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Figure 5.7: Occlusion co-­relation between pre-­occlusion and after 1 minute (a);; occlusion and pre-­occlusion 

after 2 minutes (b);; occlusion and pre-­occlusion after 3 minutes (c) . 

 

In Figure 5.7(a) the co-­relation between the pre-­occlusion and after 1 minute 

occlusion shows a shift towards the higher gray-­scale after the one minute 

occlusion. Figure 5.7(b) shows the co-­relation is further decreasing in the higher 

gray-­scale after 2 minutes occlusion as the surface water increases thus producing a 

much darker image.  

 

In Figure 5.7(c), further saturation of the surface water occurs in 3 minutes as 

compared to the pre-­occluded skin site thus resulting in a higher shift towards 

gray-­scale nearing 200 points.  

 
 

5.2 Comparison of Occlusion with capacitance sensor and RGB Camera 

Imaging 

 
The skin site with a scab on the ankle is tested at 0 minutes and the capacitance 

sensor is maintained on the site for 30 seconds. Then a second image is 

automatically taken by the software and this is repeated every 30 seconds for 120 

seconds while maintaining the capacitance sensor on the skin site without being 

moved to allow continuous occlusion.  
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After a time gap of 20 minutes to allow recovery of the skin site, the same test is 

repeated on the same site with RGB imaging using a SONY DSC-­W55 Digital 

Camera and the results are seen in Figure 5.9 

 

A gradual increase in gray-­scale darkness is visible from 0 second to 120 seconds. It 

is noted that after occlusion for 120 seconds, the edges of the scab have become 

profoundly clear and the scab s border is much more prominent.   Also, in Figure 

5.8, the corresponding RGB images are shown against capacitance images for the 

duration of the time of measurement. There is no marked difference between the 

RGB images visually. This is due to the inability of RGB imaging in detecting 

hydration of the skin. 

 

     
0 second 30 seconds 60 seconds 90 seconds 120 seconds 

     
Figure 5.8: Skin capacitance images of scab on left ankle front, RGB Imaging with SONY DSC-­W55 Digital 

Camera over 2 minutes.  

 

The gray-­scale average values increase is shown in Figure 5.9 where the average 

rises from 58.511 to 69.929 within 120 seconds. Major increase occurs within the first 

30 seconds. 
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Figure 5.9: Tabled data and graph showing average gray-­scale increase with time for the occluded skin 

site. 

 

5.3 Moisturiser Treatment and Measurement 

 

Dry skin is one of the most common symptoms of dermatological disorders and it is 

usually treated with the application of moisturisers. Moisturisers are categorised as 

hydrophilic and lipophilic.  Hydrophilic moisturisers are low molecular weight 

thus penetrating the SC where they subsequently act as humectants1. (Caussin, 

2009) Most commonly, glycerol is used as the low molecular weight to assist water 

retention. 

 

Lipophilic moisturisers either penetrate into the lipids and provide increased 

barrier to water loss or they remain on the skin surface preventing evaporation of 

water from the SC. A substance is lipophilic if it is able to dissolve much more 

easily in lipid than in water. 

 

_______________________ 
1. A substance used to help retain moisture mainly to absorb ambient water. Often it is a molecule 

with several hydrophilic groups. 
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In this experiment, a hydrophilic moisturiser is used to test the skin site in a room at 

23.3oC and relative humidity at 46%.  The moisturiser contains glycerol as the low 

weight molecules and is applied on the volar forearm of a female subject aged 25 to 

30 years. Prior to application of the moisturiser, a measurement is taken and after 

application of the moisturiser, the test area is patted down and a measurement is 

taken. After one minute, another measurement is taken every 2 minutes up-­to 7 

minutes (Figure 5.10).  

 

 

 
Figure 5.10: Pre-­moisturiser and after application of moisturiser on the skin site monitored for 7 minutes 

showing both capacitance images and the 3D profile images. 

 

As shown in 5.5 above, Glycerol or glycerin is a frequent addition to moisturising 

lotions and skin creams. From both the visual image and the 3D profile, it can be 

seen that the pre-­moisturiser skin is relatively dry.  

 

After moisturisation, there is a high increase in hydration show in the 3D image 

taken immediately after application of moisturiser. There is very little depth profile 

at this phase;; and after 1 minute depth profile is visible showing a return to 

normalisation for the test skin site. After the third minute up-­to the seventh minute, 

there is a rapid increase in the depth profile. During this test for 7 minutes;; the 
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moisture loss is gradual and recovers towards the normal skin image of the pre-­

moisture skin. 

The line chart of the capacitance images (Figure 5.11) below shows that prior to 

moisturisation the gray-­scale average value is below 80 and immediately rises to 

about 190 after the skin site has been moisturised. There is slight increase after 1 

minute interval reaching about 200 and after 2 minutes drops gradually reaching 

slightly below 200 points after 7 minutes. 

 

 
Figure 5.11: Quantification in line chart of the pre-­moisturiser and moisturised skin for 7 minutes. 

 

Total gray-­scale can be further analysed from the Figure 5.12 where pre-­moisturiser 

chart shows a bell-­curve between 0 to 90 gray-­scale ranges. The highest point for a 

gray-­scale is about 1550 points.  

 

On the pre-­moisturiser skin a variable scale from 0 to 100 is present showing the 

water present on the skin is not able to produce a darker gray-­scale as it lower in 

quantity.   

 

Immediately after moisturisation (0 min), the gray-­scale has increased to 250 and 

above with points in this range reaching 3 x 104.  There are a small amount of points 

spread evenly from 60 to 250 gray-­scale.  This shows that there is a larger 

concentration of water on the skin surface caused by the moisturiser and water is 

spread more evenly on the surface within the range of 60 to 250 gray-­scale. 
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By 1 minute, the gray-­scale above 250 have further increased to nearing 255 but the 

total points in this range has dropped  to about 2.8 x 104 points. The lower end gray-­

scale has further spread from 50 to 250 gray-­scales. The moisturiser coupled with 

the effect of natural hydration of the skin has a larger variation of gray-­scale but 

water is being lost from the skin surface resulting in the drop of the overall higher 

scale to about 2.8 x 104 points.   

 

At 3 minutes, the gray-­scale at 250 has further dropped to below 16,000 points;; and 

the lower end gray-­scale between 50 to 250 is further increasing and can be seen in 

the rising of the values towards the higher gray-­scale. 

 

 
           Pre-­moisturiser      0 min             1 min                     3 min  
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         5 min           7 min 

Figure 5.12: Line graph showing gray-­scale points accumulation for the first 4 readings. 

 

At 3 minutes, 250 gray-­scales have dropped to about 7200 points indicating a 

recovery towards pre-­moisturiser skin condition. The lower end gray-­scales 

between 40 to 250 is increasing further to about 500 points.   

 

By the seventh minute, the gray-­scale at 250 have further dropped to below 700 

points and a consistent increase in the lower gray-­scales. At the seventh minute, it 

can be seen that larger amount of the gray-­scale is moving towards the lower end 

scal -­

moisturiser condition. 

 

5.4 Depilation of Multiple Skin Sites with Waxing Strips 

 

Waxing strips are used as a method of hair removal. Typical waxing strips are 

treated with either wax or chemicals to remove hair. A chemical based wax strip 

was used for this experiment. The main ingredients of the wax strips are triethylene 

glycol rosinate, glyceryl rosinate, silica and isopropyl myristate.  
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The strip is applied by warming the strips first;; by holding between the palms for 

about a minute. Then the strip cover is removed and the wax side is placed against 

the skin. After a light massaging movement over the strip, it is pulled away 

backwards in a rapid single movement.  

 

Three skin sites;; the right front upper foot, left dorsal forearm and the right volar 

forearm were selected for depilation with wax strips. Measurement was done both 

before and after waxing the skin site. 

 

An initial visual inspection as in Figure 5.13 showing a varying difference between 

the three skin sites selected for waxing. After waxing, all three skin sites show a 

visible visual difference. 

 

 
Front upper foot 

(before) 

Dorsal forearm 

(before) 

Volar forearm  

(before) 

 
Front upper foot  

(after) 

Dorsal Forearm 

(after) 

Volar Forearm  

(after) 

 

Figure 5.13: Three skin sites showing different visual images both before and after waxing. 
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The 3D depth profile is noted to have not changed much as compared to other types 

of tests such as hydration and occlusion. This is mainly due to no additional 

hydration is being added to the skin site. The main action of the wax strip is to 

remove hair follicles but some small amount of stratum corneum is also being 

stripped depending on the strength of the wax used. A 3D profile comparison 

between the three different sites is imaged in Figure 5.14.  

 

Overall surface change is visible and this can be seen from gray-­scale data as shown 

in Figure 5.15. 

 

 
     Front upper foot (before) Dorsal Forearm (before) Volar Forearm (before) 

 
     Front upper foot (after) Dorsal Forearm (after) Volar Forearm (after) 

            
Figure 5.14: 3D profile of three skin sites pre-­waxing and after waxing shows different visual images both 

before and after waxing. 
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The gray-­scale values of all three sites have increased. The gray-­scale of front upper 

foot has increased from 210 to 235 and the gray-­scale of dorsal forearm has increase 

from 180 to 200. The volar forearm gray-­scale has increased from 210 to 220. 

 

An initial visual inspection of the skin image shows that with the loss of hair after 

depilation (characterised by lower water concentration and showing as major white 

lines in the image), a larger skin surface is now having contact with the capacitance 

sensor thus allowing more water to have contact with the capacitance sensor 

surface.  

In a study done by H.Y. Ando and A. Escobar (1983), depilation of the skin causes 

the loss of Stratum Corneum cells and the thinning of the SC layer thus exposing 

the inner hydrated skin.  

 

 

 
    Front upper foot        Dorsal Forearm        Volar Forearm  

 
Figure 5.15: Gray-­scale of three skin sites pre-­waxing and after waxing. 

 

 

5.5 Dry Skin Treatment with Oil and Measurement 

 

A dry skin area on the front of the right lower leg of an Asian volunteer aged 35 to 

40 is identified and a measurement is carried out with the capacitance sensor. Then 



                                                Chapter 5. Occlusion, Moisturiser and O ther Skin Measurement 

 

 98 

immediately after the first measurement and then again the next morning with a 

time interval of 24 hours. The measurement is done about 6 hours after the second 

application. There is a 24 hours gap from the first measurement to the second 

measurement. 

 

The visual result shows (Figure 5.16) more uniform and thinner micro-­relief lines as 

compared to the pre-­treatment measurement. 

 

 

 

 
Dry skin After mineral oil treatment 

             
Figure 5.16: Gray-­scale of dry skin prior to treatment with mineral oil and after treatment. 

 

The 3D profile image (Figure 5.17) shows a much more uniform surface after 

treatment with mineral oil. However, the depth profile remains roughly the same 

before and after the treatment. This shows that water content of the skin has not 

changed much from before and after treatment. 
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Dry skin After mineral oil treatment 
Figure 5.17: 3D profile of dry skin prior to treatment with mineral oil and after treatment. 

 

A look at the total points of gray-­scale shows that prior to mineral oil treatment, 

most of the gray-­scale points are grouped below 100 gray-­scale and reaching a total 

of about 1100 points as shown in Figure 5.18. After treatment with mineral oil, the 

total points have dropped to 500 and shifted more towards higher gray-­scale 

indicating a more uniform distribution between 0 to 100 gray-­scales. 

 
 

 

Figure 5.18: Graph showing dry skin prior to treatment with mineral oil and after  treatment. 

 
                      before oil application after oil application (24 hours) 
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This shift from higher points with lower spread over gray-­scale compared to after 

treatment with lower points and a bigger spread of gray-­scale goes to show that 

there is uniformity in the hydration of the skin surface. 

 

5.5.1 Further Tests on Mineral Oil Application 
 

A new test side was added to the example above that is the skin on the front of the 

leg and is shown in Figure 5.19. Again, visual inspection of the 2D image shows that 

the skin micro-­relief lines have become much finer.  

 

 

 

 

 

 
 

Figure 5.19: Capacitance images showing dry skin prior to treatment with mineral oil and after 

treatment. 

 

The dry skin characteristics have shown an improvement visually as the surface of 

the skin has become more uniform.   

 
Left Leg Front (before) Left Leg Side (before) 

 

Before oil application 

 

After oil application 
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Left Leg Front (after) Left Leg Side (after) 

Figure 5.20: Capacitance Skin capacitance images of before and after mineral oil application on dry skin of the 

leg on Asian volunteer shown in a 3D profile 

 

Figure 5.20 shows 3D imaging of the same skin site shown in Figure 5.16 and 5.19 

put together. The lower 2 images are after 24 hours has lapsed since the application 

of oil on the skin surface. The 3D images show a more robust view of the skin 

surface and the micro-­relief lines depth is clearly visible. 

 

5.5.2 Further Analysis with MATLAB Imaging Program 
 

Figure 5.21 shows the average gray scale values generated for all the images. It can 

be seen that the gray scale average drops after the treatment of the skin site with 

mineral oil. This is mainly due to the skin is now more hydrated than before the 

application of mineral oil. 

 
 

Figure 5.21 Grayscale of dry skin before and after mineral oil application 
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Figure 5.22 shows further imaging using MATLAB filters, averaging and standard 

deviation. The first image shows the average values of the 9 neighbouring pixels. The 

second image shows the possible disks on the skin surface.  

 

Here any area that has 2 pixels on all sides of the selected pixel will be marked. 

Larger amount of noise (or inconstancies on the skin surface) will be marked with 

more disks.  

 

 
Average of pixels Image with Average(Mean) pixels

 

Disks on the surface Show presence of disks in image

 
 

STD of pixels Image with STD pixels

 
 

Canny filter Image with canny filter after STD is applied

 
 Image with Average(Mean) pixels

 

Show presence of disks in image

 

Image with STD pixels

 

Image with canny filter after STD is applied

 
 
Figure 5.22 Skin capacitance images of before and after mineral oil application on dry skin of the front of  leg on 
Asian volunteer shown with Matlab filters. 
 

The third image shows the standard deviation of 9 neighbouring pixels. The more 

consistent the surface area, the better the images appears. In the first case of the dry 

skin, the surface area shows inconsistent surface whereby even the hair shaft is 

blended with the surrounding area (as the dryness of the skin is closely similar to the 

hair follicle). In the second image after oil application, the surface of the skin is 

clearly marked and the hair shafts are delineated. 
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The final image is a Canny filter that outlines major lines within an image. The image 

generated with Canny filter shows that much of the background noise can be 

removed and in the case of after oil application, the image shows mostly the outline 

of the hair shafts. The process used to generate these images are discussed in Chapter 

4. 

 

In Figure 5.23, similar filter images are shown for the side of left leg of the same 

volunteer. 

 
Average of pixels Image with Average(Mean) pixels

 

Disks on the surface Show presence of disks in image

 

STD of pixels Image with STD pixels

 

Canny filter Image with canny filter after STD is applied

 Image with Average(Mean) pixels

 

Show presence of disks in image

 

Image with STD pixels

 

Image with canny filter after STD is applied

 
 

Figure 5.23 Skin capacitance images of before and after mineral oil application on dry skin of the side of left leg 
on Asian volunteer shown with MATLAB filters. 
 

Mainly the STD image and Canny filter shows more uniform images after 

application of oil on the dry skin. 
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As seen here;; a dry and/or scarred skin surface is easily detectable on the 

capacitance sensor. After occluding the scarred surface, its border is more 

prominent and can be measured with high accuracy. 

 

The disk filter shows the co-­joining areas more clearly and isolating the dry area 

from the surrounding hydrated areas. The STD filter can clearly isolate the uniform 

areas from the surrounding non-­uniform areas thus showing more accurately the 

hydrated skin with clear borders against the dry skin.  

 

 
5.6 Conclusion and Findings 

 
In this chapter, the feasibility of measuring occlusion using the FPC6410 capacitance 

sensor was established. After analysis of the data attained from the capacitance 

sensor, it was noted that in occlusion measurement, a shift towards a higher gray-­

scale is evident in the measurement. Co-­relation is established between pre-­occlusion 

and occluded skin and this relationship shows that there is a shift towards that the 

occluded skin. 

 

A comparison was done between the capacitance sensor images and RGB imaging of 

a camera that shows the capacitance has a good measurement capability as compared 

to the RGB imaging. 

 

Tests were also done with applying moisturiser to the skin and it shows that the 

capacitance sensor has the ability to measure and show the loss of hydration over 

time  effectively. 

 

It has also been found that depilation of the skin can be measured using the 

capacitance sensor. Loss of hair after depilation can be seen visually on the skin sites 

and further measurement can be done with 3D imaging showing a change in the 

skin. 
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Using filters in MATLAB, the skin surface can be seen from different aspects such as 

line formations, disks surface and through standard deviation values. This form of 

imaging allows for better understanding of the skin that may not be seen from a 

standard capacitance image.   

 
The capability of the capacitance sensor coupled with the imaging process of the 

skin is researched in detail in chapter 6. 
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CHAPTER 6:  IMAGING AND MEASUREMENT OF SCARS AND BODY ART 

USING CAPACITANCE SENSORS 

 

Scars are caused by the destruction of the dermis thus resulting in fibrous tissues to 

replace the damaged tissues. It is a natural healing process of the body. A multitude 

of reasons can be the cause for a scar (e.g. accidents, surgery or disease). Scar tissues 

are not similar to the normal skin and normally have lesser propensity in losing 

water due to the inability of sweat gland and hair follicles to grow. Scar tissues are 

also of inferior functional quality as compared to the surrounding normal skin. 

 

In the analysis of scars, both the FPC5410 and FPC6410 capacitance sensors were 

used. 

 

6.1 Classification of Scars 

 

Classifying a scar is important in ultimately choosing which treatment modality best 

fits. Factors contributing to scar formation include pigmentation/vascularity1, 

thickness (scar height), pliability, surface texture, and surface area. Accurate and 

reliable tools have been developed to measure each of these features subjectively and 

objectively. (Idriss N, Maibach H.I, 2008)   

 

In a very broad scale, scars can be classified as: 

 

6.1.1 Keloids 
 

Keloids are thick irregular clusters of scar tissues that are normally rounded. They 

may grow beyond the border of the wound. Keloids are formed by collagen that is 

produced by the body when the wound heals. They may occur anywhere on the 

body and are more common on a dark-­skinned person.  

_________________________ 
1 Vascularity  a condition where veins are visible and prominent. Mainly occurs due to low body 

fat, high blood pressure and low water retention in the body. 
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The scar can occur up to one year from the time of the initial wound to the skin. 

 

6.1.2 Hyperthropic scars 
 

Though similar to keloids, they normally are confined to the original boundaries of 

the injury thus may have an elevated and thick scar. Occasionally, hyperthropic scars 

have a red tint to it and develops within weeks of the injury.  

 

6.1.3 Contractures  
 

Contractures are an abnormal occurrence that happens when a large area of skin is 

damaged and lost, resulting in a scar. The scar formation pulls the edges of the skin 

together, causing a tight area of skin. The decrease in the size of the skin can then 

affect the muscles, joints, and tendons, causing a decrease in movement. 

 

6.1.4 Adhesions 
 

Another type of scarring, called adhesions may form between unconnected internal 

organs. Adhesions may cause complications during certain surgeries. 

 

Scars cannot be removed completely, thus the need for a regime of care to minimise 

and reduce the size of the scars.  It is therefore necessary that maintenance of the scar 

is done and measurements are taken as comparison of the percentage of 

improvement over time (Brodland D, 1998). 

 

In most cases, measurement of scars are normally done using the visual eye and also 

aided by a measuring device such as a ruler. The need for a better, more accurate and 

image based technology is a sure step in the direction of better management and 

measuring of scars. 

 

Analysis has shown that from the skin capacitance images, any abnormality of the 

skin resulting from a loss of hydration can be imaged.  
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6.2  Theory 

 

As has been established in the previous chapters experiments, the image gray scale 

values are associated with skin hydration, the higher the skin hydration, the higher 

the image gray scale value will be, and vice versa.  

 

To quantify the skin hydration level, and to compare the results from different skin 

images, the average gray scale values are used. The average gray scale value of an 

image is calculated by averaging all the pixel values which are above a certain 

threshold;; in this case, it is set at 20. Using the threshold, pixels with a bad contact 

can be eliminated from the average gray scale value calculation, and yield better 

results. 

 

As mentioned earlier, scars has lesser propensity in hydration and thus a marked 

difference can be seen between a scar and the surrounding healthy hydrated skin. 

The average gray scale value of a scar in comparison to the surrounding healthy skin 

can be taken by imaging the scarred area and a healthy area.   

 

Apart from the greyness, the images can also show the fine structures of skin, called 

micro relief. Figure 6.1 shows some sample of scabs1 and scars imaged with the 

FPC6410 capacitance sensor.  

 

Due to scars natural properties of being less hydrated and having lower micro relief 

lines, a prominent image can be seen with capacitance sensors. 

 

                                                           
1 A crust discharged from and covering a healing wound. 
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Figure 6.1: Skin capacitance images of scars and scabs on 8 sites on different volunteers. 

 

6.3  Measurement, Imaging and Discussions 

 

In measuring scars using the capacitance sensors, 3 major types of scars;;   keloids, 

hyperthropic and contractures have been selected. Also, images of a healing wound 

over a period of 26 days to show if a scar will develop have been taken. 

 

6.3.1  Keloid  
 

As a comparison, a digital image (Figure 6.2) of the scar is taken with a camera prior 

to it being subjected to scanning by the capacitance sensors.  
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Figure 6.2: Showing a digital camera image and the same scar on the right upper arm imaged with FPC6410 

capacitance sensor. Subject is an Oriental male aged 40 to 45 years. 

 

 

The camera image is similar to what one will see when looking at the scar visually. 

Figure 6.1 shows the image taken using the capacitance sensors. This image though is 

in a gray-­scale, gives a clearer image of the scar and raised micro-­relief lines on the 

hyperthropic scar are clearly visible. 

 

As can be see in the above images, the digital camera colour image is not able to 

show the finer details of  the visibility of the micro-­relief from the capacitance sensor 

is prominent compared the visual image.  

 

 

The close grouping of the micro-­relief lines around the scar shows the raised area 

bordering normal skin. The capacitance image also show other details such as hair 

follicles and sweat pores as white lines and dots. 

 

Shown in Figure 6.3 is another image of a keloid scar that is comparatively smaller in 

size. 
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Figure 6.3: A scar below the Index finger of the right palm. Subject is a Caucasian female aged 20-­25 years. 

 

6.3.2 Hyperthropic 
 

Here in Figure 6.4, a hyperthropic scar that is more than a few weeks old is captured 

using a digital camera and compared against an image produced by the capacitance 

sensor.  It is noted that only part of the scar is captured by the capacitance image. 

   

 
 

Figure 6.4: A fresh hyperthropic scar at the back of the thumb on right hand. Subject is a female Caucasian  aged 

35 to 40. 

 

The red surface of the scar is a characteristic of a hyperthropic scar. It shows as white 

values on the capacitance sensors image as the scar surface is less hydrated in 

comparison to its surrounding skin area. The edges of the scar are much finer on the 

capacitance sensor image. The bottom left of the photo image shows a whiter surface 



                               Chapter 6. Imaging and Measurement of Scars using Capacitance Sensors  
  

 112 

which consequently appears as a low hydrated region (shown as white) in the 

capacitance image. 

 

6.3.3 Contractures  
 

An image of a contracture is harder to capture on a non visual device as the 

amage as it may be 

visible to the naked eye.  

 

However imaging with a capacitance sensor (Figure 6.5) shows that a good image 

can be reproduced, and that a prominent image of the scar can be studied more 

effectively. 

 
 Figure 6.5: Showing a digital camera image and the same contracture scar imaged  with FPC6410 capacitance 

sensor. Subject is an Oriental male aged 40 to 45 years. 

 

6.3.4 Healing Wound Imaging 
 

This experiment was conducted over a period of 11 days. For the purpose of this 

experiment, the smaller surface area capacitance sensor FPC5410 was used. Images 

were taken on day 0 (the initial cut day) shown in Figure 6.6, day 1 and subsequently 

everyday for 10 days shown in Figure 6.7.  
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Figure 6.6: Showing a digital camera image and the same cut wound imaged with FPC6410 capacitance sensor. 

Subject is an Asian male aged 35 to 40 years. 

 

A visual image was only captured for day 0. The wound was a straight cut caused by 

a blade. From early observation, it is believed that the cut probably reached the 

dermis layer as there was presence of blood.  

 
Figure 6.7: Showing a digital camera image and the same cut wound imaged with FPC6410 capacitance sensor. 

Subject is an Asian male aged 35 to 40 years. 
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 A gradual improvement over the 10 day period is documented by the capacitance 

sensor. It is also noted that on day 7 and 8, the thickness of the scar has increased. 

This is due to the dried scab on the surface has fallen off  exposing a much drier inner 

skin that hydrates and closes the wound within the next 3 days. Day 10 shows the 

skin has recovered with minimal damage or formation of a scar. 

 

The images produced over the period of time shows the practical application of the 

capacitance sensor for management of scars. 

 

 

6.4  Occlusion of Scar  

 

Scars can be occluded to produce a better image and more precise measurements. 

Figure 6.8 shows occlusion of a scab over a 4 minute period that is achieved by 

keeping the skin with constant contact with the capacitance sensors surface.  As the 

skin surface is deposited with water, the images gray scale increases especially 

around the surrounding area of the scar. This gives a better and sharper image and 

since much of the micro-­relief lines are now minimised, quantification of the scar is 

more prominent. 

 

     
0 minute 1 minute 2 minutes 3 minutes 4 minutes 

Figure 6.8: Occlusion of a scar over a period of 4 minutes 

 

The clarity of the scab increases as the surrounding skin is being hydrated while the 

scabs surface hydration remains the same. The image is then quantified showing the 

gray-­scale values against the 4 minutes duration as seen in Figure 6.9.  It is seen that 

as the skin surface occludes, the gray-­scale values rises correspondingly. 
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Figure 6.9: line chart showing the average gray scale value of each image vs. time 

 

6.5 Analysis of Scar with Matlab 

 

The scar can further be analysed using a program written in Matlab. The program 

includes a few different filters that are applied to the scar image to obtain a better 

understanding of the scar profile. As shown in Figure 6.10, an image of a scar taken 

with the capacitance sensor FPC 6410 is used. This image is then processed with the 

Matlab program and results of different filters used, averaging and standard 

deviation techniques are shown in Figure 6.11. 

  

 
Figure 6.10: Image of a scar to be analysed with Matlab program 
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Edge detection using 

 
Image processed with 

 image is shown 
   

Image with average 

(mean) of  9 surrounding 

pixels 

Image with standard 

deviation of 9 

surroundings pixels 
after standard deviation 

has been applied 

   
 

 

 

 Standard Deviation applied 

 

 

 
Figure 6.11: Images of a scar analysed with different filters in  Matlab program 

 

6.5.1 Detecting the Edge of Scar 
 

An edge in an image is simply a region of pixels where the intensity value of pixels 

on either side changes sharply. This is not the same as a line, since a line has two 
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edges, although most of the lines in an image will represent edges. The result of edge 

extraction is usually a bitmap (a binary image where each pixel is 0 or 1), where a set 

pixel represents an edge. These are known as edge pixels, or edgels for short. There 

are many ways of extracting edges from an image, of which the Sobel filter and the 

Canny filter appear to be most suitable. 

 

Here, different filter used on the scar image is explained: 

 

 
 
The Canny edge detector has been designed and can be proven to be an optimal edge 

detector through a rigorous mathematical description, which is explained by Trucco. 

Its aims are to minimize errors in the detection of edges (by not missing any true 

edges or including points which are not edges), and to ensure that the edges detected 

are as close as possible to the true edges. There are three main stages to the 

algorithm. The algorithm begins by enhancing the edges in the image, using a 

Gaussian filter to smooth the image. A Sobel filter is then applied but in this case the 

threshold filter is not applied, and the magnitude of each vector is found using 

P ather than by approximating it. 

 

The next step is to apply a process known as non-­maximal suppression. The aim of 

this step is to reduce each line to being one pixel thick. For any edgel, there are eight 

edgels around it, which can be described as being at 0, 45, 90 or 135 degrees from the 

horizontal relative to that edgel. Since the Sobel filter has already run by this point, 

the direction of the edge is already known. The direction is rounded to the nearest 

value which is in the set of valid angles.  

 

There will always be two pixels in the 8 pixel neighbourhood which are on this line;; 

if either one of them has a higher value than it, then the current edgel is suppressed 

(i.e set to zero). This step solves the problem of thick edges by thinning them to being 

one pixel thick. All the points which survive are now local maxima (i.e had the 

greatest edge detector response in their local area). 
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The final step is called hysteresis2 thresholding;; it is similar to thresholding except 

that there are two thresholds. These are the upper and lower thresholds, where the 

upper threshold is greater than the lower. The algorithm begins by finding a point 

which has a value greater than the upper threshold, and marks it as an edge. Then all 

pixels in the 8 pixel neighbourhood of that pixel which have a magnitude greater 

than the lower threshold are found. These points are also marked as edges, and their 

8 pixel neighbourhoods examined in the same way. This process continues until no 

more pixels are found which have a value greater than the lower threshold. The 

advantage of this method over regular thresholding is that it provides some tolerance 

for noisy edges, preventing them being broken up into smaller edge fragments, and 

helps to remove some of the local maxima which were created by noise. 

 

6.5.1.2  
 

The Sobel filter consists of two kernels, Gx and Gy. 
 

 
 
 
Each kernel is applied separately to the image separately, to produce two images. 

With a  pattern [-­1 0 1], taken from the horizontal matrix Gx. If this is placed over a 

part of the image, it will give a value of the strength of the edge by finding the 

horizontal gradient at that point. So, Gx can be used to detect vertical edges. Gy is a 

90 degree rotation of Gx and so will find horizontal edges. The horizontal and 

vertical gradients at each point are combined to form a vector (x, y)T for that point. 

The magnitude of the vector will give the total edge strength at that point. Then the 

 for example G = 

|Gx|+|Gy|. The final image from this method is simply the sum of the two images.  

 

                                                           
2 Hysteresis is the dependence of a system not only on its current environment but also on its 
past environment. This dependence arises because the system can be in more than one internal 
state. 
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Using these techniques the scarred area of the skin can be separated to show either 

the size it occupies or the prominence of scarring.  

6.7 Imaging of Tattooing of the Skin 

 

Body art has become increasingly popular and the capacitance sensor has been used 

here to detect scarring left by this phenomenon. Although the scarring is very 

minimal and is not visible to the naked eye, it can be seen with the capacitance sensor 

imaging.  

 

A tattoo needle penetrates the skin about 1mm in depth, going past the epidermis 

into the dermis layer and the location range is shown in Figure 6.12.  It leaves behind 

pigments made of metallic salts of oxides, sulphides and selenides. The ink used is a 

solution of water, glycerine and alcohol and the pigments are suspended in the 

solution. The pigments will change the appearance of an object by selective 

absorption and/or scattering of light. (C Cuyper, M L Costapos, 2009)  
 

 
Figure 6.12: Location of where the pigment will be suspended in the dermis layer. 

  

The pigments suspended in the epidermis layer when seen from a close-­up using a 

microscope with 200x zooming lens can be seen as separate particles although 

through the naked eye they appear uniform as shown in Figure 6.13. As can be seen 

from Figure 6.13, the skin around the hair shaft is fairly clear denoting that there is 

Range where 
the tattoo 
pigments will 
be suspended 
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no presence of ink in this area. This is because the hair shaft depth is up-­to the 

hypodermis layer and extends through the dermis and then the epidermis and finally 

appears through the skin.  

 
Figure 6.13: Pigments of tattoo as seen close-­up with a digital microscope with 200 times zooming lens. 

  

This test was done to see if the capacitance will be able to detect the surfacial scarring 

of the tattoo needle. The hydration level on the skin surface hence cannot be affected 

by the tattoo pigments as they are too deep within the dermis layer to have any 

impact on the surface of the skin. 

 

   
Photo image of tattoo line Capacitance sensor image of same tattoo line and outlined 
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Figure 6.14: The left photo showing image of a tattoo line on the right the same tattoo line taken with capacitance 
sensor and the final image showing an red outline added.  
 
The photo on the left in Figure 6.14 shows a visual image of the end of a tattoo line 

on a oriental male aged 30 to 35 on the right upper arm. The thickness of the tattoo 

line is about 1mm and the length from top to bottom is about 8mm.  For the 

capacitance sensor the image is seen in the same location and is of the same size as in 

the visual image. A red line is added to show the borders. 

 

In Figure 6.15 another sample of a tattoo on the upper back of a Caucasian female 

volunteer aged 25 to 30 years can be seen to show higher details of scarring as 

compared to the visual image of the tattoo. 

 

  
Figure 6.15: The left photo showing  image of a tattoo line drawing and on the right the same tattoo line drawing 
taken with  capacitance sensor 
 

6.8 Piercing of the Abdomen Skin 

 

An image of a piercing of the navel is shown in Figure 6.16.  

  



                               Chapter 6. Imaging and Measurement of Scars using Capacitance Sensors  
  

 122 

Figure 6.16: The left photo showing image of a piercing above the navel and the right image of the same skin site 
taken with capacitance sensor. 

 

The capacitance sensor shows distorted micro-­relief lines around the hole of the 

piercing. Further away from the piercing shows a more uniform micro-­relief lines as 

the skin has not been disturbed by the piercing effect. 

 

6.9 Piercing of the Ear Skin 

 

Another form of body art where a puncture is made thorough the skin is ear 

piercing. Image of ear piercing is shown in Figure 6.17 whereby the capacitance 

sensor clearly delineates the scar and hole of the piercing. 

  
Figure 6.17: Camera image left and capacitance image on right of ear piercing on Caucasian female aged 25 to 30. 

 

 

6.10 Conclusion and Findings 
 
This chapter has shown that the capacitance sensor can be used for scars imaging, 

finding scar created in body art and scar management. The average greyscale values 

of the images give information about the skin hydration level.  

 

The micro relief values of the images give information about the skin micro relief and 

in the case of time-­based imaging, show the scars healing status. Scar imaging and 

management is still in the early phases and capacitance sensors are a promising 

technology in improving this work. 
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By occluding the skin, the scar image can be viewed with better clarity.  By using 

special MATLAB filters, the scar can be isolated and seen clearly for visual analysis. 

 

Additional work can be done by future researchers to quantify the measurement of 

the scars and to be able to calculate the size of the scar. A simple scar assessment 

chart will be beneficial to show the improvement of the wound/scar over time. 

 

There is also a very promising area for research in the cosmetics surgery industry. 

The need to manage a scar to heal with a minimum disruption from a cosmetic 

perspective is always in need. With a capacitance sensor measurement, the scar can 

be assessed quickly on the go.  
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CHAPTER 7: DIGITAL AND VIDEO IMAGING MEASUREMENTS 

 

In previous chapters, measurements have been done mainly with static images 

from the capacitance sensor. In this chapter, an additional technique is introduced 

whereby imaging is done with a capacitance sensor that records a video file of the 

skin changes. 

 

To generate a video recording, a new capacitance sensor from Fujitsu is used. It is 

a MBF-­200 capacitance sensor that records a video file and a dedicated program is 

written in both C++ to record the images and additional program is written in 

Mathworks Matlab to measure the image data. 

 

To analyse the feasibility of the MBF-­200 capacitance sensor, static image 

measurement were done using the capacitance sensor and the AquaFlux AF200 is 

used to verify the 

occlusion of the skin site test. In addition, a digital photo camera (SONY DSC-­W55 

camera with Dermlite II Epiluminescencemicroscopy light lamp)  is used to 

occlude the skin surface.  

 

7.1 Initial Occlusion Test 

 

In this test, SC properties which vary from skin site to skin site and from person to 

person, are measured through occlusion measurements by using the condenser-­

chamber TEWL method  (AquaFlux J Fluhr, P Elsner, E Berardesca, H I Maibach, 

2005) and Capacitance sensors (J Serup, G B. E. Jemec, G L. Grove, 2006) and 

camera photo imaging. Different skin sites are occluded for a fixed length of time 

by using a photo camera lamp glass surface. The MBF-­200 capacitance sensor, 

which records the skin hydration images of the occlusion, and TEWL 

measurements are performed both before the occlusions and after the occlusions. 

The results show that different skin sites react differently during the occlusions 



                                                            Chapter 7. Digital and Video Imaging Measurements 
 

 125 

which reflects the different water holding properties and different barrier 

functions of different skin sites.   

 

Three skin measurement techniques are used  AquaFlux AF200, Capacitance 

sensors (MBF200, Fujitsu) and Camera Imaging (SONY DSC-­W55 camera with 

Dermlite II Epiluminescencemicroscopy light lamp) are used to measure in-­vivo 

skin occlusion of different skin sites.  

  

All the measurements are performed under normal ambient laboratory conditions 

of 20~21°C, and 40~50% relative humidity (RH), and two volunteers are 

acclimatised in the laboratory for 20 minutes prior to the measurements. The skin 

sites used for the measurements are untreated.  

 

The occlusion measurements are done by first measuring the selected skin site 

with the AquaFlux, then same skin site is measured using the capacitance sensor. 

The skin site is then imaged using the photo imaging digital camera. The light 

lamp of the camera has a glass surface and is in contact with selected skin site. 

Since the glass surface of the light lamp is in contact with the skin, it is used to 

occlude the skin and an image is taken every minute for 5 minutes. After 5 

minutes of occlusion, the capacitance sensor is used to measure the site and finally 

the Aquaflux measurement is taken. In total three different skin sites were studied.  

 

The images from the photo camera are then processed using a dedicated program 

written in Matlab. The images are separated into their three original colour filters 

of Red, Green and Blue, then each colours gray-­scale values are generated and the 

average value for all the pixels within an image are calculated.  

 

Shown in Figure 7.1 are one set of example photos of the Volar Forearm of the 

female volunteer.  As there is a very subtle change in the luminosity overall image, 

 individual changes. 
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         0 minute     1 minute   2 minute   3 minute   4 minute  5 minute 

Figure 7.1 Skin photo images from 0 to 5 minutes of the Volar Forearm for the female volunteer. 

In general, there is a trend in the photo imaging whereby as the skin is occluded, 

the red, green and blue colour gray-­scale drops as seen in Figure 7.2.  

 

It is also seen that red has the highest gray-­scale followed by green and finally 

blue has the lowest gray-­scale. There is some inconsistent reading that might have 

been caused by movement of the camera.  

 

 
Female Caucasian measurement of three different skin sites 

 

 
Male Asian measurement of three different skin sites 

 

Figure 7.2 Skin images of 3 different location of two different volunteers taken with  photo imaging camera. 

 

Using the Aquaflux, a measurement was taken at 0 minutes and at 5 minutes.  

 

Table 7.1 below shows Trans-­epidermal Water Loss measurement before and after 

occlusion of the three different location of skin the two volunteers. 
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 Volar Forearm Upper Arm Lower Leg 

 Before After Before After Before after 

Female 10.15306 11.1047 11.2664 12.3969 9.17892 11.3531 

Male 14.46935  16.7147 12.0438 15.0522  14.9099 20.4585 

 
Table 7.1. TEWL measurement of three different skin locations of two volunteers taken before and after 

occluding with the Imaging camera. 

 

TEWL measurement as seen in Figure 7.3, shows a consistent increase before and 

after occlusion and is variable based on the skin site.  
 

 
Figure 7.3. TEWL measurement before and after occlusion of three different skin sites of the two volunteers. 

 

Similarly the capacitance sensor shows consistent increase in the gray-­scale after 

occlusion of the skin site as seen in Figure 7.5. 

 

The TEWL shows an increase in both volunteers as seen in Figure 7.3. The reading 

for the volar forearm of both the volunteers increases after occlusion and the male 

Asian subject has a higher TEWL and higher increase than the female Caucasian 

subject. This can be seen in all three skin location of both the volunteers. The 

female Caucasian volunteer has lower TEWL reading than the male volunteer. (H 

Singh, AR Caparnagiu, P Xiao, LI Ciortea, EP Berg & RE Imhof, 2010) 

 

7.2 The Fujitsu MBF-­200 Capacitance Sensor 

 

A new production model of the capacitance sensor has been developed using the 

Fujitsu MBF-­200 capacitance sensor and is shown in Figure 7.4. This model of the 

capacitance sensor have the capability to record video images of the skin over time 
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and additional software was developed for the production model to incorporate 

video processing of the skin surface. 

 
Figure 7.4 Production model of the capacitance sensor with software running for measurement. 

 

To increase the contact of the sensor with the skin surface the capacitance sensor 

head is mounted on a movable platform that allows a certain degree of free 

movement. This will allow measurement of images where the skin uniformity is 

not consistent.  

 

Capacitance sensor measurement was taken at 0 minute and 5 minutes and the 

results are shown in table 7.2. In the images, each pixel is represented by an 8 bit 

gray-­scale value, 0~255, with 0 representing white (low capacitance) and 255 

representing black (high capacitance) (H Singh, P Xiao, E P Berg and R E Imhof, 

2008).  

 

 Volar Forearm Upper Arm Lower Leg 

 Before After Before After Before After 

Female 114.58 204.84 136.79 221.53 125.61 192.99 

Male 98.33 200.32 123.50 189.50 93.02 129.85 

 

Table 7.2.Gray-­scale average values of three different skin locations of two volunteers taken before and after 

occluding with capacitance sensor. 
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Further analysis of the gray-­scale average shows a generally consistent trend with 

the TEWL measurement from Figure 7.3 above. The gray-­scale values of the three 

skin locations increase after occlusion as the skin image has become darker as 

shown in Figure 7.5. Generally, the female subject has a higher hydration level in 

all three skin sites both before and after when compared to the male subject. 

However, the increase varies for the 3 sites where the occlusion of the volar 

forearm of the female subject has increased over 78% after occlusion and the male 

subject has a larger increase at 103%. In the two subsequent sites of the upper arm 

and lower leg, the male subject has a lower overall hydration increase where the 

upper arm increases by 53% and the female upper arm hydration increases by 

62%. The lower leg for the male subject increase at an even lesser percentage of 

39% while the female has an increase of 53%.  

 

Form these measurements, it can be seen that the female subject has a higher 

hydration levels both before and after occlusion for all three skin sites. However, 

the average increase of all three sites for both male and female are quite similar, 

averaging at 64% for the female and the male subject at 65%. 

 

 

   
Figure 7.5: Gray-­scale measurement before and after occlusion of three different skin sites of the two 

volunteers. 

 

Figure 7.6 shows one set of example capacitance sensor imaging of the Volar 

Forearm for the female volunteer. There is a large increase in the gray-­scale 

whereby after 5 minutes occlusion shows a much darker image being recorded. 
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0 minutes 5 minutes 

Figure 7.6: Capacitance sensor image of the Volar Forearm for the female volunteer taken at 0 minute and 5 

minutes. 

 

Figure 7.7 shows images of different skin sites of the human body of an oriental 

male aged 40 to 45 years. The images vary in gray-­scale values, texture and total 

contact points with the skin showing that the skin at different locations of the 

human body has different characteristics.  The results show that the capacitance 

sensor has good spacial resolutions for skin surface imaging. 
 

 
Figure 7.7: Capacitance sensor images 12 different skin sites showing variability of imaging of the human 

skin. 
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7.3 Initial Results of MBF-­200 Capacitance Sensor 

 

7.3.1 Repeatibility Test 
 
Repeatability is one of the most important instrument parameter. Table 7.3 shows 

the mean grayscale values and standard deviations of the repeat measurements on 

different skin sites. The results show a very good repeatability with less than 3% 

of variability on average. Study shows that Corneometer's variability is about 7.3% 

(Xiao P, Ciortea LI, Singh H, Zheng X, Berg EP, Imhof RE, 2009). 

 
Skin 

Sites 

Volar 

Forearm 1 

Volar 

Forearm 2 

Palm Hand Finger Neck Face Forehead 

Mean 

Values 
64.2±0.9 54.8±2.5 119.8±6 46.3±1.7 188.0±2.6 89.5±1.7 85.2±1.3 83.5±1.6 

 
Table 7.3: Repeatability results of 8 skin sites using the MBF-­200 Capacitance Sensor. 

 
 

7.3.2 Comparison with Corneometer (CMC 825 PC) 
 

Figure 7.8 shows correlation between Capacitance sensor and Corneometer (CM 

825 PC), the results show a good correlation between the two devices. Previously, 

a comparison study between capacitance sensors and other skin hydration devices 

was done, mainly the AquaFlux and optothermal transient emission radiometry 

(OTTER) as shown in Chapter 4.  

 

The results show that the capacitance sensor generally correlates well with other 

devices. 
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Figure 7.8: Co-­relations between MBF-­200 capacitance sensor and Corneometer CMC 825. 
 
 

 

7.3.3 Occlusion and Imaging with MBF-­200 Capacitance Sensor 
 

Figure 7.9 shows the TEWL results, which are the opposite, TEWL values, increase 

dramatically as occlusion time increases. It can be seen that during occlusion, the 

skin TEWL is only partially blocked, and most of the extra water occurs on the 

skin surface which will cause increases in Capacitance sensor and AquaFlux 

results. 

 

For most of the test skin sites, the percentage increase of Capacitance sensor gray-­

scale values tends to decrease as occlusion time increases, which indicates that 

during the occlusions, gray-­scale values increases quickly in the beginning but 

slows down towards the end of the tested time frame. 
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Figure 7.9: Capacitance average gray-­scale values during a 1-­minute occlusion measurement 

 

Figure 7.10 shows the average increase in percentage of the four different skin test 

sites during a 1-­minute, 5-­minute and 10-­minute occlusion by using MBF-­200 

capacitance sensor, OTTER and the AquaFlux. For most of the test skin sites, the 

percentage increase of capacitance sensor grayscale values tend to decrease as 

occlusion time increases, which indicates that during the occlusions, grayscale 

values increase faster in the beginning but slows down in the end. The TEWL 

results, has the opposite effect;; TEWL values increase dramatically as occlusion 

time increases. For OTTER, the percentage of increase is very small and shows no 

clear trends. 

 

 
Figure 7.10: Percentage increases during occlusions for capacitance average gray-­scale value results and 

AquaFlux TEWL and OTTER 6g/m2 results. 
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For a skin site with TEWL of 12g/m2h, a 10-­minute occlusion will introduce 2g/m2 

makes 6g/m2, a 10-­minute occlusion should cause about 30% increase in 

hydration. During the occlusion, skin TEWL is only partially blocked, and most of 

the extra water occurs on the skin surface that will cause increases in capacitance 

sensor and AquaFlux results, but not showing a major change in OTTER results. 

 

Figure 7.11 shows the MBF-­200 capacitance sensor gray-­scale images during 1-­

minute occlusion measurements on four different skin sites.  

 
 

 

Cheek 

 

 

 

 

 

Neck 

 

 

 

 

Palm 

 

 

 

 

 

Volar 

Forearm 

 

 
0 minute              20 minutes        40 minutes        60 minutes         TEWL Map 

Figure 7.11: Capacitance sensor gray-­scale images during a 1-­minute occlusion measurements and their 

corresponding TEWL maps. 

 

By calculating the difference between the first and last images, an equivalent skin 

surface TEWL map can be generated, as shown on the right hand side in colour 
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images. From TEWL maps, the active TEWL areas on different skin sites can be 

seen clearly. 

 

During the occlusions, skin surface hydration will increase as TEWL will be 

blocked. For capacitance sensor grayscale images, if at time t0 the average 

grayscale value of the image is v0, and at time t1 the average grayscale value of 

the image is v1, then the average grayscale value gain per unit time g can be 

calculated by g=(v1-­v0)/(t1-­t0). By multiplying g with SC thickness L, the 

hydration gain G equivalent to the unit of g/m2h can be attained using the 

equation shown below, which should be proportional to TEWL values. The value 

of g can be calculated from capacitance images (P Xiao, H Singh, X Zheng, EP 

Berg, RE Imhof, 2007) and the SC thickness value (L) from OTTER measurements 

(P Xiao, RE Imhof, 1998). 

 
 

By calculating the hydration gain of G using the equation above, as it is 

proportional to TEWL, a TEWL map of the equivalent skin surface can be 

generated and is shown on the right hand side in colour images of Figure 7.11. 

From the TEWL maps, the active TEWL areas in different skin sites can be seen. 

 

 

7.4 Video Image Recording with the MBF-­200 Capacitance Sensor 
 

Since the MBF-­200 capacitance sensor have the capability record time-­based video 

recordings, an initial test is done on water spreading on textile surface (100% 

cotton and man-­made material) that is shown in Figure 7.12. 1 ul of water droplet 

was dispensed on the textile sample surface, and then the capacitance sensor was 

used to record its spreading at a frame rate of 10 frames per second (fps). Since 

10fps over 9 seconds will generate 90 frames, only a fixed numbers of frames are 

extracted for measurements.  
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The result shows that, for cotton, water droplet was absorbed very quickly and 

tends to spread evenly in all directions.  

 

For man-­made material, water droplet spread very fast on the surface, but was 

absorbed slowly, and tends to spread along the threads. Up-­to 12 seconds 

absorption has not occurred and water is still spreading along the surface of the 

man-­made material. 

 
 

 

 

Cotton 

 

 
              0sec                         1sec                               2sec                          3sec                           9sec     

 

 

 

Man-­

made 

material 

 
              0sec                                  2sec                              12sec                          63sec                              120sec    

Figure 7.12: Capacitance sensor video images of two types of textiles, cotton and a man-­made material. 

 

The video for the cotton textile used in Figure 7.10 can be seen in real time at: 

 http://www.youtube.com/user/xiaop2009#p/u/18/hOvxmJvHYu4 

 

7.5 Live Skin Video Image Recording with the MBF-­200 Capacitance Sensor 

 

The above test shows that hydration can be detected by the MBF-­200 sensor. 

Further specific video tests are on different skin sites to show the viability of using 

the MBF-­200 sensor on detecting hydration. 
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7.5.1 Capacitance Sensor Video Imaging of the Hand 
 

In this test, the back of the hand of an oriental male aged 40 to 45 years old is 

tested with occlusion over a period of 17 seconds and is shown in Figure 7.13. The 

constant contact between the skin surface and the capacitance sensor will allow for 

occlusion to occur. The capacitance sensor records a video file and subsequent 

water loss from the skin can be seen appearing over this time period.  

      
0 sec 1 sec 5 sec 10 sec 15 sec 17 sec 

Figure 7.13: Capacitance sensor video images of the back of the hand of a male oriental subject. 

 

 
Figure 7.14: Capacitance measurements of the back of the hand of a male oriental subject. 

 

The average value of each image is then measured using the Matlab program and 

the result can be seen in Figure 7.14.  At the start of the experiment (0 second), the 

gray-­scale is lowest at 3.59 gray-­scale. This shows there is a large amount of whiter 

area. This rises rapidly in the first second to 32.86 gray-­scale.  
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Between 1 to 15 seconds there is a gradual increase. Between 15 seconds to 17 

seconds there is a further drop in the rate of increase as the surface of the 

capacitance is beginning to get saturated with hydration. 

 

The video for the live skin of the hand used in Figure 7.14 can be seen in real time 

at: 

http://www.youtube.com/user/xiaop2009#p/u/8/pVPB4ji9y8A 

 

7.5.2  Capacitance Sensor Video Imaging of the Cheek 
 

Another test is done on the cheek (face) of an oriental male aged 40 to 45 years. 

The constant contact between the skin surface and the capacitance sensors results 

in the skin being occluded. The images shown below in Figure 7.15 are taken at 0 

second, 1 second, 4 seconds, 9 seconds, 12 seconds and 17 seconds and shows a 

gradual increase in the gray-­scale of the images over time. 

 

      
0 sec 1 sec 4 sec 9 sec 12 sec 17 sec 

Figure 7.15: Capacitance sensor video images of the cheek of a male oriental subject. 

 

In Figure 7.16, data measurement is done on the extracted video images from 

Figure 7.15. The results here show a similar pattern with the experiment on the 

skin on the hand above. There is a rapid increase from the start of the experiment 

to the first second. Then there is a gradual increase until the end of the experiment 

at 17 seconds. 

 

However the overall gray-­scale values reached in this experiment is much higher 

at 142.75 gray-­scale at 17 seconds while the experiment on the hand was much 

lower at 61.93 gray-­scale at 17 seconds. 
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The video for the live skin of the cheek used in Figure 7.15 can be seen in real time 

at: 

http://www.youtube.com/watch?v=VRK7UOJzhy4 

 

 
Figure 7.16: Capacitance measurements of the cheek of a male oriental subject. 

 

7.5.3 Capacitance Sensor Video Imaging of the Volar Forearm Sweat 
 

In this test the Volar Forearm of a oriental male is aged 40 to 45 is tested and the 

video images are captured and shown below in Figure 7.17 

 

      
0 sec 1 sec 4 sec 9 sec 12 sec 17 sec 

Figure 7.17: Capacitance video images of the volar forearm of a male oriental subject. 

 

The video for the live skin of the hand used in Figure 7.17 can be seen in real time 

at: 

http://www.youtube.com/user/xiaop2009#p/u/15/ndkVltVjosk 
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The dark spots are the higher levels of hydration of the sweat glands and can be 

seen clearly after 1 seconds and onwards. These video images are able to detect the 

sweat appearing from the skin and with occlusion the darkening of the images 

shows the increase of hydration level of the skin surface. 

 

 
 

Figure 7.18: Capacitance measurements of the volar forearm of a male oriental subject. 

 

As seen in Figure 7.18, quantification of the video images shows the increase in 

gray-­scale values as the skin is occluded. The gray-­scale values at 0 second are 3.23 

and gradually increase to reach the highest value after 17 seconds of occlusion of 

108.92 gray-­scale.  

 

7.6 Normalised Cross Co-­relation Algorithm for Skin Image Re-­

positioning 

 

A normalised cross correlation algorithm for skin image re-­positioning was 

developed, which allows users to select an area of interest in one skin image, and 

find the exact the same area in another image.(P Xiao, H Singh, A R Caparnagiu, 

LI Ciortea, EP Berg2 and RE Imhof, 2010) 
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Cross-­correlation is a measure of similarity of two forms. For continuous 

functions, f and g, the cross-­correlation is defined as: 

 

 
 

where f * denotes the complex conjugate7.1 1of f. 

 

Similarly, for discrete functions, the cross-­correlation is defined as: 
 

 
 

Figure 7.19 shows the skin image re-­positioning results for capacitance sensor 

images. The results show that the algorithm works for both capacitance images as 

well as digital images as shown in Figure 7.20.  

 

  
Volar Forearm Left Palm 

Figure 7.19: Skin image re-­positioning for capacitance sensor images of a oriental male aged 40 to 45. 

 

The same location on the two images is marked by a red square. Even with light 

occlusion as shown in  the volar forearm images, the same site can be detected. 

                                                           
7.1  a pair of complex numbers, both having the same real part, but with imaginary parts of equal 
magnitude and opposite signs. 
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Volar Forearm Left Palm 

Figure 7.20: Skin image re-­positioning for digital images of palm and volar forearm of an oriental male aged 

40 to 45.  

 

When implemented in real time, it will allow users to take skin images at exactly 

the same position as it was taken before. This will allow the same area of the skin 

to be measured over time even when the capacitance sensor has been lifted off the 

skin site. 

 

This analysis has shown that both the digital camera and video image recording 

using the capacitance sensor are viable techniques in measuring hydration levels 

of the skin. The video imaging shows a promising area of research where 

hydration against time is a crucial factor. 

 

 

7.7 In-­vivo Trans-­dermal Drug Delivery Measurement  

 

Apart from water, capacitance sensors are also sensitive to many solvents, due to 

their high dielectric constants, which make it very useful for in-­vivo trans-­dermal 

drug delivery studies. In this experiment, trans-­dermal drug delivery is measured 

using capacitance sensors, AquaFlux and OTTER. The results shows that the 

capacitance sensors can be a useful tool for studying in-­vivo solvent penetration 

through skin, as it gives dynamic 2D images of solvent penetrating through skin, 

and combining this with tape stripping, it is also possible to get solvent depth 

profiles within the skin. 

 

Three solvents are chosen for study, Dimethyl Sulfoxide (DMSO), Glycerol, and 

Ethylene Glycol, due to their high dielectric constants as shown in Table 7.4.  
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 Skin Water DMSO Glycerol Ethylene Glycol 

Dielectric Constant 7 80.4 47.2 42.5 37 

 
Table 7.4: Dielectric Constants of the Skin and Solvents. 

 

In each measurement, a small amount of solvent is applied to the volar forearm for 

a few minutes. After the skin surface is wiped dry, tape stripping is performed. 

Capacitance sensor measurements are performed both before and after the solvent 

applications, and after each stripping of the skin. 

 

Figure 7.21 and 7.22 are the results for DMSO, Glycerol and Ethylene Glycol.  

 
Figure7.21: Capacitance sensor images before and after DMSO / Glycerol application and subsequently 

during tape stripping. 
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The capacitance sensor skin images can clearly discriminate between the solvents 

and normal skin due to the dielectric constant differences. The results show that 

DMSO penetrates further and deeper than Glycerol, as DMSO residue is still 

visible after 10 strips, whilst Glycerol residue disappears after 5 strips. 

 

 
Figure 7.22: Capacitance sensor images before and after Ethylene Glycol application and subsequently 

during tape stripping. 

 

By measuring the grayscale values of pure solvents, pure skin itself, the solvent 

absolute concentration [%, volume in volume] can be measured using the 

following equation. 

 
 

Where Gmix is the grayscale value of skin after solvent application, Gskin is the 

grayscale value of skin itself, and Gsolvent is the grayscale value of pure solvent. C is 

the solvent absolute concentration in skin in volume percentage. Figure 7.23 shows 

the absolute concentration [%, vol/vol] of the DMSO, Glycerol, and Ethylene 

Glycol on skin before application, during tape stripping and subsequently after.  
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Figure 7.23: The absolute concentration [%, vol/vol] of the DMSO, Glycerol, and Ethylene Glycol on skin 

before, during and after tape stripping. 

 

The results show that DMSO can penetrate the highest into skin, and is still 

present after 10 tape stripping, whilst Glycerol and Ethylene Glycol have 

disappeared after about 5 or 6 tape stripping. 
 

The OTTER, an infrared remote sensing technology has been used for trans-­

dermal drug delivery studies (Xiao P, Cowen J.A, Imhof R.E, 2001). Figure 7.24 

shows the comparison of the capacitance sensor skin image grayscale values and 

OTTER data for Glycerol application. The results show a good correlation between 

capacitance sensor data and OTTER data. The TEWL results measured by 

AquaFlux (Imhof R.E, Jesus M.E, Xiao P, Ciortea L.E, Berg E.P, 2009) also 

increased as tape stripping number increased. 
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Figure 7.24: The correlation between capacitance skin image grayscale values and OTTER results for 

Glycerol application. Top Left: Grayscale values from capacitance sensor. Top Right: Concentration results 

from OTTER. Bottom Middle: The correlations between capacitance sensor and OTTER. 

 

By using the thickness information of each tape strip, the re-­construction of a 3D 

solvent depth profile can be generated as shown in Figure 7.25. 

 

 
 
Figure 7.25: The 3D solvent concentration depth profiles for DMSO (left), Glycerol (middle) and Ethylene 

Glycol (right). 
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The study shows that the capacitance sensor imaging is a powerful tool for solvent 

penetration through the stratum corneum. The capacitance sensors are not only 

sensitive to water, but also sensitive to solvents with relative large dielectric 

constants. The capacitance sensor results correlates well with well-­established 

OTTER technology results. Combining with tape stripping, re-­constructing of the 

3D solvent depth profiles within stratum corneum can be attained.  

 

7.8 Conclusion and Findings 
 
 

In this chapter, the new MBF-­200 capacitance sensor is tested and its results are 

shown. It has been found to show promising results in video imaging. Initially, 

static images of the MBF-­200 sensor is tested along with the AquaFlux AF200 to 

ascertain its accuracy. 

 

A secondary experiment were done to ascertain the possibility of detecting 

variability of  RGB colours using a digital colour camera. Initial occlusion tests 

shows that the RGB colours are responding to the change in hydration of the 

images produced with the colour camera.  

 

Tests on the MBF-­200 shows that graysale of the occluded sites are increasing in 

values thus showing that the MBF-­200 is producing similar results as previously 

tested capacitance sensors. Capacitance sensor images of 12 different skin sites also 

show the detection of variability of imaging of the human skin. 

 

Then repeatability tests were done on different locations of the skin and the results 

shows a very good repeatability with less than 3% of variability on average. 

Correlation between MBF-­200 capacitance sensor and Corneometer (CM 825 PC) 

were then done and the results show a good correlation between the two devices. 

As previous test has shown good correlation between the Corneometer and 
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AquaFlux, the MBF-­200 is therefore showing a good correlation with other 

hydration measurement technologies. 

 

Using software techniques, a TEWL map of the skin images from the MBF200 can 

then be generated as shown in Figure 7.11. 

 

The next experiments done were video imaging of cotton, man-­made material and 

the human skin. These results of the experiments show that the chosen material or 

skin can be imaged in a video format. Occlusion tests shows that the occluding 

process of the skin can now be captured as a live video file. The files can then be 

broke into individual frames and measurement of the frames can be done in a 

similar manner as previous capacitance sensors using the dedicated MATLAB 

program.  

 

Additionally, a normalised cross correlation program was written than allows the 

same skin site can be detected in two different images. It has been tried and test on 

both capacitance sensor and digital RGB images. 

 

Finally, in-­vivo trans-­dermal drug delivery experiments with tape stripping were 

conducted to test the viability of using the capacitance sensor in detecting the 

penetration of drugs into the skin. The results show that the penetration of 

solvents into the skin can be measured and a 3D solvent penetration profile was 

made to show the penetration through the skin.  
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CHAPTER 8:  CONCLUSION AND FUTURE WORK 

 

The skin acts as a barrier between the body and the environment and protects 

the body against intrusion of biological and physical agents;; and against 

excessive loss of water. The protection against water loss is primarily provided 

by stratum corneum. 

 

This function of the skin has become a major scientific study and many 

techniques and instruments have been devised to measure hydration and 

properties of the skin mainly optical sensor, electrical, radio frequency and 

thermal. Existing technologies used in hydration measurement were discussed 

showing that there are many ways to measure hydration on multiple types of 

strength and weakness. .  

 

8.1 Conclusion 

 

Therefore, this research will look at developing and modifying existing 

capacitance sensor technologies to create a larger surface area capacitance 

sensor where more information of the skin can be analysed and a richer 

information base can be manipulated to gain more understanding of the skin 

sites. 

 

Additionally, it has been found that although many of these techniques have 

some inherent benefits;; they lack the capability to actually image the subject 

skin site. Due to limitation of the size of the probes and measurement methods, 

these technologies are unable to re-­create a mapped image of the skin and thus 

are unable to show a visual view of the test skin site. An imaged map of the 

skin will better represent a cross section of the skin site and visually show the 

look of the skin. With the capacitance sensor, an image of the skin site is 
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obtained in .RAW file format. This file  can then be processed to extract vast 

information on hydration of the site. 

 

In this report, the viability of the capacitance sensor as mode of measurement of 

hydration of the skin has been established. In achieving this target, 

modifications to the capacitance sensors hardware was done and special 

programs were written in MathWorks Matlab. 

 

The capacitance sensor technology has shown promising results in measuring  

hydration in in-­vivo skins, in-­vitro skins and a multitude of other material both 

organic and non-­organic.  In this research, 4 different capacitance sensors were 

-­5410 development kit, FPC-­6410 

-­200 and finally a video imaging version of the 

MBF-­200 capacitance sensor. 

  

The FPC-­5410 capacitance sensor was modified to suit it to skin measuring. The 

sensor head was re-­mounted onto a handheld probe so as to allow for easier 

handling and measurements of skin surface. Additionally the head was 

supported with polyethylene sponge to allow for greater movement according 

to skin contours.  

  

It has been observed that the capacitance sensor along with the program written 

has been successful in imaging and measuring hydration of not only detecting 

hydration of the skin but also hydration on other materials such as cotton, 

tissue, paper, snake skin and fruits.   

  

Additionally, the capacitance sensor has also shown promising results in 

differentiation between different types of skin showing different structure of 

localised skin area such as forehead, cheek, neck and volar forearm. 

Quantification of the measured image has been attained by finding the average 

gray-­scale value of all the points within the image.  
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The methods of OTTER and AquaFlux are some of the most accurate techniques 

to measure skin hydration and TEWL. However, due to limitation of portability 

in the case of the OTTER and speed in the case of AquaFlux, this research is 

developing a new technique employing capacitance sensors technology as a 

simpler, portable and quicker alternative where high precision is not a major 

requirement. 

 

To ascertain the accuracy and sensitivity of the capacitance sensors 

measurements, tests were conducted in parallel with other tested technologies 

mainly the OTTER and AquaFlux. Correlation between the gray-­scale values of 

the capacitance sensor is established against the surface hydration of the 

OTTER;; and then against the TEWL values of the AquaFlux. 

 

 It has been noted that the capacitance sensor, when applied on the skin for a 

period of time will naturally allow occlusion of the skin. This is because the 

surface of the capacitance sensor is in direct contact with the skin site and 

therefore surface water has no means of escape into the surrounding 

environment.  This, will result in the water occluding between the skin surface 

and the capacitance sensors head. This property of the capacitance sensor 

coupled with the software capability to measure images in a time loop allows 

for good study area of occlusion of the skin.  

 

It has been found that a 3D surface image profile can be created using the 

dedicated MATLAB program. Additionally, the water loss can be seen from the 

hydrated surface of the skin. The correlation between SC surface water 

concentration and gray-­scale values;; and the correlation between gray-­scale 

values and TEWL values has been established.  
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Tests were also carried out on multiple subjects on occlusion, hydration, 

moisturisation, and also on non-­live human skin. Additional test were also 

carried out on non-­skin materials such as paper, cotton material and mix cotton 

material. 

Both of the development kits (FPC-­5410 and the FPC-­6410) purchased were 

tested for their capabilities in detecting hydration of the skin surface. 

Repeatability test was conducted to ensure repeatability of the FPC-­6410 

capacitance sensor (data shown in Appendix 2).  

 

Experiments were conducted on other areas of the skin imaging using the 

capacitance sensor. A newer more robust capacitance area sensor (FUJITSU 

MBF-­200) was used for video imaging of the skin surface. 

 

Experiments were conducted using the new area sensor for hydration, 

moisturisation, occlusion and other related test. It shows much more data can 

be collected using the new MBF-­200 capacitance sensor. 

 

A comparison was done between the capacitance sensor images and RGB 

imaging of a camera that shows the capacitance has a good measurement 

capability as compared to the RGB imaging.  

  

Tests were also done with applying moisturiser to the skin and it shows that the 

capacitance sensor has the ability to measure and show the loss of hydration 

over time effectively.  

  

It has also been found that depilation of the skin can be measured using the 

capacitance sensor. Loss of hair after depilation can be seen visually on the skin 

sites and further measurement can be done with 3D imaging showing a change 

in the skin.  
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Using filters in MATLAB, the skin surface can be seen from different aspects 

such as line formations, disks surface and through standard deviation values. 

This form of imaging allows for better understanding of the skin that may not 

be seen from a standard capacitance image.    

 

The new MBF-­200 capacitance sensor is tested and its results were shown. It has 

been found to show promising results in video imaging. Initially, static images 

of the MBF-­200 sensor is tested along with the AquaFlux AF200 to ascertain its 

accuracy.  

  

A secondary experiment were done to ascertain the possibility of detecting 

variability of  RGB colours using a digital colour camera. Initial occlusion tests 

shows that the RGB colours are responding to the change in hydration of the 

images produced with the colour camera.   

  

Tests on the MBF-­200 shows that graysale of the occluded sites are increasing in  

values thus showing that the MBF-­200 is producing similar results as 

previously tested capacitance sensors. Capacitance sensor images of 12 different 

skin sites also show the detection of variability of imaging of the human skin.  

  

Then repeatability tests were done on different locations of the skin and the 

results shows a very good repeatability with less than 3% of variability on 

average. Correlation between MBF-­200 capacitance sensor and Corneometer 

(CM 825 PC) were then done and the results show a good correlation between 

the two devices. 

  

As previous test has shown good correlation between the Corneometer and 

AquaFlux, the MBF-­200 is therefore showing a good correlation with other 

hydration measurement technologies.  
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8.2 Future Work  

 

Further modification to the software can be carried out to be able to assess the 

measurements of the data generated by the capacitance images. 

 

Additionally, the Matlab program can further be changed to accommodate 

reading scars on the skin surface and to be able to show the difference between 

scars over time. This feature will be very useful especially for management and 

monitoring of healing wounds, scabs and scar formation.   

 

These topics should be an ongoing research in PhotoPhysics Research. 
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APPENDIX 1 

Data used in generating Figure 2.16 

Time   1  minute   2  minutes   3  minutes   4  minutes   5  minutes   6  minutes  

   3.23   52.32   81.51   96.47   108.06   108.92  

 

 

Data used in generating Figure 3.10 
Time   Before   0  min   2  min   4  min   6  min   8  min   10  min   12  min  

Grayscale[a.u.]   37.56   92.48   70.59   60.39   54.67   50.82   33.76   33.67  

 

 

Data used in generating Figure 3.12 

Material   Tissue  Paper   100%  Cotton  
30%  Polyester  
70%  Cotton  

Paper  
(80g/ms)  

Pre-­hydration   18   18   18   18  

After  hydration   77.26   41.25   48.74   20.4  

 

 

Data used in generating Figure 3.23 
 

 

 

 

Data used in generating Figure 3.25 

Location   Frontal  bikini  line   Lower  back  pelvis  (buttocks)   Lower  leg  

Grayscale[a.u.]   124.20   154.71   159.49  

 

 

 

 

 

 

 

 

Location   Forehead   Cheek   Neck   Volar  Forearm  

Grayscale[a.u.]   70.39   67.82   101.88   176.65  
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Location of skin sites measured in Chapter 3 (3.4.1). 

 
1. Front of left index 

finger (Distal phalange) 

2. Back of left index finger 

(Distal phalange) 

 

 

Location of skin sites measured in Chapter 3 (3.4.2). 

 
1. Front of right index 

finger (Distal phalange) 

2. Back of right index 

finger (Distal phalange) 

 

 

Location of skin sites measured in Chapter 3 (3.4.3). 

 

1. Back of right index finger (Middle phalange) 
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Location of skin sites measured in Chapter 3 (3.6.1, 3.6.2 and 3.6.3). 

   

1. Right cheek of an Oriental male 2. Left upper volar forearm of a 

Caucasian male 

3. Left upper volar forearm of a 

Caucasian male 

 

Location of skin sites measured in Chapter 3 (3.6.4). 

 

 

 

 

 

 

 

     
 
 
 
 
 
 
 
 
 
 

 

 

 

 
1. Forehead 4. Volar Forearm (Right side) 
2. Cheek (Right side) 5. Buttocks (Right side) 
3. Neck (Right side)   
6. Bikini Line (Right side)   
7. Lower leg (Right side)   

1  
2  
3  

4  

7  

5  

6  

 

1  

 

2  

 

3  
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Location of skin sites measured in Chapter 4 (4.3.1 and 4.3.2). 

 

 
 
 

    

1. Left face (Cheek) 
2. left volar forearm 
3. Front right thumb 

 
 
Data and locations of skin site used in generating figures in 5.5 

 
1 Left Frontal Neck 
2 Front L ower Leg 
3 Side Lower Leg 

 

   Dry  skin  front  of  
left  leg  

Dry  skin  side  of  left  
leg  

Grayscale[a.u.]   171.6754   207.6479  

   After  oil  
application   After  oil  application  

Grayscale[a.u.]   170.2782   191.3830  

1 

2 

3 

1 

2 
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Locations of skin site used in generating figures in 5.4 

 
4. right front upper foot 
5. left dorsal forearm 
6. right volar forearm 

 
 
Data used in generating Figure 5.9 
 

Time   0  second   30  seconds   60  seconds   90  seconds  
120  

seconds  

Grayscale[a.u.]   58.511454   59.313179   59.237888   59.909601   69.929425  

 
 
 
 
 
 
 
 
 
 
 
 

1 

2 

3 
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Locations of skin site and data used in generating Figure 5.21 

 

  

  
Before  Oil  
Application  

After  Oil  
Application  

Dry  skin  front  of  
left  leg   83.3246   84.7218  

Dry  skin  side  of  
left  leg   47.3521   63.617  

1. Front of leg 

2.  Side of leg 
 

 
Locations of skin site and data used in generating Figure 6.1 

 

 
 
 

 

1. Healed scar on back of index finger 
2. Laparotomy scar on right lower abdomen 
3. Ironing scar (1) left lower arm 
4. Ironing scar (2) left lower arm 
5. Scar on upper right arm 

6. Healing scab wound on left lower leg 
7. Scab with 2 strands of hair, lower arm 
8. Scab on back of 3rd right hand finger 

1 
2 
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Data used in generating Figure 6.9 

Time(minutes)   0   1   2   3   4  

Grayscale(a.u.)   149.8135   160.9392   172.114   193.7882   203.2705  

 
 
Data used in generating Figure 7.7 

Filename   Time[s]   Grayscale   Bluescale   Filename   Time[s]   Grayscale   Bluescale  

                       

Neck1min-­0-­0   0   149.73   58.71764706   Palm1min0-­0   0   95.58   37.48235  

Neck1min-­0-­1   5   160.02   62.75294118   Palm1min0-­1   4.97   112.46   44.10196  

Neck1min-­0-­2   9.75   163.76   64.21960784   Palm1min0-­2   9.75   119.91   47.02353  

Neck1min-­0-­3   14.78   166.76   65.39607843   Palm1min0-­3   14.75   125.49   49.21176  

Neck1min-­0-­4   19.76   169.85   66.60784314   Palm1min0-­4   19.76   131.05   51.39216  

Neck1min-­0-­5   24.78   172.81   67.76862745   Palm1min0-­5   24.76   134.72   52.83137  

Neck1min-­0-­6   29.94   175.23   68.71764706   Palm1min0-­6   29.76   137.6   53.96078  

Neck1min-­0-­7   34.76   177.8   69.7254902   Palm1min0-­7   34.75   139.91   54.86667  

Neck1min-­0-­8   39.75   179.8   70.50980392   Palm1min0-­8   39.76   141.82   55.61569  

Neck1min-­0-­9   44.76   182.32   71.49803922   Palm1min0-­9   44.76   143.18   56.14902  

Neck1min-­0-­10   49.75   184.51   72.35686275   Palm1min0-­10   49.81   144.57   56.69412  

Neck1min-­0-­11   54.76   186.27   73.04705882   Palm1min0-­11   54.75   145.88   57.20784  

 
 
Filename   Time[s]   Grayscale   Bluescale      Time[s]   Grayscale   Bluescale  

                       

VolarF1min0-­0   0   36.23   14.20784   Cheek1min-­0-­0   0   121.19   47.52549  

VolarF1min0-­1   5.03   74.08   29.05098   Cheek1min-­0-­1   5   127.4   49.96078  

VolarF1min0-­2   9.83   77.37   30.34118   Cheek1min-­0-­2   9.76   131.86   51.7098  

VolarF1min0-­3   14.83   79.23   31.07059   Cheek1min-­0-­3   14.78   135.54   53.15294  

VolarF1min0-­4   19.83   81.41   31.92549   Cheek1min-­0-­4   19.76   139.16   54.57255  

VolarF1min0-­5   24.83   83.08   32.58039   Cheek1min-­0-­5   24.78   142.47   55.87059  

VolarF1min0-­6   29.83   84.95   33.31373   Cheek1min-­0-­6   29.76   145.3   56.98039  

VolarF1min0-­7   34.83   86.68   33.99216   Cheek1min-­0-­7   34.78   147.61   57.88627  

VolarF1min0-­8   39.85   88.35   34.64706   Cheek1min-­0-­8   39.78   150.65   59.07843  

VolarF1min0-­9   44.83   90.07   35.32157   Cheek1min-­0-­9   44.76   152.71   59.88627  

VolarF1min0-­10   49.85   91.65   35.94118   Cheek1min-­0-­10   49.78   155.2   60.86275  

VolarF1min0-­11   54.97   93.45   36.64706   Cheek1min-­0-­11   54.78   157.23   61.65882  

 
 

Data used in generating Figure 7.8 

   Capacitance  Average   AquaFlux  Average  

Site   1min   5min   10min   1min   5min   10min  

Cheek   23%   17%   4%   15%   31%   48%  

Neck   16%   9%   3%   -­9%   21%   18%  

Palm   30%   9%   2%   -­15%   35%   51%  

VolarF   26%   39%   37%   1%   40%   41%  
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Data used in generating Figure 7.12 

   0  second   1  second   5  seconds   10  seconds   15  seconds   17  seconds  
Grayscale  
[a.u.]   3.59   32.86   44.17   53.41   60.65   61.93  

 

Data used in generating Figure 7.14 

   0  second   1  second   4  seconds   9  seconds   12  seconds   17  seconds  
Grayscale  
[a.u.]   4.43   89.14   118.56   129.48   136.04   142.75  

 

 
 
Data used in generating Figure 7.16 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

   0  second   1  second   5  seconds   10  seconds   15  seconds   17  seconds  
Grayscale  
[a.u.]   3.23   52.32   81.51   96.47   108.06   108.92  
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APPENDIX 2 

Repeatability test for FPC6410 Capacitance Sensors. 
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Data used in generating above figures  

 
Title: Different Skin sites     
Path: C:\Documents and Settings\jinder\Desktop\AOF\FPC\face\ 
Date: 13-Nov-2007 08:58:43    
 
Filename Time[min]  Face Thumb Volar 
0710face0.raw 0 0 130.4255 54.5082 157.7046 
0710face1.raw 22.3333 20 190.1235 185.8509 214.9795 
0710face2.raw 26.6 25 196.8938 50.6427 207.9551 
0710face3.raw 31.5333 30 162.0503 51.298 188.0243 
0710face4.raw 36.6 35 179.1075 47.455 155.8338 
0710face5.raw 46.6667 40 186.0172 78.4165 158.8291 
0710face6.raw 56.6333 45 185.5522 136.8899 173.6129 
  0 185.5522 136.8899 173.6129 
0710face11.raw 77.8667 20 179.9746 172.3109 213.7288 
0710face12.raw 82.7 25 170.156 157.0881 174.874 
0710face13.raw 87.6 30 156.7415 173.9887 178.8774 
0710face14.raw 92.6333 35 185.4234 93.0021 170.1562 
0710face15.raw 102.5667 40 170.0263 68.6671 163.3929 
0710face16.raw 112.5667 45 172.4601 50.0276 160.6348 
  0 172.4601 50.0276 160.6348 
0710face21.raw 133.9667 20 198.4721 180.3626 211.2303 
0710face22.raw 138.5333 25 192.5663 57.9991 183.4748 
0710face23.raw 143.7667 30 186.3728 47.3108 159.9699 
0710face24.raw 148.6333 35 191.2802 46.6474 161.7953 
0710face25.raw 158.6 40 188.4627 53.6027 168.4714 
0710face26.raw 168.6 45 177.4416 46.0444 160.4337 
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APPENDIX 3 

Papers/conference/posters authored and co-­authored by the author: 
 

1. Applied Physics B Journal, Vol. 86, No. 4, 2007, DOI: 10.1007/s00340-­006-­2541-­ Opto-­thermal 
radiometry and condenser-­chamber method for stratum corneum water concentration measurements
co-­authored with P. Xiao, H. Packham, X. Zheng, C. Elliott. 
 

2. Stratum Corneum V(5th Conference Papers, 2007. Cardiff, UK), 'In-­vivo skin imaging for 
hydration and micro relief measurements' co-­authored with  P. Xiao,  R.E. Imhof, E.P. Berg. 

 
3. The Smithsonian/NASA Astrophysics, DOI 10.1088/1742-­6596/214/1/012008, 'Opto-­thermal 

Radiometry for In-­vivo Nail Measurements',  co-­authored with  P. Xiao,  L.I. Ciortea, E.P. Berg, 
R.E. Imhof. 

 
4. Skin Research & Technology, Vol 15, No. 1, Feb 2009 titled 

co-­authored with  P. Xiao,  E.P. Berg,  
R.E. Imhof. 

 
5. Hydration Measurements of Skin 

With Capacitance Sensors -­authored with  P. Xiao,  E.P. Berg,  R.E. Imhof. 
 

 
6. Skin Forum, Versailles, France (March 2009) In-­vivo Skin Hydration -­ A Comparison Study of 

Different Measurement Techniques -­authored with  P. Xiao,  L.I. Ciortea, X. Zheng,  R.E. 
Imhof, E.P. Berg. 

 
7. In-­vivo Skin Occlusion Study by using Photo-­

thermal Radiometry, Fingerprint Sensors and AquaFlux -­authored with  P. Xiao,  L.I. Ciortea,  
X. Zheng,  R.E. Imhof, E.P. Berg. 

 
8. Occupational and Environmental Exposures of Skin to Chemicals, Edinburgh, June, 2009, 

Stratum Corneum Barrier Function Measurement using Fingerprint Sensor and Condenser-­TEWL 
Methods -­authored with  P. Xiao,  L.I. Ciortea, X. Zheng,  R.E. Imhof, E.P. Berg. 

 
 

9. Journal of Physics: Conference Series 214 (2010), DOI:10.1088/1742-6596/214/1/012026, 
Opto-­thermal in-­vivo skin hydration measurements  a comparison study of different measurement 

techniques -­authored with P. Xiao, L.I. Ciortea, Y. Cui, E.P. Berg, R.E. Imhof. 
 

10. VIIIème Congrès de la SF2iC, Bordeaux, (October 2010), -­vivo par Capteurs 
, co-­authored with P. Xiao, A.R. Caparnagiu, L.I. Ciortea, E.P. Berg, O. 

Raphaël, R.E. Imhof. 
 

11. Skin Forum, Edinburgh, (2010), 
and Fingerprint Sensors -­authored with A.R. Caparnagiu,  P. Xiao,  L.I. Ciortea,  E.P. Berg, 
R.E. Imhof. 

 
12. Stratum Corneum Barrier Function Measurement using 

Capacitance Sensor and Condenser-­TEWL Methods -­authored with P. Xiao, L.I. Ciortea, X. 
Zheng, R.E. Imhof, E.P. Berg. 
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13. Skin Forum, Edinburgh, (2010), -­vivo Nail Measurements by Using Opto-­Thermal Radiometry 
, co-­authored with  P. Xiao,  L.I. Ciortea,  E.P. Berg, R.E. Imhof. 

 
14. Skin Forum, Frankfurt, (2011), 'In-­vivo Trans-­Dermal Drug Delivery Study by Using Capacitive 

Sensors', co-­authored with X. Ou, A.R. Caparnagiu,  P. Xiao,  L.I. Ciortea,  E.P. Berg, R.E. Imhof. 
 

15. SCC Annual Scientific Meeting & Technology Showcase, New York (2011), In-­vivo Solvent 
Penetration Measurement using Contact Imaging and Skin Stripping , co-­authored with P. Xiao, X. 
Ou, A.R. Caparnagiu, G. Kramer, R.E. Imhof. 

 


