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Abstract — Sequence learning is one of the hard challenges 

to current machine learning and deep neural network 
technologies. This paper presents a literature survey and 
analysis on a variety of neural networks towards sequence 
learning. The conceptual models, methodologies, mathematical 
models and usages of classic neural networks and their learning 
capabilities are contrasted. Advantages and disadvantages of 
neural networks for sequence learning are formally analyzed. 
The state-of-the-art, theoretical problems and technical 
constraints of existing methodologies are reviewed. The needs 
for understanding temporal sequences by unsupervised or 
intensive-training-free learning theories and technologies are 
elaborated. 
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I.  INTRODUCTION 
 

Recent technologies of deep neural networks (DNN) and 
recurrent neural networks (RNNs) [Gers & Schmidhuber, 2001; 
Sutskever et al., 2014; Widrow et al., 2015] for deep learning 
[Rumelhart et al., 1986; Salakhutdinov & Joshua, 2012; Bengio et 
al., 2015; Schmidhuber, 2015] provide a promising approach to 
generic machine learning. However, it is recognized that a 
number of problems and constraints remain in current 

supervised learning technologies [Widrow & Lehr, 1990; 
Raytchev & Murase 2003; Widrow et al., 2015; Barbu, 2013; 
Wang, 2015, 2016a-d, 2017a-d] as follows: 

 

a) Unsuitable for temporal and real-time sequence learning 
due to the need for supervision and human intervention;  

b) Mathematical models are merely a special solution for a 
trained domain rather than a general solution in the universe of 
discourse for a category of problems;  

c) A convergent mechanism suitable for pattern 
classification (m << n) rather than discriminative object 
identification (m = n) given arbitrary numbers  of input vectors 
(n) and recognized outputs  (m);  

d) Exponential growth of topological and weight fitting 
complexities among inter-locked layers in deep and recurrent 
structures;  

e) Data-driven rather than knowledge-driven thus requiring 
significantly large set of training data, intensive data labeling, 
and expensive human-aided data preprocessing;  

f) Restricted processing power by dummy artificial nodes 
and networks underpinned by least square regression functions 
not sharable for fitting individual input vectors;  

g) No inductive learning power to create and retain 
cumulative knowledge;  

h) A brute-force philosophy ignoring problem contexts due 
to the lack of semantic comprehension ability and long-term 
knowledge base. 
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This paper presents a literature survey on sequence learning 
and neural network methodologies. It addresses the problems in 
current sequence learning technologies, the challenges of over 
complicated recurrent neural network solutions and the 
weaknesses of underpinning theories for sequence learning. In 
the remainder of this paper, the cognitive foundations of neural 
networks and machine learning are reviewed in Section II. A set 
of classical statically structured neural networks is reviewed for 
supervised machine learning in Section III. Dynamic neural 
networks such as deep, recurrent and long-short-term-memory 
neural networks for supervised learning are analyzed in Section 
IV. Some potential pitfalls and theoretical constraints in 
traditional neural  networks  for  machine  learning  are  formally  
analyzed  in Section V.  
 

II.  THE COGNITIVE FOUNDATIONS OF NEURAL 
NETWORKS AND MACHINE LEARNING  

 
In order to understand the central nervous systems of the 

brain and human learning mechanisms, the cognitive 
foundations of neural networks and learning are explores in this 
section towards sequence learning.               
 
2.1  Cognitive Foundations of Neural Networks and the 

Nervous Systems of the Brain 
 

Although there are various anatomic, neurological, and 
physiological models of neurons [Wilson & Keil, 2001; Hertz 
et al., 2006; Widrow et al., 2015; Wang, 2016d, 2017b; Wang 
& Wang, 2006; Wang & Fariello, 2012, 2013; Wang et al, 
2017], there was a lack of formal models for them as a rigorous 
base of studies, particularly for mathematical neurology, 
neuroinformatics and computational intelligence.  

 
Neurons are the basic unit of natural intelligence as 

information receptors, transmitters and servos in the brain and 
the nervous system throughout the body. A fundamental 
property of neurons is their dynamic connectivity to other 
neurons via synapses in order to form neural clusters and 
networks. The taxonomy of neurons is classified into three 
functional categories known as the association, sensory, and 
motor neurons. It is recognized that over 95% of neurons in the 
nervous system are association neurons. However, traditional 
artificial neural networks in AI and computational intelligence 
may have been modeled an artificial form of data-driven 
neurons that is not fully biologically accurate for explaining the 
neural foundations for machine learning, knowledge 
representation, reasoning thread establishment and behavior 
generation [Wang, 2016d, 2018; Wang & Fariello, 2012]. 

             
2.2  Cognitive Models of Machine Learning Based on 

Neural Networks 
 

Learning is commonly perceived as a process of association 
of a certain form of object with existing knowledge in the 
memory of the brain [Reisenhuber & Poggio, 1999; Wilson & 
Frank, 2001; Wang, 2010, 2012c/d, 2013, 2015, 2016c]. A 

various forms of learning mechanisms have been identified in 
cognitive science and computational intelligence such as the 
classic conditioning learning, reinforced learning, supervised 
learning, latent learning, and social learning on the basis of 
behaviorism and associationism [Olshausen, 1996].  

 
Definition 1. Learning is a cognitive process that 

cumulatively acquires knowledge or adaptively generates 
behaviors and skills.  

 
Learning is an interaction among multiple fundamental 

cognitive processes such as object identification, abstraction, 
search, concept establishment, comprehension, memorization 
and retrieval. Learning is closely related to other higher 
cognitive processes of the brain such as deduction, induction, 
abduction, analogy, explanation, analysis, synthesis, creation, 
modeling and problem solving according to the Layered 
Reference Model of the Brain (LRMB) [Wang et al., 2006]. 

       
Definition 2. Machine learning can be classified into six 

categories known as object identification, cluster classification, 
pattern recognition, functional regression, behavioral (game) 
generation and knowledge acquisition as follows [Wang, 2015, 
2016e]:   
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where X is a given variable vector or matrix of characteristic 
attributes of a pattern P such as a frame of image, a segment of 
voice, a stream of video and a sequence of sentences;  f  a certain 
function on X; c(X) a formal concept; and   a composition of 
a concept c with existing knowledge K.    

 
The sixth category of machine knowledge learning revealed 

by Wang [2016e] is the main form of human learning and an 
important type of sequence learning. A recent discovery in 
knowledge science is that the basic unit of knowledge is a 
binary relation (bir) [Wang, 2016a, 2017c] as that of binary 
digit (bit) for information and data. Knowledge learning is a 
life-long endeavor of humans that challenges current machine 
learning technologies.    

 
 

III.  STATICALLY STRUCTURED NEURAL NETWORKS 
FOR SUPERVISED MACHINE LEARNING 

  
The classical structures of static neural networks for 

supervised machine learning are reviewed in this section, while 
its counterpart on dynamic and adaptive neural networks will 
be explored in the next section. The term of static neural 
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networks refers to those with fixed topological structures and 
node functions as well as calibrated weights after training. 
 
3.1 Single-Layer Single-Output Artificial Neural Networks 
 

A basic model of the node of classic artificial neural 
network (ANN(n,1,1)) is illustrated as shown in Figure 1, which 
represents the simplest neural network with a single node and a 
single-output [Hopfield & Tank, 1985]. 

 
Fig. 1 A single-layer single-output ANN(n,1,1) 

 
Definition 3. The single-layer single-output artificial 

neural network (ANN(n,1,1)),  1 ,1,1ANN n , is the basic 

convergent node, as shown in Figure 1, that implements a 

weighted sum between the input vectors 
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where the output  y(t) at a time point t is transformed from a 

certain activation function 
0

( ( ))
n

i i
i

f t

W X such as a signum, 

step or sigmoid function determined by a trained (calibrated) 
weight vector  W* (Eq. 3).  
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It is noteworthy that a neural network is a data-driven 

structure. The key methodology for building an artificial neural 
network is not only describe by the network function as given 
in Eq. 2, but also by its training function that determines how 
the neural network is calibrated for fitting an expected function.           

Definition 4. The training function 1( ( ,1 ),1)ANN n  for the 

neural network  1 ,1,1ANN n  determines the learning 

mechanism by (W) that calibrates the weight of each neural 
link W* in order to optimize the neural network for the expected 
function f() for all input vectors x(), i.e.:  
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where U is the universe of discourse of input vectors, which is 

infinitive in the domain of real numbers, i.e.: 
 

|K|| | = = , n K U                                (4) 
 

Eq. 3 and 4 indicate that a neural network, even in the 
simplest single node configuration, may not always be trained 
or fitted for an expected function by the same set of weights in 
U. 

 

Theorem 1. The overestimated distinguishability for 
ANN states that a weighted sum based neural network cannot 
uniquely identify different input vectors using an identical 
weight vector. 
 

Proof. Theorem 1 is proved based on Definitions 3 and 4 
as follows: 
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Example 1. Let a  1 3,1,1ANN  be trained with a set of 

weights W* = [1, 1, 1]. Then, it cannot distinguish the input 
vectors X1 = [1,2,3] and X2 = [3,2,1] because 

1 2
1 2

0

( ) ( ),  ( ) ( ) (6)
n

i i
i

f X f w x f X f X f  


    for any  

activation function. 
 

Therefore, ANNs may work only for object classification 
but not good at object identification in an arbitrary domain of 
input vectors.            
 

3.2 Single-Layer Multi-Output Artificial Neural Networks 
 

A single-layer multi-output (m) artificial neural network 
(ANN(n,1,m)) is illustrated in Figure 2. The ANN(n,1,3) neural 
network can be recursively composed by three ANN(n,1,1) in 
the given topological configuration, so do their mathematical 
models. 



4 
 

 
Fig. 2 A single-layer multi-output ANN(n,1,m) 

 

Definition 5. A single-layer multi-output ANN(n,1,m), 
 1 ,1,ANN n m , is a set of multiple 1 ( , , )ANN X W y  for 

implementing parallel ANNs sharing the same input vector X, 
i.e.:       
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W X  is an activation function that transforms a 

weighted sum into a set of trained classifications.     
 

Theorem 2. The training criterion for an ANN(n,1,m), 
 1 1 ),( ,ANN n m  , is the optimization of its weights, i.e.: 
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Proof. Theorem 2 is proved based on Definitions 4 and 5 

as follows: 
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where W* is the optimal weight vector that is problem 
dependent. 

It is noteworthy in practice that the training goal as stated 
in Theorem 2 is usually unachievable because of the nature of 
problems, the limited sizes of training data and contradictory 
influences among sample data. Therefore, the calibration of an  
ANN by training may impossible to fit all input vectors by a 
single set of static weights according to Theorems 1 and 2, 
because the calibrated weights may severely deviate from the 
generally expected least-square regression. For instance, a 
simple logical AND gate cannot be accurately trained and 
ideally fitted by ANNs [Mehrotra et al., 2000]. 
 

3.3 Multi-Layer Multi-Output Artificial Neural Networks 
 

A multi-layer (k) multi-output (m) artificial neural 
network (ANN(n,k,m)) is illustrated in Figure 3. The 
ANN(n,2,2) neural network can be recursively composed by [3 
 ANN(n, 1, 1) ° 2  ANN(3, 1, ,1)] in the given topological 

configuration where ° represents a composition between two 

adjacent layers of the ANN(n, 1, m1) and ANN(m1, 1, m) 
networks. 

 

Fig. 3 A multi-layer multi-output ANN(n,k,m) 
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 , ,k
ANN n k m , is a set of recursively configured single-layer 

multi-output ANNs, which may be coordinately trained through 
all layers, i.e.: 
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where 
1
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It is found that an ANN is perhaps not a generic analytic 
model for arbitrary neural structures. It is rather than an 
approximation model for functional regression by a series of 
weighted sums of the input vectors. It cannot generally fit an 
arbitrary polynomial as the universal model of dynamic and 
convergent functions, because the generic mechanisms of the 
neurons and neural networks are not a weighted sum, nor an n-
to-1 convergent structure. 

 
Theorem 2 reveals that ANNs are not generally suitable for 

dynamic, sequential and unsupervised learning, because the 
functioning of ANNs is dependent on proper training, which 
cannot be implemented by random, redundant and low coverage 
training data in a given domain. In other words, due to the state 
space of convergent functions is quiet large and of divergent 
functions are infinitive, a certain set of fixed weights cannot fit 
all in the domains of arbitrary problems.        
 
 

IV.  DYNAMIC NEURAL NETWORKS FOR  
SUPERVISED MACHINE LEARNING 

 
Many important and hard problems in machine learning are 

characterized as dynamic sequences with finite or infinite 
lengths. Such problems include video stream recognition, 
speech recognition, language translation, machine knowledge 
learning and cognitive knowledge base manipulations. These 
hard AI problems demand dynamic neural networks with both 
adaptive structures and weights such as deep and recurrent 
neural networks for supervised learning. However, theories and 
technologies for unsupervised, non-data-driven, light-training-
based and training-free neural networks are yet to be created 
and developed.   

 
4.1 Deep Neural Networks (DNN) 
 

In order to address the unideal ANN performances as 
described in preceding subsection, deep neural networks are 
proposed for implementing deep machine learning towards 
solving hard AI problems [Hinton et al., 1995; Hinton & 
Salakhutdinov, 2006; Collobert & Weston, 2008; Ciresan et al., 
2010; Arel et al., 2010; Mnih et al., 2015; Schmidhuber, 2015].  
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A deep neural network (DNN(n,k,m)), ( , , )k
DNN n k m , is a k-

layered recursive ANNs where k > 3, which can be formally 
described as follows: 
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where the activation function f is normally a continuously 
differentiable function, typically a sigmoid function as given in 
Eq. 11, in order to facilitate least square optimization during 
training.  
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        However, because the basic node of the DNN is still 
implemented by an ANN, all constraints and problems of ANNs 
have been inherited as described in Section 3. Therefore, it is 
unlikely to expect that DNNs may solve dynamic and sequence 
learning problems. It cannot be proven that the deeper the DNN, 
the better the performance. Due to feedback and feedforward 
operations for optimization among a large set of weights at 
different layers, the cost of training for a DNN is exponentially 
increasing according to Eq. 10.  
 
        Many questions on DNNs are unanswered such as: a) Is 
the deeper the better in DNNs? and c) How does potential 
performance gain be balanced with the exponential increase of 
training cost and the significant decrease of run-time 
efficiency? 
 
 
4.2 Recurrent Neural Networks (RNN) 
 

A recurrent neural network is a cyclic network in order to 
deal with dynamic temporal behaviors of learning problems 
which may involve previous learning results [Pearlmutter, 
1989; Giles et al., 1992; Omlin & Giles, 1996; Schuster & 
Paliwal, 1997; Siegelmann et al., 1997; Auli, et al., 2013]. 
Therefore, internal memory is required in recurrent networks in 
order to hold historical learning information. As a result, the 
weight of each node is expected to be dynamically determined 
in each cycle of learning.  

 
Definition 8. A recurrent neural network (RNN(n,k,m)), 
( , , )k

RNN n k m , is a cyclic network with dynamically predicated 

weights influenced by the previous learning cycle, i.e.:  
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where 1( )
k

k k
if

Y  is the introduction of previous learning result 

transformed by a certain function dependent on the problem.  
  

It is recognized that an RNN is an extend k
ANN with 

historical 1( )
k

k k
if

Y  information of the previous learning cycle. 

Because all problems of ANNs have been inherited in RNN, it 
is hard to formally determine how trainings may be 
implemented on the fly in each cycle. It requires intensive 
preprocessing for data labeling in order to assistant dynamic 
calibration of  the weight vectors in each application cycle of 
the RNN. As a result of the intricate complexity, extremely high 
performance computing power involving multiple GPUs is 
demanded for even a simple applications. 
 
4.3 RNN with Long-Short-Term Memory (LSTM)  
  

Long short-term memory is a technology for enhancing the 
conceptual model of RNNs with local (short-term memory, 
STM) and global (long-term memories, LTM) [Hochreiter & 
Schmidhuber, 1997, Gers & Schmidhuber, 2001]. LSTM has 
been applied in pattern recognition, handwriting recognition 
and speech recognition in recent years. Google's speech 
recognition has archived a 49% accuracy by LSTM enhanced 
RNN in 2015 [Sutskever et al., 2014], though it is still far from 
ideal. 
 

Definition 9. A recurrent  neural network with long- short-
term-memory (RNN-LSTM(n,k,m)), ( , , )k

LSTM n k m , is an RNN 
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with  learning problems constrained by long-range temporal 
dependencies acquired in all previous steps, s, of historical 

learning  

1

0

k
s

s
R




Y , i.e.: 

 

 

  

0
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1

1 0
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                     {
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k

k k

k

K
k k k k
LSTM ANN

k

nK
k k k k

k i i
k i

f f

n k m R

R


 

  

  

X W Y Y

Y W X Y


      (13) 

 
As that a classical RNN considers the influence of output 

in the previous cycle, RNN-LSTM involves all historical results 
or cumulative learning acquired in the LTM. A typical strategy 
in RNN-LSTM is to utilize learning results in LTM as a             

conditional probability   

0 0

( y | x )
i i

n n

i i

p R R
 

 between an input 

sequence  

0

n

i
i

xR


and the corresponding output sequence  

0

n

i
i

yR


. 

However, the complexity is extremely high and there is no 
common algorithm to implement an RNN-LSTM. Because 
RNN-LSTM still requires complex training, it is not suitable for 
unsupervised learning particularly in real-time sequence 
processing.            

V.  PITFALLS IN TRADITIONAL NEURAL NETWORKS 
FOR MACHINE LEARNING  

 
It is recognized that the entire AI problems in general and 

deep learning challenges in particular had been extremely 
persistent, complex and hard, because they were out of the 
domain of  (real numbers) and traditional analytic 

mathematics [Wang, 2012b]. The emerging class of entities are 
identified as hyperstructure () and the contemporary 

mathematical means for dealing with them are known as 
denotational mathematics [Wang, 2012a].  

 

It is recognized that, given any pair of a mathematical 
model and its implementation, iff the mathematical model is 
correct, it may be implemented in machine learning; However, 
if the mathematical model is incorrect, it may never be 
implemented. This is the general reality of traditional neural 
networks for machine learning. Although experiments in 
limited domains and simplified applications of DNNs seemed 
working, a generic theory and rigorous mathematical models 
are yet to be sought and validated 

 
A number of potential pitfalls and constraints in neural 

network (NN) based machine learning, including ANNs, DNNs 
and RNNs are recognized as summarized in Table 1. The 
learning constraints are evaluated against the six categories of 
machine learning as formally classified in Definition 2.   
 

In this literature survey and analyses, the following 
fundamental questions are raised if the mathematical models of 
NNs are not a general mathematical model to fit arbitrary 
nonlinear functions: a) What is a neurologically correct NN? 
and b) What is a mathematically general  NN? Because the state 
spaces of typical problems are too large even infinitive, and too 
many input vectors may result in the same output in a multi-
layer weighted sum, the redundancy in training cannot be avoid 
and learning accuracy cannot be guaranteed.  

 
It is recognized that traditional deep neural networks are a 

converging network good at object classification and pattern 
recognition. However, they are not practical to object 
identification because the outputs of a trained deep neural 
network and its required sets of trained weights are always less 
than the number of input vectors.  

 
Theorem  3. Deep neural network based machine learning 

may only implement object classification rather than object 
identification in the universe of discourse of problems, U, 

constrained by its convergent structures. 
 

Proof. Let n and m represent the numbers of independent 
input vectors and the size of the output vector of a deep neural 
network. Although object classification may allow m << n, 
image identification requires m  n, i.e.: 
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| | | |,    Identification in 

| | | |,    Classification in 

output input

output input

m n

m n

  
   

Y X

Y X

  U

  U
    (14) 

 
Why are not NNs a generic analytic model for machine 

learning? In order to explain why NNs does not work well as  a 
general methodology for machine learning and why their 

training costs are extremely high, consider the following 
principle.  
 

Corollary 1. An arbitrary problem generally represented 
by a polynomial cannot be fitted by NNs in the universe of 
discourse U of nonlinear functions or arbitrary vector 

distributions.          
 
 

Table 1. Constraints of Classic Neural Networks in Machine Learning 
 

No. Property 
and 

constraint 

Explanation Limitation in categories of learning (Definition 2) 
object 

identification
cluster 

classification
pattern 

recognition 
functional 
regression 

behavioral 
generation

knowledge 
cognition

1 Special vs. 
general 
solutions 

The mathematical models of NNs are a special solution in 
a trained domain rather than a general solution in U, 
because U cannot be covered by nonindependent or 
redundant data.  

      

2 Data-driven 
vs. knowledge-
driven  

Data-driven NNs require significantly large set of training 
data, intensive data labeling, and expensive human-aided 
data preprocessing.  

      

3 Onto (n-1) vs. 
partial (1-1) 
function 
structures   

NNs are a special mechanism suitable for convergent 
pattern classification (m << n) rather than discriminative 
object identification (m = n) given arbitrary numbers  of 
input vectors (n) and recognition outputs  (m);  

      

4 Exponential 
growth of 
complexities  

NNs result in exponential growth of topological 
complexities in deep and recurrent structures.       

5 Overloaded 
least square 
regressions  

Least square regression by training may only fit a few 
specific input vectors, which is not sharable by others. 
Thus, no generic fit exist by NNs in U.     

      

6 No inductive 
learning power 

NNs lack an inductive learning power to create and retain 
cumulative knowledge. 

      

7 No semantic 
and knowledge 
comprehension 

NNs’ brute-force mechanism ignores problem contexts 
due to the lack of semantic comprehension ability and 
long-term knowledge base. 

      

8 No support for 
sequence 
learning  

NNs are unsuitable for temporal and real-time sequence 
learning due to the need for training, supervision and 
human intervention. 

      

 
Table 2. Paradigms of Neural Networks towards Sequence Learning 

 

No. Category Method Symbol Mathematic model 
Capability 

Static 
learning 

Dynamic 
learning 

Sequential 
learning 

1 
Static and 
supervised 

Artificial NN ANN   
1 1

10

( )], , 1,
n K

k
ANN i i ANN ANN

ki
k kn mf R



    W X     

2 

Dynamic and 
supervised 

Deep NN DNN      

1 1 0 0

, , , ( ), [ ]
kk

k k k

k k

nnK K
k k k k k
DNN ANN i i i

k k i i

n k m n k m fR RR
   

     Y W X  
   

3 Recurrent NN RNN 
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4 
Recurrent NN  

+ LSTM 
RNN-
LSTM 
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Proof. According to Definition 3, the mathematical models 
of a neural network N(X) and of a general problem as a 
polynomial P(X) are, respectively: 

        

 

 

3 3 2 2 1 1 0 0
0

3 2
3 2 1 0

0

( ) ( ) ( ... )

( ) ...

n

i i n n
i

n
i n

i n
i

N x f w x f w x w x w x w x w x

P x w x w x w x w x w x w





      

      





(15) 

 

Thus, P(X) can fit N(X), but not vice versa.    ■  
 
The methodologies of typical neural networks for 

machine learning are summarized in Table 2 on the basis of the 
comparative analyses throughout the paper. By contrasting the 
categories, topologies, methods, mathematical models, 
properties and capability of current neural networks, more 
powerful non-dada-driven and inductive learning 
methodologies towards machine knowledge learning will be 
developed. 

 
It is noteworthy that the persistent hard problems in 

machine learning are characterized as temporary sequences and 
dynamic frames underpinned by an extremely large even  
infinitive universe of discourse in video stream recognition, 
speech recognition, language translation, machine knowledge 
learning and cognitive knowledge base manipulations. This set 
of hard AI problems demands dynamic neural networks 
powered by adaptive structures and flexible weight vectors for 
unsupervised, light-training-based or training-free neural 
networks yet to be explored.   

 
 

VI.  CONCLUSION 
 

This paper has presented a comparative analyses of the 
theories and methodologies of a variety of neural network 
technologies as well as their advantages and disadvantages in 
machine learning. A  comprehensive literature survey on neural 
network technologies towards sequence learning has been 
reported. The state-of-the-art, theoretical problems and 
technical constraints of traditional methodologies have been 
reviewed. Challenges and needs for understanding temporal 
sequences by unsupervised learning theories and technologies 
have been elaborated. 
 

It has been found in this survey that classical data-driven 
and intensive-training-based neural networks are not suitable to 
sequence learning because they cannot fulfill the basic 
requirements for unsupervised or fully self-adaptive learning. It 
has also found that persistent hard problems in machine 
learning are characterized as temporary sequences and dynamic 
vectors underpinned by an extremely large even  infinitive 
universe of discourse. This set of hard AI problems will demand 
dynamic neural networks powered by adaptive structures and 
flexible weights for unsupervised, non-data-driven, light-
training-based and training-free neural networks yet to be 
developed.   
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