Continuous Hydrothermal Flow Synthesis of Blue-Luminescent Carbon Quantum Dots as Nanosensors for Chromium (VI) Detection Ioan-Alexandru Baragau and Dr Suela Kellici*

Chemical and Energy Engineering Division, School of Engineering, London South Bank University, 103 Borough Road, London SE1 0AA, UK. Website: <u>www.nano2d.co.uk</u>; Email: <u>kellicis@lsbu.ac.uk</u>

Motivation

Interest inspired by carbon quantum dots properties and applications.

Eco-friendly

Photocatalysis

Herein, we present, a facile, green, one-step Continuous Hydrothermal Flow Synthesis (CHFS) route using citric acid as a carbon source and ammonia as nitrogen source for the large-scale production of blueluminescent nitrogen doped carbon quantum dots (NCQD) nanosensors.

carbon source in the presence of ammonia. Reaction conditions : $T = 450 \,^{\circ}\text{C}$ and $P = 24.8 \,\text{MPa}$ **Fig. 2** Schematic of CHFS reactor used for the synthesis of NCQD [BPR=back pressure regulator].

0.8

Research Findings

Fig. 3 (a) UV-Vis absorption spectrum (black curve) and photoluminescence (PL) spectrum (red curve) of NCQD at 360 nm excitation wavelength. (b) NCQDs excitation at wavelengths 320–380 nm. Inset: NCQD solution under UV-light (360 nm).

Fig. 4 XPS survey scans

The nano-chemo-sensor delivers significant advantages including simplicity

precursor), high selectivity, sensitivity and fast response leading to potential

applications in environmental industry as well photovoltaics, bio-tagging, bio-

of manufacturing via a continuous, cleaner technology (using

Surface Chemistry

CHFS synthesised NCQD uniquely exhibits the following:

- excitation independence
 with a narrow FWHM (~78 nm)
 remoteness of the fluorescence
 emission (441 nm) from the UV
 excitation range (300–380 nm)
 (that usefully avoids autoluminescence).
- Each of which are desirable features for sensing Cr(VI), a severe and highly toxic environmental pollutant.

Electron Microscopy Images

Chemosensing Properties: Chromium (VI) Detection

G band

biomass

Fig. 7 (a) Cr (VI) sensing of NCQD via fluorescence spectroscopy showing I/I₀ versus the Cr (VI) concentrations (b) and (c) selectivity of the NCQD based sensor over other ions. **NCQD exhibited a high selectivity and sensitivity for the highly toxic and carcinogenic Cr(VI) ions.**

Conclusions

sensing and beyond.

References

S. Kellici, J. Mater. Chem. A,

2020, 8, 3270-3279.

Acknowledgements

*I. A. Baragau, N. P. Power, D. J.
Morgan, T. Heil, R. Lobo, C. S.
Roberts, M. Titirici, S. Dunn, and

The Open University

MAX-PLANCK-GESELLSCHAFT

