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Abstract
This paper provides a theoretical functional representation of the density function related to the

Dickey-Fuller random variable. The approach is extended to cover the multivariate case in two
special frameworks: the independence and the perfect correlation of the series.
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1. Introduction

In this paper we deal with the theoretical case where n possibly cross-dependent time series
are generated by

yi,t = yi,t−1 + ui,t (i = 1, . . . , n ; t = 1, . . . , T )

= yi,0 +
t∑

j=1

ui,j

= yi,0 + Si,t (1)

where yi,0 = ci with probability one, or it has a given probability distribution. The ui,t's
are assumed to satisfy some regularity conditions so that a suitably normalized transform
of Si,t, S∗i,T (r) := T−1/2σ−1

i Si,bTrc (where b·c denotes the integer part and r ∈ [0, 1]), is
such that S∗i,T (r) ⇒ Wi(r) as T → ∞, with Wi(r) a Wiener process (see e.g. Phillips
(1987) for a detailed discussion of such regularity conditions and of the exact meaning
of the normalization. Here we take the simplifying assumption that ui,t ∼ iid(0, σ2

i ), so
that the conditions for the weak convergence of the normalized partial sums are trivially
satis�ed.
It is well known that, under the null H0 : ρi = 1, the t-ratio based on the OLS estimator of
ρi, t̂ρi , in

∆yi,t = ρiyi,t−1 + ei,t . (2)

has the non-standard Dickey-Fuller limiting distribution

t̂ρi ⇒
(∫ 1

0
Wi(r)dWi(r)

)(∫ 1

0
W 2

i (r)dr

)− 1
2

(3)

as T →∞ (see e.g. Phillips, 1987).
Building on Ruben (1962), in Section 2 we derive an explicit formulation of the conven-
tional univariate Dickey-Fuller distribution (3). Although not easy to manage, the proposed
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formulation can be used to derive analytical results, as opposed to the conventional simula-
tion approach. In this respect, our work is related to Abadir (1995). In Section 3 we extend
the analysis to the multivariate case by focusing on the special cases where the series are
either independent or perfectly correlated. Section 4 concludes.
In the derivation of the theoretical results, we assume that all the random quantities intro-
duced in the paper are contained in a �ltered probability space (Ω,F , {Ft}t>0, P ).

2. The Univariate Case

Consider the Dickey-Fuller distribution (3): by de�nition of stochastic integral, we take a
partition of the interval [0, 1] in N intervals of length 1/N . If N is large enough, we can
approximate the asymptotic distribution of t̂ρi under the null as follows:

(∫ 1

0
Wi(r)dWi(r)

)(∫ 1

0
W 2

i (r)dr

)− 1
2

∼

∼
(

N∑

k=1

Wi(k/N) [Wi(k/N)−Wi ((k − 1)/N)]

)(
1
N

N∑

k=1

W 2
i (k/N)

)− 1
2

=

=
1
2

(
W 2

i (1)− 1
)
(

1
N

N∑

k=1

W 2
i (k/N)

)− 1
2

=: Xi/Yi, (4)

where

Xi :=
1
2

(
W 2

i (1)− 1
)

(5)

Yi :=

(
1
N

N∑

k=1

W 2
i (k/N)

) 1
2

. (6)

Therefore, by de�nition of Wiener process, the distribution of the univariate Dickey-Fuller
test under the stated conditions can be approximated as follows:

t̂ρi ⇒ Xi/Yi ∼
1
2

(
χ2(1)− 1

)

(CvM0(1))
1
2

, (7)

where χ2(1) denotes a Chi-squared distribution with 1 degree of freedom and CvM0(1)
denotes a zero level Cramér-von Mises distribution with 1 degree of freedom.
In order to derive an analytical expression for the density function of the Dickey-Fuller dis-
tribution, we need to introduce the ratio variable Zi := Xi/Yi. The cumulative distribution
function of Zi will be denoted as Fi. For z ∈ R, we have

Fi(z) = P (Zi ≤ z)
= P (Xi/Yi ≤ z)

=
∫ +∞

0

∫ yz

0
fXi,Yi(x, y)dxdy , (8)

where fXi,Yi is the joint density function of the random variables Xi and Yi.
The density function fi of the variable Zi is

fi(z) =
∂

∂z

[∫ +∞

0

∫ yz

0
fXi,Yi(x, y)dxdy

]

=
∫ +∞

0
yfXi,Yi(yz, y)dy . (9)



We need to �nd an explicit form of the density function fXi,Yi , in order to get an expression
for fi. Fixed x, y ∈ R, we have

fXi,Yi(x, y) = fYi|Xi
(y|Xi = x)fXi(x) , (10)

where fYi|Xi
is the density function of Yi conditional on Xi, and fXi is the (marginal)

density function of the random variable Xi.
We write the cumulative distribution functions of Xi as:

FXi(x) = P (Xi ≤ x)

= P

(
1
2
(W 2

i (1)− 1) ≤ x

)

= P (W 2
i (1) ≤ 2x + 1)

= KXi

∫ 2x+1

−∞
s−1/2e−s/2ds , (11)

where KXi is the normalizing constant. The density function fXi is then

fXi(x) = KXi

∂

∂x

[∫ 2x+1

−∞
s−1/2e−s/2ds

]

= 2KXi(2x + 1)−1/2exp
[
2x + 1

2

]
. (12)

The cumulative distribution function of Yi conditional on Xi = x is

FYi|Xi
(y|Xi = x) = P (Yi ≤ y|Xi = x)

= P





 1

N

N∑

k=1

W 2
i (k/N)

)1/2

≤ y

∣∣∣∣∣∣
W 2

i (1) = 2x + 1




= P




(
1
N

[
N−1∑

k=1

W 2
i (k/N) + 2x + 1

])1/2

≤ y




= P

(
N−1∑

k=1

W 2
i (k/N) + 2x + 1 ≤ Ny2

)

= P

(
N−1∑

k=1

W 2
i (k/N) ≤ Ny2 − 2x− 1

)
. (13)

Equation (13) suggests that we need to discuss the distribution of a sum of squared non-
independent zero-mean Gaussian variables.
Denote the Cramér-von Mises distribution as

V :=
N−1∑

k=1

W 2
i (k/N) , (14)

and
FV (v) = P (V ≤ v) , v ∈ R+. (15)

Our approach relies on an invariant symmetry property of the random V (see Ruben, 1962).
In particular, Ruben (1962) shows that the cumulative distribution function of V can be



written as series expansions of Chi-squared cumulative distribution functions, i.e. there
exists a sequence of real numbers {λj}j∈N such that

FV (v) =
+∞∑

j=0

λjFN−1+2j(v) , (16)

where FN−1+2j is the cumulative distribution function of a Chi-squared random variable
with (N − 1 + 2j) degrees of freedom. By substituting the explicit expression of the F 's
in (16), we obtain

FV (v) =
+∞∑

j=0

λj

∫ w

0
e−s/2s(N−3+2j)/2ds , (17)

where we assume without loss of generality that the λ's contain also the normalizing con-
stants related to the Chi-squared distributions. By (17), then (13) can be written as

FYi|Xi
(y|Xi = x) = P

(
N−1∑

k=1

W 2
i (k/N) ≤ Ny2 − 2x− 1

)

=
+∞∑

j=0

λj

∫ Ny2−2x−1

0
e−s/2s(N−3+2j)/2ds . (18)

The conditional density function fYi|Xi
is

fYi|Xi
(y|Xi = x) =

+∞∑

j=0

λj
∂

∂y

[∫ Ny2−2x−1

0
e−s/2s(N−3+2j)/2ds

]

= 2Ny · exp
[
−Ny2 − 2x− 1

2

]
×

×
+∞∑

j=0

λj [Ny2 − 2x− 1](N−3+2j)/2 . (19)

By substituting (12) and (19) into (10), we have

fXi,Yi(x, y) = 4NK̄Xi

y√
2x + 1

· exp
[
−Ny2 − 2(2x− 1)

2

]
×

×
+∞∑

j=0

λj [Ny2 − 2x− 1](N−3+2j)/2 . (20)

Finally, from (9) and (20) we have

fZi(z) = 4NK̄Xi

∫ +∞

0

y2

√
2yz + 1

· exp
[
−Ny2 − 2(2yz − 1)

2

]
×

×
+∞∑

j=0

λj [Ny2 − 2yz − 1](N−3+2j)/2dy . (21)

Although rather involved, (21) can in principle be used to derive analytical results on the
Dickey-Fuller distribution.



3. The Multivariate Dickey-Fuller Distribution

This section is devoted to the analysis of the distribution of the multivariate Dickey-Fuller
t-ratio.
Let's de�ne the random vector (Z1, . . . , Zn) of asymptotic distributions under the null,
accordingly with (3) and (6). More precisely, we can write

Zi :=
1
2

(
W 2

i (1)− 1
)
(

1
N

N∑

k=1

W 2
i (k/N)

)− 1
2

i = 1, . . . , n . (22)

Our aim is to provide a closed form expression for the joint density function fZ1,...,Zn of
the random vector (Z1, . . . , Zn).
Here we study the two extreme cases where the series are either independent or perfectly
correlated.

3.1 Independent Series

Assume that the series y's are cross sectional independent. Once that the univariate (marginal)
density has been derived, this case becomes trivial. Indeed, for each (z1, . . . , zn) ∈ Rn,
we can write the density function fZ1,...,Zn simply as

fZ1,...,Zn(z1, . . . , zn) =
n∏

i=1

fZi(zi) , (23)

where fZi(zi) is given by (21).

3.2 Perfectly Correlated Series

Fixed i = 2, . . . , n, we assume that yi and yi−1 are perfectly correlated, and there exists a
constant αi such that

yi = αiyi−1 . (24)

Of course, the ordering of the series is purely conventional. Any ordering would be possi-
ble just by changing the parameter αi.
The dependence among the variables is re�ected on the dependence among the Wiener
processes Wi. In particular, by using the derivation of the Dickey-Fuller asymptotic distri-
bution, then condition (24) can be rewritten in terms of the Wiener processes Wi:

Wi = αiWi−1 . (25)

By substituting (25) into (22), we obtain

Zi :=
1
2

(
(αiWi−1(1))2 − 1

)
(

1
N

∑N
k=1(α

2
i W

2
i−1(k/N)

) 1
2

= |αi|Zi−1 +
1
2(α2

i − 1)
(

α2
i

N

∑N
k=1 W 2

i−1(k/N)
) 1

2

i = 1, . . . , n . (26)



Formula (26) allows us to write explicitly the conditional cumulative distribution of Zi

given Zi−1. Consider zi, zi−1 ∈ R. Then (18) gives

P (Zi ≤ zi|Zi−1 = zi−1) =

= P


 |αi|Zi−1 +

1
2(α2

i − 1)
(

α2
i

N

∑N
k=1 W 2

i−1(k/N)
) 1

2

≤ zi

∣∣∣∣∣∣∣
Zi−1 = zi−1




= P




N∑

k=1

W 2
i−1(k/N) ≤

[
2|αi|(zi − |αi|zi−1)√

N(α2
i − 1)

]2

 . (27)

Now, consider the joint density function of the random variable (Z1, . . . , Zn). Given
(z1, . . . , zn) ∈ Rn, the dependence condition (25) implies

fZ1,...,Zn(z1, . . . , zn) = fZ1(z1) ·
n∏

i=2

fZi|Zi−1
(zi|Zi−1 = zi−1) , (28)

where
fZi|Zi−1

(zi|Zi−1 = zi−1) =
∂

∂zi
[P (Zi ≤ zi|Zi−1 = zi−1)] . (29)

Consider i = 1 . . . , n and zi, zi−1 ∈ R. Then (18) gives

P (Zi ≤ zi|Zi−1 = zi−1) =
+∞∑

j=0

λj




∫ �
2|αi|(zi−|αi|zi−1)√

N(α2
i
−1)

�2
0

e−s/2s(N−1+2j)/2ds


 . (30)

The density function of Zi conditional on Zi−1, fZi|Zi−1
, is then

fZi|Zi−1
(zi|Zi−1 = zi−1) =

+∞∑

j=0

λj
∂

∂zi




∫ �
2|αi|(zi−|αi|zi−1)√

N(α2
i
−1)

�2
0

e−s/2s(N−1+2j)/2ds




=
8α2

i (zi − |αi|zi−1)
N(α2

i − 1)2
· exp



−

1
2

[
2|αi|(zi − |αi|zi−1)√

N(α2
i − 1)

]2


×

×
+∞∑

j=0

λj

[
2|αi|(zi − |αi|zi−1)√

N(α2
i − 1)

]N−1+2j

. (31)

4. Conclusions

In this paper an explicit approximation of the density function of the multivariate Dickey-
Fuller random variable is provided. We proceed by analyzing at �rst the univariate case.
Our result is grounded on an invariant symmetry property of some random variables in-
volved in the Dickey-Fuller distribution (see Ruben, 1962).
As in Abadir (1995), the followed approach allows us to avoid the conventional simulation-
based approach. The theoretical results regarding the univariate case are then extended to
the multivariate framework under the assumptions of independent and perfectly correlated
series.
Although the independent and the perfectly correlated cases are two extreme settings, they
represent the starting point for exploring models with less restrictive assumptions. In this



respect, the analysis of a general cross sectional dependence case is already in our research
agenda.
Moreover, while we deal here only with the Dickey-Fuller distribution in the absence of
deterministic terms, further extensions are under scrutiny to cope with the �constant� and
�constant plus linear trend� cases.
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