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ABSTRACT Location fingerprinting is a technique widely suggested for challenging indoor positioning.
Despite the significant benefits of this technique, it needs a considerable amount of time and energy to
measure the Received Signal Strength (RSS) at Reference Points (RPs) and build a fingerprinting database
to achieve an appropriate localization accuracy. Reducing the number of RPs can reduce this cost, but it
noticeably degrades the accuracy of positioning. In order to alleviate this problem, this paper takes the
interior architecture of the indoor area and signal propagation effects into account and proposes two novel
recovery methods for creating the reconstructed database instead of the measured one. They only need a few
numbers of RPs to reconstruct the database and even are able to produce a denser database. The first method
is a new zone-based path-loss propagation model which employs fingerprints of different zones separately
and the second one is a new interpolation method, zone-based Weighted Ring-based (WRB). The proposed
methods are compared with the conventional path-loss model and six interpolation functions. Two different
test environments along with a benchmarking testbed, and various RPs configurations are also utilized to
verify the proposed recovery methods, based on the reconstruction errors and the localization accuracies
they provide. The results indicate that by taking only 11% of the initial RPs, the new zone-based path-
loss model decreases the localization error up to 26% compared to the conventional path-loss model and
the proposed zone-based WRB method outperforms all the other interpolation methods and improves the
accuracy by 40%.

INDEX TERMS Cost reduction, indoor localization, interpolation, location fingerprinting, path-loss
propagation model, reconstructed database.

I. INTRODUCTION

W ITH increasing user demands on Location-based Ser-
vices (LBS) and Social Networking Services (SNS),

indoor positioning has become more crucial. Satellite posi-
tioning such as Global Positioning System (GPS) supports
outdoor localization well, due to the appropriate power level
and good visibility of satellites. However, because of the
general failure of theses technologies in indoor environment,
non-satellite-based technologies are vastly proposed for in-
door localization [1], [2]. Wireless Local Area Networks
(WLAN) have widely been employed for indoor localiza-
tion because of two main reasons: the wireless networks
are widely available in indoor areas, and almost all mobile

devices are equipped with Wi-Fi receivers, which make posi-
tioning feasible for the users [3].

Location fingerprinting technique is one of the most sug-
gested methods for indoor positioning [4]. The main advan-
tage of location fingerprinting is its capability of alleviating
the multipath and Non-Line-of-Sight (NLOS) propagations
problems in indoor environments. Furthermore, it needs no
additional infrastructure hardware as Wi-Fi access points
(APs) are already deployed indoors, and the Received Signal
Strength (RSS) values are easily accessible from the Appli-
cation Programming Interface (API) of mobile devices. It has
two stages: training and positioning. It stores the location-
dependent characteristics of a signal collected at Reference
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Points (RPs) in a database in the training stage, and in
the positioning stage, data mining methods are applied to
approximate the position of the user based on the fingerprint
of the user and the database. In general, the precision of
location estimation depends on the density of RPs, accuracy
of measured RSSs and the estimating algorithm [5], [6].

Despite the aforementioned advantages, there are some
drawbacks for fingerprinting method. The initial deploying
of the training stage in the area of operation and collecting
many measurements at different locations to construct the
database are so costly in terms of required time, equipments,
and human efforts. The cost varies based on the size of
the environment, the number of RPs, and the number of
measurements per location. In addition, it is necessary to
rebuild the database in case of modifications or changes in
the environment. Furthermore, some parts of the area may be
inaccessible or restricted in practical situations, preventing
the surveyors to construct an appropriate fingerprint database
for the entire area [7]. It is also suggested to record the
fingerprints for different body orientations so that the effect
of orientation remains minimal [4]. All these limitations
of fingerprinting technology make the training stage costly,
which result in failing the fingerprinting procedure when the
rapid deployment is required.

One of the main challenges of fingerprinting localization is
how to reduce the training cost [8], [9]. Various methods have
been suggested for constructing the database by omitting
some of the RPs to save the time/manpower consumptions.
Despite the fact that reducing the number of RPs greatly
decreases the surveying cost, it dramatically degrades the
positioning accuracy as well. Therefore, it is of interest to
find a method which could lessen the accuracy degradation
along with the cost reduction.

This paper focuses on taking the interior architecture and
environmental effects of the indoor area into account for
the purpose of taking back the lost localization accuracy
when the number of RPs is highly reduced in the low-cost
indoor location fingerprinting. Therefore, a new zone-based
model is proposed for RSS reconstruction, which deals with
different zones separately. Due to the signal propagations and
attenuations in indoor areas, the zones are defined here by
the the interior architecture of the buildings, such as rooms
or corridors divided by walls, glasses, etc. We apply this
zone-based model on the conventional path-loss model and
six interpolation methods including Nearest Neighbor (NN),
Linear, Natural, Cubic spline, Inverse Distance Weighting
(IDW), and Radial Basis Function (RBF) to recover the RSS
values at the query points. According to the propagation
model around an AP, a new zone-based Weighted Ring-
based (WRB) interpolation method is also suggested here
to improve the accuracy. The reconstructed database can
also help the fingerprinting network designers have a bright
insight into the network error merely by measuring RSS
at a few numbers of RPs with the minimum effort. Based
on the application and a desirable network performance for
that, they can choose the necessary numbers of RPs and

APs as they affect the localization accuracy [5], and make
a trade-off between the accuracy and the needed time/energy
costs. For location estimation techniques, we have adopted
a well-known deterministic algorithm, Weighted-K-Nearest-
Neighbor (WKNN) method [4].

The major contributions of the paper are listed as follows:
• A new zone-based path-loss model is proposed, which

outperforms the conventional path-loss model and pro-
vides more accurate recovered RSS values and less
positioning error.

• A novel zone-based Weighted Ring-based (WRB) inter-
polation method is introduced that can decrease the in-
door localization error compared to the other renowned
interpolation methods.

• A comparative analysis in two groups of recovery
methods is fully provided including conventional and
suggested zone-based path-loss and six interpolation
methods.

• Extensive experiments in three real-world indoor
WLAN environments are carried out to evaluate the
performance of our proposed methods in terms of re-
construction and localization accuracies.

The remainder of the paper is organized as follows. Section
II highlights the related studies on reducing the fingerprinting
surveying effort and the novelties of this paper. In Section
III, the indoor location fingerprinting system model and
notations are determined and two stages of that are described.
Section IV, introduces the proposed methods for recovering
the fingerprinting database in details. The experimental test
environments are presented in Section V and the evaluation
metrics and parameter tuning are discussed there. Section VI
is devoted to the performance evaluation. The reconstruction
errors and localization errors are also fully assessed and
compared when various methods are used for generating the
recovered database. Different configurations of RPs, compu-
tational complexities, and device diversity are also investi-
gated and discussed there. In addition, the proposed methods
are evaluated in a benchmarking testbed at the end of Section
VI. Finally, the conclusions and the future work are given in
Section VII.

II. RELATED WORK
There are a lot of researches have been done to reduce the
training stage cost with various techniques. These studies
can be mainly divided into three categories. In the first
group, no one is specifically employed to survey the fin-
gerprinting area. Authors in [10] introduced Simultaneous
Localization and Mapping (SLAM) in which an equipped
autonomous mobile robot was utilized to create a database of
an unknown environment by collecting RSS measurements
at several locations. This technique decreases the labor work,
but needs additional hardwares. There might also be some
accessibility limitations or security regulations for the mobile
robot during the data collection process [11]. Furthermore,
due to the widespread use of mobile devices, crowdsourcing
methods [12] can also construct a fingerprint database using
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the collected crowdsourced Wi-Fi RSS data from several
users. However, designing a suitable incentive mechanism
in crowdsourcing-based indoor localization systems and lack
of quality control of crowdsourced data are still two main
challenges of this technology [13].

The second group of techniques can generate the database
analytically without any site survey. For instance, the ray
tracing-based methods construct the fingerprinting database
analytically, in which the knowledge about the precise build-
ing structure and material details of walls and roofs are
necessary [14]. The radiosity model was originally adopted in
physics to describe the heat transfer in bodies with different
temperatures [15].

The last group needs to have RSS measurements at some
known RPs, so that they could generate the RSS at more
unknown points and reconstruct the database. There are many
reconstruction methods employed for this purpose, such as
compressive sensing (CS) [16] theory, randomized least ab-
solute shrinkage and selection operator (LASSO) [17], and
Gaussian process (GP) regression [11]. Path-loss model and
interpolation-based methods are also adopted for database
reconstruction purposes using some RPs.

The main focus of this paper is on the last group when
using path-loss model and interpolation-based methods. Uti-
lizing the path-loss model for the purpose of reducing the
database construction effort is discussed in [6], [9], [18],
[19]. They used a log-distance path-loss model to generate
the RSS of unknown locations to build the fingerprinting
database. For this purpose, the actual measurements at for-
merly surveyed RPs are utilized to train the parameters of the
path-loss model. However, due to the complexity of indoor
environments, propagation models cannot precisely predict
the signal fading and multipath effect, which causes lower
positioning accuracy in comparison with the fingerprinting
measurements [20], [11]. In order to improve the accuracy,
authors in [6] tried to decrease the positioning error by
zone-based remedy algorithm which divided the area into
four zones and approximated the position of a device by
finding the zone with maximum overall probability. In [9]
also the path-loss exponent is considered as an additional
fingerprint factor along with the RSS value for each RP to
improve the quality of the fingerprints in the resource-limited
environments. In addition, authors in [18] recommended a
multi-antenna system to provide different path-loss param-
eters at each RP and achieved almost the same localization
accuracy when 33% of surveyed RPs were decreased. This
technique, however, requires deploying additional hardware
in the operation area. Also the use of more advanced path-
loss model with wall attenuations were proposed in [19], in
which the number of walls between APs and RPs needed to
be calculated, making that complicated in many indoor areas.

Inter/extrapolation approaches also can practically de-
crease the number of surveyed RPs [3], [21]. They have
been widely used in the image processing field as well.
Adding more RPs to the fingerprint database with the inter-
polation methods reduces the cost and enhances the local-

ization accuracy [22]. Several interpolation methods such as
the nearest neighbor (NN), linear [3], cubic spline [8], In-
verse Distance Weighting (IDW) [23], Radial Basis Function
(RBF) [24], and Kriging [25] have been applied to generate
the fingerprinting database. A new integrated cubic spline
interpolation approach with manifold learning is proposed
in [21] to enhance the accuracy. The authors in [26] used
linear Delaunay Triangulation interpolation only, whereas
authors in [3] implemented the NN, linear, IDW algorithms
and extrapolation methods to recover the RSS at the query
points. In [27], an adaptive smoothing algorithm is utilized to
tackle the discontinuity of RSS due to the presence of walls
and the complete fingerprint database is then produced using
IDW method. Also K. Arai et al. recommended merging the
measurements from two adjacent RPs and assigning that to
a RP in the middle of them to create a dense fingerprinting
map [28].

The difference of our proposed zone-based model is that
it considers the structural and environmental effects of the
indoor area for fingerprinting localization without any knowl-
edge about the material of walls and floors. When using
path-loss model, it is common to either adopt single fixed
path-loss exponent for all APs to describe the behavior of
all the paths from all APs to all RPs [24], [29], [30] or
different path-loss exponents for different APs over the entire
indoor area [6], [31]–[33]. Both approaches can produce an
error in the RSS estimation and decrease the localization
accuracy, particularly over a large area with several rooms. In
proposed zone-based path-loss model, however, the path-loss
parameters are different for each zone. Also when using the
interpolation, despite the fact that it can significantly decrease
the fingerprinting cost, the related works did not take the
interior architecture influences of indoor areas into account
and still are inefficient in terms of accuracy [34]. Therefore,
we propose an zone-based interpolation model that adapts
more to the characteristics of a fingerprinting network in
indoor environments, which are severely affected by the walls
and the distance of the RPs from the Wi-Fi APs.

III. INDOOR LOCATION FINGERPRINTING
In this section, first the notation of all elements of the
fingerprinting network in this paper is defined and then two
stages of fingerprinting are briefly explained.

A. SYSTEM MODEL AND NOTATIONS
It is assumed that there are A APs at locations
{φ1, φ2, ..., φi, ..., φA} and total N RPs with known loca-
tions, {θ1, θ2, ..., θn, ..., θN}, in a 2D area, where φi =
[xAPi , yAPi ]T and θn = [xRPn , yRPn ]T . There are T collected
fingerprinting measurements of allAAPs averaged and saved
in a database for all RPs.

In order to reduce the surveying cost, we only keep few
number of RPs for training and reconstruct the RSS of
other RPs by the methods presented in the next section.
We call these sets of RPs as the main RPs (MRPs) and
query RPs (QRPs) respectively throughout this paper. The
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number of MRPs and QRPs are denoted by M and Q, where
N = M +Q. The measured fingerprint database (Y ) and the
recovered one (Ŷ ) associated to all N RPs is shown bellow.
Both databases have the same size of N × (A+ 2) and differ
only in the RSS of the QRPs.

Y =

[
θMRP , SMRP

θQRP , SQRP

]
, (1a)

Ŷ =

[
θMRP , SMRP

θQRP , ŜQRP

]
, (1b)

where θMRP and θQRP are the x,y locations of MRPs and
QRPs. The matrices SMRP and SQRP include the measured
RSS vectors of all MRPs and QRPs and ŜQRP consists of
reconstructed fingerprint vectors of all QRPs. To general
refer to the fingerprint vector of nth RP, we use SRPn =
[sn,1, sn,2, ..., sn,i, ..., sn,A] in this paper where n ∈ MRP
or n ∈ QRP .

For the localization accuracy calculation of an indoor area,
there are assumed P number of Test Points (TPs) randomly
distributed over the whole area, where the localization stage
of fingerprinting is carried out using the created databases
discussed above. The positions of TPs are assumed to be
unknown and estimated in the localization process, so that
we could have an approximation about the localization error
of measured/reconstructed databases. The real and estimated
position of the pth TP is considered as θTPp and θ̂TPp , respec-
tively and the fingerprint vector of that TP from all APs is
shown by STPp . The complete list of notations is shown in
Table 1.

B. TRAINING STAGE
The first stage of fingerprinting is to establish a database for
allN RPs in 2D space, which will be used as training samples
in the positioning stage. The average of all measurements
from each AP is calculated, and is logged along with the

TABLE 1. List of notations

Notation Description

AP, A Access Points, the number of APs
RP, N Reference Points, the number of RPs
TP, P Test Points, the number of TPs
MRP, M Main RPs, the number of MRPs
QRP, Q Query RPs, the number of QRPs
Y , Ŷ Measured and reconstructed fingerprinting databases
T Number of samples per location
SRP
n , ŜRP

n Measured and reconstructed RSS vectors of nth RP
STP
p Measured RSS vector of pth TP
sn,i, ŝn,i Measured and reconstructed RSS from ith AP at nth RP
φi Location of ith AP
θn Location of nth RP
θTP
p , θ̂TP

p Real and estimated locations of pth TP
Z Number of zones
Mz Number of MRPs in zth zone
Qz Number of QRPs in zth zone
Mzr Number of MRPs in zth zone and rth ring
Qzr Number of QRPs in zth zone and rth ring
rmax Number of rings for an AP

corresponding coordinates in the database. For the purpose of
lowering the surveying cost, the surveying is carried out only
on a limited numbers of RPs and the fingerprints of many
other RPs are predicted and added to the database. In the real
world, no measured database can cover all areas of interest
even when the number of RPs is high. Therefore, utilizing
RSS prediction for RPs not only saves the cost of training but
also helps to cover the area more appropriately.

C. POSITIONING STAGE
In the positioning stage or online localization stage, the
location of a TP is estimated employing the measured RSS
fingerprints from all APs at that point. For location estima-
tion and positioning results comparison, the deterministic
approach is exploited here as it is the most commonly used
localization algorithm. The location estimation is carried out
by comparing the fingerprints of TP with the reconstructed
database using Euclidean distance [35]. The Euclidean dis-
tance between TP and nth RP is calculated by

Dn = ‖STP − SRPn ‖. (2)

If Dn is the minimum Euclidean distance between TP and
all RPs, the nth RP is called the nearest point to TP. In WKNN
method, the weighted average of the coordinates of these K
nearest points are calculated. The weighting values are the
inverse of the Euclidean distance. The estimated location of
TP by WKNN algorithm is

θ̂WKNN =

∑K
n=1

1
Dn
θn∑K

n=1
1
Dn

. (3)

IV. PROPOSED RECONSTRUCTED FINGERPRINTING
DATABASE
In this section, two proposed methods to reconstruct the
fingerprinting database are explained.

A. A ZONE-BASED PATH-LOSS MODEL
To recover the RSS values at different points in an indoor
environment for completion of the fingerprinting database, a
commonly used large scale model which is the log-distance
path-loss model can be used [36]. To simulate the strength of
a propagated signal in indoor environments more accurately,
including the impact of obstacles is also necessary. The RSS
values from the ith AP are then obtained as follows [37]

ŝn,i = sd0 i − 10αi log

(
dn,i
d0

)
−
∑
w

Lw −
∑
f

Lf +Xσi ,

(4)
where ŝn,i (dBm) is the power received from the ith AP at the
nth RP with the dn,i physical distance to that AP in meter.
sd0 i (dBm) is the power received at d0-meter (usually 1m)
from the ith AP and αi is the path-loss exponent. There are
constant attenuations if the signal passes through walls and
floors. Lw and Lf are the attenuation constants in dB for the
wth and f th wall and floor between the AP and the point at
distance dn,i.Xσi ∼ N (0, σi) models the path-loss variation
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at one point due to the shadowing caused by obstacles in
propagation and assumed to be a zero mean Gaussian random
variable with a standard deviation given by σi (dB). In order
to employ the path-loss model, the positions of APs should
be known. There are researches presented some techniques
to estimate the APs’ locations in case they are unknown [32].

A common way of training the path-loss parameters is
to use the Least Squares (LS) technique on the RSS data
collected at RPs across the whole area. However, the RSS
measurements vary in different regions based on the distance
from APs and the paths and environments through which the
signal passes [38]. Therefore, taking all MRPs of the entire
area and calculating a single path-loss exponent to estimate
the RSS of all QRPs definitely degrades the quality of the
predicted RSS and the localization accuracy.

The signal propagation in indoor areas is complex and
depends on various environmental parameters such as mul-
tipath, refraction, blockage, and noise. In addition, according
to Tobler’s first law of geography [39], each value is related
to all other values on a geographic surface, but near values
are more related than distant ones [7]. Therefore, here a new
zone-based model is proposed for the RSS reconstruction at
QRPs, which supposes different zones for an area of interest
regarding the interior structure and signal propagations and
attenuations there. The zones are separated by walls, glasses,
etc. This model considers that all the points inside one zone
are more related to each other, since not only they are close
but also they are placed in almost the same situation from
an AP regarding LOS/NLOS radio propagations. In the pro-
posed zone-based path-loss model, the path-loss parameters
are calculated separately for each zone using only the MRPs
inside that zone. As a result, each zone is assigned with its
own path-loss parameters.

If we suppose Z number of zones for an indoor area,
{ζ1, ζ2, ..., ζz, ..., ζZ}, we re-write (4) and consider the zone-
based path-loss model for a RP in zth zone as follows

ŝn,i = Ai,z + 10αi,z log

(
dn,i
d0

)
+Xσi,z , (5)

where Ai,z (dBm) is the sum of three terms of (4): sd0 i,∑
w Lw and

∑
f Lf . In contrast to (4), here it is not re-

quired to have a prior knowledge on the transmitter power,
walls/floors materials and attenuations, and calculations of
the number of walls/floors by examining several paths from
an AP to a receiver. For generating the recovered database,
all Ai,z , αi,z , and σi,z , which we consider as path-loss
parameters here, have to be computed for each zones based
on each AP. The values of Ai,z and αi,z for ith AP in zth

zone are trained by the LS method using the measured RSS
of MRPs inside ζz . Knowing Ai,z and αi,z , the value of σi,z
can be also obtained utilizing the measured values and the
predicted ones as below

σi,z =

√√√√ 1

Mz

Mz∑
n=1

(SRPn − ŜRPn )2, (6)

where Mz is the total number of MRPs in the zone ζz . We
can expect that the zone-based path-loss parameters result in
a more accurate reconstructed database and can eventually
decrease the positioning error. Hence, we need to apply (5)
and (6) for all the zones using their own MRPs to gain the
specific path-loss parameters of the zones and then calculate
the RSS values at QRPs. To the best of our knowledge, this
is the first time the path-loss parameters are treated this way.

The suggested zone-based path-loss model can be also
used in distance-based applications in which the distance
between a point and an AP is of interest based on the
measured RSS at that point. If we assume that the nth RP
is located inside the zth zone, the estimated distance to the ith

AP is calculated in meters based on (5) as below

d̂n,i = 10
sn,i−Ai,z

10αi,z . (7)

Here, Xσi,z can be ignored since the average RSS value
for RPs, sn,i, is used. The distance estimation error in meters
can be then calculated as follows

ed = |d̂n,i − dn,i|. (8)

Note that in the conventional path-loss model, the whole
indoor area is treated as one zone. Therefore, z in (5) to (8)
refers to the whole environment and can be ignored.

B. ZONE-BASED INTERPOLATION METHODS
Interpolation is a mathematical technique that exploits the
function values at known points to predict the function values
at the query points. Using interpolation techniques in location
fingerprinting produces a denser database even by measuring
the RSS values at a few number of RPs [17]. If the points
are not placed in a regular or uniform grid, the interpolation
called scattered data interpolation. Here we consider scat-
tered data interpolation techniques so that we could treat the
fingerprinting localization in a more general way.

Various interpolation methods usually produce different
values at query points. Therefore, in location fingerprinting
technique, we need to apply them depending on the required
accuracy and complexity [22]. Before applying interpolation
methods, we need to understand their behavior for estimating
the RSS values when they are employed in fingerprinting
networks with various RPs and APs configurations. The
parameter fitting processes should be also carried out to find
the best behavior of a interpolation method with respect to
the desired fingerprinting network.

Six well-known interpolation functions are used and com-
pared here: NN, linear, natural, cubic spline, IDW, and RBF.
In interpolation, a convex hull is called to the smallest
convex polygon containing all the given points. For some
interpolation algorithms, such as linear, natural and cubic
spline, the QRPs need to be inside the created convex hull by
MRPs. Hence, they provide a limit for choosing the location
of MRPs. However, for other three methods it does not differ
that the QRPs are inside or outside of the convex hull.
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According to the mentioned Tobler’s first law of geography
and similar to what we have discussed for the zone-based
path-loss model, here we also propose to apply zone-based
method to the interpolation methods. Some interpolation
functions are intrinsically local such as the ones use a Delau-
nay triangulation [40] in which an interpolation is employed
within each triangle. However, the proposed zone-based
model is inspired by the characteristics of a fingerprinting
network in indoor environments that are severely affected by
the walls and the distance of the RPs from the Wi-Fi APs.
Based on that, a new interpolation method is also proposed
in the next sub-section.

1) Proposed Weighted Ring-based (WRB) interpolation
The main idea behind this proposed method is that the points
at the same distance from an AP are supposed to receive the
same amount of power due to the APs’ isotropic propagation
patterns. Therefore, this method considers some virtual rings
around the AP similar to Fig. 1 and supposes the same RSS
for all the points inside each ring. All the rings have the same
width that should be tuned first. The WRB method includes
three steps explained below.

Step 1: The algorithm starts from the first ring (r1) near
the AP to the furtherest ring (rmax) and finds all the MRPs
and QRPs inside each ring. If there is no QRPs inside a ring,
we move to the next ring.

Step 2: If there are Qr QRPs and Mr MRPs inside ring
ri, the RSSs of all QRPs in that ring are considered the same
and equal the mean RSS of those Mr MRPs as follows:

ŜRPq,ri =
1

Mr

Mr∑
m=1

SRPm,ri , q = 1, 2, ..., Qr, (9)

where SRPm,ri is the measured RSS of mth MRP inside ring ri.

FIGURE 1. WRB interpolation concept. Showing an AP and the virtual rings
around that in a typical indoor environment, includng six zones, MRPs, and
QRPs.

Step 3: If there are Qr QRPs but no MRPs inside ring ri,
we need to employ MRPs in upper and lower rings. For this
purpose, we find the two upper and two lower rings such that
all of which include at least one MRP. These upper and lower
rings are denoted by ru1 , ru2 and rl1 , rl2 , respectively. We
also assign a weight to the RSS of MRPs in each of rings, ru1 ,
ru2

, rl1 , and rl2 , according to the inverse of their distances
to the current ring, ri. The corresponding weights then are
wu1

= 1
|ri−ru1 |

, wu2
= 1
|ri−ru2 |

, wl1 = 1
|ri−rl1 |

, and wl2 =
1

|ri−rl2 |
. Therefore, the RSS of QRPs inside ri are calculated

as below

ŜRPq,ri =

∑2
i=1 wui S̄

RP
m,rui

+
∑2
j=1 wlj S̄

RP
m,rlj∑2

i=1 wui +
∑2
j=1 wlj

, q = 1, 2, ..., Qr,

(10)
where S̄RPm,rui and S̄RPm,rlj are the mean RSS of MRPs inside
upper and lower rings and are computed similar to (9).
Therefore, in the WRB approach, we basically deal with the
virtual rings around an AP, separately. In other words, the
QRPs inside each ring are affected only with MRPs inside
that ring or with MRPs inside the two nearest rings in case
no MRPs are located in that ring.

Similar to what we mentioned for the proposed zone-based
model, the zone-based version of the WRB interpolation
method also employs only the MRPs inside each zone for
predicting the RSS values of QRPs in that zone. So the RSS
values of the QRPs are calculated based on the RSS of the
most related MRPs in the same ring of the same zone. That
is why we expect the zone-based WRB to show the low
positioning error. The whole procedure of zone-based WRB
is described in Algorithm 1.

V. EXPERIMENTAL SETUP
The accuracy of the mentioned path-loss and interpolation
methods can be evaluated only if the measured RSS data

Algorithm 1 Calculate the RSS of QRPs from one AP in the
zone-based WRB method
Input: The RSS values and locations of MRPs in all zones
Output: The RSS values of QRPs in all zones

1: for z = 1, 2, .., Z do
2: for r = r1, r2, .., rmax do
3: if any QRPs of zth zone are located in ring r (Qzr 6=

0) then
4: if any MRPs of zth zone are located in ring r

(Mzr 6= 0) then
5: Run (9)
6: else
7: Find ru1

, ru2
, rl1 , rl2 inside zth zone

8: Compute wu1
, wu2

, wl1 , wl2
9: Run (10)

10: end if
11: end if
12: end for
13: end for
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are available at QRPs. Therefore, two experimental tests
are carried out to record the fingerprints of all MRPs and
QRPs so that we can analyze the RSS data that presented
methods could generate and the accuracy they provide. In
order to compare all the methods, MRPs are chosen such
that all the QRPs could be placed inside the convex hull
and the Delaunay triangulation could be done for the linear,
natural and cubic spline interpolation methods. Therefore,
we choose RPs at the corners of each zone as MRPs, so all
QRPs are inside the convex-hull created by those MRPs and
the triangulation-based interpolation techniques can be also
supported. Other MRPs’ configurations will be discussed in
sub-section VI-C.

A. EXPERIMENTAL TESTBEDS
The RSS fingerprint samples are recorded by a Samsung
Galaxy SM-J500H Smartphone with the Android version of
6.0.1. We have written and developed an Android code for
data acquisition from existing APs, in which RSS values and
Media Access Control (MAC) addresses of sensed APs are
simultaneously sent to the server and recorded there to build
the database.

Testbed 1: The first experimental testbed is located on
the 2nd floor in Cyberspace Research Institute at Shahid
Beheshti University. It has dimensions of 51 m by 18 m
in x and y directions. Fig. 2a illustrates the layout of this
experiment which is a typical indoor office environment
consisting of fifteen zones, including eleven rooms and a
four-section corridor. Here the rooms or room-sized sections
are considered as the zones. In this experiment, there are
354 RPs and 30 TPs. The RPs are distributed as evenly as
possible. There are 9 APs sensed when the Wi-Fi data are
collected. At each RP the user faces south first and records
100 RSS vectors from all the sensed APs in 10 s. (Note that
we can sample in the 1 or 1.5 s intervals to avoid getting RSS
replicates). The orientation is then changed to the west, north,
and east. The total number of the temporal samples logged
per location from each AP is 400 in four directions within 40
seconds. The MRPs, QRPs, TPs, and APs distributions are
also shown in Fig. 2a. Two of the APs, AP8 and AP9, are
located downstairs. Surveying this area took approximately
15 hours and a lot of energy from the surveyor. If some of the
APs are not sensed at one RP, the corresponding RSS value
is assigned to −110 dBm to show its unavailability.

Testbed 1- RP removal: To decrease the surveying cost
by employing the proposed methods, we deliberately remove
75.7% of RPs (268 points) from the database and consider
them as QRPs, RSS of which need to be predicted employing
the path-loss and interpolation methods. The remained 86
MRPs are used to estimate the RSS of the QRPs. By doing
so, the 75.7% of the needful surveying time and energy are
actually reduced, and the area can be surveyed in less than 4
hours instead of 15 hours. The location of TPs are the same
as before so that we could have a fair comparison.

Testbed 2: The second experimental testbed shown in Fig.
2b is the former experiment in an indoor office area on the

4nd floor of Electrical Engineering and Telecommunications
building at University of New South wales [41], [5]. The
device used for data acquisition was a Compaq iPAQ 3970.
The dimensions are 23 m by 11 m in x and y directions,
including seven zones. There are 130 RPs, 28 TPs and 5
APs in this experiment. The data is collected in all four
orientations with total 12 samples at each RP.

Testbed 2- RP removal: In this experiment, we remove
68% of RPs from the fingerprinting database, so the numbers
of MRPs and QRPs are 42 and 88, respectively. The location
of TPs are also the same as before.

Because the number of zones, the total number of RPs, and
the structure of indoor environments are distinct in testbed 1
and 2, so the number of MRPs/QRPs will be also different
in both testbeds, which results in different percentages of
removed RPs. The same method and equipment are used
for the data acquisition at TPs in the positioning stage.
However, users usually have different types of equipments
in the real situations than what has been formerly used in
the training stage. Two different devices are employed in this
paper in these two testbeds. The effect of different devices
and handling device diversity is discussed later in sub-section
VI-E.

B. EVALUATION METRICS
1) Reconstruction error
In order to assess the reconstructed RSS values obtained
by the methods presented in the previous section, the Mean
Absolute Error (MAE) at the nth RP is computed between the
estimated and actual fingerprints in dB as follows

MAEn =
1

A

A∑
i=1

|sn,i − ŝn,i|, (11)

where n ∈ QRP , sn,i is the formerly measured RSS value
of APi in the training stage and ŝn,i is the corresponding
reconstructed value.

2) Localization error
For evaluating the localization accuracy with WKNN algo-
rithms, we used the distance error between the estimated and
true locations. If there are P number of TPs and the real
and estimated position of the pth TP is considered as θTPp
and θ̂TPp , the Mean Distance Error (MDE) of fingerprinting
network is defined in meter by [17]

MDE =
1

P

P∑
p=1

‖θ̂TPp − θTPp ‖. (12)

C. PARAMETERS TUNING
All the mentioned methods are sensitive to the input parame-
ters and we choose their values based on the best results they
have provided. For IDW, the power to the distance weight
is set to 2, which is its optimal value for these experiments.
In RBF interpolation, Multiquadric Radial Basis Function is
considered as it is rated as the best RBF interpolation method
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(a) The layout of testbed 1

(b) The layout of testbed 2

FIGURE 2. The real test experiment layouts with APs, MRPs, QRPs, and TPs locations, where a) includes 15 zones and b) includes 7 zones.

[24]. The width of the rings in WRB method is also tuned to
0.2m.

VI. PERFORMANCE EVALUATION
In this section, the measured and reconstructed RSS values
are analyzed and the reconstruction errors are calculated
for all the presented methods. The localization results are
also brought here to evaluate the accuracy of the location
fingerprinting network. In addition, other MRPs’ configura-
tions are assessed. The computational complexities and the
device diversity issue are also discussed. Finally the proposed
methods are evaluated in a benchmarking testbed.

A. DATA SIMILARITY ANALYSIS AND COMPARISON
This part analyzes the recovered RSS data obtained by path-
loss and interpolation methods and also compares them with
the recorded RSS data formerly collected, when we surveyed
the area. The RSS values of QRPs are reconstructed and
evaluated utilizing all recovery methods based on the data
retrieved using two recovery methods, the conventional and

TABLE 2. Path-loss parameters related to all APs in both testbed areas.

testbed 1 testbed 2

AP# A (dBm) α σ (dB) A (dBm) α σ (dB)

1 -26.25 3.64 6.80 -36.96 2.84 8.41
2 -24.64 3.51 5.56 -50.96 2.01 7.22
3 -19.69 4.28 7.56 -20.65 4.79 4.33
4 -24.63 3.21 5.95 -24.88 4.16 4.62
5 -20.06 4.27 6.28 -24.92 4.06 6.13
6 -22.54 4.26 8.20
7 -23.16 4.27 8.10
8 -26.60 5.33 9.08
9 -38.90 4.91 5.87

the proposed zone-based (ZB) methods. The former consid-
ers all the MRPs to recover the RSS of all QRPs and the latter
examines the MRPs inside each zone to estimate the RSS of
the QRPs in that zone.

In order to estimate the RSS values at QRPs using conven-
tional path-loss model in the whole environment, all the data
available for MRPs are employed to calculate the path-loss
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(a) Testbed 1 (Conventional Path-loss)
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(b) Testbed 1 (Zone-based path-loss)
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(c) Testbed 2 (Conventional Path-loss)
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(d) Testbed 2 (Zone-based path-loss)

FIGURE 3. RSS values comparison between the measured and recovered databases using Conventional path-loss and proposed zone-based path-loss models

parameters in (5) and (6). Table 2 lists the path-loss param-
eters in this case for both test experiments. As it is expected
for testbed 1, the path-loss exponents and attenuations are
higher for AP8 and AP9 since they are located at a lower
floor. These parameters are then exploited to estimate the
RSS of QRPs by (5). For the ZB case, the specific path-loss
parameters of each zone are computed using the MRPs data
within that part and used to approximate the RSS of QRPs
inside that area. Therefore, there will be 15 and 7 sets of
path-loss parameters similar to Table 2 for 15 and 7 zones
of testbed 1 and testbed 2, respectively as shown in Fig. 2.

The RSS values comparison between measured data and
the recovered ones using conventional and zone-based path-
loss models are illustrated in Fig. 3a and Fig. 3b for testbed 1
and in Fig. 3c and Fig. 3d for testbed 2. The figures indicate
that in both cases the estimated data have similar trend
with the measured data but the proposed ZB cases in both
testbeds provide much more similarity. The corresponding
Pearson correlation values of measured and reconstructed
data for each AP are shown in Table 3 for both testbeds.
Comparing results of the conventional and ZB cases in this
Table demonstrates how high the correlation values become
when the zones are considered separately.

TABLE 3. Correlation values between the measured and recovered
databases using path-loss model before and after considering zones.

Correlation values in testbed 1 Correlation values in testbed 2

AP# Conventional Zone-based Conventional Zone-based

1 0.73 0.96 0.63 0.95
2 0.83 0.97 0.74 0.95
3 0.85 0.96 0.82 0.93
4 0.77 0.95 0.90 0.97
5 0.88 0.97 0.91 0.98
6 0.80 0.97
7 0.84 0.98
8 0.83 0.98
9 0.92 0.97

Similar to what we have done for path-loss model, the
interpolation techniques are also assessed. The average corre-
lation values between the measured and recovered databases
over all APs before and after considering zones are shown
in Table 4. The Table implies that the interpolation methods
are also affected in zone-based scenario. In order to confirm
whether the reconstructed RSS values are significantly corre-
lated with the RSS measurements, the two-tailed p-values for
Pearson’s correlation are calculated between the measured
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TABLE 4. Mean correlation values between the measured and recovered
databases for all APs before and after considering zones.

Correlation values in testbed 1 Correlation values in testbed 2

Recovery method Conventional Zone-based Conventional Zone-based

Path-loss 0.83 0.97 0.80 0.96
NN 0.92 0.96 0.84 0.94
Linear 0.93 0.97 0.90 0.96
Natural 0.94 0.97 0.91 0.96
Cubic spline 0.93 0.97 0.89 0.96
IDW 0.91 0.97 0.87 0.96
RBF 0.95 0.97 0.91 0.96
WRB 0.83 0.97 0.86 0.96

RSS database and each of reconstructed databases by the
conventional and zone-based methods. All the p-values are
very small, which are expected as the correlation values are
more than 0.8 in all cases and the sample sizes of testbeds
1 and 2 are almost large and medium. The p-values of the
conventional and the zone-based methods are in order of
10−30 and 10−90 for testbed 1 (sample size of 268), and in
order of 10−7 and 10−20 for testbed 2 (sample size of 88),
respectively. Therefore, the p-values highly decreased when
the zone-based models are applied, which indicates that the
correlation of zone-based databases with the measured one is
statistically more significant, and there is a lower probability
that this strong correlation is due to chance.

For the all path-loss and interpolation techniques, we
compute the MAE between the actual and reconstructed
fingerprints. The average MAE and the standard deviations
of the MAEs over all QRPs are illustrated in Fig. 4. It can
be seen that how much recovery errors are decreased when
zones considered independently. It has noticeable impact
on the path-loss and WRB methods. The zone-based MAE
results are so close for all methods as their correlation values
are almost the same shown in Table 4. However, it is visible
in the figure that the proposed WRB interpolation technique
expresses the minimum average MAE among all recovery
methods in the zone-based case. Comparing MAE of the
path-loss and all interpolation methods demonstrates that the
most influenced methods using zone-based method is the
path-loss model with 57% and 46% error improvement for
testbeds 1 and 2, respectively. RBF also shows the least error
improvement, 31.2% and 31.8% in testbed 1 and 2 areas.

When standard deviations are considered, Fig. 4 indi-
cates the zone-based versions of all mentioned conventional
methods significantly decrease the standard deviations of the
MAE as well. In the zone-based methods, NN provides the
largest standard deviation compared to the others, whereas
all other methods show very similar standard deviations in
both testbeds.

B. LOCALIZATION RESULTS
Reconstructing and recovering the fingerprint database has
been discussed so far and all the eight methods were com-
pared in terms of their RSS similarities with the measured
values. In this part, we move on to the positioning stage of
fingerprinting in order to evaluate and verify the localization
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FIGURE 4. The average MAE and the related standard deviation of measured
and recovered RSS values based on all APs
TABLE 5. MDE and the related standard deviation before and after removing
RPs for both testbed areas

testbed 1 (K = 6) testbed 2 (K = 4)

Recovery method MDE(m) Std. MDE(m) Std.

Full measured 1.45 0.71 1.19 0.76
MRPs only 3.28 1.73 1.97 1.27

performance of our suggested recovery methods in compar-
ison with traditional ones. To have a comparable result with
the real situations, the measured RSS of TPs are considered to
compute the positioning error, as in the real situations also the
users always send their measured fingerprints for localization
to the server regardless of having a measured or reconstructed
database.

Among the deterministic techniques explained in sub-
Section III-C, the WKNN method is employed here as a
positioning algorithm as it provides the highest accuracy.
The WKNN method shows the lowest MDE at K = 6
and K = 4 for the testbeds 1 and 2, respectively, so we
use them throughout the paper. The MDEs and their related
standard deviations before and after removing RPs are listed
in Table 5. As it is shown, the MDEs and their related
standard deviations are higher after RP removal process than
MDEs and standard deviations before removing RPs, because
the localization is carried out only with 24.4% and 32% of
the total RPs in testbeds 1 and 2. By applying the recovery
methods, the RSS of QRPs can be reconstructed so that we
reduce the error obtained by removing the RPs.

The achieved MDEs using all the eight recovery methods
are reported in Table 6, which indicate how localization
accuracy is improved and is getting closer to the actual error
by using reconstructed RSS data. Considering traditional and
proposed path-loss models only, the Table shows that MDE
of proposed zone-based path-loss model is decreased by 31%
and 19% in both testbeds 1 and 2, respectively. Among
all interpolation methods, the suggested zone-based WRB
outperforms traditional methods and provides the lowest
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TABLE 6. MDE and the related standard deviation of using recovered
databases before and after considering zones

testbed 1 testbed 2

Conventional Zone-based Conventional Zone-based

Recovery method MDE(m) Std. MDE(m) Std. MDE(m) Std. MDE(m) Std.

Path-loss 3.20 1.59 2.21 1.37 1.74 1.03 1.41 0.83
NN 2.71 1.58 2.61 1.53 2.14 1.27 1.90 1.03
Linear 2.78 1.74 2.52 1.60 1.68 1.00 1.60 0.97
Natural 2.84 1.86 2.45 1.55 1.68 0.92 1.67 0.89
Cubic spline 2.52 1.58 2.61 1.61 1.75 0.97 1.58 0.88
IDW 2.81 1.73 2.31 1.66 1.69 1.04 1.61 0.93
RBF 2.51 1.49 2.63 1.58 1.63 0.90 1.65 0.86
WRB 2.78 1.50 2.18 1.45 1.72 0.97 1.44 0.85

positioning error. The MDE of zone-based WRB in testbed
1 is reduced by 23.2% and 13.1% compared to highest and
lowest MDEs in traditional methods (Natural and RBF),
and in testbed 2 the error is decreased by 33% and 12%
in comparison with highest and lowest MDEs in traditional
methods (NN and RBF). Furthermore, the zone-based meth-
ods generally gives lower positioning errors except RBF.
The results in Table 6 imply that despite the fact that zone-
based interpolation methods show the lower MAEs according
to Fig. 4, they do not necessarily provide lower MDEs as
well. This outcome corresponds to the results in [3] in which
similar problem is discussed and improving the positioning
accuracy is highlighted rather than finding the best fit for
fingerprints. For instance, although all the zone-based inter-
polation methods shows almost similar MAEs (except NN),
they do not provide the same localization accuracy. Hence,
a high similarity between the measured and recovered RSS
values, does not automatically result in a high positioning
accuracy.

According to Table 6, the proposed zone-based versions
of all mentioned recovery methods, result in lower standard
deviations in localization errors as well. The standard devia-
tions of the proposed zone-based path-loss model and zone-
based WRB are the lowest compared to the others, and also
the closest to the actual standard deviations (shown in Table
5) when the full measured databases are employed.

The cumulative distribution function (CDF) of the local-
ization errors are plotted in Fig. 5 and Fig. 6 for testbeds 1 and
2. The solid black line is the CDF of full workload when the
full measured database are used and the dash black line shows
the CDF of when only MRPs are used for positioning. The
CDF of conventional path-loss and interpolation methods
are also compared with the proposed zone-based path-loss
and zone-based WRB techniques. A recovery method with a
closer CDF to the full measured database demonstrates the
higher efficiency. As can be seen in both testbed areas, the
proposed zone-based path-loss and zone-based WRB outper-
forms traditional methods and their CDF lines are closer to
the CDF of full workload.

Therefore, the accuracy achieved by the proposed methods
and the CDF lines confirm the higher localization perfor-
mance of both zone-based path-loss and WRB methods.

To assess the conventional and zone-based path-loss model
when they are used for ranging, (7) is utilized for all QRPs.
The measured RSS values of QRPs and the zone-related path-
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FIGURE 6. Cumulative distribution functions for all recovery methods in
Testbed 2 environment.

loss parameters are used to estimate the distance between the
QRPs and APs. Then (8) can produce the distance estimation
error for all points regarding each AP. Fig. 7 illustrates the
average distance estimation errors (m) from all QRPs to
each AP using both conventional and zone-based path-loss
models in testbeds 1 and 2. This figure indicates that the
error is noticeably decreased when the zone-based model is
employed. The average error over all APs for conventional
and zone-based path-loss models are 5.92 (m) and 3.40 (m) in
testbed 1 and 4.35 (m) and 2.88 (m) in testbed 2, respectively.
Since in distance-based positioning, reducing the distance
calculation error results in a higher localization and tracking
accuracies [42], we can expect to achieve better positioning
accuracies when the proposed zone-based path-loss model is
used.

In order to statistically evaluate the significance of the
localization accuracy improvement, we adopted the two-
tailed paired-sample T-test similar to [43]. In this paper, the
two proposed zone-based path-loss model and the zone-based
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TABLE 7. The p-values of two-tailed paired-sample T -test on the positioning
distance errors of the zone-based WRB method and other evaluated
interpolation methods

Recovery method NN Linear Natural Cubic spline IDW RBF

p-value (Testbed 1) 0.06 0.006 0.01 0.09 0.01 0.10
p-value (Testbed 1) 0.002 0.03 0.09 0.03 0.07 0.09

WRB method were evaluated as follows:
i) The positioning distance errors before and after applying

proposed zone-based method on path-loss model are statisti-
cally compared. The degree of freedom for both testbeds is
29. The p-values obtained are 0.002 and 0.028 for testbeds 1
and 2, which are lower than the significance level of 0.05.
Therefore, there is a statistically significant difference in
the localization accuracies achieved by the conventional and
zone-based path-loss models.

ii) The positioning distance errors of the zone-based WRB
and any of conventional NN, Linear, Natural, Cubic spline,
IDW, and RBP interpolation methods were statistically com-
pared. The degree of freedom for both testbeds is 29. The
p-values results are reported in Table 7, which indicates that
the localization accuracy of the zone-based WRB model is
significantly different from accuracies of other interpolation
methods when the significance level is set to 0.1.

C. VARIOUS RPS RATIOS
Here we investigate the conventional and zone-based re-
covery methods in various ratios of the selected MRPs. In
sub-section VI-B, we were limited for choosing the MRPs
because the QRPs had to be inside the convex hull created by
MRPs for triangulation-based interpolation techniques. Here,
however, we only consider path-loss model and the non-
triangulation-based interpolation methods, so the location of
MRPs/QRPs can be anywhere. We are also free to remove
more of those MRPs, since there is no need to create the
convex hull. We try to keep at least two and three MRPs
inside small and large zones, respectively. If one MRP is
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environment.

only considered, an appropriate interpolation cannot be sup-
ported. Furthermore, as the aim of this paper is reducing the
surveying cost of the fingerprinting approach, only the low
percentages of MRPs to all RPs are assessed here. The NN
method is also excluded as it provides very poor results when
MRPs are very sparse and far from each other. Fig. 8 and Fig.
9 illustrate the MDEs for various ratios of MRPs’ number
to the total number of RPs in percent for testbeds 1 and 2,
respectively. In testbed 1, the numbers of MRPs are 38, 61,
and 86 out of 354 RPs, which are 11%, 17% and 24% of all
RPs. The numbers of MRPs in testebed 2 are 16, 27, and 42
out of 130 RPs, which are 12%, 21% and 32% of all RPs.
The figures demonstrate that employing recovery methods to
reconstruct the RSSs of QRPs can provide higher localization
accuracies compared to using MRPs only which is shown
by the black line. It indicates the influence of the number of
RPs on positioning error even when the reconstructed version
of RSSs are used for RPs. Moreover, the figures imply that
MDE is improved by increasing the number of MRPs, since
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higher number of measured RPs contributes to carry out the
localization. In addition, similar to what we achieved in sub-
section VI-B, the MDE of zone-based methods is less than
the conventional ones even in lower percentages of MRPs’
number (except for RBF as seen before). The figures also
show that both the proposed zone-based path-loss method
and the zone-based WRB interpolation method outperform
the other recovery methods when different numbers of MRPs
are considered. The suggested zone-based WRB provides the
highest accuracy even when we have a very low number of
MRPs.

According to Fig. 8, when the 89% of surveying cost is
reduced, utilizing the zone-based WRB helps improve the
accuracy by 40%. In testbed 2 also, the zone-based WRB
enhances 30% of the localization error when the surveying
cost is decreased by 88%. Comparing conventional and pro-
posed zone-based path-loss models only in the lowest MRPs
numbers of testbeds 1 and 2, the zone-based version enhances
the positioning accuracy by 26% and 19%, respectively.

This procedure can help fingerprinting network designers
understand the behavior of the system and its localization
accuracy merely by measuring RSS at a few numbers of
RPs with minimum effort. Based on the application and a
desirable network performance for that, they can choose the
necessary numbers of RPs and APs and make a trade-off
between the accuracy and the essential time/energy costs.

D. COMPUTATIONAL COSTS COMPARISON

In this part, we discuss the computational costs of all the eval-
uated methods before and after applying zone-based model
on them. The significant point here is that we are dealing with
the training stage only, which is done offline. Therefore, the
computational costs here are only related to the training stage
and do not affect the online localization process, in which
the used memory and running time are much more critical.
We assess the computational costs in terms of the required
space (memory) and running time complexity. The needful
space in all mentioned recovery methods is the same because
they all require only as much memory as the size of output
database (Ŷ ). Therefore, by knowing the N × (A+ 2) as the
dimensions of the database and considering B as the number
of required units (e.g. bytes) to save fingerprints at each RP,
the required memory is obtained by BN(A+ 2).

The running time complexities for all evaluated methods
are compared in Table 8. According to this Table, we have a
summation of running times over all zones for zone-based
cases. As the numbers of MRPs and QRPs in each zone,
Mz and Qz , are very much lower than the total numbers of
MRPs and QRPs (M and Q), the number of comparisons is
reduced for the proposed zone-based model. The zone-based
WRB method also shows the lowest time complexity since
the number of MRPs and QRPs at each ring (Mzr and Qzr)
are very low or even zero.

TABLE 8. Time complexity for all recovery methods

Time complexity

Recovery method Conventional Zone-based

Path-loss O(AQM2)
∑Z

z=1 O(AQzM2
z )

NN O(AQM) [46]
∑Z

z=1 O(AQzMz)

Linear O(AQM logM) [47]
∑Z

z=1 O(AQzMz logMz)

Natural O(AQM logM) [47]
∑Z

z=1 O(AQzMz logMz)

Cubic spline O(AQM logM) [47]
∑Z

z=1 O(AQzMz logMz)

IDW O(AQM2) [48]
∑Z

z=1 O(AQzM2
z )

RBF O(AQM2) [49]
∑Z

z=1 O(AQzM2
z )

WRB
∑rmax

r=1 O(AQrMr)
∑Z

z=1

∑rmax
r=1 O(AQzrMzr)

E. DEVICE DIVERSITY
The influence of device diversity on the proposed methods
in the fingerprinting technique can be divided into two parts.
The first one is whether using different devices in the training
stage affects the associated reconstructed databases and the
localization results they provide. Note that we are not talking
about the mixed RSS fingerprints of all devices and we deal
with creating database using the fingerprints of each device
separately. This issue is evaluated in this paper by investi-
gating three experiments with three different devices. The
results demonstrated that all the reconstructed databases us-
ing the proposed zone-based path-loss model and zone-based
WRB interpolation resulted in the lower reconstruction and
localization errors in all three test experiments. Therefore,
the diversity of devices used to collect the RSS fingerprints,
does not affect the results of the proposed methods.

The second part is that the diversity of the users’ devices
in the localization stage definitely affects the localization
results, since different devices may receive significantly dis-
tinct signal strengths from the same AP due to the difference
in hardware. There have been many researches to tackle the
RSS fluctuation and device diversity problems [31], [44],
[45]. Although the focus of this paper is to create a low-
cost database with proposed models, once the database is
constructed, many of the suggested methods in [31], [44],
[45] can be applied on that in order to lessen the influence
of the device diversity on the localization accuracy.

F. TEST ON A BENCHMARKING TESTBED
We evaluated our proposed methods employing another Wi-
Fi fingerprinting database available in the public domain. It is
an important source of common data under the EVARILOS
project. The experiment was carried out by authors of [50],
[51] in the EVARILOS benchmarking Suite (EBS) in Berlin,
which is developed to assess the localization solutions. The
small size office TKN testbed environment (the second floor)
is used here since it includes several zones. The dimensions
of the testbed area is 30 m x 15 m. The MacBook Pro note-
book is used as a client device. They assigned 41 locations
to RPs and 20 fingerprints were collected per location in 13
zones. There are also 20 TPs as the evaluation points. They
reported an average error of 2.21 m in this area [50].

In order to assess our approach, we only considered 7
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FIGURE 10. The EVARILOS benchmarking layout with APs, MRPs, QRPs,
and TPs.

TABLE 9. MDE of using recovered databases before and after considering
zones in EVARILOS layout

MDE (m) in EVARILOS test area

Recovery method Conventional Zone-based

Path-loss 3.76 3.34
IDW 3.60 3.55
RBF 3.47 3.49
WRB 3.52 3.37

zones of this testbed, where at least three RPs are measured.
Since we need at least two MRPs per zone, the number
of RPs and TPs are reduced to 29 and 14 in 7 zones. For
zone-based model evaluation, we removed 48% of RPs (14
RPs). The Mean Distance Error (MDE) with full measured
29 RPs is 3.25 m while it increases to 3.77 m after removing
14 RPs. The location of MRPs, QRPs, TPs, and APs are
shown in Fig. 10. There are 15 MRPs, 14 QRPs, 14 TPs,
and 4 APs in this test area. As the number of measured
RPs were limited in each zone, we only compared the non-
triangulation-based algorithms so that we could interpolate
with at least two MRPs in each zone. The localization results
are listed in Table 9. Similar to what we achieved for testbeds
1 and 2, the proposed zone-based path-loss model provides
the highest localization accuracy. The proposed zone-based
WRB method also shows the lowest MDE among other
interpolation methods.

VII. CONCLUSION
In indoor localization, constructing the measured database
in the training stage of location fingerprinting technique
is so costly in terms of the required time and human ef-
forts. Removing RPs considerably decreases this cost but it
highly degrades the localization accuracy at the same time.
Therefore, in order to enhance the accuracy, we propose
two novel cost-effective recovery methods that predict the
RSS of omitted RPs and build a reconstructed version of
the database. A novel zone-based method is suggested here
which is based on the environmental effects of the indoor
area and the signal propagation behavior inside the indoor
area. It is applied in the path-loss model and six interpolation
methods used in the indoor fingerprinting technique, in which

the function parameters are computed separately for different
zones. The zone-based path-loss model is fully compared
with the conventional path-loss and interpolation methods.
Moreover, a new zone-based WRB interpolation method is
introduced, and its performance is compared with the six
other interpolation methods. The experiments conducted in
two different indoor environments and in a benchmarking
testbed with three distinct devices and various MRPs ratios
are utilized to validate the proposed recovery methods.

The reconstruction error results demonstrate that the zone-
based version of all mentioned methods highly decreases
the error (up to 57%) between the measured and recon-
structed RSS values. The proposed zone-based WRB interpo-
lation technique expresses the minimum reconstruction error
among all recovery methods. In addition, the localization
results indicate that the suggested methods not only can
produce a more dense database with only a very few numbers
of RPs for the database construction, but also enhance the
accuracy of indoor fingerprinting localization compared to
the conventional methods. By reducing the workload by
89% of the initial RPs, the new zone-based path-loss model
decreases the localization error up to 26% in comparison
with the conventional path-loss model and the new zone-
based WRB method outperforms all the other interpolation
methods and improves the accuracy up to 40%. Hence, the
database can be updated with a very low cost if there are any
environmental changes in the target area. The computational
costs of the zone-based methods also are lower than the con-
ventional methods. Moreover, it was shown that the lowest
reconstruction error, does not necessarily result in the highest
localization accuracy, but regarding localizing purposes, the
lowest positioning error is highly desired. The benchmarking
results also confirmed that zone-based path-loss and WRB
methods achieved the highest positioning results.

In our ongoing work, we are trying to investigate these
approaches to a multi-floor indoor environment. Also we plan
to apply the proposed method on an indoor Bluetooth Low
Energy (BLE) network to have a low-cost location finger-
printing and compare the achieved localization accuracy with
the MDE of current WLAN network, eventually. Finally, the
impact of the RPs with possible unusual RSS values in the
interpolation field needs to be investigated.
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