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Abstract

An artificial neural network based framework, to analyse and address key energy re-
lated performance issues inside building environment is proposed. The study engages
thousands of heating, ventilation, and air conditioning terminal unit data from real
commercial buildings employing a new feature engineering method augmenting ter-
minal unit time-series data to create novel features. These features are subsequently
fed into the proposed neural network, named x-RBF which is a combination of x-
means clustering followed by radial basic function neural networks for automatic fault
detection and diagnosis. The new model has been successfully employed and inves-
tigated on different types of heating-cooling patterns concerning power demand and
control strategies from actual building historical terminal unit data. The proposed
x-RBF model has been trained-tested on approximately three years of building data
and achieves 99.7% sensitivity, a first for real building applications. Comparison has
been made with other neural networks to verify the performance of the proposed x-
RBF and it is further validated through statistical measurements. The proposed model
demonstrates its ability to truly predict and anticipate fault scenarios in terminal unit
operation. Consequently, energy and cost calculations have been executed to realise
the potential financial impact (as a consequence of performance improvements) that
can be achieved by the proposed framework in the building environment.

Keywords: Heating, Ventilation and Air-Conditioning, Terminal Unit, Artificial
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1. Introduction

Remote observation and fault identification can provide impactful augmentation
to existing building energy management systems (BEMS), also known as building au-
tomation systems (BAS). Implementing such extensions create scalable and future-
proof schemes for improved building management, building understanding, energy use
optimisation, and post-occupancy energy-gap reductions. This approach effectively
leads to the empowerment of building designers, owners, and post-occupancy building
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managers, who do not always have experience of the nuances of the resident Heating,
Ventilation and Air-Conditioning (HVAC) systems within the buildings they manage
or reside. The HVAC systems are those elements closest to the building user and
as such have the greatest impact on user comfort and well-being, building problem
registrations and complaints. Remote problem identification and resolution tracking
not only leads to improved building management and sector impact, but also provides
further benefits such as occupier well-being improvements, operational cost savings,
greater appreciation and understanding of human-building interaction (HBI), suitable
renewable energy retro-fit benefits and choices, building to building interactions for fu-
ture smart cities and building design developments. Automatic identification of faulty
unit behaviours (affects heating and cooling operation) from real BEMS data is noto-
riously difficult with any action generally involving expert building engineers and their
knowledge to interpret the detected faults of a unit within the building HVAC system.
Manual data investigation and fault-finding processes are haphazard, time consum-
ing, require ad-hoc expert knowledge and experience, which is slow and expensive and
can lead to eventually losing control of the many problems within buildings. Hence,
bringing automation and intelligence to this process, using data mining and machine
learning (ML) is an ideal solution. The large volume of data is the most powerful
component and foundation towards any appropriate, general, decision-making system.
Thus, automation in the fault detection and diagnosis (FDD) study relies heavily on
real environments with real sensor data, which can be used to analyse the performance
of corresponding electrical units, defined as automatic fault detection and diagnosis
(AFDD). Hitherto, there is no standard established for efficient energy management
in buildings, even though building sectors are responsible for 40% of global energy
consumption with heating, ventilation, and air-conditioning (HVAC) systems of res-
idential and commercial buildings alone, responsible for approximately 39% to 41%
of the total building energy consumption [1]. Therefore, HVAC is a prime focus of
building researchers to improve user comfort and energy efficiency. The HVAC is a
complex system comprising several units such as, air handling unit (AHU), variable air
volume (VAV), chiller, boiler, fan coil unit (FCU). Usually, commercial buildings have
one or two major units i.e., chiller or boiler but hundreds to thousands of fan coil units
are fitted inside depending on the size of the building. Thus, if a single small unit is
not working desirably, it can affect the entire plant. This study has been narrowed
down to consider fan-coil unit’s terminal unit (TU) (displayed in Fig. 1), to monitor
their performance and auto-identify malfunctioning units. Fig. 1 shows the overlapping
and growing relationship of TU with surrounding layers within BEMS, and how these
services interrelate each other.

2. Background

Fault detection is the study of recognising problems that have occurred, even if
their cause is unknown. Fault diagnosis indicates the causes of these problems, to
discover points where corrective action can be taken. The AFDD processes have made



Figure 1: An overlapping relationship diagram of the building’s terminal unit within BEMS.

notable advancements combining data mining and ML techniques. Dynamic research
and exploration in this field began in the 1980s [2], however, from the outset practical
limitations such as scalability and the complexity of HVAC systems have made FDD
extremely challenging. The area of FDD can be categorised into several groups de-
pending on their applications as reported in the literature. There are three categories;
the quantitative model, the qualitative model, and history process-based approaches
of FDD reported in approximately ninety articles prior to 2005 [3]. The FDD meth-
ods are further categorised into a further three groups in [4]: analytical methods,
knowledge-based methods, and data-driven methods. One recent article by Kim et.
al reviews two hundred articles published on classification of FDD methods [5]. The
article states that 62% of published research works are based on historical process,
26% research works cover qualitative models and 12% are performed on quantitative
models. The studies performed on historical processes use measured data obtained
over certain time periods to derive fundamental knowledge. The process history-based
approaches are the most effective ways of analysing large-scale data to identify recur-
ring patterns and hidden knowledge to automatically detect faults. It is realised from
the recent literature that applied machine learning has huge potential to identify the
faults automatically however, it requires historical data and appropriate methodolo-
gies to learn a building heating and cooling trends [1]. Gunay et. al. performed a
critical review on AHU and VAV terminal units for commercial buildings carried out
over the last 20 years [6]. In this paper common building faults, along with proposed
strengths and weaknesses of the reported research is included. Building operation and
control while dealing with FDD including the procurement of system also has been de-
scribed in [7]. Recent advancements has enabled AFDD to be further classified into two
sub-categories: (a) knowledge based and (b) data-driven based. It is worth mentioning
from the previous research that knowledge-based analysis requires vast knowledge from
domain experts [1], which can be difficult to accumulate. Therefore, the proposed work
has been performed to characterise TU behaviour employing data-driven approach to



avoid the limitations of the knowledge-based approach, provisioning a more general
outcome. Further, other related data driven AFDD approaches have been described in
the following section.

2.1. Data-driven based FDD methods

Data-driven relates to the approaches which derive essential information from the
historical data (or stored data, or available data) employing data mining algorithms
to identify and diagnose abnormalities [8, 9]. Thus, data-driven approaches for BEMS
have become increasingly important in the era of big-data research to capture non-
linear, complicated relationships, and forecast system behaviour using ML techniques.
However, it is hugely challenging for building professionals to infer behavioural infor-
mation, understand their meaning and to trust predictions, as the developed models
are highly complex and have low interpretability for end users. Magoules et. al.
proposed an artificial neural network (ANN) prototype implementing recursive deter-
ministic perceptron (RDP) to facilitate a FDD for an entire building. This method
aimed to detect faults and ranking equipment that were more defective or risky units
first [8]. In [9], k-means clustering based data-driven model is proposed for three
AHUs operation analysis. One of these methods is proposed by Fan et. al., to de-
scribe and assess a data-driven based building energy performance evaluation model
to assist building engineers by interpreting upcoming HVAC behaviours [10]. A new
metric, i.e., ‘trust’ is proposed by Li et. al., which is an alternative approach to the
conventional accuracy metric to evaluate model performance via operational building
data. Conversely, the method establishes a relationship between HVAC data patterns
and faulty categories of a system [11]. The data-driven based methods extract the key
components of data by transforming and projecting them into new dimensions. Subse-
quently, the key components are used instead of the whole dataset aiming to represent
individual HVAC behavioural patterns in more meaningful way, helping to identify
faults efficiently. This approach suits modern HVAC systems employed in commercial
buildings, which mainly contains three phases, statistical understanding of building
data, feature engineering, FDD employing ML algorithms. Building parameter’s data
(e.g. heating-cooling temperature, power) are usually time series data thus wavelet and
short-time Fourier analysis are common feature engineering methods in these cases [12].
A combined approach of wavelet transformation (WT) and principal component anal-
ysis (PCA) is proposed by Zhao et al. to detect faults for the AHU system, where
the time series data are transformed using WT followed by dimensionality reduction
procedure via PCA to map the large data into lower dimensional space. Later, lower
dimensional data are used to predict faults [13]. In practice, this FDD methodology is
appropriate for fault detection rather than fault diagnosis, thus, hybrid procedures are
considered for efficient FDD systems in large buildings [14]. Recent work published by
Shag et. al. developed a stochastic model predictive control (SMPC) aimed to provide
a promising solution for complex control problems under uncertain disturbances. In
this paper, the SMPC approach is proposed by actively learning an uncertainty dataset
utilising a ML method [15]. Sonata et. al. modelled a prototype to understand and
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classify occupant behaviour in a building to optimise the energy usage. Energy us-
age was collected from plug load sensors installed in an open-office building in San
Francisco, USA. Further the data was classified to understand occupant’s activity pat-
terns and forecast the building energy usage, taking necessary energy management
steps [16]. A statistical approach using generalised Cochran-Orcutt estimation is em-
ployed by Vaghe et. al. to adjust a linear forecasting model and handle a building’s
total energy consumption. It was then adopted and combined with a model predictive
control (MPC) framework to manage heating and cooling set points based on the gen-
erated data from the EnergyPlus simulation software. However, this method is limited
to a fixed term dataset which needs to adapt appropriately for new and longer periods
of data [17].

The range and depth of the literature demonstrates that the BEMS research do-
main and in particular HVAC systems are extremely challenging and vast, typically
monitoring a unit’s performance in real-time [18] Most of the AFDD methods were
developed to solve problems related to specific large units such as, chillers, boilers,
AHU, and VAV [19, 20]. However, none of them focus on small units i.e., fan-coil
terminal units although these small units have a huge impact on the building’s energy
consumption with building energy consumption prediction attracting much attention
from the research community. Comparative analysis of the commonly used methods
(such as, Elaborate eng., Simplified eng., SVMs, ANNSs, statistical.) for the prediction
of building energy consumption has been described in [21]. However, numerous open,
unsolved research problems remain. Many energy related problems are left undetected
and ignored due to the diverse and complex energy systems installed and uncertainty of
occupant behaviour. Thus, controlling and monitoring each unit and detecting when
the faults occurs is burdensome for building managers (whether building experts or
not) or the building service provider. Additionally, much of the research has been
performed on model-generated data, and not on real building data. This along with
a global lack of agreed standardised methods available to deal with building manage-
ment plans related to faults detection and subsequent actions regulations. Thus, the
objectives of this research are: 1) the proposal and development of a robust method
for automatic and fast identification irrespective of the fault type, 2) testing on large
scale, real buildings to overcome human limits on processing the vast data involved 3)
endorsement of the proposed method by expert building engineer and via statistical
methods, and 4) optimise energy consumption within the case study building.

2.2. Real challenges of the terminal unit

Airflow and ‘comfortable’ temperature requirements depend on many factors that
may be internal or external to a real building. The internal factors might be device
related issues (i.e., damper stuck at full close position or partial position, zone tempera-
ture sensor reading frozen, air flow sensors reading frozen, low supply air static pressure,
etc.) all causing inefficient temperature control. Other external causes such as those
caused by occupants or geographical positioning (i.e., open window, manual changing
of temperature set points, room position in shadow/ sunny, occupant inhabitancy, etc.)
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also affect control strategies in similar ways. For example, poor temperature control
and unachievable set points due to narrow dead band settings (e.g. ,the heating and
cooling set-point is set between 20° - 21° C and whenever the room temperature goes
beyond these limits, the respective heating or cooling power is executed) resulting in
action termed ‘hunting’” TU behaviour. The cooling and heating set points are gener-
ally setup by the building operators initially, depending on seasons and the weather,
in winter it can be set between 23° - 27° C and in summer 18° - 22° C. In an office
space, if the TU is on beyond working hours this is type of scheduling error resulting
in unnecessary electricity usage with additional power demands subsequently evident
to maintain the room temperature at night (which was only meant for daytime use).
Room and sensor location are also a factor for abnormal behaviour (e.g., 17° C ambient
temperature requests in a room that has continuous sunlight exposure or is “settled”
at 26° C ambient temperature on a summer day or where the sensor is fixed near to re-
frigerator room resulting in false ambient temperatures). These faults must be handled
by the expert building engineers daily through the service provider platform. Thus, it’s
obvious that there can still be a multitude of issues leading to ‘faulty’ TU behaviour
that require expert building engineer knowledge to classify each one of these issues as
they occur or identify malfunctions observed to summate individual faults. It has been
found during the proposed case study that only 50% (approximately) of faults have
been resolved among all logged /reported issues, causing vast energy wastage, problem
backlogs and demonstrating how issues soon become unmanageable. It indicates that
so many problems are identified late and left unresolved due to a lack of automation
and intelligence in BMS. Thus, irrespective of any specific type of fault, any type of
misbehaving TU must be addressed and categorised at this stage of the research. In
addition, the same TU may behave differently on different days, which is considered as
separate behaviour and must be addressed when making a general solution. It is diffi-
cult to discover the causes of every single faulty TU by direct observation (for building
engineers) to make the ground truth. Fig. 2 shows two real TU behaviours from the
case study building comprising one faulty and one non-faulty for a single day (24hrs),
where the blue line is the non-faulty TU, and the red line is the faulty and depicts
hunting behaviour.

2.3. Contribution

The proposed work creates a new two-phase intelligent solution to address faulty
HVAC TU operation in smart buildings, employing machine learning. The aim of this
work is to bridge the gap between on-going research, its implementation on real build-
ing’s energy conservation and to optimise its usage. This is a data-driven approach,
able to process and analyse behaviour in such a way that can help the building engineer
to diagnose the problem, the TU and fix it sooner than before. This work is modified
to overcome the limitation of the previously presented work by the authors in [22, 23].
The collected time-series energy data are non-linear in nature. thus, this work combines
X-means clustering followed by Radial basis function (RBF) neural network resulting
in the proposed x-RBF neural network method. This x-RBF method demonstrates
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Figure 2: Examples of faulty and non-faulty control temperature.

excellent robustness and improved fault detection accuracy over the previously pro-
posed method. The x-RBF have been developed to perform both the clustering and
classification tasks, respectively. The main contributions of the proposed work are as
follows:

(a)

A new feature engineering method has been developed with pseudo labelling also
being performed through verification by expert building engineers to realise the
energy data patterns and for auto-recognition of TU faults.

A new collaborative framework employing X-means and RBF is proposed as x-
RBF, to implement the proposed model with less computational complexity.

Two other neural networks; Probabilistic neural network (PNN) and Generalized
regression neural network (GRNN) have been chosen based on their non-linear
classification ability for comparison with the proposed method.

The proposed algorithm has been implemented on two real large-scale commercial
building’s data to understand its effectiveness in accurately recognising the unusual
events that effect thermal comfort and unwanted power demands.

The performance of this new learning inspired automatic TU fault identification
method has been analysed through statistical metrics and the outcomes described
by case studies.

The energy consumption by the TUs and its associated cost have been estimated
to show the impact of the proposed method towards energy conservation and its
optimal usage if applied in the building energy sector.

3. Proposed Methodology

The AFDD framework of the entire proposed system is comprises of two parts:

the building data accumulation and the proposed AFDD which is shown in Fig. 3.



The figure presents the stepwise development of each module such as, data storage,
retrieval, analysis, visualisation, and decision-making. The details are described in the

subsections below.
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Figure 3: The framework of the system architecture for this experiment.

3.1. Buwilding data accumulation

Initially, the building data is transferred from the source to a cloud internet through
a secured gateway on the dedicated BMS network. A data acquisition device (DAD)
has been used to collect the data (installed by project partner company Demand Logic
Ltd.) [22], shown in Fig. 3. The DAD collects several unit’s data, but this work
is focused upon TU’s performance analysis thus only TU data has been considered
for further processing. This framework provides access to pivotal information along
with precise time instances making it suitable for pre-processing. Once the data pre-
processing (including missing data interpolation) has been performed, the data patterns
and their associated parameters behaviour must be analysed.

3.1.1. Overview of TU data acquisition and understanding

The HVAC system provides three key facilities: heating, ventilation, and air-
conditioning to deliver thermal comfort and provide satisfactory indoor building air
quality. The TU is a sub-unit of the HVAC system, it’s a simple device comprising a
heating and/or cooling heat exchanger and fan. It is generally wall or ceiling-mounted
and monitored via thermostats inside buildings. There is a central chiller and boiler
plant connected in the building that distributes cold water to all the cooling coils and
hot water to all the heating coils. The thermostat senses and signals the correspond-
ing water valve depending upon the environmental requirements, cold water is passed
through the coil and recirculates the hot air by the fan if the room gets too warm or
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distributes warm air if the room becomes too cold. A schematic of TU device is shown
in Fig. 5.

The six TU parameters are specifically selected depending upon their significance
to generate the feature vector given in the Table 1. All the parameters were gathered
in 10 minutes intervals.

Table 1: The list and description of the TU parameters.
Parameters Description Units
Room temperature/

Return air temperature
Temperature that maintains
cooling in the space of the zone/ room
Temperature that maintains
heating in the space of the zone/ room

The measured capacity of the .
cooling system to remove the heat. Kilowatt (kW)
The measured capacity of the heating
system to heat up the space.
This allows passing through input
. , N/A
signal and measures the system’s status.

Control temperature Degree centigrade (°C)

Cooling set-point Degree centigrade (°C)

Heating set-point Degree centigrade (°C)

Cooling power

Heating power Kilowatt (kW)

Enabling signal

3.1.2. Potential issues in T'U operation

Several potential faults such as hunting, on-ness, and saturation have been studied
for various TUs to identify the most prevalent issues [22, 23, 24]. (i) Hunting is
measured by how much the control temperature fluctuates over a day from its set
point. (ii) On-ness is considered the time when a TU has continuous cooling or heating
power demands throughout the day including its operational hours. (iii) Saturation is



the proportion of time over a day that the valve or damper is open at its maximum.
Thus, the higher the value, the longer heating or cooling valve (or damper) is open,
resulting in continuous power demand. These potential faulty TU behaviours occur for
several physical reasons which are listed below:

(a) Stuck-valve — this is indicated by a saturation value of 1, which means the valve
has been fully open over whole day.

(b) Poor sensor location — location of the temperature sensor at an non-optimal po-
sition i.e., back of a drinks cabinet (in close proximity to heating and/or cooling
elements).

(¢) Out of operational hour- a unit may function beyond operational hours due to ei-
ther it has been forgotten (manually operated and left) or the input of the incorrect
operational time schedule.

(d) Imperfect control — this is generally due to the settings of tight deadbands or over
dynamic PID control. This may result in frequently switching between heating
and cooling demands.

(e) Unachievable set point — often it happens that occupants manually change the
set-point to a value that is unachievable for that environment.

(f) Unable to receive sufficient flow or upstream temperatures — the flow temperature
from the boiler or chiller is not strong enough for the space, often because of over-
demanding temperature.

(g) Competition from nearby units- sometimes due to the physical location of two
adjacent TUs they affect each other’s operation. A TU may try to cool the space
whereas another adjacent TU tries to warm the same area. Generally, it is found
where there is poor hierarchical control across a group of TUs.

(h) Varying set point — typically, the set point may be changed rapidly because of
occupant’s thermal discomfort (e.g. occupant’s change set point depending on their
personal preference).

(i) Location effects — either due to high solar gains or position of TU is very close
to energy-consumption equipment with high internal gains, e.g. an old lighting
fixture or photocopier can cause unusual thermal demands.

(j) Incorrect sizing for true demand — sometimes, he load is underestimated, and a
larger unit should have been fitted. This scenario is more often found in cooling
mode than heating.

Although a TU is considered a “simple device”, a multitude of issues can lead
to faulty operation/ behaviour requiring professional building expert knowledge to
recognise each one of these issues. Manual TU investigations are tedious and becoming
impossible with ever-increasing building data and the limitation of qualified resident
building engineers. Hence automating and bringing intelligence to this process would
be an ideal solution. To deal with these aforementioned issues a novel, user friendly TU
data-driven approach has been proposed to identify different TU behavioural patterns
without the need of an expert building engineer towards making an automatic fault
detection and diagnosis system for energy optimisation.
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3.2. Proposed AFDD approaches

The proposed AFDD system for building’s TU data primarily consist of four phases,
summarised in the flow diagram below.

FEATURE PSEUDO FAULT STATISTICAL
ENGINEERING LABELLING CLASSIFICATION VALIDATION

Figure 5: The flow diagram of the proposed AFDD approach.

3.2.1. Feature engineering

Building TU data are high-dimensional data streams, which are inherently difficult
to use and are non-trivial for analysis purposes. To manage this problem an ‘intelligent’
feature engineering method is proposed to manage with the available high-dimensional
TU data [22, 23]. It is an ‘attribute reduction process’, which projects datasets of
higher dimensions into a smaller number of dimensions intended to be informative,
non-redundant, facilitating subsequent learning and improved automation. The data-
driven feature engineering method is accomplished by employing six TU parameters:
control temperature, set point, dead band, heating effort, cooling effort, and enabling
signal. These time series data are collected at 10-minute intervals from real buildings
throughout the day by a secured BMS network gateway. The proposed feature en-
gineering method has been executed considering three different events from the area
under control temperature and corresponding power curves of a single TU data. The
events are divided into three different stages: (1) event discovery, (2) event area calcu-
lation, and (3) event aggregation stage for each day (24hrs), and described as follows:

(1) Event discovery stage: Event discovery is inspired by the proportional integral
derivative (PID) controller response curve [25]. A PID controller accurately handles
the process variables to control processes, remove oscillations, and increase the
industrial control system efficiency. Likewise, when the operational hour starts,
the temperature begins to adjust depending upon the building’s environmental
requests. Hence, the control temperature variation with the set point is divided
into four stages: event start, response delay, goal achieved, and event end, based on
the response curve shown in Fig. 6. In Fig. 6, the pink coloured area indicates the
heating event, the blue coloured area indicates a cooling event for both the control
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temperature (in degree centigrade) and associated power demands (in kilowatt)
of a whole day (for 24 hrs). The different events for the control temperature and
power are indicated in Fig. 6.

(a) Event start (ES): An event start is assumed to happen when the BMS is first
switched on in a day (when enabling signal gets switched on).

(b) Response delay (RD): The temperature starts to respond only after a certain
delay from the previous point when the BEMS is switched on (due to the
process variable delay during the dead time) and this is termed as response
delay.

(c) Goal achieved (GA): A goal achieved event is assumed to happen when the
control temperature reaches the desired set point. The GA is considered as
the time instant when the process variable reaches the steady state, or final
value.

(d) Event end (EE): Once the control temperature reaches the set point, it may
either continue to be within the dead band till it exceeds the dead band, and
an event end is supposed to happen at that time instant.
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Figure 6: Event discovery process from a single day TU data.

(2) Event area calculation stage: Once the suitable heating and cooling events
have been determined, the area below the temperature and power lines for every
event is measured. Based on the type of events, area calculations are performed
respectively for both the heating (H) and cooling (C') events. In effect, six areas
(three from temperature and three from power curve) for each heating event and
similarly, six areas for each cooling event are measured. Total twelve distinct areas
are derived from a single day TU data. Eq. (1) depicts the area (Ag) under the
curve f(z) at every time interval Az.
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Ap =) flw)Az (1)

For an event of heating, the calculations for temperature areas are denoted by
Ap, to Ag, and for power by Apy, to Ap,. Similarly, for a cooling event, the
area calculations for temperature are denoted by Acs, to Ac, and for power are
by A¢, to Ag,. Once these areas have been computed, it has been normalized to
obtain the final feature values as Fiy, to Fy, and F¢, to F¢, as indicated by Egs.
(2) to (5).

Egs. (2) and (3) show the area calculations for a heating event.

Am, Ap, Ap.

Fp, = TH , Ih, = TH o Fay = THd
n n " @)
where, Ty, = max(Ay, + Ap,)

and, Ty, = maz(Ag,)

Fy, = =2 Fy, ===, Fy,= =29
Hy PH1 ) Hs PH1 ) Hg PH2
where, Py, = mazx(Ag, + An,) )

and, Py, = max(Ag,)

Egs. (4) and (5) show the area calculations for a cooling event.

Ao Ac Ac.

Fr, = L Fo = 2 Fo, = 3

Cq T01 ) Co T01 ) Cs 7—,02
where, To, = max(Ac, + Ac,) (4)

and, Te, = max(Ac,)

Ac Ac Ag,

Fo =25 Fo =2% =2
Cy PCI ) Cs P01 ) Ce PC2 -
where, Po, = max(Ac, + Acs) (5)

and, Po, = max(Ac,)

(3) Event aggregation stage: Various heating and cooling events may occur during
an entire day, thus all the events of a given heating and cooling type must be
aggregated to represent the averaged values. A further step in the feature engi-
neering process is event aggregation. The final combined features can be presented
by Egs.(6) and (7), where k signifies the event number and n denotes total number
of occurrences for each event in both the heating and cooling event type. Thus, a
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whole day TU data can be presented by twelve features for both the heating and
cooling events. This stage generates the final feature vector for machine learning
application to identify different fault from these TU data.

Fie =+ > (Fu) )
Fo, = 3 (Fg,,) @

=1

3.2.2. Pseudo labelling with X-means

Due to the absence of prior information about the TU data involved in this inves-
tigation, an unsupervised learning methodology is employed to discover a set of TU
behavioural patterns. The clustering algorithm learns the underlying data pattern and
groups the data without knowing any physical information about the TU data. How-
ever, the effectiveness of the clustering relies on the data distribution and presumption
of cluster number [26, 27]. As, the types of TU behaviours (number of clusters) are
unknown it is difficult to discover appropriate clusters from conventional clustering
methods that represent the distinct behaviours of TUs. Thus, the investigation em-
ployed the extended K-Means (X-means) [28, 29] algorithm, an appropriate approach
in this context comprising two steps: Bayesian information criterion (BIC) (defined in
Eq. (9)) followed by the k-means algorithm (defined in Eq. (8)) with different cluster
seed values. The BIC phase helps to identify the optimal number of clusters gath-
ered for the TU dataset and then clusters them based on the proximity measure using
k-means, defined below.

k. n
J =3 2 IXY =l ®)
j=1 i=1
Where, HXi(j ) ;] is a Euclidean distance measure between a TU behaviour (in

a day) XZ-(j ) and the cluster centre p; (represents a behaviour). Each TU is assigned
to that group which is closest to the centroid. After all the TUs (data points) are
assigned to the corresponding groups, the positions of the £ centroids are recalculated.
The above steps are reiterated till the centroids no longer move.

B]Cscm"e = -2 IOg(L) + Klog(n)

9
where, L = P(x | 6, M) (9)

Where, L is the maximum value of the likelihood function of the model M. The
other parameters, x, 0, n, and K denote the observed TU data, the parameter of the
model, total number of data points and the number of free parameters to be estimated,
respectively. Once the centroid (k) is determined and k-means performed, K, is then
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selected, and all centroids tested. The BIC score is then compared for K and K., as
the lower BIC score is always preferred for better fitness to the data. If the current
model obtains a better score, then the split is considered the best strategy for clustering
and the cluster number is decided here, which is six in this case (for both case studies).
Each of these clusters represent a distinct behaviour of TU characteristics (good/bad)
and have been further applied for pseudo labelling of all the functioning TUs. A pseudo
code for the pseudo labelling implementation has been displayed in the Algorithm 1.

Algorithm 1 Proposed pseudo labelling
Require: Power and temperature’s TU features = {fi, fo, ..., fu}
1: Mazimum number of cluster = Max
2: K = Previous model's BIC score
3: Kyae = Present model's BIC score
4: for all max =2 to 10 do
5. Initial mean values assigns = iy, 42, ---y lmaz
6: Assign each TU to the cluster which has closest mean
< using the Eq. (8)
7. Update means
8:  Calculate BIC score for current model K,,q. < using the Eq. (9)

90 if K > K,,.. then

10: return Go to line 5

11: else

12: Max is considered as final cluster number & exit loop

13:  end if

14: end for

15: Six centroid for each cluster = {ug, p1, ..., ps} are produced by X — means

16: Sixz groups of labelled patterns = {Cy, C4, ..., Cs5} are produced by X —means

Thus, X-Means clustering has partitioned the daily TU data into six different groups
(six distinct behavioural patterns) to represent the behaviour of TUs in both case
studies 1 and 2. These six mathematically obtained groups have also been verified by
expert building engineers prior to performing subsequent experiments. The six types of
TU behaviours obtained from the clustering results are presented in Table 2. It provides
an insight into the TU characteristics without any prior knowledge of identifying faulty
and non-faulty trends. Each cluster is labelled as Cy, Cy, Cs, C3, Cy4, and C5. The
labels have been employed further to classify the TUs for automatic fault detection
and diagnosis purposes developing perceptron learning to predict faults, discussed in
the following section.

3.2.3. Fault classification with suitable ANN algorithms

The ability of the ANN to comprehensively process information follows from their
capacity to generalise and isolate hidden dependencies between input and output data.
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Table 2: Description of discovered TU patterns

lus o
Cluster Description of pseudo labels
number
The control temperature is achieved set-point with low
Co RN .
power effort, working in within operating hours.
The control temperature is achieved set-point
Ch . .
with medium or average power effort.
The control temperature is achieved set-point
Co . .
with high-power effort.
The control temperature is hunting patterns along with medium
Cs . . . .
to high power effort and working outside operational hours.
C The control temperature is does not achieved set-point
4 (out of deadband by up to 5°C) with high power effort.
C The control temperature is does not achieved set-point
> (out of deadband by up to 10°C) with high power effort.

A significant advantage of neural networks is that they are capable of learning and
generalising accumulated knowledge and can predict on unobserved data. Most of the
predictive tasks are characterised by high levels of non-linearity and non-stationary,
noisiness, irregular trends, jumps, abnormal emissions. ANN does not impose any re-
strictions on the input variables, so it is adaptable with problem specific solutions and
worth exploring as trial-and-error methods. ANN requires less statistical training than
other conventional ML algorithms (such as, support vector machine (SVM), k-nearest
neighbour (KNN), etc.) to make a decision boundary [30, 31]. Algorithms such as,
SVM and KNN have been employed by the authors previous work [22], where AFDD
resulted in low recall (identified the proportion of actual faulty TUs that were correctly
detected). Thus, here ANNs have been explored and experimented for their adaptable
nature. The ANNs comprise several layers making them more complex, but provide
greater learning and prediction capability over the others mentioned. Conventional
ANN;, such as multi-layer perceptron (MLP) has drawbacks over time series data pre-
diction where the data volatility is very high. Generally, MLP displays problems in the
local minima because of its training function. Also, the number of hidden layer and
nodes needed are fixed through trial and error, where the incorrect estimation causes
under-fitting or over-fitting. Thus, the RBF based neural network has been employed
to avoid these limitations [32], providing a more suitable method of AFDD for HVAC
TUs. The RBF based networks are relatively easy to design, train and have a strong
tolerance to noise, which makes them suitable for online training. Three different ver-
sions of RBF have been implemented here: conventional RBF, PNN, and GRNN to
propose an efficient NN based AFDD system. These networks do not need to be exper-
imented with different numbers of hidden nodes because the number of hidden nodes
is decided when calculating cluster centroids. These have been already measured by
the X-means clustering in the first phase of the proposed work and that are utilised
here for the RBF hidden node calculation. The experimental results are discussed in
the following sections.
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(1)

Radial basis function network: The RBF neural network is a fast classification
process and a type of feed forward neural network consisting three layers: an input
layer, a hidden layer, and an output layer. Here, the feature vectors are modelled
(described in Section 3.2.1) as input vectors connected to each hidden neuron,
where the hidden neurons are the distance between the centre and the inputs in
the first stage. In the second stage, the connection weights between the hidden
layer and the output layer are calculated in such a way that an error criterion such
as the common Mean Squared Error (MSE) is minimized over all the data set. The
typical RBF neural network is determined by the Eq. (10).

y = Z w;Ry(x) + b (10)

where, w; are weights for all training set y, b is bias, N number of the neurons in
the hidden layer and R is the RBF activation function denoted in Eq. (11) as:

Ri(z) = ¢(|lz — l]) (11)
where, ¢ is the radial basis function that present the non-linear feature of the

model, ¢; are the centers (obtained from X-means). The well-known RBF is given
by the Gaussian function denoted in Eq. (12) as:

p(r) = exp (—r*/207) (12)
where, r is the Euclidean distance between the centroid ¢; (obtained from X-means)
and the input vector z, o is the spread (widths) parameter, and simplicity vari-
ances are predefined as ‘1’. A pseudo code for the proposed AFDD employing RBF
neural network (RBFNN) is presented in the Algorithm 2.

Probabilistic neural network: The PNN is a feed-forward neural network com-
prising four layers: an input layer, a pattern layer, a summation layer, and an
output layer [33]. It is mainly suitable for solving multi-class classification prob-
lems because it has fast processing time making it appropriate for real time imple-
mentation. The input layer consists of the feature vector combined with Gaussian
functions in the pattern layer for each of the faulty and non-faulty classes. Each
input node in the pattern layer calculates the value of the Gaussian function of the
Euclidean distance between the given input vector and one training input vector
determining the close proximity between the input vector and the training input
vector. The pattern layer acts similar to the hidden layer in an RBF network [34].
The third summation layer adds the weighted hidden node values for each class
and forms a probability density function (PDF) as its net output. Finally, the
output layer performs a complete transfer function on the output of the second
layer and selects the maximum of these probabilities, producing a ‘1’ for that class
and a ‘0’ for the other classes to determine the associated class label. The PNN is
determined by Eq. (13) as follows:
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Algorithm 2 Pseudo code for proposed AFDD employing RBFNN.

Require: Temperature and power feature of TUs = {f1, fa, ..., fi2}
Class label = {Cy, C1, ..., Cs} < wusing the Eq. (8) & (9)
RBF function = ¢(r), spread = o, bias= b, weight matrix = w
Training Phase:
Step 1:
N = Total no. of TU patterns
1 = pattern no.
for alli=1to N do
for all ) =1 to 12 do
Employed values for centroid = g, i1, ---, is < using Algorithm 1

8: Calculate RBF' function < using the Eq. (11) & (12)

9: Determine hidden nodes values for hidden layer

10: RBFNN trained & generate final output classes < using the Eq. (10)

11:  end for

12: end for

13: Testing Phase:

14: Step 2:

15: The trained RBF N N model applied on testing dataset for prediction on rest of TUs
16: Validation:

17: Step 3:
18: The actual and predicted target matrix has been compared
19: The per formance has been validated < using the Eq. (16), (17), & (18)
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Where s is the input (TU feature) vector, t.; is the i’ training input vector, N, is
the number of training input vectors in the ¢t* class. t,; and o, represent the center
and spread (or width) of the Gaussian bell curve associated with the ¢ input class
respectively. In addition, o,v/27 is determined by the width factor associated with
the ¢ class. The Opei is close to 1 when s is near t.;, and close to 0 when s is far
from t.; in a Euclidean space. Therefore, it can be concluded that the maximum
PDF is obtained for the class, which yields the highest value of O..

Generalized regression neural network: The GRNN is a modified neural
network of RBF and PNN neural networks [35]. The GRNN can provide a solution
to any approximation problem by estimating the PDF for any type of data [36].
The main benefits of this network are that it does not require any repetitive training
process making it advantageous with sparse data as the regression surface is defined
instantly. This neural network also consists of four layers: an input layer, a pattern
layer, a summation layer, and an output layer. The input layer is fully connected
to the pattern layer and measures the distance between each of the neurons of
these two layers. It uses the radial basis function as the activation function in this
layer. Later it sums the two neurons in the summation layer: one neuron sums the
weighted output of the pattern layer and other calculates unweighted outputs and
divides them in the output layer to obtain a final output.

Z?:l yi exp[—D(z, z;)]
> i1 exp[=D(z, ;)]

where, the D is Gaussian function defined as,

D(z,z;) = Z (@) (15)

k=1

Oi:

(14)

where, n is number of input nodes, y; is weighted connection between the "
neuron in the pattern layer and summation node; m is number of items in input
vector; and z; and x;, are the j™ element of x and xz;, respectively. The o is
the spread (or width), determines the generalization performance of the GRNN.
In general, a larger o value may result in better generalization; its optimal value
is determined through trial and error. In conventional GRNN applications, all
units in the pattern layer have the same single spread. The performance of these
algorithms is depending on the selection of the parameters and here the default
parameters have been used for simplicity.
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3.2.4. Statistical validation

The proposed model has been validated through established and well-known sta-
tistical measures. The accuracy, error rate, sensitivity, and specificity have been cal-
culated to analyse the performance of the proposed work. The overall accuracy (A,)
of the model has been calculated measuring the number of TUs correctly classified
from each case in the study experiment TUs. The performance metrics have been
calculated measuring the true positive (TP), true negative (TN), false positive (FP),
and false negative (FN) rates. Also, the error rate (E,) has been calculated from the
miss-classified TUs. The mathematical interpretation of A, is described as follows,

. TP +TN
" TP+TN+FP+FN

Sensitivity (5,,) and specificity (S,) have been employed to quantify the performance
of the two case studies and obtain detection and diagnosis results of the proposed frame-
work. Sensitivity is the proportion of faulty and non-faulty TU behaviour correctly
detected by the test, where specificity refers to the proportion of the TU behaviours
that are correctly excluded from the group that they should not actually belong to.
These analyses are vital to confirm that specific faulty and non-faulty behaviour can
be properly implemented using the proposed framework towards addressing energy
wastage and building portfolio inefficiencies.

(16)

TP

0 = TP FN (17)
TN

% = TN L FP (18)

4. Experimental result analysis

The proposed AFDD method has been investigated on two real building’s HVAC
TU datasets for their faulty and non-faulty behaviour analysis and to determine the
potential savings that can be optimised through the proposed approach. These inves-
tigations have been performed on two real commercial buildings based in central of
London, United Kingdom. Both building’s information is provided first in this section
and the obtained result discussed later executing/ performing the proposed system
on these buildings. This study includes exploration, analysis, learning, and predic-
tion on the TU data employing supervised ML algorithms. The process relies on the
data properties, amount of data availability and different parameter values, thus this
investigation is rigorous and time intense. One-day of TU data is considered as an
individual pattern and is represented by twelve unique feature vectors that have been
developed by the proposed feature engineering method (described in Section 3.2.1).
The experiment has been conducted by separating the whole dataset into two phases:
training and testing. The training and testing data have been varied by different per-
centages for the investigation. The training has been started, varying from 5% to 80%
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and conversely testing began from 95% to 20% in decrements of 5%. This is a trial-
and-error method to discover the optimal training and testing ratio that can achieve
the best performance for this type of dataset. The buildings historic data considered
in the time frame ranges from July 2015 to July 2018 for the case study 1 and January
2018 to July 2018 for case study 2. A description of both buildings has been detailed
in Table 3.

Table 3: Investigated case study buildings physical information and experimental data details

Building
details Case study-1 | Case study-2
Building Commercial Commercial
type
Area of floor 157,000 200,000
space (sq. ft.)
Building’s
height (mter) 73.42 30.5
Established 1976 1982
year
year
Number of 17th Tth
floors
Total
p 731 516
Operating
TUs 723 490
Investigation 17th July 2015 | 15t January 2018
starts
Investigation 315 July 2018 | 31% July 2018
end
Inve§t1gated 769 147
working days
Inve.stlgated 12 12
working hours

The experiments have been carried out using Matlab R2018b tool on an Intel(R)
Core(TM) i5 processor@ 3.30 GHz running Windows 7 Enterprise 64-bit operating
system with a 7856-MB NVIDIA Graphics Processing Unit (GPU).

4.1. Result analysis: Case study-1

The experimental result analysis has been performed on three consecutive years
of TU data comprising over half a million data points for case study 1. The results
obtained from the proposed RBF framework over this case study are shown in Table 4.
An accuracy of 0.978 = 97.8% has been achieved with 5% training data, however the
highest training accuracy is achieved with 40% training data i.e., 0.996 = 99.6%. While
the highest testing accuracy is obtained with 60% dataset is 0.957 = 95.7%. Although it
has been seen for every training and testing set an average accuracy has been achieved
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of more than 0.965 = 96.5% and 0.891 = 89.1% with the average error rate of 0.035
= 3.5% and 0.978 = 97.8% respectively. Also, the sensitivity and specificity have been
employed to quantify the performance of the algorithm’s results for identification of
different TU behaviour. Often, the sensitivity and specificity of an experiment are
inversely related and the selection of the optimal balance between the sensitivity and
specificity depends on the purpose of the test. Here, the sensitivity 0.997 = 99.7% and
specificity 0.998 = 99.8% are achieved with 40% TU data. For testing, the highest
sensitivity 0.988 = 98.8% and specificity 0.996 = 99.6% are achieved with 60% TU
data, specificity and sensitivity for both the training and testing resulting in good
scores. This depicts that the RBF neural network can classify each of the classes
appropriately with very little error. By this method, the faulty and non-faulty classes
are truly identified by means of their activities. Thus, the TUs which are misbehaving
are recognised accurately and correctly classified to their corresponding class. The
RBF performance shows the effect of the method over-fitting after 40% training data,
thus accuracy does not improve with increased training. The RBF approach needs less
time to train a model as no repetition is required to reach the optimum parameters.

Table 4: Training and testing results using RBF for case study-1

Performance of RBF

Data A, E, Sh, Sp Data A, B, Sy, Sp
5% 0.978 | 0.022 | 0.997 | 0.996 95% | 0.923 | 0.077 | 0.973 | 0.979
10% | 0.976 | 0.024 | 0.995 | 0.998 90% | 0.915 | 0.085 | 0.982 | 0.988
15% | 0.965 | 0.035 | 0.995 | 0.998 85% | 0.899 | 0.101 | 0.986 | 0.992
20% | 0.985 | 0.015 | 0.993 | 0.998 80% | 0.933 | 0.067 | 0.988 | 0.993
o | 25% | 0.984 | 0.016 | 0.995 | 0.998 ° 75% | 0.937 | 0.063 | 0.991 | 0.994
é 30% | 0.991 | 0.009 | 0.993 | 0.998 | Z | 70% | 0.936 | 0.064 | 0.988 | 0.993
Ao | 35% | 0.992 | 0.008 | 0.992 | 0.998 ﬁ 65% | 0.935 | 0.065 | 0.989 | 0.994
2 [40% | 0.996 | 0.004 | 0.997 | 0.998 e 60% | 0.957 | 0.043 | 0.988 | 0.996
:% 45% | 0.993 | 0.007 | 0.989 | 0.998 | ‘= | 55% | 0.933 | 0.067 | 0.985 | 0.996
= 50% | 0.994 | 0.006 | 0.992 [ 0.998 | & | 50% | 0.924 [ 0.076 | 0.989 | 0.997
55% | 0.992 | 0.008 | 0.99 | 0.998 45% | 0.912 | 0.088 | 0.988 | 0.996
60% | 0.992 | 0.008 | 0.991 | 0.998 40% | 0.911 | 0.089 | 0.989 | 0.995
65% | 0.988 | 0.012 | 0.991 | 0.998 35% | 0.904 | 0.096 | 0.988 | 0.995
70% | 0.987 | 0.013 | 0.991 | 0.992 30% | 0.899 | 0.101 | 0.99 | 0.996
75% | 0.983 | 0.017 | 0.991 | 0.998 25% | 0.898 | 0.102 | 0.989 | 0.996
80% | 0.982 | 0.018 | 0.989 | 0.998 20% | 0.891 | 0.109 | 0.986 | 0.996

The obtained RBF results have been compared with two other neural networks:
PNN and general GRNN. Both are based on the RBF function and widely used for
classification purposes. PNN differentiates from RBF and works on estimating the
probability density function while RBF works on an iterative function approximation.
The obtained results from PNN are tabulated in Table 5. In the PNN case, the highest
training classification accuracy of 0.815 = 81.5% was achieved with 40% data and
testing accuracy 0.815 = 81.5% achieved with 65% data. Thus, in terms of accuracy,
PNN has not achieved comparative results to RBF for the faulty and non-faulty TU
classification. While an average accuracy is obtained for both the training and testing
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of approximately 0.81 = 81%, it is 18% below the RBF performance. Likewise, the
sensitivity and specificity obtained was 0.777 = 77.7% and 0.996 = 99.6% for training
and 0.783 = 78.3% and 0.996 = 99.6% for testing. Though, the specificity is high and
similar to RBF results, PNN can be seen to detect the TUs which do not truly belong
to the particular class, but does not predict the right class setting. Also, the TUs that
do not actually belong to specific classes are detected properly, affecting the sensitivity
outcomes for this network. This mainly happens due to the similar types of feature
values. As the features are generally formed by calculating the area of temperature
and power curve, if the total area value of one TU is similar to another TU, they could
be classified into the same group. But the TU may have different behaviour in terms
of power demand aspects or control strategy aspects. Thus, it is crucial to choose a
classifier that can deal with data non-linearity and the feature overlapping tendencies.
However, it is observed that the training and testing performance are similar for various
data percentages, inferring learning with the PNN networks are steady.

Table 5: Traning and testing results using PNN for case study-1

Performance of PNN
Data A, E, Sh Sp Data A, E, Sy Sp
5% 0.812 | 0.188 | 0.799 | 0.996 95% | 0.814 | 0.186 | 0.787 | 0.997
10% | 0.811 | 0.189 | 0.757 | 0.997 90% | 0.805 | 0.195 | 0.753 | 0.997
15% 0.81 0.19 | 0.763 | 0.997 85% | 0.807 | 0.193 | 0.765 | 0.996
20% | 0.812 | 0.188 | 0.774 | 0.996 80% | 0.813 | 0.187 | 0.784 | 0.996
o | 25% 0.81 0.19 | 0.765 | 0.996 ® 75% | 0.808 | 0.192 | 0.766 | 0.995
é 30% | 0.811 | 0.189 | 0.772 | 0.996 | 2 | 70% | 0.808 | 0.192 | 0.764 | 0.996
Ao | 35% 0.81 0.19 | 0.786 | 0.996 i 65% | 0.815 | 0.185 | 0.783 | 0.996
01 40% | 0.815 | 0.185 | 0.777 | 0.996 & 60% | 0.811 | 0.189 | 0.773 | 0.996
:% 45% | 0.814 | 0.186 | 0.782 | 0.996 | ‘= | 55% | 0.814 | 0.186 | 0.783 | 0.996
& 50% | 0.812 | 0.188 | 0.772 [ 0.996 | & | 50% | 0.809 | 0.191 | 0.769 | 0.996
55% | 0.814 | 0.186 | 0.785 | 0.996 45% | 0.813 | 0.187 | 0.786 | 0.992
60% | 0.812 | 0.188 | 0.775 | 0.996 40% | 0.809 | 0.191 | 0.774 | 0.992
65% | 0.812 | 0.188 | 0.776 | 0.996 35% | 0.811 | 0.189 | 0.777 | 0.995
70% | 0.814 | 0.186 | 0.785 | 0.996 30% | 0.814 | 0.186 | 0.788 | 0.997
75% | 0.814 | 0.186 | 0.786 | 0.995 25% | 0.814 | 0.186 | 0.787 | 0.995
80% | 0.815 | 0.185 | 0.785 | 0.995 20% | 0.813 | 0.187 | 0.789 | 0.995

Unlike PNN, GRNN is also a variant of RBF neural network and has similar archi-
tectures, except there is a fundamental difference; GRNN performs regression where
the target variable is continuous, whereas PNN performs classification where the target
variable is categorical. Both have fixed smoothing parameters. The accuracy achieved
is very low compared to RBF and PNN, with results tabulated in Table 6. The max-
imum accuracy of 0.491 = 49.1% is achieved with 40% training data set and 0.493 =
49.3% with 55% testing dataset, along with very high error rates of 0.509 = 50.9% and
0.507 = 50.7% for training and testing cases, respectively. Sensitivity is very low <0.05
depicting that this GRNN is unable identify actual TU behaviour failing to predict the
corresponding class of each TU pattern. The specificity is high, on average 0.99 = 99%
and 0.98 = 98% for training and testing dataset which is quite similar to the other
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networks employed here. It reflects the true negative rate is high, thus the misclassi-
fied patterns of each class are truly not belonging to that class. Thus, the GRNN can
capture the true negative patterns but fails to detect positive patterns. According to
statistical distribution theory, event-based data for faulty and non-faulty analysis may
have a certain overlap in terms of their probability distributions, which may lead to
contradictions between sensitivity and specificity.

Table 6: Traning and testing results using GRNN for case study-1

Performance of GRNN
Data A, E, Sy, Sp Data A, E, Sy Sp
5% 0.458 | 0.542 | 0.053 | 0.992 95% | 0.464 | 0.536 | 0.057 | 0.985
10% | 0.482 | 0.518 | 0.051 | 0.998 90% | 0.476 | 0.524 | 0.051 | 0.997
15% | 0.485 | 0.515 | 0.045 | 0.989 85% | 0.482 | 0.518 | 0.056 | 0.998
20% | 0.465 | 0.535 | 0.052 | 0.998 80% | 0.463 | 0.537 | 0.054 | 0.998
o | 26% | 0.496 | 0.504 | 0.055 | 0.99 ® 75% | 0.492 | 0.508 | 0.056 | 0.987
é 30% | 0.467 | 0.533 | 0.055 | 0.995 | 2 | 70% | 0.466 | 0.534 | 0.001 | 0.996
A | 35% | 0.461 | 0.539 | 0.043 | 0.997 i 65% | 0.463 | 0.537 | 0.042 | 0.993
21 40% | 0.491 | 0.509 | 0.044 | 0.995 &p 60% | 0.491 | 0.509 | 0.046 | 0.958
:% 45% | 0.491 | 0.509 | 0.05 | 0.992 | ‘£ | 55% | 0.493 | 0.507 | 0.049 | 0.933
& 50% | 0.485 | 0.515 | 0.051 | 0.999 | & | 50% | 0.481 | 0.519 | 0.039 | 0.998
55% | 0.478 | 0.522 | 0.043 | 0.996 45% | 0.483 | 0.517 | 0.043 | 0.966
60% | 0.484 | 0.516 | 0.042 | 0.996 40% | 0.479 | 0.521 | 0.041 | 0.969
65% | 0.482 | 0.518 | 0.002 | 0.997 35% | 0.482 | 0.518 | 0.003 | 0.965
70% | 0.483 | 0.517 | 0.002 | 0.995 30% | 0.485 | 0.515 | 0.003 | 0.996
75% | 0.489 | 0.511 | 0.042 | 0.997 25% | 0.493 | 0.507 | 0.043 | 0.968
80% | 0.490 | 0.510 | 0.026 | 0.998 20% | 0.491 | 0.509 | 0.024 | 0.969

4.2. Result analysis: Case study-2

The experimental result analysis has been performed over seventy thousand TU
data in case study 2. This study considered seven months of data from January 2018 to
July 2018. The investigated TUs for this building are found to be mostly badly behaved
and this is supported by the expert building engineers who viewed the data. The
misbehaving TUs belong to the three classes (C3 to C5) with high control temperature
and power demands. But, among these three classes, some of the TUs that are not
displaying similar behaviour to the group mislead the classification results. Here, the
RBF results for case study 2 are tabulated in Table 7 and the highest values are
highlighted in bold. The highest accuracy for this network achieved in 40% training
case is 0.944 = 94.4% and 0.931 = 93.1% achieved for the 60% testing case. In the
case of training, the sensitivity and specificity are 0.953 = 95.3% and 0.994 = 99.4%;
whereas for testing 0.779 = 77.9% and 0.951 = 95.1% respectively. For training both
specificity and sensitivity are high; thus, the true positive and true negative rate are
good for RBF. However, for testing, the sensitivity was quite low, which depicts the
TUs that actually belong to each class can be detected with the training data, but it
is less able to detect that they truly belong to that class for testing while the training
TU data is not available.
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Table 7: Traning and testing results using RBF for case study-2

Performance of RBF
Data A, E, Sh, Sp Data A, E, Sy, Sp
5% 0.919 | 0.081 | 0.996 | 0.985 95% | 0.765 | 0.235 | 0.698 | 0.985
10% | 0.917 | 0.083 | 0.952 | 0.982 90% | 0.836 | 0.164 | 0.723 | 0.982
15% | 0.927 | 0.073 | 0.937 | 0.979 85% | 0.862 | 0.138 | 0.766 | 0.916
20% | 0.926 | 0.074 | 0.921 | 0.994 80% 0.88 0.12 | 0.754 | 0.951
o | 26% | 0.935 | 0.065 | 0.911 | 0.993 ° 75% | 0.893 | 0.107 | 0.769 | 0.955
é 30% | 0.935 | 0.065 | 0.972 | 0.994 | Z | 70% | 0.901 | 0.099 | 0.723 | 0.944
Ao | 35% | 0.925 | 0.075 | 0.962 | 0.998 f 65% | 0.908 | 0.092 | 0.752 | 0.939
2 40% | 0.944 | 0.056 | 0.953 | 0.994 ep 60% | 0.931 | 0.069 | 0.779 | 0.951
:% 45% | 0.939 | 0.061 | 0.973 | 0.991 | ‘= | 55% | 0.915 | 0.085 | 0.744 | 0.953
= 50% | 0.934 | 0.066 | 0.992 [ 0.997 | & | 50% | 0.919 [ 0.081 | 0.759 | 0.907
55% | 0.923 | 0.077 | 0.995 | 0.987 45% | 0.921 | 0.079 | 0.765 | 0.964
60% | 0.923 | 0.077 | 0.992 | 0.993 40% | 0.924 | 0.076 | 0.754 | 0.959
65% | 0.933 | 0.067 | 0.991 | 0.998 35% | 0.926 | 0.074 | 0.762 | 0.917
70% | 0.922 | 0.078 | 0.984 | 0.985 30% | 0.928 | 0.072 | 0.793 | 0.962
75% | 0.912 | 0.088 | 0.941 | 0.987 25% | 0.929 | 0.071 | 0.807 | 0.951
80% | 0.913 | 0.087 | 0.995 | 0.982 20% | 0.913 | 0.087 | 0.789 | 0.915

The results obtained from PNN are tabulated in Table 8. From the PNN outcomes,
it has been found that the maximum accuracy obtained with 50% training is 0.651 =
65.1% and 60% testing is 0.642 = 64.2%. The accuracy for this case study was nearly
20% lower accuracy than case study 1. Although both buildings have the same param-
eters and feature representation, their TU behaving nature are physically different and
that impacts the classification results. This building’s TUs are quite badly behaved
TUs and demonstrate many malfunctions, also sensor locations are not appropriately
set to collect the correct discharge air temperature from the nearest unit, greatly af-
fecting the TUs working conditions. The resultant sensitivity is lower as well at 0.198
for 50% training and 0.158 for 60% testing set. Therefore, the true detection of each
class is not accurately predicted. While the specificity is high it illustrates the TUs are
not truly predicted to their corresponding classes.

The GRNN results are tabulated in Table 9, and it is observed that unlike the
previous case study results, here also the GRNN fails to classify the TU into their cor-
responding faulty and non-faulty classes. However, one difference is noticed,, maximum
accuracy is achieved with lower level of training data; 25% of training data obtained
accuracy 0.498 = 49.8% and for testing accuracy obtained 0.495 = 49.5% with 60%
TU dataset. Then sensitivity is also found very low <0.05 thus GRNN fails to identify
the actual TU behaviour and to predict the corresponding class labels. Conversely,
the specificity is high, on average 0.70 = 70% and 0.93 = 93% for training and testing
dataset. Thus, the true negative rate is higher for testing than training; the patterns
of each class that are misclassified truly do not belong to that class. Consequently,
the GRNN can capture the true negative patterns but fails to detect positive patterns.
Overall, for the building in case study 2 the sensitivity achieves low, and specificity
achieves high.
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Table 8: Traning and testing results using PNN for case study-2

Performance of PNN

Data A, E, Sh Sp Data A, E, Sn Sp
5% 0.647 | 0.353 | 0.252 | 0.885 95% | 0.636 | 0.364 | 0.182 | 0.938
10% | 0.648 | 0.352 | 0.213 | 0.885 90% | 0.638 | 0.362 | 0.153 | 0.976
15% | 0.643 | 0.357 | 0.212 | 0.787 85% | 0.636 | 0.364 | 0.156 | 0.912
20% | 0.643 | 0.357 | 0.202 | 0.889 80% | 0.64 0.36 | 0.159 | 0.983
o | 25% | 0.644 | 0.356 | 0.201 | 0.885 o 75% | 0.636 | 0.364 | 0.156 | 0.921
(c;é 30% | 0.643 | 0.357 | 0.201 | 0.826 | £ | 70% | 0.637 | 0.363 | 0.164 | 0.992
A [35% | 0.642 | 0.358 | 0.187 | 0.877 | & | 65% | 0.641 | 0.359 | 0.159 | 0.917
1 40% | 0.641 | 0.359 | 0.207 | 0.885 2 60% | 0.642 | 0.358 | 0.158 | 0.922
:% 45% | 0.642 | 0.358 | 0.185 | 0.788 | = | 55% | 0.637 | 0.363 | 0.162 | 0.913
& | 50% | 0.651 | 0.349 | 0.198 | 0.749 & | 50% | 0.638 | 0.362 | 0.159 | 0.927
55% | 0.644 | 0.356 0.2 | 0.897 45% | 0.639 | 0.361 | 0.161 | 0.931
60% | 0.643 | 0.357 | 0.189 | 0.899 40% | 0.638 | 0.362 | 0.163 | 0.927
65% | 0.644 | 0.356 | 0.198 | 0.745 35% | 0.639 | 0.361 | 0.164 | 0.932
70% | 0.6428 | 0.3572 | 0.203 | 0.698 30% | 0.641 | 0.359 | 0.157 | 0.924
75% | 0.643 | 0.357 | 0.202 | 0.882 25% | 0.638 | 0.362 | 0.154 | 0.935
80% | 0.642 | 0.358 | 0.187 | 0.974 20% | 0.639 | 0.361 | 0.155 | 0.944

Table 9: Traning and testing results using GRNN for case study-2
Performance of GRNN

Data A, FE, S Sp Data A, E, Sn Sp

5% | 0.491 | 0.509 | 0.068 | 0.755 95% | 0.493 | 0.507 | 0.025 | 0.912

10% | 0.493 | 0.507 | 0.057 | 0.635 90% | 0.493 | 0.507 | 0.021 | 0.923

15% | 0.497 | 0.503 | 0.059 | 0.695 85% | 0.494 | 0.506 | 0.022 | 0.945

20% | 0.492 | 0.508 | 0.063 | 0.715 80% | 0.494 | 0.506 | 0.024 | 0.932
o | 25% | 0.498 | 0.502 | 0.053 | 0.732 o 75% | 0.492 | 0.508 | 0.024 | 0.957
é 30% | 0.497 | 0.503 | 0.054 | 0.758 | £ | 70% | 0.493 | 0.507 | 0.027 | 0.941
o | 35% | 0.493 | 0.507 | 0.053 | 0.745 | & | 65% | 0.494 | 0.506 | 0.024 | 0.943
20 1740% | 0.493 | 0.507 | 0.051 | 0.755 | = [ 60% | 0.495 | 0.505 | 0.025 | 0.954
2 [45% | 0496 | 0.504 [ 0.043 [ 0.751 | = [55% | 0.493 | 0.507 | 0.028 | 0.944
& | 50% | 0.495 | 0.505 | 0.049 | 0.732 = | 50% | 0.493 | 0.507 | 0.026 | 0.954
55% | 0.494 | 0.506 | 0.053 | 0.741 45% | 0.495 | 0.505 | 0.026 | 0.938
60% | 0.494 | 0.506 | 0.05 | 0.775 40% | 0.494 | 0.506 | 0.026 | 0.956
65% | 0.493 | 0.507 | 0.05 | 0.753 35% | 0.495 | 0.505 | 0.029 | 0.945
70% | 0.495 | 0.505 | 0.052 | 0.725 30% | 0.495 | 0.505 | 0.027 | 0.938
75% | 0.496 | 0.504 | 0.051 | 0.712 25% | 0.494 | 0.506 | 0.029 | 0.935
80% | 0.493 | 0.507 | 0.042 | 0.699 20% | 0.495 | 0.505 | 0.027 | 0.937

4.8. Performance Comparison:

From the result analysis, it has been found that the x-RBF achieved good results
among the compared methods for both the case studies. The results are compared
by varying different training and testing percentages and also by statistical validation
metrics. Maximum performance score were obtained with 40% training set and with
60% testing set. Thus, based on these statistical scores, the proposed x-RBF have been
considered an ideal method to perform the AFDD for these case study buildings. The
scores have been plotted as a bar graph in Fig. 7.
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Figure 7: Testing performance comparison between different experimented methods for both the case
studies

After investigating the three neural networks, x-RBF, PNN, GRNN for both case
studies, the notable features that have significant effect on the performance of each
method have been compared and are tabulated in Table 10. The performance of
the NN depends on the number of inputs (feature vector for the energy data) that
are same twelve-dimensional feature vector for all the methods. The NN function
approximation values have been chosen here by default to maintain low computational
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complexity. The amount of training data that achieves the optimal performance for
the TU fault identification is also given. The faulty and non-faulty TU detection and
misidentification have been considered here. It has been found that the true positive
rate is high for the x-RBF where the faulty TU has been identified truly and the false
negative is appreciable where non-faulty TUs are identified properly along with low
error rate. The PNN and GRNN do perform well with small datasets but with larger
datasets, they become impractical.

Table 10: A table for performance comparison between experimented NNs.

P ¢ Case study 1 Case study 2
araerers xRBF | PNN | GRNN | xRBF | PNN | GRNN
No. of input 12 12 12 12 12 12
neurons
No. of
NN layers 3 4 4 3 4 4
Seeding function 1.0 0.1 1.0 1.0 0.1 1.0
approximation value
No. of bias required | Both First First Both First First
in the NN layers layer layer layer layer layer layer
Data required for o, | 500 40% | 40% | 50% 25%

optimal training
Faulty TU detection
performance
Non-faulty
TU detection 0.996 0.996 0.958 0.951 0.917 0.954
performance
Error 0.043 0.189 0.509 0.069 0.359 0.505
T1rne- Low | Medium | Medium | Low | Medium | Medium
complexity
Building energy
saving capacity

0.988 0.773 0.046 0.779 0.158 0.025

High | Medium Low High | Medium Low

5. Impact on energy optimisation

From the result analysis of the proposed framework, it has been found that RBF
has superior performance compared to the NN methods employed for these two real TU
data case study buildings in London. The advantage of the proposed model is it can
identify faulty HVAC TUs based on their control temperature and energy consumption,
irrespective of any particular fault type. So that, the proposed research would have real
effect and immediate and long term impact on long term BEMS energy optimisation by
early fault prediction. In more detailed discussion, it has been found during previous
research by the authors [23], that non-faulty TUs usually consume energy between 0.1
to 0.2 kWh for both heating and cooling phenomenon. Whereas, is the case of faulty
TUs, the energy consumption reaches a maximum 1 kWh (as shown in Fig. 8). Thus,
anticipation of the faults would instil enormous energy consumption reductions as well
as cost benefits. This can be realised from the Eq. (19).
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Figure 8: The example of faulty heating TU from the case study-1

E=Pxtxn (19)

Where, FE, is the electrical energy, P is the power consumption of each unit, t is the
operational hours/ running time of each unit inside the building, n is the total number
of faulty TUs. Subsequently, the average charges for each unit are 14.53 pence/kWh
for London region [37]. This according to that the costing for per day as follows, where,
C' is the total cost of the units, R, is the average rate/ pence.

C=RxE (20)

In the case of the first building (case study-1), the proposed collaborative ML
framework achieved an average sensitivity and specificity of 98.8% and 99.6% respec-
tively in the testing phase. Here, sensitivity and specificity demonstrated the ability
to identify faulty and non-faulty units respectively. In one day (18" July 2015) the
proposed model detected 124 faulty TUs where the building engineers confirmed the
number of faulty units was 125 (among 731 TUs, results 17.28% faults). If the power
consumption of a faulty unit is x kW h (as this figure varies with other parameters)
and each unit operates 12hrs/ day then, total amount of energy consumption would
be E = (x x 12 x 124)kWh = 1488xkWh that can be saved by the proposed work.
Subsequently, this much of energy costs C' = (1488x x 14.53pence) =~ £220 savings
can be made for the first building in just one day on these fault alone.

29



In the case of the second building (case study-2), the proposed work achieved aver-
age sensitivity and specificity of 77.90% and 95.1% respectively. On a particular day
(274 January 2018), the building engineer confirmed 180 faulty TUs (results 36.73%
faults) where the proposed work identified 140 number of faults. Hence, the amount
of energy of second building would have safeguarded is £ = (z x 12 x 140)kWh =
1680xkW h which costs approximately C' = (1680 x 14.53pence) =~ £250 in one day
for the second building again on these faults alone.

Therefore, the research establishes a long-term, implementable solution for energy
efficiency implementation and cost optimisation in real buildings. The research con-
siders automatic fault detection, which needs to be followed by the building engineers
for diagnosis purposes. The detection provides the TU ‘ID’ number and fault type to
the building engineers where the associated faults are then managed by experts. These
faults include the problems of fan, motor, belt, pulley, variable speed drive, sensors
etc. This supportive assistance would have a major impact on standards creation for
building BMS fault detection and rectification as well as highlighting the most com-
mon faults observed, enabling HVAC manufacturers and building designers to take
pre-emptive actions in building creation and retrofitting.

6. Discussions

In building management optimising energy usage and maintaining optimum build-
ing performance in real-world scenarios is very challenging. Researchers have dedicated
enormous efforts to develop proficient approaches to deal with the real challenges in
building sectors to improve performance and reduce energy waste, mainly at the com-
ponent level via building automation systems. However, many problems are left unob-
served and/or unsolved because of the vast data and the complex nature of building
management systems (BMSs). A buildings BMS produces vast amounts of data which
mostly goes misunderstood and rearley analysed due to the lack of available expert
building engineers, overhead costs, as well as huge time complexity. Thus, user friendly
data mining and machine learning methods are drawing attention for BMS data analy-
sis and building support, however this is a complex route to discover effective methods
as knowledge discovery and learning are highly data dependent, where every data sig-
nifies a specific behaviour. This makes the field extremely motivating and ripe formore
focused exploration. Pivotally, among numerous units used in buildings, the fan coil
unit (FCU) has not been explored or compared to other major units such as AHU,
chillers, and boilers, yet this is the unit closest to the end user. Equipment failure and
performance degradation of HVAC TUs often go ignored until they cause a noticeable
impact on occupant’s thermal comfort, trigger an equipment-level alarm, deteriorate
equipment lifespan, noted excessive energy consumption or costly breakdowns. There-
fore, early detection of unexpected behaviour and subsequent remedial best practice
can assist with these issues effortlessly. Here, the AFDD study began by analysing TU
performance to recognise process problems in, e.g. temperature, flows, pressures, level,
power, control signals, etc. Specifically, it is an examination of the device, which is
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not working desirably and unable to maintain a comfortable room temperature. Tech-
nically, it can be said that even though the demand response (power) is high, still
the control strategy (temperature) is poor and as a result occupant discomfort and
significant amount of energy loss.

This paper presents a data-driven based framework for automatic TU fault iden-
tification and associated energy conversion. This method combines new feature en-
gineering with a modified RBF (x-RBF) neural network followed by energy estima-
tion calculation. While analysing the real TU case study data, it has been found
that the non-parametric NN model is suitable for non-linear problems. Its learning
and classifying capability are quite impressive over other compared NN models. The
training accuracy for both distinct case studies are above ~99% and ~94%. This
defines the model’s suitability for identifying the specific faulty TUss. Subsequently,
the correct/true identification of faulty and non-faulty patterns could provide better
opportunities to identify and attend to problems when they occur, with large savings,
both financial and in energy efficiencies to be made. Only one day energy conservation
calculation has been performed here and a significant saving has been observed. Thus,
this research work demonstrates that the implementation of such approaches in BMS
could lead to large scale efficiencies in building management, design behaviour.

7. Conclusions and future work

This study provides a fault identification and energy saving estimation framework
using the proposed x-RBF method. This proposed method is a combination of pseudo
labelling with X-means clustering and RBF neural network to auto-classify the ‘faulty’
and ‘non-faulty’ behaviour to assist building managers in fast detect and diagnosis
issues inside building. A new feature engineering method has been proposed to repre-
sent the high dimensional TU data into a meaningful lower dimensional data stream.
The feature engineering method is performed by discovering events from the time se-
ries energy data using the PID controller response curve. The investigation began
by analysing historic data from a small but pivotal HVAC sub-component (i.e., TU).
The algorithm concentrates on proposing data-driven based approaches, which could
eventually classify faults from all different units (fan coil unit, variable air volume,
air handling unit, chiller, boiler, etc.) regardless of specific faults. The approach is
aimed to not only detect and diagnose equipment failures, but also provide signifi-
cant energy savings and well-being enhancements through pre-emptive maintenance,
behaviour analysis and predictive building identification. The proposed method has
been employed to the two real-life case study buildings in London and found x-RBF
outperforms over other compared methods. The x-RBF has a strong tolerance to out-
liers and performs efficient training processes employing the universal approximation
property which resulted in significantly lower-error estimation both in the training and
testing stages. From the experimental results it has been observed that the overall
performance of x-RBF can be applied successfully for the detection of terminal unit
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faults for these buildings. A future extension will evaluate the performances of hybrid
models with energy data from other type of HVAC unit.
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