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Stratified cohesiveness in complex business networks

Abstract

In this work, we propose a measure that aims at assessing the position of a node

with respect to the interconnected groups of nodes existing in a network. In

particular, since the nodes of a network can be placed at different distances from

cohesive groups, we extend the standard concept of clustering coefficient and

provide the local l-adjacency clustering coefficient of a node i as an opportunely

weighted mean of the clustering coefficients of nodes which are at distance l

from i. Thus, the standard clustering coefficient is a peculiar local l-adjacency

clustering coefficient for l = 0. As l varies, the local l-adjacency clustering

coefficient is then used to infer insights on the position of each node in the overall

structure. Empirical experiments on special business networks are carried out.

In particular, the analysis of air traffic networks validate the theoretical proposal

and provide supporting arguments on its usefulness.

Keywords: Structural cohesion, Complex business networks, Geodesic

distance in networks, Cohesive stratification.

1. Introduction

The analysis of inter-relationships between entities is a strategic aspect to be

investigated in business research. In organizations, the individual decisions are

affected by the position of the decision maker in structures describing mutual

relationships: in the contect of entrepreneurship, this is of particular relevance

when evaluating firms’ performance. Thus, business literature has largely fo-

cused on discovering and analysing clusters of organizations (see e.g. [1] and,

more recently, [2]). In general, a managerial architecture is grounded on the

relationships among agents, so that network structures are particularly effec-
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tive in offering a representation of the complexity of the relationship among

the involved actors. Firms and managers are usually interconnected through an

intricate weave. Hence, discovering how they are cohesive at every level of the

structure can give useful insights into entrepreneurial strategic choices (see e.g.

[3, 4, 5, 6]). In the area of financial economics, the authors in [7] deal with the

clusters of networks of economies by using data on the Gross Domestic Product

of a group of countries.

In this perspective, it becomes important to assess at which level, or how

deep an individual is involved in cohesive structures. At a local level, the in-

terconnections around a node are generally represented and measured through

its clustering coefficient. Such a coefficient can be defined operatively, being

computed as the relative number of actual triangles to which the vertex belongs

over the hypothetical ones. It has been developed in all the cases of weighted,

unweighted, directed and undirected networks. In this respect, we mention the

classical contributions of [8, 9, 10, 11] and the non recent but highly informative

monograph [12]. Recently, [13] contains a relevant extension of the clustering

coefficient proposed by [9]; [14] discusses the clustering coefficient in presence of

already established communities for directed networks; [15] presents a concept

of clustering coefficient which also includes the presence of missing indirect links

in the construction of the triangles.

In socio-economic contexts, the idea of cohesion is strictly related to the

so-called “embeddedness”, that refers to the fact that economic action and out-

comes are affected by both actors’ pairwise relations and the structure of the

overall network ([16, 17]). This idea focuses on the mutual relationships between

the neighbours of the node of interest, that is, in other words, the concept of

transitivity. Such a concept is, at the end, what the clustering coefficient math-

ematically represents. It is worth to underline that the clustering coefficient is

a local measure; hence, it does not capture the topology of the whole network.

Moreover, the global clustering coefficient of the network – which is simply

obtained by taking the average of the local versions over all the nodes of the

network – often is not very informative. Indeed, a network can be highly dense
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at a local level but not at a global one, and this suggests that the average of

local clustering could not well represent the global characteristics of the net-

work. This drawback is peculiarly relevant, since it is often crucial to assess the

position of a node with respect to cohesive groups in which the node itself is

not directly involved (see [18]).

In this paper we propose a measure that aims at assessing the position of

a node in a cohesive group, by considering the role and the relevance of the

cohesiveness of nodes which are placed at a geodesic distance l ≥ 1 from the

considered one. In details, we define the local l-adjacency clustering coefficient

of a node i as an opportunely weighted mean of the clustering coefficients of the

nodes at geodesic distance l from i.

The proposed approach fits well with the existing literature. Indeed, in order

to overcome the analysis of the structural embeddedness limited to an actor’s

direct neighborhood, several attempts have been made; in this respect, it is

worth mentioning the nested k-connected sets (see e.g. [16, 19]). Under this

perspective, our method could be seen as an alternative generalization of the

“direct embeddedness”, not through nesting but through higher-order clustering

coefficients. Precisely, in this work we interpret the l-th stratus associated

with a node i as the group of nodes that are at distance l from i. Assessing

the stratified cohesiveness structure, or, simply, the stratified structure of a

network (see below for a formal definition of this concept), represents a crucial

point for understanding the contextualization of the nodes within the overall

system. For instance, assume that a node i has a low clustering coefficient but

the nodes at a distance l > 1 from it (i.e., the nodes that belong to the stratus

l of the node i) exhibit a strong cohesiveness. In this case, the node i is not

embedded in a powerful cohesive group of nodes but it is surrounded by a high

level of mutual interconnections for the nodes quite far from it. This situation

can be interpreted under the perspective of shocks propagation. Indeed, if a

node located at a geodesic distance from i greater than l receives a shock, such

a shock could hardly reach i, since i is surrounded by highly cohesive nodes at

a large distance from it and by an empty space – in terms of cohesiveness –
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around it. In other words, the highly interconnected nodes at distance l might

be viewed as forming a sort of barrier for i, absorbing the external solicitations

at larger distances.

It is crucial to point out that we do not aim here at providing a new model

describing hierarchical communities in the network. Indeed, our perspective is

to provide a concept of stratification which does not nest one stratus in the ones

at higher levels, like in the standard dendrogram analysis; rather, we present

a framework where all the strati are individual entities, and none of them is

included in another one. Thus, strati cannot be intepreted as “hierarchies”.

For a detailed analysis of this aspect, please refer to dendrogram hierarchical

clustering (see e.g. [20, 21, 22])

Furthermore, hierarchical communities represent the core of a wide strand

of research focusing on community detection (see e.g. [23, 24, 25, 26, 27]).

Undoubtedly, such a research theme is of high relevance either under a method-

ological point of view as well as for practical applications. However, the present

paper is quite far from this type of literature. In fact, communities detection

models are basically grounded on suitably defined partition problems over the

entire set of the nodes, and communities are represented by the classes of the

partition. In so doing, communities detection problems have a global analysis

approach over the set of the nodes. Differently, we here explore the cohesiveness

property of the individual nodes when considering their geodesic distance from

the other nodes of the network; therefore, our approach is here of a purely local

type.

With this proposal, we are placed in the strand of literature that aims at catch-

ing the effect of interconnection patterns that go beyond the local neighbours

(see the interesting point of view in [28] on this). However, we provide a dif-

ferent measure with respect to [29], that assesses how much a node is involved

in larger cliques linking the result to community-detection methods (see also

[30]). The proposed approach is also different with respect to [31], whose au-

thors provide a clustering coefficient based on the probability, computed under

the assumption of the Barabási-Albert model, that there is a specific distance
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between two neighbours of the node. Since we assess the role of nodes, we also

work differently from [32] and [33], where edge centrality scores are proposed

providing different weights to local centres and global bridges that connect dif-

ferent regions.

To test the proposed measure we perform an empirical application to the

paradigmatic business network related to the U.S. domestic air traffic. In this

field, the emergence of competition and the transition in ownership requires

the adoption of a different perspective in airport management (see, e.g., [34]).

This explains the presence of several studies on airport business. For instance,

as stressed in [35], the description of the topological and metric structure of

the network is of great importance for understanding the business strategies

adopted by different airlines or by different airports, for assessing passengers’

mobility in the presence of direct and indirect connections or for investigating

the evolution of airports to changes in the passengers’ demand and reactions

to economical external forces, such as deregulation. Additionally, the so-called

“network connectivity”, i.e. the extent to which an airport or a network of

airports connects users of aviation to the outside world ([36]), is particularly

useful to policymakers. Indeed, the authors would like to get insights into how

well the national or local airport system responds to the connectivity needs of

a country and understand how to enhance air connectivity to support economic

growth. As emphasized by the International Transport Forum (see, e.g., [37]),

the analysis of network connectivity is relevant for both airports and government

in order to make strategic business decisions.

Therefore, we test, with our proposal, how a node is near/far from a strong

cohesiveness structure or, in other words, how much an airport is embedded

in the airport network. Findings confirm the effectiveness of these measures

in seizing the peculiar characteristics of different hubs in the airport network.

We observe that larger hubs are not only highly interconnected with the other

nodes of the network but also connected to strong cohesive groups. When

higher distances are analysed, the effects of indirect connections with remote

airports are emphasized. Referring to large and medium hubs, the proposed

5



approach allows to emphasize the strategic role of such nodes in the airport

network system. Finally, although the considered empirical network is only

weakly asymmetric and it is typically analysed as an undirected network in the

literature (see, for instance, [8, 13, 38, 39, 40, 41]), we show that a separate

evaluation of directed paths at high levels can be useful to identify specific

patterns in terms of in- and out-cohesiveness – i.e. in terms of the property

of being part of cohesive groups when considering arcs directions of in- and

out-flows.

The rest of the paper is organized as follows. In Section 2, we present

the mathematical preliminaries and the basic notation used in the article. In

Section 3, the concept of local l-adjacency clustering coefficient is defined for

both undirected and directed case. In Section 4 the new conceptualization of

clustering coefficients is applied to the U.S. airport network, in order to discuss

its stratified structure. Conclusions are in Section 5.

2. Preliminary definitions and notations

We briefly present the mathematical definitions used in the paper. A graph

G = (V,E) is identified by a set V of n vertices and a set E of m unordered pairs

of vertices (called edges). Vertices i and j are said to be adjacent if (i, j) ∈ E.

Graphs considered here are without loops. The degree di of the vertex i is

the number of its adjacent nodes. A path between two vertices i and j is a

sequence of distinct vertices and edges between i and j. In this case, i and j are

connected. G is connected if every pair of vertices is connected. The distance

d (i, j) is the length of any shortest path (or geodesic) between i and j. If i and

j are not connected, then d (i, j) = ∞. The diameter diam(G) of a connected

graph is the length of any longest geodesic.

Given a connected graph G, we define the set:

Ni(l) = {j ∈ V |d(i, j) = l}

of nodes j ∈ V which are at distance l with respect to the node i, where
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l = 1, . . . , diam(G). The cardinality |Ni(l)| is denoted as di(l). Notice that

Ni(1) is the set of nodes adjacent to i, so that di(1) = di.

A graph G is weighted when a positive real number wij > 0 is associated

with the edge (i, j). Therefore, wij = 0 if nodes i and j are not adjacent. In

particular, when wij = 1 if (i, j) ∈ E, then the graph is unweighted. Thus, the

unweighted case can be viewed as a particular weighted one. For this reason,

we use in this paper only the general concept of weighted graphs and we denote

a weighted graph with its weights simply as weighted network.

The strength of the vertex i is defined as si =
∑n

j=1 wij .

In general, both adjacency relationships between vertices of G and weights on

the edges are described by a nonnegative, real n-square matrix W (the weighted

adjacency matrix ), with entries wij .

A weight can be also associated with every geodesic of a connected graph G

in the following way: let Gij be the set of the geodesics connecting the vertices

i and j; the generic element of Gij is g = gij .

We observe that more than one geodesic connecting i and j could exist, so

that, in general, |Gij | ≥ 1. Recalling that all the geodesics in Gij have the same

length, a unique integer l = l(i, j) exists such that the length of all the paths in

Gij is l. The role of l is crucial for the following arguments. Therefore, l will be

explicitly added in the notation when needed so that, for instance, Gij will be

Gij(l), g will become g(l) and so on.

The weight of gij(l) is the sum of the weights of its edges and we denote it

with wij(l, g). This allows us to define the l-th order strength of the node i in

this setting as

si(l) =
∑

j∈Ni(l)

wij(l),

where wij(l) = min
g∈Gij(l)

{wij(l, g)}. Notice that when j ∈ Ni(1), then Gij(1) =

{(i, j)}; hence wij(1) = wij and si(1) is the strength si of the vertex i.

A directed graph D = (V,E) is obtained from G by adding to its edges a

direction, where G is the underlying graph of D. In this case, the links between

couples of nodes are called directed edges or arcs. In a weighted directed graph,
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a weight wij > 0 is associated with the directed edge (i, j) and, in general, the

matrix W is not symmetric. In fact, since bidirectional edges between a pair of

nodes can exist, both wij and wji can be positive with wij 6= wji. For the sake

of notation, we will denote by −→w ij and ←−w ij the weight wij of the arc directed

from i to j and the weight wji of the arc from j to i, respectively.

A directed path from i to j is a sequence of distinct vertices and arcs from

i to j such that every arc has the same direction; in this case, we say that

j is reachable from i and we call this out-path of the node i. The distance
−→
d (i, j) from i to j is the length of such shortest out-path (or out-geodesic) if

any, otherwise
−→
d (i, j) =∞.

Since directed paths from j to i can also exist, we define the in-path of the

node i as the directed path from j to i and we denote with
←−
d (i, j) the length

of any shortest such in-path (or in-geodesic). If i is not reachable from j, then
←−
d (i, j) =∞.

If i and j are mutually reachable, both in and out-geodesics of i exist, al-

though the distances
←−
d (i, j) and

−→
d (i, j) can be different. D is strongly con-

nected if every two vertices are mutually reachable.

D is weakly connected if the underlying graph G is connected. That it means

that a geodesic g between i and j exists in the underlying graph G. In this case,

distance d(i, j) is finite for all i, j ∈ V .

In addition, we define the following sets:

1.
−→
N i(l) = {j ∈ V |

−→
d (i, j) = l}, for each l = 1, . . . , diam(G);

2.
←−
N i(l) = {j ∈ V |

←−
d (i, j) = l}, for each l = 1, . . . , diam(G).

Moreover, according to what we did above, we can define
−→
G ij and

←−
G ij

the sets of the out-geodesics and in-geodesics connecting the vertices i and j,

respectively; the generic elements of
−→
G ij and

←−
G ij are −→g = −→g ij and ←−g =←−g ij ,

respectively.

Hence, the definition of weighted in- and out-geodesics can be easily given

by setting:
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1. −→w ij(l) = min
−→g ∈
−→
G ij(l)

{−→w ij(l,
−→g )};

2. ←−w ij(l) = min
←−g ∈
←−
G ij(l)

{←−w ij(l,
←−g )},

where ←−w ij(l,
←−g ) (−→w ij(l,

−→g )) is the sum of all the weights of the arcs of the

geodesic ←−g (−→g ) of length l connecting i and j.

This allows us to define the l-th order in and out-strength of the node i as

−→s i(l) =
∑

j∈
−→
N i(l)

−→w ij(l),

←−s i(l) =
∑

j∈
←−
N i(l)

←−w ij(l).

3. Stratified cohesiveness

The aim of this section is to define a new indicator of structural cohesiveness

around a node i based on the mutual interconnections between nodes at differ-

ent distances from i. This new indicator uses an extended idea of clustering

coefficient, moving along shortest paths. Hence, we are providing a conceptual-

ization of the stratified structure around the nodes of a network.

We introduce the indicator discussing separately the undirected and directed

case.

3.1. Local l-adjacency clustering coefficient: undirected case

Let P(l) = [pij(l)]i,j∈V for l = 1, . . . , diam(G) be the matrix such that:

pij(l) =


wij(l)
si(l)

if j ∈ Ni(l),

0 otherwise.

(1)

For the sake of completeness, the definition of the matrix P(l) can be extended

to the case l = 0, by setting P(0) = I, being I the identity matrix.

We define the vector of the local l-adjacency clustering coefficients of the

nodes of the network c(l) = [ci(l)]i∈V , as:

c(l) = P(l)c, (2)
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where c = [ci]i∈V is the vector whose element ci is the weighted clustering

coefficient of node i, defined in Barrat et al. ([8]) as

ci =
1

si(di − 1)

∑
j

∑
k 6=j

wij + wik

2
aijaikajk, (3)

being aij equal to 1 if (i, j) ∈ E and 0 otherwise. Notice that, when l = 0,

formula (2) gives c(0) = c, and then we recover the weighted local clustering

coefficient defined in [8].

When l = 1, the local l-adjacency clustering coefficient c(1) = [ci(1)]i∈V is the

vector of elements:

ci(1) =
1

si

∑
j∈V

wijcj , (4)

where each element represents the weighted average of the clustering coefficients

cj of the nodes j which are adjacent to i. This is also true for l > 1, as in general,

formula (2) states that ci(l) is the weighted average, with weights wij(l), of

clustering coefficients cj of nodes j which are at distance l with respect to the

node i. Furthermore, it is noteworthy that, in case of an unweighted graph, the

coefficient ci(l) reduces to a classic arithmetic mean.

The elements of the vector defined in (2) give insights about the network

structure at a specific distance from nodes of the graph. Indeed, the element

l associated with the proposed definition of the clustering coefficient explains

how the nodes at distance l from i are interconnected in the graph.

Large values of such clustering coefficients of i at high levels l suggest that i

is connected with well-established highly cohesive nodes which are far from the

node itself. In other words, the analysis of c(l) with l = 0, 1, . . . , diam(G) leads

to a complete view of the graphs in terms of cohesiveness, and this might give

insights on how shocks propagate. The quantity ci(l) describes the cohesiveness

at stratus l around the node i and the set of vectors c(l) defines the stratified

cohesiveness structure – or, as already said before, the stratified structure – of

the network as the value of l varies.

In order to measure the overall cohesiveness structure around a node i, we
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then introduce the vector h = [hi]i=0,1,...,n such that

hi =

diam(G)∑
l=0

xlci(l), (5)

where xl ≥ 0, for each l, and
∑diam(G)

l=0 xl = 1.

The vector h = [hi]i=0,1,...,n allows tracking the whole network structure

around a single node i, and takes into account all the strati. Notice that the

selection of a peculiar distribution of the weights (x0, x1, . . . , xdiam(G)) provides

the meaning of the concept of stratified cohesiveness for all the nodes of the

graph. In particular, high polarization of such a distribution at low (high)

level l leads to core-based (periphery-based) identification of the cohesiveness

structure. The special case xl = 1 focuses attention only to interconnected

nodes at stratus l.

3.2. Local l-adjacency clustering coefficients: directed case

We consider a directed, weighted and weakly connected graph D.

As already pointed out in Section 2, in addition to weighted paths, also weighted

in- and out-paths can exist and we can focus only on a specific pattern (out-path

or in-path for the node i), or we can consider all edges’ directions. Each choice

is reasonable and depends on the kind of problem we deal with.

For l = 1, . . . , diam(G), we define the matrix P̄(l) with the following entries:

p̄ij(l) =


w̄ij(l)
s̄i(l)

if j ∈ N̄i(l) and N̄i(l) 6= ∅,

0 otherwise,

(6)

where:

(a) N̄i(l) =
−→
N i(l), w̄i,j(l) = −→w ij(l) and s̄i(l) = −→s i(l) if only out-paths of

node i are considered. In this case, P̄(l) will be denoted by
−→
P(l);

(b) N̄i(l) =
←−
N i(l), w̄i,j(l) =←−w ij(l) and s̄i(l) =←−s i(l) if only in-paths of node

i are considered. In this case, P̄(l) will be denoted by
←−
P(l);
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(c) N̄i(l) = Ni(l), w̄i,j(l) = wij(l) and s̄i(l) = si(l) if all the directions of the

edges are taken into account. In this case, P̄(l) will be denoted by P(l).

Also in this case, we set P̄(0) = I.

The definition of local l-adjacency clustering coefficients, introduced in for-

mula (2) has to be extended to the three cases (a), (b) and (c).

Indeed, in the specific context of directed graphs, edges pointing in different

directions have a completely different interpretation in terms of the resulting

flow pattern. To this aim, alternative in-type or out-type local l-adjacency

clustering coefficients can be also obtained as:

cin(l) =
←−
P(l)cin. (7)

cout(l) =
−→
P(l)cout. (8)

where
←−
P(l) and

−→
P(l) are matrices defined in formula (6) whose elements are

computed considering only in-paths (case (b)) or out-paths (case (a)), respec-

tively. cin = [cini ]i∈V and cout = [couti ]i∈V are the vectors whose elements cini

and couti are the in and out local clustering coefficients defined in [13] as:

cini =
1
2 [WT (A + AT )A]ii
←−s i(1)

(←−
d i(1)− 1

)
and

couti =
1
2 [W(A + AT )AT ]ii
−→s i(1)

(−→
d i(1)− 1

) .

These two coefficients convey information about clustering of two different pat-

terns (in or out) within tightly connected directed neighbourhoods.

According to the case (c), we define the local l-adjacency clustering coeffi-

cients as:

call(l) = P(l)call, (9)

where call = [calli ]i∈V is the vector whose elements calli are the weighted and

directed clustering coefficients provided in [13].
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The difference between the vectors of local l-adjacency clustering coefficients

in (2) and (9) lies in the considered definition of triangles. The same triple of

nodes might be associated with one triangle (no directions of the arcs to be

taken into account) in the former case and two of them (two possible directions

for the arcs) in the latter one. In the special case of absence of bilateral arcs,

the following result holds true:

Proposition 1. Let D be a directed graph. If the graph D has not bilateral arcs,

then call(l) = c(l)
2 , where c(l) is the vector of the local l-adjacency clustering

coefficients of the undirected underlying graph G.

Proof. We define W(D) and W(G) the weighted adjacency matrices of the

graphs D and G. The local clustering coefficient for weighted and directed

network is defined as (see [13]):

calli =

1
2

[(
W(D) + WT (D)

)(
A(D) + AT (D)

)2
]
ii

si(1, D) (di(1, D)− 1)− 2s↔i (1, D)
(10)

where si(1, D) and di(1, D) are respectively the total strength and the degree

of the node i, whereas s↔i (1, D) is the strength related to bilateral arcs between

i and its adjacent nodes.

Since the graph D has not bilateral arcs, s↔i (1, D) = 0. Additionally, if

nodes i and j are adjacent, a (unique) weighted arc between i and j exists so

that if −→w ij(1, D) > 0 then ←−w ij(1, D) = 0 or vice versa. As a consequence,

W(D) + WT (D) = W(G) and A(D) + AT (D) = A(G).

Furthermore,

si(1, D) = −→s i(1, D)+←−s i(1, D) =
∑

j∈
−→
N i(1)

−→w ij(1, D)+
∑

j∈
←−
N i(1)

←−w ji(1, D) =
∑

j∈Ni(1)

wi,j(1, G) = si(1, G).

A similar chain of equalities entails that di(1, D) = di(1, G).

Hence, (10) yields, ∀i = 1, ..., n:

calli =
1
2

[
W(G)A2(G)

]
ii

si(1, G) (di(1, G)− 1)
=

ci
2

(11)
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and, by formula (9):

call(l) = P(l)call =
1

2
P(l)c =

1

2
c(l). (12)

Analogously to formula (5), we can define hin = [hin
i ]i∈V , hout = [hout

i ]i∈V ,

and hall = [hall
i ]i∈V , where:

hin
i =

diam(G)∑
l=0

xlc
in
i (l), hout

i =

diam(G)∑
l=0

xlc
out
i (l), hall

i =

diam(G)∑
l=0

xlc
all
i (l).

(13)

3.3. How the local l-adjacency clustering coefficients work: an illustrative ex-

ample

The classical clustering coefficient does not give insights on both the topolog-

ical structure and the stratified structure of the whole network, being a measure

of the local cohesiveness structure concentrated around the nodes of the net-

work. For the same reason also the global clustering coefficient of the network,

which is given by the average of the local version around the nodes, is often not

very informative. Furthermore, the nodes of a network can be highly cohesive at

a local level but not on a global level, so that the average of the local clustering

could not well represent the global characteristics of the network (see [18]).

To illustrate how the local l-adjacency clustering coefficients effectively map

the cohesiveness structure in the network, we show how they work by compar-

ing two small graphs. For the sake of simplicity, we limit our investigation to

undirected and unweighted graphs, as interesting remarks can be done also in

this very simplified, but meaningful, case.

Let us consider the two graphs G and G′, sharing the same number of nodes

(namely, 9) and same diameter (namely, 4), but different topology, since graph

G′ have more arcs than G (hence, showing a stronger cohesiveness structure, see

Figure 1). In both graphs, node 1 shares the same neighbours and, being part of

the same triangles, it has the same clustering coefficient c1(0). This coefficient

is then not effective in capturing the actual position of the node with respect to
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the cohesiveness in the network. Indeed, the classical clustering coefficient gives

insights about how the node 1 is embedded in a cohesive group only respect to

its neighbours.

Figure 1: Graphs G (left side) and G′ (right side).

To have a more reliable information about how the node is located with

respect to the whole structure, in particular to cohesiveness properties of exist-

ing nodes, we need to analyse its position looking deeper than its neighbours.

Hence, the l-adjacency clustering coefficients (with l = 1, .., 4) in this sense are

meaningful.

Node ci(0) ci(1) ci(2) ci(3) ci(4) hi hi hi

Decreasing Weights Uniform Weights Increasing Weights

1 0.50 0.45 0 0 0 0.32 0.19 0.09

2 0.50 0.45 0 0 0 0.32 0.19 0.09

3 0 0.17 0.60 0 0 0.12 0.15 0.11

4 0.30 0.40 0 0 0 0.22 0.14 0.07

5 1 0.43 0 0 0 0.53 0.29 0.14

6 0 0.30 0.50 0 0 0.14 0.16 0.11

7 0 0.30 0.50 0 0 0.14 0.16 0.11

8 0 0.25 0.45 0 0 0.12 0.14 0.09

9 0 0 0.25 0.60 0 0.10 0.17 0.17

Table 1: Graph G: l-adjacency clustering coefficients and elements of vector h computed for

different choices of weights.

Comparing the values of the clustering coefficients in Tables 1 and 2, the

coefficient of node 1 decreases with respect to l in the case of G (from 0.5 to 0)
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Node ci(0) ci(1) ci(2) ci(3) hi hi hi

Decreasing Weights Uniform Weights Increasing Weights

1 0.50 0.53 0.83 0 0.50 0.47 0.34

2 0.29 0.76 0.33 0 0.37 0.35 0.24

3 0.33 0.61 0.60 1 0.52 0.63 0.76

4 0.50 0.76 0.56 0 0.51 0.45 0.31

5 1 0.43 0.73 0 0.70 0.54 0.36

6 1 0.39 0.77 0.33 0.74 0.62 0.53

7 1 0.39 0.77 0.33 0.74 0.62 0.53

8 0.67 0.43 0.80 0 0.55 0.47 0.34

9 0.67 0.43 0.80 0 0.55 0.47 0.34

Table 2: Graph G′: l-adjacency clustering coefficients and elements of vector h computed for

different choices of weights.

moving through paths of length greater than 1, whereas in case of graph G′ it

increases till l = 2 (from 0.5 to 0.83) and vanishes for l = 3.

Therefore, the different strati of the cohesiveness structure around the node

1 well reflect the position of such a node with respect to the way the other nodes

are connected in the structure.

Through elements hi we are able to simultaneously consider all the cohesive-

ness properties of the nodes at the different strati. We control the impact of the

coefficients through their weights xl. We consider here three possible scenarios

for the weights x’s:

• Decreasing weights: xl = (l+1)−1∑diam(G)
h=0 (h+1)−1

= (l+1)−1

HG
where HG is the

harmonic number of order diam(G) + 1, for each l;

• Uniform weights: xl = 1
diam(G)+1 , for each l;

• Increasing weights: xl = (l+1)∑diam(G)
h=0 (l+1)

= 2(l+1)
(diam(G)+1)(diam(G)+2) , for each

l.

Natural interpretations of the weights arise. Decreasing weights, for instance,

reduce the impact on the node of high distances when assessing the cohesiveness.

Notice that, the elements in h do not provide similar information of the classical

average clustering coefficient. Instead, we are measuring the position of the node

inside the network looking at each stratus. These indicators then provide an

overall look and, at the same time, they track the node distances from the more

cohesive groups of nodes in the network.
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4. Empirical experiments

In order to see how the proposed indicator is effective in assessing how much

a node is connected to a cohesive group, we test it on the peculiar business

network of the U.S. airports, where the nodes are the airports and the arcs are

weighted on the basis of the number of passengers among them in a given year.

The analysis is of particular interest in this specific field since the hub-and-

spoke operations have changed the competition between airlines and airports in

a structural way (see, e.g., [36, 42]). Through their networks, airlines compete

both directly and indirectly. On the one hand, the relevance of an airport in the

network depends on direct routes. On the other hand, they compete indirectly

with a transfer at a hub. Hence, to have a global view of the strategic role of

the airports we measure how an airport is located with respect to groups of

interconnected airports.

The considered reference year in the proposed experiments is 2017. The

network is constructed by using the Air Carrier Statistics database (available

on the U.S. Department of Transportation1), also known as the T-100 data

bank, that contains domestic and international airline market and segment data.

Both certificated U.S. air carriers and foreign carriers (having at least one point

of service in the United States or one of its territories) report monthly traffic

information. The weight of an arc corresponds to the number of emplaned

passengers2. It considers revenue emplaned passengers within the U.S., and

passengers emplaned outside U.S. but deplaned within the U.S. as well.

In the reference year 2017, the airport network has 1701 nodes and 27005

1Data are collected by the Office of Airline Information, Bureau of Transportation Statis-

tics, Research and Innovative Technology Administration.
2The term “emplaned passengers”, widely used in the aviation industry, refers to passengers

boarding a plane at a particular airport. Since the majority of the revenue of an airport are

generated, directly or indirectly, by emplaned passengers, this number is the most important

air traffic metric. Data consider the total number of revenue passengers boarding an aircraft

(including originating, stopover, and transfer passengers) in both scheduled and non-scheduled

services.
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arcs, considering both domestic and international flights. Density is around

0.001, showing a very sparse network. Moreover, significant differences are ob-

served between big and small airports. To give a preliminary idea of the network,

Figure 2 depicts the U.S. domestic airport network. In order to preserve the

clarity of the figure, we reported only arcs with weights greater than 95th per-

centile (equal to 198,540) of weights’ distribution. In other words, for the sake of

simplicity we are displaying only routes with more than about 200,000 enplaned

passengers.

Figure 2: Domestic U.S. airport network built on the basis of 2017 data. Only arcs with

weights greater than 95th percentile of weights’ distribution have been reported.

Figure 3 reports the distributions of total strength for U.S. airports, captur-

ing the total passenger traffic during 2017. Airports have been split according

to Federal Aviation Administration (FAA) categories. According to FAA, a

large hub is an airport which accounts for at least 1% of total U.S. passenger

enplanements. A medium hub is defined as an airport accounting for a per-
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centage of the total passenger enplanements ranging between 0.25% and 1%

(see Tables A.3 and A.4 in the Appendix for the list of large and medium U.S.

hubs). A small hub is associated with a percentage ranging between 0.05% and

0.25%. Last categories concern smaller airports, that are divided between non-

hub and non-primary if they have respectively more or less than 10,000 annual

passengers.

Figure 3: Total strength distribution of U.S. airports for domestic and international markets

and only domestic market respectively. Airports are classified according to FAA categories.

System-wide passenger enplanements is not far from 900 millions of passen-

gers. The 30 large hubs move 70% of the passengers, and this ratio becomes

higher than 85% if also medium hubs are included. These data are in line with

the ones published by [43].

Furthermore, the degrees of the nodes of the network highlight that each U.S.

airport is connected on average to 23 airports, unless large hubs are connected

to more than 200 airports.

If we focus only on domestic market, we have roughly 740 millions of pas-

sengers. In this case, the network is characterized by 1149 U.S. airports and

20445 connections between them. As shown by the strength distribution (Figure

3, right side), a significant proportion of traffic (around 85%) is concentrated

around the top 61 airports, considering both large and medium hubs.
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For the sake of brevity, we do not report a graphical representation of the

strength distributions for in and out-flows. However, it is worth mentioning

that, for both indicators, in and out results are strongly correlated with the

total strength distribution. In other words, except for some specific airports, we

observe similar patterns between the number of passengers departing from and

arriving at each airport.

In order to compute the local l-adjacency clustering coefficients, we consider

only the U.S. domestic market network, preventing possible distorted effects due

to international flights. Indeed, data regarding connections between airports lo-

cated outside of U.S. territory are not included in the dataset, and triangles

could be impossible to be found. Notice that the restriction to the domestic

flights does not lead to a noticeable bias of the analysis of the U.S. airport net-

work as a whole, since domestic market covers roughly 80% of total passengers

that arrive or depart from the U.S. airports in 2017.

Figure 4 displays the distributions of the components of the local l-adjacency

clustering coefficients vector call(l) computed at different levels l and considering

as nodes either all the airports (on the left side) or only large and medium hubs

(on the right side). We also report synthetic measures in h(l) for alternative

choices of weights x’s.

As a premise, the classical global clustering coefficient, obtained as mean of

the coefficients calli (0) over the nodes i = 1, ..., n, is equal to 0.56. When referring

to the local l-adjacency clustering coefficients, we notice that the distribution

shows high volatility, enhancing relevant differences between airports, and neg-

ative skewness, showing a median equal to 0.67, significantly greater than the

mean.

Focusing on large and medium airports (Figure 4, right side), the average

clustering increases, as the mean is equal to 0.69 and the median is equal to 0.71.

Except for the Ted Stevens Anchorage International3 – a medium hub located

in Alaska – all relevant airports in terms of passengers traffic have a clustering

3calli (0) is equal to 0.21 for this airport.
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Figure 4: Distributions of the elements of the vector of the l-adjacency clustering coefficients

call(l) computed at different levels l. Furthermore, the distributions of the elements of hall are

reported for three different choices of weights (decreasing, uniform and increasing respectively).

On the right side, the same distributions are computed considering only large and medium

hubs.

coefficient not lower than 0.5. The different behavior of the Anchorage airport

can be easily justified by the specific characteristics of this hub. The airport

is indeed connected to strategic hubs and to some other remote airports in

U.S. as well. Among larger hubs, the highest rankings are instead observed

for Ontario International (CA) and Southwest Florida International (FL). Both

these airports are characterized by a low proportion of direct connections, but

they are on average connected to airports that are connected to each other.

Different patterns between larger and smaller hubs – when the classical clus-

tering coefficient is considered – can be partially explained also by the number

of geodesic paths moving from the nodes and with a given length. To this aim,

we refer to Figure 5, which reports the percentage of the geodesic paths of a

fixed length (vertical axis) versus the total strength (horizontal axis) for all the

nodes of the network.

On upper left-side, Figure 5 depicts the proportion of geodesics of length 1

for each airport. Large and medium hubs are on average directly connected to

15% and 11% of total airports, while smaller hubs are directly connected to 1%

21



of the total nodes.

Figure 5: Proportion of geodesic paths with different lengths (1, 2, 3, 4, respectively) vs total

strength of each airport. Large and medium hubs are reported in red and green respectively.

Each plot is a linear-log plot, where x-axis is on a logarithmic scale and y-axis is on a linear

scale.

Moving to the analysis of the local l-adjacency clustering coefficient for node

i when l = 1 of the type calli (1), such a coefficient seizes possible connections

of the i − th airport with highly cohesive areas, reachable from it with one

stopover. In this case, we observe a slight reduction of average clustering and a

general decrease of the variability between different airports. Large and medium

hubs have instead a different behavior, showing an average increase of the 1-

adjacency clustering coefficients (mean and median move respectively from 0.69

and 0.71 to 0.72 and 0.73 respectively). It is worth mentioning the considerably

low volatility of the distribution of the components of call(1) for these hubs.

The elements of the call(1) range indeed in the interval (0.65− 0.76).

Results show that larger hubs are highly cohesive but – according to the local
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l-adjacency clustering coefficient with l = 1 – they are also directly connected to

strongly cohesive nodes; this confirms their strategic role in the airport system.

Focusing on higher levels in terms of distances (see Figure 5, upper right

side), we detect a significant proportion of geodesics of length 2 in the network.

On average, large and medium hubs are respectively connected to 55% and

52% of total airports via geodesic paths of length 2. Through these paths they

reach strongly cohesive nodes as well as non-primary hubs characterized by a

low clustering coefficient. Hence, calli (2) is lower than calli (1) for all airports

of label i belonging to this group, with reductions that vary between 2% and

38%. Smaller hubs reach instead 20% of the nodes in two steps. Typically, they

are connected to highly cohesive areas showing a calli (2) higher than calli (1) and

calli (0).

As regard to higher strati, we observe in Figure 5 a proportion of geodesics

of lengths 3 and 4, equal to 40% and 27% for small hubs, respectively. Large and

medium hubs reach instead 25% and 8% of airports in 3 and 4 steps, respectively.

As a consequence, the local l-adjacency clustering coefficient is slowly decreasing

with respect to l for small hubs, while an higher reduction is observed for larger

hubs. It is worth noting the high volatility of the components of call(4) for the

latter category. In particular, roughly an half of relevant hubs has a value of

such clustering coefficient higher than 0.5. Seattle-Tacoma International (WA),

Ted Stevens Anchorage International (AK), Daniel K. Inouye International (HI)

and Kahului (HI) airports show instead very low local 4-adjacency clustering

coefficients (≤ 0.2), mainly justified by the fact that geodesics of length 4 usually

connect remote airports with weak cohesive structure at stratus 0.

In line with the case l = 4, one can notice that small airports are connected

on average to the 11% of total airports by geodesics of length 5. However, a very

high volatility is observed in this class of airports. Some specific non-primary

airports are able to reach more than a half of the airports through geodesics of

length 5. These patterns justify the significant volatility and a not negligible

average of the elements of call(5). Larger hubs have instead very few connections

at this stratus (< 1%) leading to a clustering coefficient close to zero. This
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argument is confirmed and furtherly stressed for strati greater than 5. Only few

nonprimary hubs i are connected to some other nodes through geodesic paths

with length larger than 5, hence showing values of calli (l) greater than zero for

l > 5. Indeed, typically, these connections regard relations between very remote

and without strongly cohesive airports. For instance, Blakely Island (WA) and

Tatitlek (AK) airports are connected by a geodesic path of length 84.

The values of the elements of hall in Figure 4 synthesize the overall cohe-

siveness structure of each node, thus providing a measure of the relevance of the

nodes in the network. The choice of weights xl can modulate the intensity of

the elements of c(l) in contributing to the overall stratified structure, giving to

this indicator a high degree of flexibility.

Here, we consider the three possible scenarios already used in Section 3.3

(i.e. decreasing, uniform and increasing weights). For instance, assuming that

weights x’s are decreasing, we are reducing the impact of the elements of local l-

adjacency clustering coefficients c(l) with respect to the whole system when the

distance l increases. In particular, by concentrating the mass of weights over the

small values of l, we take into major consideration the cohesiveness structures

close to the nodes of the graph. In this case, the average of the components of

hall is equal to 0.48, and it is higher for large and medium hubs (equal to 0.54).

Therefore, large and medium airports are confirmed to be strategic hubs in the

network. Indeed, on one hand, these airports are involved in highly cohesive

nodes at low strati; on the other hand, they are directed connected to highly

cohesive areas.

Differently, the cases of either uniform weights or concentration of the x’s

over large values of l emphasize the relevant role of peripheral nodes of airports

which are strongly cohesive. Since these scenarios are more sensitive to cohesive-

4The geodesic path is given by the following sequence of edges: Blakely Island – Friday –

Kenmore Air Arbor – Roche Harbor Country – Seattle Tacoma International airport – Ted

Stevens Anchorage International Airport Country – Beluga airport – Merrill Field Anchorage

Airport – Tatitlek airport
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ness far from the nodes, we observe a reduction of the average of the components

of hall, equal to 0.36 (uniform weights) and 0.18 (increasing weights), and higher

values for smaller hubs.

We focus now on computing the in and out local l-adjacency clustering

coefficients by means of a separate evaluation of in- and out-paths. As stressed

before, the airport network is highly symmetric so that it is usually analysed as

an undirected one (see [8])). In our case, we observe a strong positive correlation

(close to 1) between in- and out-degree (and between in and out-strength). To

assess the symmetry of the network, Fagiolo ([44]) proposes a specific measure

S. If the value of S is close to zero, then an empirically-observed network is

sufficiently symmetric to justify an undirected network analysis. In our case,

we obtain 0.02. This index becomes 0.19 when weights are removed. Hence,

network is weakly asymmetric with a more pronounced behaviour when weights

are not considered. However, although direct connections are highly correlated,

some differences could be observed when we focus on long geodesics.

As a consequence, at stratus l = 0, in- and out- local l-adjacency clustering

coefficients are very similar (see Figure 6) and lower than call0 . With the directed

(in and out) local l-adjacency clustering coefficients, we are focusing on specific

patterns. Indeed we neglect some types of triangles (like cycles and middle-

man triangles, according to the classification provided in [9]) and consider only

directed paths.

On average we observe slightly higher out-clustering coefficients for larger

hubs and lower ones for smaller airports. However, there is not an univocal

pattern among the airports, although in many cases differences are negligible.

In the class of medium hubs, an interesting case is the node i associated with

the Luiz Munoz Marin International Airport in San Juan (Puerto Rico), charac-

terized by a couti (0) equal to 0.81 against a cini (0) equal to 0.77. In other words,

this airport is more involved in weighted triangles of out-type than in-triangles.

This evidence is partially justified by a number of passengers departure higher

than arrivals, probably motivated by higher movements towards U.S. than vice

versa.
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Figure 6: Upper left figure displays the distributions of local l-adjacency clustering coefficients

of in-type in cin(l) and distributions of the elements of hin for the considered different choices

of weights (decreasing, uniform and increasing respectively). On the right side, the same

distributions are computed by considering only large and medium hubs. In the bottom part,

we report the distributions of the components of cout(l) and hout for all the airports (left

side) and only for large and medium hubs (right side).

The directed l-adjacency clustering coefficients display similar distributions

and, on average, lower values than the elements of call(l) until l assumes values

equal to 4. Remarkable differences are instead observed for higher strati. In

particular, stronger cohesiveness of in-type are observed in peripheral nodes.

Since stratus 5, we observe indeed higher values of the components of cin(l)
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than of the ones of cout(l).

The analysis of the synthetic indicators given by the components of hin and

hout – and when decreasing weights are considered – confirms the relevance of

large and medium hubs in terms of cohesiveness structure (both in and out)5.

Instead, when we base our analysis on increasing weights, as expected the role

of peripheral nodes is emphasized. In this case, a low correlation (see Figure

7) is observed depending on the specific behavior of each airport. Furthermore,

different patterns of long directed paths are also caught by the synthetic measure

although the network is only weakly asymmetric in terms of adjacency matrix.

We have indeed a slight prevalence of cohesiveness structures of in-type.

In this application, the local l-adjacency clustering coefficients allow to high-

light the role of an airport in the network taking into account direct intercon-

nections as well as indirect ties. This topic assumes relevance since the position

of an airport with respect to existing interconnected groups of airports is an

important element for evaluating the competition between them. In particular,

airports in the same catchment area could be connected directly or indirectly to

cohesive structures and favour in a different way flows of passengers or commodi-

ties. This issue can also be relevant in other contexts. For instance, in disease

propagation analysis, an airport characterized by a high value of l-adjacency

clustering coefficient could be exposed to the propagation of a desease even if it

is not direcly connected to the region in which the disease under consideration

appeared for the first time.

5. Conclusions

Interconnection plays a fundamental role in the business research context.

As well-known, in network theory, the level of interconnectivity in the neigh-

bourhood of a node is typically assessed by means of the clustering coefficient

5This evidence is a consequence of the high correlation between in and out l-adjacency

correlation coefficients computed for low values of l (at this regard, see Figure 7)
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Figure 7: Pearson correlation coefficient between in and out l-adjacency correlation coefficients

at different strati l.

and captures the cohesiveness structure associated with the considered node.

Moving from this fact, we exploit the concept of cohesiveness structure to un-

derstand the contextualization of the nodes within the overall system. In partic-

ular, we provide a generalization of the concept of clustering coefficient in order

to catch both the presence of cohesive areas around a node and/or high levels

of mutual interconnections at different distances from the node itself. With

respect to the classical clustering coefficient, we are able to capture in a better

way the topological structure of the whole network and to map the presence

of stratified structures in the network at different levels. Furthermore, we also

define a synthetic indicator for each node in order to simultaneously consider

all the coefficients. Being this indicator dependent on a set of weights of the
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strati, we allow for a degree of flexibility in order to modulate the effects of both

adjacent nodes and peripheral nodes.

An empirical application to U.S. domestic air traffic network is developed

where the interconnectedness and the effect on connectivity of an airport may

play a relevant role in strategic business decisions. Results show the effectiveness

of these measures in catching the peculiar characteristics of different nodes in

the airport network. In particular, focusing on large and medium hubs, we

are able to emphasize their strategic role in the airport system. We observe,

indeed, that larger hubs are not only highly cohesive but also at the centre

of strongly cohesive nodes. When different cohesive strati are analysed, the

effects of indirect connections with remote airports are emphasized. Finally,

although the network is only weakly asymmetric and it is typically analysed as

an undirected network in the literature, we show that a separate evaluation of

directed paths at high levels can be useful to identify specific patterns in terms

of in and out-cohesive groups of nodes.
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Appendix A. List of Airports

Rank City Airport Name

1 Atlanta Hartsfield - Jackson Atlanta International

2 Los Angeles Los Angeles International

3 Chicago Chicago O’Hare International

4 Fort Worth Dallas-Fort Worth International

5 Denver Denver International

6 New York John F Kennedy International

7 San Francisco San Francisco International

8 Las Vegas McCarran International

9 Seattle Seattle-Tacoma International

10 Charlotte Charlotte/Douglas International

11 Newark Newark Liberty International

12 Orlando Orlando International

13 Phoenix Phoenix Sky Harbor International

14 Miami Miami International

15 Houston George Bush Intercontinental/Houston

16 Boston General Edward Lawrence Logan International

17 Minneapolis Minneapolis-St. Paul International/Wold-Chamberlain

18 Detroit Detroit Metropolitan Wayne County

19 Fort Lauderdale Fort Lauderdale/Hollywood International

20 New York Laguardia

21 Philadelphia Philadelphia International

22 Glen Burnie Baltimore/Washington International Thurgood Marshall

23 Salt Lake City Salt Lake City International

24 Arlington Ronald Reagan Washington National

25 San Diego San Diego International

26 Dulles Washington Dulles International

27 Chicago Chicago Midway International

28 Honolulu Daniel K. Inouye International

29 Tampa Tampa International

30 Portland Portland International

Table A.3: Large Primary Hubs according to FAA classification (based on enplanements in

2017)
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Rank City Airport Name

31 Dallas Dallas Love Field

32 St. Louis St Louis Lambert International

33 Nashville Nashville International

34 Austin Austin-Bergstrom International

35 Houston William P. Hobby

36 Oakland Metropolitan Oakland International

37 San Jose Norman Y. Mineta San Jose International

38 Metairie Louis Armstrong New Orleans International

39 Raleigh Raleigh-Durham International

40 Kansas City Kansas City International

41 Sacramento Sacramento International

42 Santa Ana John Wayne Airport-Orange County

43 Cleveland Cleveland-Hopkins International

44 San Antonio San Antonio International

45 Fort Myers Southwest Florida International

46 Indianapolis Indianapolis International

47 Pittsburgh Pittsburgh International

48 San Juan Luis Munoz Marin International

49 Greater Cincinnati Cincinnati/Northern Kentucky International

50 Columbus John Glenn Columbus International

51 Kahului Kahului

52 Milwaukee General Mitchell International

53 Windsor Locks Bradley International

54 West Palm Beach Palm Beach International

55 Jacksonville Jacksonville International

56 Anchorage Ted Stevens Anchorage International

57 Albuquerque Albuquerque International Sunport

58 Burbank Bob Hope

59 Buffalo Buffalo Niagara International

60 Ontario Ontario International

61 Omaha Eppley Airfield

Table A.4: Medium Primary Hubs according to FAA classification (based on enplanements in

2017)
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