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Abstract: Reducing power losses in engines is considered a key parameter of their efficiency im-
provement. Nanotechnology, as an interface technology, is considered one of the most promising
strategies for this purpose. As a consumable liquid, researchers have studied nanolubricants through
the last decade as potential engine oil. Nanolubricants were shown to cause a considerable reduction
in the engine frictional and thermal losses, and fuel consumption as well. Despite that, numerous
drawbacks regarding the quality of the processed nanolubricants were discerned. This includes the
dispersion stability of these fluids and the lack of actual engine experiments. It has been shown
that the selection criteria of nanoparticles to be used as lubricant additives for internal combustion
engines is considered a complex process. Many factors have to be considered to investigate and
follow up with their characteristics. The selection methodology includes tribological and rheological
behaviours, thermal stability, dispersion stability, as well as engine performance. Through the last
decade, studies on nanolubricants related to internal combustion engines focused only on one to
three of these factors, with little concern towards the other factors that would have a considerable
effect on their final behaviour. In this review study, recent works concerning nanolubricants are
discussed and summarized. A complete image of the designing parameters for this approach is
presented, to afford an effective product as engine lubricant.

Keywords: nanotechnology; engine-based nanofluids; energy saving; engine performance

1. Introduction

Transportation activities employing internal combustion engines will require more
efficient and advanced approaches through the upcoming years. This appears as a crucial
challenge regarding the enhancement of vehicular tribology and fuel consumption [1].
This corresponds to energy conservation demands and the lessening of greenhouse gas
emissions in the light of the Paris protocols on climate change [2–4]. A direct strategy to
address this situation is to promote fuel economy, which is the primary driving force behind
the improvement in modern combustion engines’ performances [5]. Numerous approaches
have been successfully employed to enhance engine efficiency. This includes the insertion
of heating waste recovery systems, combustion efficiency refinement, and scaling down
frictional losses in the engine [6–10]. Friction reduction has been receiving considerable
interest from scientists, as a cost-effective method to empower engine efficiency. The
development in engine lubricants is considered one of the leading approaches for this
purpose. Additives are usually added to the lubricants to improve their efficiency. In
light of engine oil additives and other applications with high-loaded conditions, dialkyl
dithiophosphate (ZDDP) has been used for several decades for its impressive tribological
performance [11–14]. For instance, a recent study by Vyavhare [15] showed that a reduction
in the coefficient of friction, by 47%, had been observed when ZDDP was dispersed with
ZnO nanoparticles into the base lubricant. Despite that, ZDDP is known for its poisonous
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emissions of phosphorus and sulphur species [16,17]. To a certain degree, commercial
lubricants cannot afford a better performance under severe conditions, such as higher
mechanical stresses, higher speeds, and higher working temperatures.

Consequently, novel approaches regarding engine lubricants have been raised to
meet these conditions. For instance, the current requirements of ILSAC GF6 (International
Lubricants Standardization and Approval Committee for gasoline-fueled vehicles grade)
assess the lubrication industry, to embark on a new generation of lubricants with advanced
anti-wear and friction properties [18]. Figure 1a represents the proposed standardized
development in gasoline lubricants, in terms of fuel consumption and greenhouse gas
emissions, during the upcoming years. Accordingly, this would reduce the percentage of
frictional and thermal power losses reported in recent studies with the current engine oil
technology, as shown in Figure 1b [19].

Lubricants 2021, 9, x FOR PEER REVIEW 2 of 47 
 

 

ZnO nanoparticles into the base lubricant. Despite that, ZDDP is known for its poisonous 
emissions of phosphorus and sulphur species [16,17]. To a certain degree, commercial lub-
ricants cannot afford a better performance under severe conditions, such as higher me-
chanical stresses, higher speeds, and higher working temperatures. 

Consequently, novel approaches regarding engine lubricants have been raised to 
meet these conditions. For instance, the current requirements of ILSAC GF6 (International 
Lubricants Standardization and Approval Committee for gasoline-fueled vehicles grade) 
assess the lubrication industry, to embark on a new generation of lubricants with ad-
vanced anti-wear and friction properties[18]. Figure 1a represents the proposed standard-
ized development in gasoline lubricants, in terms of fuel consumption and greenhouse 
gas emissions, during the upcoming years. Accordingly, this would reduce the percentage 
of frictional and thermal power losses reported in recent studies with the current engine 
oil technology, as shown in Figure 1b [19]. 

 

 

(a) (b) 

Figure 1. (a) Recent fuel economy standards of ILSAC [18] Adapted with permission. (b) energy losses distribution in a 
fired engine [19] Adapted with open access permission. 

Nanomaterials have been studied intensively as additives for promoting lubricant 
capabilities. The application of nanoparticles in the engine’s lubrication system showed a 
great deal of boosting the overall engine performance in many studies [20–24]. Nanolubri-
cants have a major effect on promoting the wear process, which is the durability of the 
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view starts with the standard preparation methods. A detailed review of the tribological, 
rheological, and engine performance follows. Finally, a discussion on the challenges re-
garding selecting possible nano candidates and future directions for this purpose is in-
cluded. 

2. Preparation Methods and Dispersion Stability of Nanolubricants 
2.1. Basic Concepts 

Figure 1. (a) Recent fuel economy standards of ILSAC [18] Adapted with permission. (b) energy losses distribution in a
fired engine [19] Adapted with open access permission.

Nanomaterials have been studied intensively as additives for promoting lubricant
capabilities. The application of nanoparticles in the engine’s lubrication system showed
a great deal of boosting the overall engine performance in many studies [20–24]. Nanol-
ubricants have a major effect on promoting the wear process, which is the durability of
the engine parts, with a considerable role in engine thermal efficiency [25]. Plenty of
nanomaterials have been used for this objective. This includes carbon and its derivatives
(Gr [26], MWCNT [27], ND [28,29]), oxides of inorganic compounds (ZnO [30,31], CuO [32]
MgO [33], TiO2 [34]), and transition metal dichalcogenide (MoS2 [35]).

The current review study is considered a step towards developing a novel class of
lubricant additives, which are considered less harmful to humans and the environment,
besides their substantial performance [36,37]. Moreover, it offers a systematic outline of
the research outcomes introduced in previously declared data through the last decade,
regarding engine-based nanolubricants. The study is intended to be a helpful directory for
researchers, concerning the development in the field of engine lubricants. The overview
starts with the standard preparation methods. A detailed review of the tribological, rheo-
logical, and engine performance follows. Finally, a discussion on the challenges regarding
selecting possible nano candidates and future directions for this purpose is included.

2. Preparation Methods and Dispersion Stability of Nanolubricants
2.1. Basic Concepts

Any host liquid is known as a nanofluid, where nanoparticles are presented in a stable
suspended state. A significant challenge in employing nanoparticles in lubricants is linked
to their dispersion stability in these fluids. This is because nanoparticles easily agglomerate
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due to their high surface tension, forming non-dispersible aggregate clusters [38]. The
aggregation of nanoparticles can effectively limit the nanolubricant’s lubricity at the contact
area, and could even increase friction in some cases [39,40]. The dispersion stability of
nanolubricants can be clarified by colloidal theories [41]. In these theories, nanoparticle
aggregation is attributed to the interaction between the nanoparticles and their thermal
agitation energy received from the base liquid. The thermal agitation energy has a value of
KbT, where Kb and T are the Boltzman constant and the liquid temperature, respectively.
The thermal agitation energy induces the nanoparticles to move in the solvent, causing
the random Brownian motion [42]. This random motion urges the interaction between
colloidal nanoparticles in the form of van der Waals attractive forces and repulsive forces. A
stable dispersion of nanolubricant formed when the repulsive forces between the particles
overcame the attractive forces caused by thermal agitation [42]. The repulsive force’s nature
has been explained through the two widely accepted electrostatic stabilization theories by
DLVO and the steric stabilization [28,43], as shown in Figure 2a. In the DLVO theory, the
repulsive force between nanoparticles is referred to as the electrostatic charge originated at
the surface of the particles. This electrostatic interaction is typical in polar solvents, and
is characterized by their high dielectric constant (ε). On the contrary, in solvents with a
low dielectric constant, as in lubricants, the electrostatic interaction is weak, even when
nanoparticles have a high surface charge [39]. The electrostatic stabilization is enhanced by
dispersing agents, which can enrich the total surface charge of nanoparticles [43].
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In steric stabilization, dispersing agents cover the suspended nanoparticles to form a
grafted layer on the particle’s surface, as shown in Figure 2b. Ho is the thickness of the
grafted layer, H is the distance between the particles, and r is the particle’s radius. The
steric repulsive force originates from the elastic deformation of the grafted surface layers.
When two grafted particles approach each other, the grafted surface layer deforms, leading
to the steric stabilization [39]. In some studies, both stabilization methods had been used
to produce stabilized nanolubricants [28].

2.2. Preparation Methods of Nanolubricants

The preparation of nanolubricants is considered a substantial step in building a
stabilized and durable nanofluid system. Based on nanofluid preparation, two meth-
ods have been utilized to produce nanofluids, named single-step and two-step meth-
ods [37,39,44–49].

In the single-step method, nanoparticles are prepared with the base fluid and an
appropriate dispersing agent simultaneously to produce the nanolubricant. This could be
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done using many techniques, such as physical vapor deposition, liquid chemical methods,
laser ablation, and submerged arc synthesis systems [47,48]. However, this method is
limited by its high cost and small-scale production rates [38]. In the two-step method, the
nanoparticles are first prepared separately. The nanoparticles are then added with the
dispersing agent into the base fluid as a second processing step, using many techniques such
as magnetic stirring, probe sonication, bath sonication, homogenizing, high shear mixing,
and planetary ball mill. Most researchers use the second-step type, as it is considered the
most economical method to prepare nanolubricants with large-scale productions [43,50].
Figure 3 provides the approaches reported in the literature for the preparation and stability
testing techniques of nanofluids.
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A surface modification for the nanoparticles through dispersing agents is conducted
to stabilize the particles in the base medium for the two preparation methods. This is to
prevent particle aggregation and sedimentation. Functionalization by steric or electrostatic
stabilization is the most commonly used method for surface modification. In both of the
methods, ionic surfactants or polymers are used to coat the nanoparticle surface [39].

For studies regarding engine nanolubricants, researchers investigated many tech-
niques to enhance the dispersion stability in terms of one- or two-step methods. In a recent
study by Mello [38], the dispersion stability of CuO nanoparticles in the base lubricant of
PAO was studied using the following four different dispersing agents: oleic acid, toluene,
hexane, and ethylene glycol. The study used two different techniques, electrostatic and
steric surface functionalization methods, during the preparation of nanolubricants. Oleic
acid had been used, firstly, as an ionic surfactant, and then three different organic disper-
sants had been added to keep the nanoparticles in a stable suspension. The stability results
of ultraviolet¬–visible spectrometry (UV) and sedimentation showed that the best stability
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dispersion of nanolubricants was toluene and hexane, for a stable time of 30 days, as shown
in Figure 4.
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In another study by Hemmat [51], the nanolubricant of ZnO/10W-40 was prepared
using the second-step method, without dispersing agents. The stability of the suspended
nanoparticles lasted for only 72 h. This shows how important the addition of dispersing
agents is, and how it can effectively promote stability performance. Hybrid nanoparticles
of ZnO/MWCNT were added to the engine lubricant of 10W-40 [30]. The sedimentation
results showed a stability duration of 15 days when the nanoparticles had been functional-
ized by oleic acid, with an optimum concentration of 0.25 wt.%. There is no experimental
relationship in all the stability studies that can link nanoparticles, their size, and base
lubricant to the duration of stability. In light of that, many concerns about nanolubricant
dispersion stability still need to be explored in future studies. In another recent study by Ka-
mal [50], the dispersion stability had been conducted on Al2O3/TiO2 hybrid nanoparticles
added to PAO6 as a base engine lubricant. The nanoparticles had been functionalized using
bis(2-Ethylhexyl) phosphate (HDEHP) as a surfactant. Many dispersion analyses were
conducted, such as FTIR, UV, and zeta potential. The results revealed a superb dispersion
performance of the prepared nanolubricants, reaching a stable period of 70 days, as shown
in Figure 5b.
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The outstanding dispersion capabilities of the prepared nanolubricants were attributed
to the electrostatic, electro-steric, and steric stabilization mechanisms (Figure 5a), which
were promoted through the addition of HDEHP. All of the stability studies of engine
lubricant-based nanofluids during the last ten years are concluded in Table 1.

In some studies, it had been reported, in many cases, that a low quality of disper-
sion stability can affect the tribological, rheological, and thermophysical properties of
the nanolubricant.

For instance, it had been reported by Abdel-Rehim that CuO would aggregate at a
high concentration of 1 wt.% [52]. These aggregates led to instability of tribo-film formation,
which had been demonstrated through the surface analysis of EDX. The authors claimed
that at a high concentration of nanoparticles, the aggregations of the nanoparticles would
form high-weight particles compared to their nominal size. These aggregations would
then aggravate the wear behaviour of the lubricant, as they can experience some difficulty
getting involved with the contact asperities.

In another study by Ali [53], the absence of dispersion of the hybrid Al2O3/TiO2
engine-based nano-lubricant had been observed by UV after 55 days. These low qualities
of dispersion stability would then cancel the beneficial effect of the nanolubricant on the
tribological and thermophysical properties. The study declared that nanoparticles would
provide a thermal path between the fluid layers when nanolubricants are afforded at an
acceptable dispersion stability, thus presenting the most significant enhancement in the
thermal conductivity.

Numerous considerations can be revealed from Table 1. For instance, there is no
specific trend to be followed that can guarantee an acceptable stability behaviour, and
thus the longer shelf life of these nanolubricants. This includes the preparation techniques,
surface modification methods, and testing parameters as well. This might be returned to
the particular nature of each element that had been used in every single study.

Further, all testing conditions regarding dispersion stability were conducted based
on the static condition of the prepared nanolubricant. For instance, all of the studies
monitored suspension quality through UV, zeta, FTIR, and sedimentation, after a specific
period of storing the nanolubricant. This means that there is no evidence of what can
happen to the colloidal stability of nanolubricants if they undergo a real engine test at
elevated temperatures and working loads.

In consequence, a study by Mello had considered a part of this issue by testing the
stability of a CuO nanolubricant dispersed by toluene and oleic acid, before and after the
tribological testing [38]. One more vague issue that needs to be treated is the effect of
degradation on the engine lubricant life span, which is observed under specific testing
conditions [54,55].
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Table 1. A summary of the literature on the dispersion stability of engine oil-based nanofluids.

Ase Lubricant Nano-Additive Preparation Method Optimal Concentration
in Terms of Stability Dispersing Agents Testing of Depression Stable

Condition/Duration
Processing

Method/Processing Time Reference Year

Base as
lubricant/PAO6 Al2O3/TiO2 Two-step method 0.1 wt.% HDEHP Sedimentation, Zeta

potential, FTIR, UV Stable/70 days Ultrasonic dispersion/6 h
Magnetic stirrer [50] 2021

SAE 5 W-30 ZnO/TiO2 Two-step method All concentrations Oleic acid Sedimentation Stable/1 week Ultrasonic dispersion/2 h
Magnetic stirrer [56] 2021

SAE 20 W-40 MWCNT/TiO2 Two-step method 0.1 - Zeta potential Stable/72 h Ultrasonic dispersion/3 h [57] 2021

SAE 40 SiO2 Two-step method All concentrations - Sedimentation Stable/1 month Ultrasonic dispersion/40 min
Magnetic stirrer/30 min [58] 2021

SAE 30 Graphite 0.3 wt.% 0.3 wt.% Tween-80, Ethylene
glycol

Sedimentation, zeta
potential, Stable/ 15 days Ultrasonic dispersion/1.5 h [59] 2021

Base as lubri-
cant/paroline oil MoS2 One-step method All concentrations Not reported Sedimentation Stable/10 days Ultrasonic dispersion [35] 2020

Base as
lubricant/HD 50 Gr Two-step method 0.01 wt.%

Sodium dodecyl
persulfate (SDS),
Oleic acid (OA)

Sedimentation, FTIR,
XRD Stable/30 days Magnetic stirrer/3 h, Ultrasonic

dispersion/12 h [6] 2020

SAE 10W-40 Gr-MS-Zn One-step method 0.5 wt.% PEHA Sedimentation Stable/30 days Not reported [60] 2020
SAE 10W-40 ZnO/MWCNT Two-step method 0.25 wt.% Oleic acid (OA) Sedimentation Stable/15 days Ultrasonic dispersion/2 h [30] 2020

SAE 40 ZnO, MoS2 Two-step method 0.1 wt.% Not reported Sedimentation Stable-ZnO/6 days Ultrasonic bath/45 min [61] 2020
SAE 5W-30 MWCNT Two-step method 0.03 wt.% Liqui Moly Not reported Stable Not reported [27] 2020

Base as
lubricant/PAO CuO One-step method 0.1 wt.%

Toluene/OA,
Hexane/OA,

Et.Glycol/OA
Sedimentation, UV Sable-Toluene/30 days Magnetic stirrer/7 h [38] 2020

SAE 20W-50 La(OH)3/rGO One-step method Not reported Not reported Sedimentation, XRD Stable/28 days Ultrasonic dispersion/1 h [62] 2020
SAE 5W-30 Cu/Gr Two-step method 0.4 wt.% Oleic acid (OA) UV Stable/11 days Magnetic stirrer/4 h [63] 2019

Base as lubri-
cant/hexadecane GO Two-step method 10 mg L−1 Oleylamine Sedimentation Stable Ultrasonic dispersion [64] 2019

SAE 5W-30 GO Two-step method 0.1 wt.% Dodecylamine,
Ethanol, Xylene UV, Sedimentation, XRD Stable/32 Days Ultrasonic dispersion/6 h [65] 2019

SAE 10W-40 TiO2 Two-step method Not reported Oleic acid (OA) Sedimentation, Zeta
sizer Not stable Magnetic stirrer/15 min

Ultrasonic dispersion/20 min [66] 2018

SAE 5W-30 Gr Two-step method 0.4 wt.% Oleic acid (OA) Sedimentation, UV Stable/11 days Magnetic stirrer/4 h [67] 2018
SAE 5W-30 Al2O3/TiO2 Two-step method 0.1 wt.% Oleic acid (OA) Not reported Not reported Magnetic stirrer/4 h [68] 2018

SAE 10W-40 ZnO Two-step method 0.25–2 vol.% Not reported Sedimentation Stable/72 h Magnetic stirrer/2 h, Ultrasonic
dispersion [51] 2017

Base as
lubricant/PAO Al2O3 Two-step method 1 wt.% Oleic acid (OA) Not reported Not stable Magnetic stirrer [69] 2017

SAE 5W-30 MoS2 Two-step method - Not reported Not reported Not reported Magnetic stirrer, Ultrasonic
dispersion [70] 2017

SAE 50 ZnO Two-step method 0.125–1.5 vol.% Not reported Sedimentation Stable/2 days Ultrasonic dispersion/5 h [71] 2017
Base as

lubricant/60SN ZnO Two-step method 0.5 wt.% Oleic acid (OA) Sedimentation Stable/12 h Magnetic stirrer/20 min,
Ultrasonic dispersion/30 min [72] 2017

SAE 40 MWCNT/CuO Two-step method 0.0625–1 vol.% Not reported Sedimentation Stable/1 week Magnetic
stirrerUltrasonic dispersion [73] 2017

Base as
lubricant/paraffin MoS2 Two-step method 1 wt.%

ZDDP,
Polyisobutylene

amine
succinimide (PIBS)

SEM Stable Ultrasonic dispersion/ 40 min [74] 2017



Lubricants 2021, 9, 85 8 of 43

Table 1. Cont.

Ase Lubricant Nano-Additive Preparation Method Optimal Concentration
in Terms of Stability Dispersing Agents Testing of Depression Stable

Condition/Duration
Processing

Method/Processing Time Reference Year

SAE 50 MWCNT/SiO2 Two-step method 0.0625–2 vol.% Not reported Sedimentation Stable Magnetic stirrer/2 h,
Ultrasonic dispersion [75] 2016

SAE 5W-30 Al2O3, TiO2 Two-step method 0.25 wt.% Oleic acid (OA) UV, Zeta sizer Stable/336 h Magnetic stirrer/4 h [76] 2016

SAE 10W-40 MWCNT/ZnO Two-step method 0.125–1 vol.% Not reported Sedimentation Stable/1 week Magnetic stirrer/2 h
Ultrasonic dispersion/1 h [77] 2016

Base as
lubricant/PAO ZnO One-step method 0.2–1.5 wt.% Oleic acid (OA) FTIR Stable Magnetic stirrer [78] 2016

Base as
lubricant/PAO Gr Two-step method 0.01 wt.% Span-80 Sedimentation Stable/4 weeks Magnetic stirrer/10 min,

ultrasonic dispersion/15 min [79] 2016

SAE 10W-40 GO, Ag, GNP Two-step method 0.06–0.1 wt.%
Stearic amine,
ethanol, SDS,

glucose
Sedimentation, FTIR Stable/2 weeks Ultrasonic dispersion/5 h [80] 2016

SAE 10W-40 GO One- step method 0.04 mg mL−1 Octadecylamine
(ODA) XRD, FTIR Stable/30 days Ultrasonic dispersion [81] 2015

Base as lubricant
/500 N MoS2 One-step method 0.58 wt.%

Sodium dodecyl
persulfate (SDS),

heptane
Sedimentation, UV Stable/1 year ultrasonic shaker/1 h [82] 2015

Base as
lubricant/PAO Cu/rGO One-step method 0.5–2 wt.% Oleic acid (OA) FTIR Stable/ 7 days Ultrasonic dispersion [83] 2015

SAE 40 C Two-step method 0.01 vol.% Not reported Zeta sizer Stable/14 days Ultrasonic dispersion/ 1 h [84] 2014
Rapeseed

oil/SAE20W40 CuO Two-step method 0.5 wt.% Not reported UV Stable/29 days Rotary Shaker /5 h, ultrasonic
dispersion/2 h [85] 2014

SAE 15W-40 MoS2 Two-step method All concentrations Span-80 Sedimentation Stable/14 days High shear homogenizer/
30 min [86] 2014

Base as
lubricant/PAO Gr Two-step method 0.5–1.5 wt.% Oleic acid (OA) FTIR Stable/ 7 days Magnetic stirrer/30 min [87] 2014

SAE 10W-40 rGO One-step method 0.04 mg mL−1 Octadecylamine
(ODA)

Sedimentation, XRD,
zeta potential, FTIR Stable/30 days Ultrasonic dispersion [88] 2014

SAE 20W-50 MWCNT One-Step method 0.1 wt.% SOCL2, DMF, THF,
dda Sedimentation, XRD Stable/720 h Ultrasonic dispersion,

Magnetic stirrer [89] 2013

SAE 20W-50 MWCNT Two-step method 0.1 wt.% Dodecylamine Sedimentation Stable/720 h planetary ball mill/3 h [90] 2013
Base as

lubricant/PAO MoS2 Two-step method 3 wt.% Benzethonium
chloride Sedimentation Stable Ultrasonic dispersion [91] 2012

500 W GO Two-step method 0.025 mg mL−1 DMF FTIR Stable Ultrasonic dispersion/1 h [92] 2011
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3. Tribological Performance of Nanolubricants

Nanoparticles perform a vital function between friction pairs, specifically at the
boundary lubrication regime where the wear and friction margins are at their top worth [93].
Their tiny dimensions allow them to penetrate the surface asperities at the contact area,
as shown in Figure 6 [94]. According to the tribological hypotheses, these particles as
nano additives exfoliate under high normal loads of surface asperities and form a layer
of tribo-film [95]. Yang [74] also believed in this mechanism of film formation, as shown
in Figure 6c. The formation of a tribo-layer was a result of the action of the dragging and
extrusion of MoS2 nanoparticles along the contact area. Hou [96] suggested the same point
(generation of tribo-layer) as a significant opportunity to diminish the wear rate by 29%
and 21% when TiO2 and Al2O3 were used, respectively. In this study, the action of the
tribo-film was explained as an ultra-thin layer of lubricating film or a solid lubricant.

In another study [97], the coefficient of friction and wear rate had been reduced by
20% and 50%, respectively, when the MoS2 nanolubricant was used. This had also been
clarified by the mechanism of tribo-sintering (tribo-film). Nanoparticles were trapped and
stuffed at the valleys of the pairing surfaces. This enhances the surface roughness, and
thus reduces the shear forces between the asperities. The study also discussed the effect
of working speed and loads on the mentioned nanolubricants’ tribological properties. It
was found that raising the contact load and speed led to increasing the shear rate of the
asperities, due to the flash temperature growth at contact. Hirani [65] studied the reason
behind the formation of this tribo-film. Analyses using EDX and XPS suggest a chemical
reaction between the base material of the friction pair and the nanoparticles, which is
responsible for this tribo-film formation.
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bearing mechanism of ZnS nanowires [98]. (C) Tribo-film mechanism of MOS2 nanolubricant [74]. Adapted with permission.

The friction coefficient was reduced by 40% when functionalized graphene nanopar-
ticles were used in contrast with the base engine oil. Hou [76] reported a study of using
the hybrid nanoparticles of Al2O3/TiO2 for engine lubricants through 50 km of sliding
distance. The mentioned hybrid nanolubricant showed an amended performance, with
a reduction in frictional power losses by 40–51%, compared to the base engine oil. Also,
the wear rate was reduced by 17% after the end of the test. Rivera [99] studied the multi-
layer graphene doped with polyaniline and copper, respectively (MLG¬–PANI, MLG–Cu).
The study revealed a significant reduction in the coefficient of friction and wear rate by
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20–40% and 43–60%, respectively, as shown in Figure 7. According to the surface analysis
results using AFM, a combined effect of both polishing and tribo-sintering mechanisms
was proposed, due to the enhancement in the average surface roughness. Prabaharan [100]
investigated the tribological effect of adding different concentrations of CuO nanoparticles.
Based on a statistical study on the experimental work, the study concluded that sliding
speed and load are directly related to paired surfaces wear rate. The study reported that
the concentration of 0.5 wt.% CuO would be the effective concentration to achieve the least
specific wear rate and friction coefficient.
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Figure 7. Tribological characteristics of multi-layer graphene engine-based nanolubricant. (a) Friction coefficient reduction,
(b) wear reduction [99]. Adapted with permission.

Chuan. [62] made an intensive study on using reduced graphene oxides (rGO) as nano
additives for diesel engine lubricants. The study introduced the reduced graphene oxide
doped with lanthanum hydroxide nanoparticles (La (OH)3)/rGO) as a new composite of
nano additives. The composite of lanthanum hydroxide/reduced graphene oxide showed
a substantial tribological performance under different conditions of load and working
temperatures, as shown in Figure 8a.

The study proposed that this type of nanocomposite can be decomposed under high
contact pressures, to form a tiny lamellar that can enter the contact interface and generate
tribo-films, as shown in Figure 8b. Guangneng [35] showed that the coefficient of friction
and wear had been reduced by 26.2% and 41.9%, respectively, for MoS2 nanolubricants.
Many studies regarding nanolubrication in engines, for both fully formulated and base
lubricants, are mentioned in Table 2. Besides the tribo-sintering mechanism, other lubrica-
tion mechanisms were contributed to nanolubricants in many studies. These are mending,
polishing, and rolling mechanisms. In the rolling mechanism, the spherical nanoparticles’
surface morphology allows them to act as nano ball bearings [34]. The tiny-sized nanoparti-
cles will roll over the surface asperities of the contacted surfaces. In this way, rolling friction
is provided and will be a replacement for the sliding friction of the asperities. Despite that,
for nanoparticles to act as a ball bearing, their size must be greater than the average surface
roughness of the paired surfaces, so they can roll among the surface asperities [101].
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Table 2. A summary of the tribological properties for engine-based nanolubricants.

Base Lubricant Nano Additive Reduction in COF
%

Tribological
Configuration Testing Load/Speed Testing Temperature

◦C
Concentration

wt.%
Effective

Concentration wt.% Reference Year

SAE-40
ZnO 5

Pin-on-Disc
20–75 N Ambient Temperature 0.1, 0.4, 0.7 0.4 [102] 2021MoS2 16 150 rpm 0.7

SAE-30 Graphite 91.6 Pin-on-Disc 20–50 N
300 rpm Ambient Temperature 0.3 0.3 [59] 2021

SAE-40 SiO2 18.46 Pin-on-Disc 120–180 N
120 rpm Ambient Temperature 0.1–1 vol.% 0.1 vol.% [58] 2021

Base as
lubricant—Group III ZrO2 11 Ball-on-Disc 50–100 N

50 Hz 100 0.1–0.6 0.4 [103] 2021

SAE 20 W-50 hBN 20.5 Four-ball Tribometer 392.5 N
1200 rpm 75 0.025 vol.% 0.025 vol.% [104] 2021

Base as
lubricant—Group III ZnO 7.8 Cylinder-on-flat 500–530 Mpa

300 rpm 100 0.33 0.33 [15] 2021

SAE 20W-50
Boron nitride (BN) 56

Ball-on-Disc
40–100 N
150 rpm Ambient Temperature 0.5 0.5 [26] 2020Tungsten disulphide

(WS2) 37

Graphene (Gr) 2.5

SAE 10W-40 Gr-MS-Zn 37 Four-ball Tribometer 392.5 N
1200 rpm 75 0.025–0.1 0.05 [60] 2020

SAE 20W-50

Nano-lanthanum
hydroxide/reduced

graphene oxide
(LaOH3/rGO)

16.7 Ball-on-Disc 1.96–5.88 N
0.1 m/s 40–80 0.05, 0.1 0.1 [62] 2020

SAE 10W-30 Hairy silica particles
(HSP) 15 Ball-on-Three-plate

testing module
2 N

0.05 m/s 25–100 0.1, 0.3, 0.5, 1 0.3 [105] 2020

SAE 10W-40 ZnO/MWCNT 32 Ball-on-Disc 35–55 N
5–15 Hz Ambient Temperature 0.25, 0.50, 0.75, and 1 0.25 [30] 2020

SAE 40
ZnO 5.9

Pin-on-disc
75 N Ambient Temperature 0.1, 0.4, and 0.7 0.4 [61] 2020MoS2 12 150 rpm 0.7

Base as
lubricant—Paroline oil MoS2 64 Ball-on-disc 6 N

1.5 Hz Ambient Temperature 0.1, 0.2, 0.3 and 0.5 0.3 [35] 2020

Base as
lubricant—Ionic liquid Gr 40 Pin-on-disc 0.5 N

0.01 m/s Ambient Temperature 0.5 0.5 [106] 2020

Diesel oil ZnO 5.86 Pin-on-disc 75 N Ambient Temperature 0.1, 0.4, 0.7 0.4 [31] 2020
Base as

lubricant—PAO 40 CuO 24 Ball-on-disc 10 N
0.01 m/s 50 0.5 0.5 [32] 2020

SAE 5W-30 Gr 40 Ball-on-Plate 10–50 N
3 mm/s Ambient Temperature 0.01, 0.05, 0.1 0.1 [65] 2019

SAE 5W-30 Cu/Gr 26–32 Piston
Ring/Cylinder Liner

90–368 N
0.154–0.6 m/s 100 0.03, 0.2, 0.4, and 0.6 0.4 [63] 2019

SN/GF-5 lubricant C 32 piston ring/cylinder
liner interface

50–400 N
10 Hz 100 1, 3 and 5 3 [107] 2019

SAE 5W-30 Al2O3, TiO2 53 piston ring/cylinder
liner interface

250 N
0.5 m/s Ambient Temperature 0.1 0.1 [68] 2018

SAE 5W-30 Graphene (Gr) 29–35 Piston
Ring/Cylinder Liner

90–368 N
0.154–0.6 m/s 70–90 0.03, 0.2, 0.4, 0.6 0.4 [67] 2018
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Table 2. Cont.

Base Lubricant Nano Additive Reduction in COF
%

Tribological
Configuration Testing Load/Speed Testing Temperature

◦C
Concentration

wt.%
Effective

Concentration wt.% Reference Year

SAE 10W-30 Copper oxide (CuO) 76 Piston skirt-Liner
Contact Tester

2–9 N
200–300 rpm Ambient Temperature 0.005–0.01 0.008 [108] 2018

SAE 10W-30 TiO2 86 Pin-on-Disc 40–60 N
1 m/s Ambient Temperature 0.3, 0.4, 0.5 0.5 [34] 2018

Base as lubricant—SN
500 Ni−MoS2 21 Four-ball Tribometer 392 N

1200 rpm 75 0.1–0.5 0.5 [97] 2018

Base as
lubricant—Mineral Cu 40–60 Four-ball Tribometer,

Pin-on-Disc
392 N

1200 rpm 40–100 0.3, 3 0.3 [109] 2018

Base as lubricant—SN
500 Graphene oxide (GrO) 33 Four-ball Tribometer 147 N

1200 rpm Ambient Temperature 0.04 0.04 [110] 2017

Base as
lubricant—Liquid

paraffin
MoS2 12.2–35.3 Ball-on-Disk 30 N

0.036 m/s Ambient Temperature 1 1 [74] 2017

SAE 5W-30 ND 36 Block-on0ring 30 kg
200 rpm Ambient Temperature 0.016 0.016 [28] 2017

Base as
lubricant—60SN base

oil
ZnO 41 Four-ball Tribometer 500 N

1000 rpm Ambient Temperature 0.2, 0.5, 0.5, 0.8,and 1 0.5 [72] 2017

SAE 5W-30 Al2O3, TiO2 48–50 Piston Ring/Cylinder
Liner

30–250 N
50–800 rpm 100 0.05, 0.1, 0.25, 0.5 0.25 [96] 2016

SAE 20W-50 Gr 21 Four-ball Tribometer 400 N
1200 rpm 75 0.01 0.01 [111] 2016

SAE 5W-30 Al2O3, TiO2 51 piston ring/cylinder
liner interface

40–230 N
0.5–1.45 m/s 100 0.05, 0.1, 0.25 and 0.5 0.1 [76] 2016

SAE 5 W- 30
Al2O3 35 piston ring/cylinder

liner interface
185–340

60 0.25 0.25 [112] 2016TiO2 51 0.25–0.66 m/s

Chevron Taro 30 DP 40 Cu 18.2 Pin-on-disc
0.1–180 mN

25
0.3 vol.%

3 vol.% [113] 20160.02 mm/s 3 vol.%
Base as

lubricant—Mineral Fe–Carbon capsules 8 Block-on-ring 650 N
1.65 m/s Ambient Temperature 0.01–0.1 0.07 [114] 2015

SAE 75 W- 85
CuO 14

Four-ball Tribometer
7000 N Ambient Temperature 0.5, 1 and 2 2 [115] 2015Al2O3 - 500 rpm -

SAE 40 SWCNH 12 Ball-on-disc 600 MPa
0.001–1.8 m/s 25,40,60 and 80 0.005, 0.01 and 0.02 0.01 [84] 2014

SAE 10

CuO 18

Four-ball Tribometer,
Pin-on-Disc

150 N
1420 rpm Ambient Temperature

0.5, 0.25

All concentrations [116] 2013

Cu 49 0.5
Fe 39 0.5
Co 20 0.5

Fe/Cu 53 0.25/0.25
Fe/Co 36 0.25/0.25
Co/Cu 53 0.25/0.25

Base as
lubricant—PAO 10

MoS2 57 Piston Skirt/Cylinder
Liner

250 N
20–100 3 3 [91] 2012BN No improvement 2 Hz

SAE 15 W-40 Cu 37 Ball-on-disc 50 N
10–30 Hz Ambient Temperature 0.0125, 0.025, 0.0375

and 0.05 0.0375 [117] 2011
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Figure 8. Tribological performance of diesel engine oil with nano-lanthanum hydroxide/reduced graphene oxide composites.
(a) Reduction in coefficient of friction and wear volume, (b) hypothesized wear mechanism of nanolubricant [62]. Adapted
with permission.

In the polishing mechanism, nanoparticles reduce the surface roughness of the as-
perities [118]. This reduces the shear stresses of the asperities, and thus improves the
tribological performance [84]. In the mending mechanism, a self-repairing action of the
nanoparticles takes place. In this mechanism, the nanoparticles would have the ability to
fill out the scars, and tiny grooves resulted from contacting friction on the mating surfaces.
Recent studies revealed that the previous hypotheses of both tribo-sintering and mending
mechanisms are considered the same [30]. Kamal [63] introduced the tribological properties
of hybrid copper/graphene (Cu/Gr) nanoparticles as engine lubricant additives. Under
various conditions of normal load and sliding speed, the hybrid nano-lubricant of Cu/Gr
showed improvement in tribological properties, with a moderation in the wear rate and
coefficient of friction in the ranges of 25–30% and 26–30%, respectively. The consolida-
tion in the tribological properties was referred to as the formation of a tribo-film or the
self-lubricating layer of nanoparticles, as shown in Figure 9.
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In another study by Ajay [30], friction reduction, by 32%, was introduced through the
ZnO/MWCNT hybrid nanolubricant. The synergetic effect of hybrid nanoparticles affords
a protective tribo-film during the rubbing process of the surface asperities. In another study
regarding hybrid engine-based nanolubricants [24], the ZnO-decorated reduced graphene
oxide/Mos2 nanolubricants showed a reduction in COF by 37%. The authors claimed that
the enhancement in the friction properties returns to the formation of a protective thin
tribo-layer with a low shear strength.

A statistical and analytical multi-scale contact model, based on the Greenwood and
Williamson model (GW), was conducted by Ghaednia [119]. This was to investigate the
working methodology of CuO and Ag nanolubricants, and their lubrication mechanism
of the resulting tribo-films (Figure 10). The study suggested that there is no integrated
film of nanoparticles on the contacted surfaces, and it seems that tribo-films are randomly
distributed on the surfaces. Moreover, the tribo-film can effectively reduce the real area of
contact, thus diminishing the coefficient of friction.
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A comprehensive study by Pena-Paras [120] was conducted theoretically and ex-
perimentally to investigate the effect of the nanoparticle size of TiO2 on the tribological
properties of the polyalphaolefin (PAO) base as a lubricant.

The study was conducted with one level of nanoparticle concentration of 0.05%, under
the different surface roughness conditions of 0.3, 0.7, and 1.4 um, respectively.

An atomistic simulation using molecular dynamics was performed as thermotical
evidence of the mending and tribo-sintering mechanisms [120]. The concept of the Lennard–
Jones method and solid–liquid interactions were utilized through LAMMPS software.
The reduction in wear loss (86%) through the experimental test block-on-ring tribometer
was justified by simulation studies, as shown in Figure 11. The study suggested that
smaller nanoparticles than the average surface roughness of the surface asperities can
fill the valleys of those asperities. While nanoparticles that are larger than the average
roughness cannot effectively perform this function. Varrla [92] reported an enormous
improvement in the graphene (Gr) nanolubricant, with a concentration of 0.025 mg/mL.
The friction and wear were reduced by 80% and 33%, respectively. A significant role for
this developed performance of the Gr nanolubricant returns to the nanoparticles’ nano
ball-bearing mechanisms, as had been hypothesized by the study.

In another study, Yuan [80] investigated the tribological properties of fully formulated
10 W-40 engine oil with silver nanoparticle-decorated graphene. Thanks to protective film
formation, the COF and wear rate were diminished by 30% and 27%, respectively. Vaitku-
naite [121] discussed the correlation between the viscosity of different fully formulated
lubricants and the linkage of the tribo-film formation of MoS2 nanolubricants. The study
concluded that lubricant viscosity has a considerable action on the tribochemistry in the
contact region. There is a linear relationship between the coverage area of tribo-films and
the achieved value of friction coefficient for the lubricants of lower viscosities. However, at
higher viscosities, the formation of tribo-films is affected by the low asperity contact.
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Demas [69] concluded that at very high concentrations of TiO2 and Al2O3 nanopar-
ticles of 1 wt.%, nanolubricants showed a fading effect on the tribological performance
compared to the bare fully formulated lubricants. The fully formulated lubricant of 5W-30
gives a coefficient of friction that is 25% lower than the nanolubricant base of PAO. ZnO
nanolubricants were evaluated using a four-ball tribometer [78]. A reduction in the coeffi-
cient of friction and wear rate were observed, by 9.9% and 31.2%, respectively, compared
to the lubricant base of PAO. The nanolubricant of ZnO succeeded in forming a tribo-film
with adequate coverage alongside the contacted areas of the sliding pairs.

In a recent study by Tóth [103], the formation of a tribo-film had been verified by
SEM/EDX analyses. A considerable number of ZrO2 nanoparticles formed a cluster on the
surface grooves, as shown in Figure 12. It had been claimed by authors that these clusters
were formed due to strong van der Waals attractive forces between the nanoparticles and
the contacted metal surface. In this way, nanoparticles can continuously fill wear grooves,
resulting in a smoother and refined contact surface. This refined surface can decrease the
load pressure, and hence, help to provide a longer lifetime of engine components.
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4. Rheological and Thermophysical Properties of Engine Lubricant-Based Nanofluids

A significant factor that is necessary during the design process of engine nanolubri-
cants is to estimate these systems’ rheological and thermophysical properties. This is to
ensure that other specifications, such as tribological properties and overall engine perfor-
mance, would not be affected. This includes viscosity, density as rheological properties,
thermal conductivity, flash point, and pour point as thermophysical properties. This section
discusses all these thermophysical and rheological parameters, based on recent studies
regarding engine nanolubricants.

4.1. Viscosity

The viscosity of engine lubricant is considered one of the most critical parameters that
defines the final behaviour of the lubricant system of an engine. Adding nano additives to
these systems would directly affect the viscosity, meaning the pumping power and pressure
loss [45,122]. A substantial factor to be considered when studying engine lubricant viscosity
is to classify the type of fluid behaviour when nanoparticles are added; this would be
whether it is a Newtonian or non-Newtonian behaviour. A fluid is called Newtonian when
the shear rate or flow velocity does not affect the fluid’s viscosity [123]. In other respects,
the viscosity of a non-Newtonian fluid is affected by the shear rate.

Moreover, the viscosity of both the Newtonian and non-Newtonian fluids has a
temperature-dependent behaviour [123,124]. Non-Newtonian fluid is classified into two
main categories, which are pseudoplastic and dilatant fluids. The viscosity will be di-
minished under high shear rates for pseudoplastic fluids, so they have a shear-thinning
behaviour. Furthermore, for dilatant fluids, the value of viscosity rises with the increasing
the shear rate, so they have shear-thickening behaviour [125].

Most commercially available engine lubricants are typically considered a non-Newtonian
fluid with shear-thinning behaviour [124]. Engine lubricants are commonly categorized as
multigrade oils, such as SAE 10W-40, SAE 10W-60, and SAE 5W-40, as they work under
different temperature ranges. The non-Newtonian behaviour of multigrade engine oils had
been proposed by the constitutive equation [124], as follows:

η = µ1
k + µ2

.
γ

k + µ2
.
γ

(1)

where η is the non-Newtonian viscosity,
.
γ is the shear rate, µ1 is the first Newtonian

viscosity, µ2 is the second Newtonian viscosity, and k is the curve-fitting parameter. The
value of k determines the range of shear rate required for the shear-thinning behaviour of
the multigrade engine oil, which takes place between µ1 and µ2, as shown in Figure 13. At
any specific working temperature and at low values of shear rates, the viscosity of engine
lubricant reaches the first Newtonian viscosity µ1, while at higher values of shear rates, the
viscosity reaches the second Newtonian viscosity µ1. Therefore, a nanolubricant design
process for fully formulated engine oils requires a thorough investigation for these three
regions of different viscosity behaviours. In many rheological studies regarding engine
nanolubricants, Newtonian behaviour was noticed at specific conditions. The rheological
properties of the fully formulated nano engine oil 20W-50 were investigated [126]. CuO
nanoparticles were added at different concentrations, in the range of 0.2–6 wt.%. The study
reported a linear correlation between the shear rate and the shear stress under various
conditions of working temperatures (5–70 ◦C), demonstrating that CuO nanolubricant has
a Newtonian behaviour, as shown in Figure 14a.

In another study [127], hybrid nanoparticles of Al2O3,/MWCNT were added to the
engine oil of SAE 40. Under different working temperature conditions and shear rate
ranges of 25 to 50 ◦C and 1333 to 131,333 s−1, respectively, the nanolubricant showed no
relationship between the shear rate and viscosity under all the testing temperatures. Thus,
this hybrid nanolubricant is considered a Newtonian fluid. Other hybrid nanoparticles of
MWCNT/MgO were used for SAE 50 engine oil [128]. The rheological properties of engine
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nanolubricants were investigated under different particle concentration ranges, from 0.25
to 2 vol.%.
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The study concluded that the prepared nanolubricant has a Newtonian behaviour
at the mentioned working conditions, as shown in Figure 14b. Furthermore, the non-
Newtonian behaviour of nanolubricants, regarding engine oil, was noticed in many studies.
Hybrid nanoparticles of MWCNT/SiO2 were added to the SAE40 engine lubricant [75].
Nanoparticles were added in different concentrations, in the range from 0.625 to 2 vol.%.
The experiments were conducted under a shear rate range from 100 to 500 rpm, with a
working temperature range of 25 to 50 ◦C. The study disclosed that the nanolubricant has
two different viscosity behaviours; up to 1 vol.%, Newtonian behaviour was observed.
However, non-Newtonian behaviour was remarked at concentrations higher than 1 vol.%,
as shown in Figure 15. Many studies regarding nanolubrication in engines for different
viscosity behaviours are illustrated in Table 3.
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Other factors that would affect the engine nanolubricant’s viscosity are the working
temperatures and added nanoparticles concentration. Hojjat [89] studied the kinematic
viscosity of the MWCNT nanolubricant at different conditions. The nanoparticles were
added to the base engine lubricant of 20W-50, under different concentrations of 0.1, 0.2,
and 0.5 wt.%, and testing temperatures of 40 and 100 ◦C. At a temperature of 100 ◦C
and a concentration of 0.1 wt.%, the viscosity of the nanolubricant met its maximum
decrease, by 0.25%, while the maximum rise of 1.7% occurred at the concentration of
0.5 wt.% and the temperature of 40 ◦C. The study proposed that the low concentration of
nanoparticles would ease the sliding of the lubricant layers by going through the fluid
layers; thus, diminishing the values of viscosity. Whereas at high concentrations, the
nanoparticles would aggregate, thus increasing the viscosity. In another study [129], the
hybrid nanolubricant of MWCNT/ZnO showed an impressive performance regarding
the viscosity index of 5W-50 engine lubricant. At a concentration of 0.75 vol.% and a
high operating temperature of 55 ◦C, the degree of viscosity dependence on temperature
decreased. Therefore, a high viscosity index is obtained. Hemmat [75] discussed the effect
of adding hybrid MWCNT/ SiO2 to SAE 40 engine lubricant. The study revealed that the
dynamic viscosity of nanolubricant decreases with increasing the working temperature.

Table 3. A summary of the published literature of the viscosity behaviour for engine-based nano lubricants.

Base Lubricant Nano Additive Testing Temperature
◦C Testing Shear Rate Concentration Viscosity

Behaviour Reference Year

SAE 5W-30 MgO 5–55 666.5–13, 330 s−1 0.1–1.5 vol.% non-Newtonian [33] 2020
SAE 50 ZnO 25–65 5–55 s−1 0.125–1.5 vol.% Newtonian [130] 2020

SAE 10W-40 ZnO, MgO 5–75 5–1000 rpm 0.125–1.5 vol.%
Newtonian

for both
nanolubricants

[131] 2019

Engine lubricant MWCNT/Mg(OH)2 25–60 100–600 rpm 0.125–1.5 vol.% Newtonian [132] 2018
20W-50 MWCNT/SiO2 40–100 10–70 s−1 0.05–1 vol.% Newtonian [133] 2018
SAE 40 MWCNT/MgO 25–45 100–1000 rpm 0.25–2 vol.% non-Newtonian [134] 2018

SAE 10W-40 ZrO2/MWCNT 5–55 666.66–11, 999.97 s−1 0.05–1 vol.% non-Newtonian [135] 2018
SAE 10W-40 MWCNT/SiO2 5–55 666.5–11, 997 s−1 0.05–1 vol.% non-Newtonian [136] 2017
SAE 10W-40 ZnO 5–55 666.5 and 11, 997 s−1 0.25–2 vol.% Newtonian [51] 2017

SAE 50 TiO2 25–50 666.5–9331 s−1 0.125–1.5 vol.% Newtonian/non-
Newtonian [137] 2017

Engine lubricant Cu 40–100 5–40 s−1 0.2–1 wt.% Newtonian/non-
Newtonian [138] 2017

SAE 50 MWCNT/MgO 20–50 670–8700 s−1 0.0625–1 vol.% non-Newtonian [139] 2017
SAE 40 MWCNT/ZnO 25–60 1333–13,333 rpm 0.05–1 vol.% Newtonian [140] 2017

SAE 40 MWCNT/SiO2 25–50 100–500 rpm 0.625–2 vol.% Newtonian/non-
Newtonian [75] 2016

SAE 40 Al2O3/MWCNT 25–50 1333–13, 333 s−1 0.0625–1 vol.% Newtonian [127] 2016
SAE 40 MWCNT/SiO2 25–60 667–6667 s−1 0.0625–1 vol.% Newtonian [141] 2016

SAE 10W-40 MWCNT/ZnO 5–55 5–1000 rpm 0.125–1 vol.% Newtonian [77] 2016
SAE 50 MWCNT/MgO 25–50 100–700 rpm 0.25–2 Newtonian [128] 2016

SAE 20W-50 CuO 5–70 10–70 s−1 0.2–6 wt.% Newtonian [126] 2015
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The maximum decrease in viscosity is 30.2% at the temperature and nano concen-
tration of 40 ◦C and 1 vol.%, respectively. Moghaddam [73] investigated the viscosity
improvement of hybrid MWCNT/CuO engine nanolubricant. The viscosity of the nanol-
ubricant increased by 29.47% at a concentration of 1 vol.% compared to the SAE 40 base
lubricant. Ali [53] studied different nano additives of Al2O3, TiO2, and hybrid Al2O3/TiO2
added to 5W-30 engine lubricant. The nanolubricants were tested under one concentration
of 0.25 wt.%, and two different working temperatures of 40 and 100 ◦C. At 40 ◦C, a re-
duction in viscosity was noticed, by 3%, 3.7%, and 4.3% for Al2O3, TiO2, and Al2O3/TiO2,
respectively. While, at 100 ◦C, a reduction in viscosity was noticed by 2% for all nanolubri-
cants. MWCNT was added to the engine lubricant in a concentration that ranges from 0.01
to 0.2 wt.% [142]. The results showed that the maximum increase in viscosity was 14.11%
at 0.2 wt.%

Four different types of nanoparticles, including MWCNT, graphene nanosheets (G),
carbon nanoballs (CNBs), and fullerene nanoparticles, were added to 20W-50 engine
lubricant [90]. The study revealed that the viscosity of nanolubricant is a function only
in the nano concentration. All of the lubricants showed no appreciable changes in the
values of viscosities in contrast to the base lubricant. Many studies regarding the viscosity
enhancement of engine nanolubricants are illustrated in Table 4.

Table 4. A summary of the published literature of the viscosity improvement for engine-based nanolubricants.

Base Lubricant Nano Additive Testing Temperature
◦C Concentration Effective

Concentration Most Viscosity Refinement Reference Year

SAE 40 ZnO and MoS2 40–100 0.1–0.7 wt.% 0.7 wt.% Increase by 9.57%/MOS2,
10.12%/ZnO, at 100 ◦C [102] 2021

SAE 20W-40 SiO2 50–90 0.3–1.5 wt.% 0.3 wt.% Increase by 99%, at 90 ◦C [143] 2021
SAE 50 ZnO 25–65 0.125–1.5 vol.% 1.5 vol.% Increase by 25.3% [130] 2020

SAE 40 ZnO and MoS2 40–100 0.1–0.7 wt.% 0.7 wt.% Increase by 9.58%/MOS2,
10.14%/ZnO, at 100 ◦C [61] 2020

SAE 5W-30 MgO 5–55 0.1–1.5 vol.% 1.5 vol.% Increase by 25% at 15 ◦C [33] 2020

Engine
lubricant MgO and ZnO 5–55 0.125–1 vol.%

1.5 vol.% for
both

nanolubricants

Increase by 124.3%/ZnO,
75%/MgO, at 55 ◦C [131] 2019

SAE 10W-40 MWCNT/ZrO2 5–55 0.05–1 vol.% 1 vol.% Increase by 31% at 55 ◦C [135] 2018
Engine

lubricant MWCNT/Mg 25–60 0.25–2 vol% 2 vol% Increase by 60% at 60 ◦C [132] 2018

SAE 20W-50 ◦C MWCNT/SiO2 40–100 0.05–1 vol.% 1 vol.% Increase by 171% at 100 ◦C [133] 2018
Engine

lubricant Cu 4–100 0.2–1 wt.% 1 wt.% Increase by 37% at 40 ◦C [138] 2017

SAE 50 MWCNT/MgO 25–50 0.0625–1 vol.% 1 vol.% Decrease by 75% at 50 ◦C [139] 2017
SAE 40 MWCNT/CuO 25–50 0.0625–1 vol.% 1 vol.% Increase by 29.47% at 30 ◦C [73] 2017
SAE 40 MWCNT/ZnO 25–60 0.05–1 vol.% 1 vol% Increase by 33.3% at 40 ◦C [140] 2017
SAE 40 Al2O3/MWCNT 25–50 0.0625–1 vol.% 1 vol.% Increase by 46% at 35 ◦C [127] 2016
SAE 50 MWCNT/MgO 25–50 0.25–2 vol.% 2 vol% Increase by 65% at 40 ◦C [128] 2016
SAE 40 MWCNT/SiO2 25–60 0.0625–1 vol.% 1 vol.% Increase by 37.4% at 60 ◦C [141] 2016
SAE 40 MWCNT/SiO2 25–50 0.0625–2 vol.% 0.5 vol.% Increase by 1.7% at 40 ◦C [75] 2016

SAE 10W-40 MWCNT/ZnO 5–55 0.125–1 vol.% 1 vol.% Increase by 55% at 55 ◦C [77] 2016

Prediction Models for the Viscosity

According to many studies regarding nanolubricants in engines [47], the classical
models of colloidal systems could not predict the rheological and thermophysical properties
under different conditions of temperatures and concentrations. The issue with these models
is their concentration and temperature limit, at which the prediction can be proposed with
relevant and accurate results. For viscosity prediction, the classical model of Einstein
and Brinkman [144] is applicable only for extremely diluted colloidal systems of spherical
particles, as follows:

µe f f = µb f (1 + 2.5 ϕ) (2)

where µe f f is the effective nanofluid viscosity, µb f is the viscosity of the base fluid, and
ϕ is the solid volume fraction of the nanoparticles. Recent studies have developed many
correlations concerning many factors of engine nanolubricants, including the type of
nanoparticles, concentration, and working temperature range [122,130,145]. Hemmat [146]
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proposed a new correlation model for the hybrid Al2O3/MWCNT engine nanolubricant of
5W-50, as presented in Equation (3), where µn f is the viscosity of the nanofluid.

µn f = −744.8 +
1806 ϕ 0.01386

T0.2 (3)

The model is applicable only for predicting the dynamic viscosity of Al2O3/MWCNT,
with a concentration range of 0.05 to 1 vol.%, and temperatures between 5 and 55 ◦C,
with high accuracy results regarding the R-squared value (R2) 99.23% compared to the
experimental testing. In another study by Asadi [77], a correlation model is proposed for
the engine nanolubricant of MWCNT/ZnO with 0.9803 of R2, as follows:

µn f = 796.8 + 76.26 ϕ + 12.88 T + 0.7695 ϕ T +
−196.9 T − 16.53 ϕ T

T0.5 (4)

The model is valid under the nanoparticle concentration of 0.125–1 vol.% and a
temperature range from 5 ◦C to 55 ◦C. Many studies regarding the viscosity prediction
models proposed for engine nanolubricants are illustrated in Table 5. All of the proposed
correlations are valid only for the tested ranges of nano concentrations, temperatures, and
other tested factors.

Table 5. A summary of the proposed models to estimate the viscosity of engine-based nanolubricants.

Reference Year Base Lubricant Nano Additive Proposed Model Accuracy of the Model

[129] 2018 SAE 5W-50 MWCNT/ZnO

µn f
µb f

= 0.866 + 0.802ϕ + 8.38
(
10−3 ∗ T

)
−
(
7.86 ∗ 10−6 ∗ .

γ
)

−
(
5.83 ∗ 10−4 ∗ ϕ ∗ T

)
−
(
6.26 ∗ 10−7 ∗ T ∗ .

γ
)
−
(
1.081 ∗ ϕ2)

−
(
2.44 ∗ 10−4 ∗ T2)

+
(

2.83 ∗ 10−9 ∗ .
γ

2
)

+
(
1.26 ∗ 10−8 ∗ T2 ∗ .

γ
)
+
(
0.572 ∗ ϕ3)

+
(
1.63 ∗ 10−6 ∗ T3)

R2 = 0.9715

[133] 2018 SAE 20W-50 MWCNT/SiO2
µn f
µb f

= 0.09422− [( T
ϕ )

2+

0.100556 T0.8827 ϕ0.3148 ] exp
(
72, 474.75ϕ3.7951) Margin of deviation < 1%

[140] 2017 SAE 40 MWCNT/ZnO µn f
µb f

= A + B ϕ + Cϕ2 + Dϕ3 Maximum error = 2%

[147] 2017 SAE 10W-40 TiO2/MWCNT µn f
µb f

= a0 + a1 ϕ + a2 ϕ2 + a3 ϕ3 Margin of deviation = 1.1%

[51] 2017 SAE 10W-40 ZnO µn f
µb f

= a0 + a1 ϕ + a2 ϕ2 + a3 ϕ ln(ϕ) Margin of deviation < 1%

[73] 2017 SAE 40 MWCNT/CuO µn f
µb f

= a0 + a1 ϕ exp(ϕ) + a2 ϕ2 + a3 ϕ3 -

[128] 2016 SAE 50 MWCNT/MgO µn f = 328, 201× T−2.053 × ϕ0.09359 Maximum error = 8%
[148] 2016 SAE 40 MWCNT/SiO2

µn f
µb f

= 0.00337 + exp(0.07731 ϕ1.452) Margin of deviation = 4%

[75] 2016 SAE 40 MWCNT/SiO2
µn f
µb f

= a0 + a1 ϕ + a2 ϕ2 + a3 ϕ3 Margin of deviation = 1.2%

[127] 2016 SAE 40 Al2O3/MWCNT
µn f
µb f

= 1.123 +0.3251 ϕ− 0.08994 T + 0.002552 T2

−0.00002386 ∗ T3 + 0.9695( T
ϕ )

0.01719
Margin of deviation = 2%

4.2. Heat Transfer Performance

Internal combustion engines can only operate at specific temperature ranges that
can exceed 250 ◦C at the contact of the piston ring/cylinder liner [25]. Engine lubricant
enhances the lubricity of the internal parts and has a significant role in the engine heat sink
system, including the cooling system of the water pump, radiator, and hoses [149]. The
thermophysical properties of engine lubricant are vital to be studied when nano additives
are added. These properties include thermal conductivity, flash point, and pour point. The
thermal conductivity of engine lubricant measures the rate of heat transfer from the engine.
The larger the thermal conductivity, the more efficiently the engine lubricant will transfer
heat [150,151]. The engine lubricant’s pour point is the minimum temperature at which the
lubricant can sufficiently flow without any agglomeration.
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In contrast, the flash point is the minimum temperature at which the lubricant is con-
verted, under pressufre, to steam, creating a flammable mixture that can be ignited during
the engine’s working. The pour and flash points of engine lubricants are considered the
minimum and maximum allowable lubricant operating temperatures [61,124]. Therefore,
the improvement in the thermal behaviour of engines using nano lubricants is considered
pivotal regarding thermal losses and fuel economy.

4.2.1. Flash Point and Pour Point

Mousavi [61] studied the flash point and pour point for the nanolubricants of ZnO
and MoS2, as shown in Figure 16. Both of the nanoparticles were added to the SAE-40
engine lubricant, with three different concentrations of 0.1, 0.4, and 0.7 wt.%. According
to the study, the effective concentration for the flash point improvement is at 0.7 wt.%
for both of the nanolubricants, with a maximum increase in the flash point by 5.01% and
5.88% for ZnO and MoS2, respectively. This was clarified by the high values of these
nanolubricants’ thermal conductivity. Whereas the optimum concentration regarding
pour point enhancement was achieved at 0.4 wt.% with both of the nanolubricants. The
maximum decrease in the pour point was 5.05% and 15.2% for MoS2 and ZnO, respectively.
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The flash and pour points of the MWCNT nano engine lubricant of 20W-50 were
investigated by Ettefaghi [89]. Nanoparticles were added at three different concentrations
of 0.1, 0.2, and 0.5 wt.%. The flash point and pour point had been improved by 13% and
3.3%, respectively, at an optimum concentration of 0.2 wt.%. In another study by Ehsan [90],
four different nanoparticles were investigated for the thermophysical properties regarding
flash and pour points. MWCNT, graphene, carbon nano balls, and fullerene nanoparticles
were added to SAE 20 W-50 engine lubricant at the following two different concentrations:
0.1 and 0.2 wt.%. The study revealed that the greatest improvement in flash point was
13.8%, through the nanolubricant of carbon nano balls at a concentration of 0.2 wt.%. On the
other hand, the maximum enhancement in pour point was 11%, through the nanolubricant
of graphene at 0.2 wt.%.

In another study by Neha [152], the flash and fire points of SAE 20W-40 had been
improved by 12.73% and 12.20%, respectively, for 0.2 wt.% of TiO2 nano additives.

4.2.2. Thermal Conductivity

Many studies regarding engine nanolubricant thermal conductivity pointed to a con-
siderable development in these systems’ thermal conductivity, especially at high working
temperatures and nano concentrations [53,151,153]. Researchers attributed this thermo-
physical improvement to the migration of nanoparticles under the base fluid’s high vibra-
tional energy. As the nanolubricant temperature increases, the energy level, vibration, and
movement of the base fluid layers increase. This, in turn, weakens the bonds of molecules
between the lubricant layers. Thus, it will assist the base fluid molecules to receive high
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velocity, high striking, and collision rate of solid nanoparticles. Moreover, this causes the
Brownian motion of the solid nanoparticles. This phenomenon is called the thermophoresis
of nanofluids. The thermal conductivity of nanofluids is enhanced by the movement and
migration of nanoparticles at high rates, from the warm to cold areas of the suspension
system of the nanofluid suspension system [53,154–156].

Aberoumand [138] studied the effect of adding copper nanoparticles on the engine lu-
bricant thermal conductivity. Nanoparticles were added at three different volume fractions,
0.2, 0.5 and 1%, with testing temperatures of 40 and 100 ◦C. The maximum improvement in
the thermal conductivity was 49%, obtained at 1 vol.% and 100 ◦C. Yang [151] performed
an experimental study on the engine lubricant of SAE 50 when ZnO nano additives were
added at different volume fractions, from 0.125% to 1.5% in the temperature range from
25 to 55 ◦C. The maximum enhancement in the thermal conductivity was 8.74% at 1.5%
and 55 ◦C, as shown in Figure 17a. The thermal conductivity of SAE 20W-50 also im-
proved by 22.7% when MWCNT was added at 0.5 wt.% [89]. Amin [132] investigated
the thermal conductivity of the hybrid Mg(OH)2/MWCNT engine lubricant of SN 5W-50.
Six different concentrations of nanoparticles, of 0.2, 0.75, 1, 1.5, and 2 vol.%, were stud-
ied, with a temperature range from 25 to 60 ◦C. The maximum enhancement in thermal
conductivity improvement was 30.5% at 2 vol.% and 60 ◦C, as shown in Figure 17b. In
another experimental work [53], thermal conductivity was improved by 10.3% for the
hybrid Al2O3/TiO2 engine nanolubricant of SAE 5W-30. A summary of recent studies on
the thermal conductivity of engine lubricant-based nanofluids is presented in Table 6.
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Table 6. A summary of the literature on the thermal conductivity of engine-based nanolubricants.

Base Lubricant Nano Additive Testing Temperature
◦C Concentration Effective

Concentration
Improvement in Thermal

Conductivity Reference Year

SAE 20 W-40 MWCNT/TiO2 20–70 0.1–0.8
vol.% 0.8 vol.% Increase by 24.42% at 70 ◦C [57] 2021

SAE 50 ZnO 25–55 0.125–1.5
vol.% 1.5 vol.% Increase by 8.74% at 55 ◦C [151] 2019

Engine oil ZnO, MgO 15–55 0.125–1.5
vol.%

1.5 vol.% for both
nanoparticles

Increase by 28%/ZnO,
32%/MgO, at 55 ◦C [131] 2019

Engine oil Al2O3/MWCNT 25–50 0.125–1.5
vol.% 1.5 vol.% Increase by 45% at 50 ◦C [157] 2018

SAE 10W-40 MWCNT/ZnO 15–55 0.125 0 1 vol.% 1 vol.% Increase by 40% at 55 ◦C [158] 2018
SAE 5 W-50 Mg(OH)2 25–60 0.25–2 vol.% 2 vol.% Increase by 50% at 60 ◦C [132] 2018

SAE 50 MWCNT/MgO 25–50 0.25–2 vol.% 2 vol.% Increase by 62% at 50 ◦C [128] 2016
Engine oil Cu 40–100 0.2–1 wt.% 1 wt.% Increase by 37% at 100 ◦C [138] 2016

SAE 20W-50 Gr 10–180 0.01 wt.% 0.01 wt.% Increase by 23% at 80 ◦C [111] 2016
SAE 20W-50 CuO 20 0.1–0.5 wt.% 0.1 wt.% Increase by 3% [159] 2013

4.2.3. Prediction Models for the Thermal Conductivity

Numerous studies have been conducted to predict the behaviour of nanolubricants,
regarding their thermal conductivity enhancement [47,151,160,161]. The empirical model
of Maxwell and Hamilton [162] is considered one of the classical models that have been
widely used to predict the thermal conductivity of spherical nanosuspensions, as follows:

Kn f

Kb f
=


(

Kp + (n− 1)Kb f + (n− 1)ϕ
(

Kb f − Kp

))
Kp + (n− 1)Kb f + ϕ

(
Kp − Kb f

)
 (5)

where Kn f , Kb f , Kp are the thermal conductivity of the nanofluid, base fluids, and nanopar-
ticles, respectively. Whereas n is the nanoparticle’s shape factor, with n = 3 for spheri-
cal nanoparticles. New empirical-based correlations have been proposed to investigate
nanofluids’ thermal conductivity, as the classic ones have many limitations regarding the
nano concentration, size, type of base fluid, and the range of accuracy.

For nano engine lubricants, few numbers of studies proposed empirical-based correla-
tions for certain types of nanolubricants, as shown in Table 7. These correlations are valid
only at the tested working conditions and concentrations of nanolubricants.

Table 7. A summary of the proposed models for estimating the thermal conductivity of the engine-based nanolubricants.

Reference Year Base Lubricant Nano Additive Proposed Model Accuracy of the Model

[151] 2019 SAE 50 ZnO Kn f
Kb f

= (0.0055 T0.632 ϕ0.831) + 0.964 Margin of deviation < 1%

[157] 2018 Engine oil MWCNT/ Al2O3 Kn f = 0.1534 + 1.1193 ϕ + 0.00026 T Maximum error = 2%
[132] 2018 SAE 5W-50 MWCNT/Mg(OH)2 Kn f = 0.159 + 1.1112 ϕ + 0.003 T Maximum error = 2%
[128] 2016 SAE 50 MWCNT/MgO Kn f = 0.162 + 0.691 ϕ + 0.00051 T Maximum error = 3%

5. Fuel Economy and Emissions

As a rule of thumb, upgrading the engine’s lubricants can advance the fuel economy
and the overall engine’s system [163]. A valuable advantage of nanolubricants is their
ability to bring down both the fuel consumption and the harmful exhaust emissions
of engines.

This returns to the superior tribological and thermal properties of those lubricants,
which are typically linked to the improvement of the engine efficiency, in terms of brake ther-
mal efficiency (BTE) and brake-specific fuel consumption (BSFC) [4,68]. Interestingly, nanol-
ubricants can afford a delicate balance between tribology and sustainability, to minimize the
environmental effects of carbon footprints and greenhouse gas emissions [2,70,164,165]. In
a recent study by Kamal [25], a hybrid nanolubricant of Al2O3/TiO2, with a concentration
of 0.1 wt.%, showed an improvement in brake thermal efficiency, in the range of 3.9–8.6%,
concerning the base engine lubricant of SAE 20 W-40. The maximum enhancement in
the thermal efficiency was observed at higher engine speeds with complete throttle valve
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opening, as shown in Figure 18.The effect of Al2O3/TiO2 hybrid nanolubricants on the
fuel economy had been considered in another study [68]. The BSFC has been reduced
dramatically, by 16–20%, with an economical fuel consumption of 4 L/100 km. The study
claimed an upgrade in mechanical efficiency by 1.7–2.5%.
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In another study by Pullela [166], the brake thermal efficiency had been improved by
4–7% when the nanolubricant of Cu nanoparticles was used with a concentration of 0.05,
0.1, and 0.2 wt.%, with respect to the base engine oil.

According to the New European Driving Cycle (NEDC) [67], a graphene nanolubricant
with an adequate concentration of 0.4 wt.% was investigated. The results showed an
impressive improvement regarding fuel consumption and exhaust emissions as well. The
cumulative fuel consumption had been reduced by 17%, due to the improvement in the anti-
wear and anti-friction properties (Figure 19I), whereas the results of the exhaust emissions
for CO2, HC, and NOx showed a reduction of 2.79–5.42%, due to the enhancement in the
heat transfer properties and the tribological properties, in terms of the tribo-films formed
on the liner surfaces (Figure 19II). The nanolubricants of SiO2 and Al2O3 were investigated
under different concentrations of 0.3–0.9 wt.%, with a four-stroke diesel engine attached
to a DC dynamometer [167]. The study concluded that SiO2 nano additives decayed the
engine’s performance in terms of all concentrations compared to the plain engine oil of SAE
15W-40. In comparison, Al2O3 at 0.3 wt.% showed an auspicious development regarding
BSFC and BTE (Figure 20).
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In another work, MoS2 nanolubricants had been investigated, regarding the emissions
of solid and gas pollutants through real diesel engine testing [168]. The study suggested
that the presence of MoS2 nanoparticles in the engine lubricant did not show a significant
impact on minimizing both the emissions of ultrafine soot particles and greenhouse gases.

Interestingly, in another study by Sgroi [70], an average reduction in fuel consumption
by 0.9% was obtained. The MoS2 nanolubricant had been tested on the basis of the NEDC
driving cycle of the real engine bench test. The study also reported a unique vehicle road
test analysis with 5000 km of operating distance. A complete analysis of the nanolubricant
degradation had been conducted after the road test. The degradation analysis confirmed a
substantial upgrade regarding the wear particle analysis and chemical analysis as well.

Singh [59] reported a development in engine performance and exhaust emissions
when graphite nanoparticles had been used. The reduction in the total fuel consumption
and brake thermal efficiency was by 15.2% and 22%, respectively (Figure 21).

In another recent study by Bharath [56], vehicle noise pollution and vibrational char-
acteristics were measured. The study was conducted for the hybrid nanolubricant of
ZnO/ TiO2, with a real automotive engine test. The hybrid nanolubricant showed a max-
imum reduction in the engine noise levels by 4.5% (Figure 22). At the same time, the
reduction in the engine vibration was around 27–59% for the longitudinal vibration and
20–49% for the lateral vibration (Figure 23). It had been claimed, by the researchers of this
study, that the noise and vibration reduction return to improvement in the tribological,
rheological, and heat transfer properties provided by the hybrid nanolubricant. The better
cooling and friction effect of the hybrid nanolubricant helped to dissipate the excessive
heat of the engine. This will help in avoiding the knocking and vibration generated due to
friction. Hence, reducing the mechanical losses and fuel consumption as well.



Lubricants 2021, 9, 85 28 of 43

Lubricants 2021, 9, x FOR PEER REVIEW 31 of 47 
 

 

  
(a) (b) 

Figure 21. Enhancement of engine performance with nanolubrication. (a) Total fuel consumption, (b) brake thermal effi-
ciency [59]. Adapted with permission. 

In another recent study by Bharath [56], vehicle noise pollution and vibrational char-
acteristics were measured. The study was conducted for the hybrid nanolubricant of 
ZnO/ TiOଶ, with a real automotive engine test. The hybrid nanolubricant showed a maxi-
mum reduction in the engine noise levels by 4.5% (Figure 22). At the same time, the re-
duction in the engine vibration was around 27–59% for the longitudinal vibration and 20–
49% for the lateral vibration (Figure 23). It had been claimed, by the researchers of this 
study, that the noise and vibration reduction return to improvement in the tribological, 
rheological, and heat transfer properties provided by the hybrid nanolubricant. The better 
cooling and friction effect of the hybrid nanolubricant helped to dissipate the excessive 
heat of the engine. This will help in avoiding the knocking and vibration generated due 
to friction. Hence, reducing the mechanical losses and fuel consumption as well. 

 
Figure 22. Noise level reduction for engine-based nanolubricant [56]. 

Figure 21. Enhancement of engine performance with nanolubrication. (a) Total fuel consumption, (b) brake thermal
efficiency [59]. Adapted with permission.

Lubricants 2021, 9, x FOR PEER REVIEW 31 of 47 
 

 

  
(a) (b) 

Figure 21. Enhancement of engine performance with nanolubrication. (a) Total fuel consumption, (b) brake thermal effi-
ciency [59]. Adapted with permission. 

In another recent study by Bharath [56], vehicle noise pollution and vibrational char-
acteristics were measured. The study was conducted for the hybrid nanolubricant of 
ZnO/ TiOଶ, with a real automotive engine test. The hybrid nanolubricant showed a maxi-
mum reduction in the engine noise levels by 4.5% (Figure 22). At the same time, the re-
duction in the engine vibration was around 27–59% for the longitudinal vibration and 20–
49% for the lateral vibration (Figure 23). It had been claimed, by the researchers of this 
study, that the noise and vibration reduction return to improvement in the tribological, 
rheological, and heat transfer properties provided by the hybrid nanolubricant. The better 
cooling and friction effect of the hybrid nanolubricant helped to dissipate the excessive 
heat of the engine. This will help in avoiding the knocking and vibration generated due 
to friction. Hence, reducing the mechanical losses and fuel consumption as well. 

 
Figure 22. Noise level reduction for engine-based nanolubricant [56]. Figure 22. Noise level reduction for engine-based nanolubricant [56].

Lubricants 2021, 9, x FOR PEER REVIEW 32 of 47 
 

 

  

(a) (b) 

Figure 23. Reduction in vibration acceleration, (a) Longitudinal vibration, (b) lateral vibration[56]. Adapted with permis-
sion. 

6. Discussion 
This section tries to afford a recommendation for potential candidates regarding en-

gine lubricant-based nanofluids, and critically discuss the current findings of the litera-
ture. For instance, it is known that those fluids’ tribological properties are considered the 
key parameter in designing such kinds of systems. This is because the lubricant tribolog-
ical properties can predict the fuel economy, wear behaviour, and frictional power losses. 
Further, those fluids’ dispersion stabilities and rheological characteristics should be then 
followed up to present the entire judgment on the selection, and screen out other candi-
dates. 

As stated by this review study, it appears that the nano additive of TiOଶ has the best 
tribological performance in contrast with other nanoparticles, as shown in Figure 24. This 
is due to its contribution to the high polishing of the surface asperities. Moreover, it 
showed excellent tribological performance in many studies, either as a single additive [68] 
or as a part of hybrid nanoparticles [67]. On the contrary, TiOଶ showed a fragile colloidal 
stability even when a surface-active agent was used to enhance their dispersion [112]. Fig-
ure 22 was constructed based on 55 studies published during the last decade, regarding 
the tribological properties of engine-based nanolubricants. 

 

0

25

50

75

100
Average reduction in COF Percentage of studies

Nano additives 

Pe
rc

en
ta

ge
 %

 

Figure 23. Reduction in vibration acceleration, (a) Longitudinal vibration, (b) lateral vibration [56]. Adapted with permission.



Lubricants 2021, 9, 85 29 of 43

6. Discussion

This section tries to afford a recommendation for potential candidates regarding engine
lubricant-based nanofluids, and critically discuss the current findings of the literature. For
instance, it is known that those fluids’ tribological properties are considered the key
parameter in designing such kinds of systems. This is because the lubricant tribological
properties can predict the fuel economy, wear behaviour, and frictional power losses.
Further, those fluids’ dispersion stabilities and rheological characteristics should be then
followed up to present the entire judgment on the selection, and screen out other candidates.

As stated by this review study, it appears that the nano additive of TiO2 has the best
tribological performance in contrast with other nanoparticles, as shown in Figure 24. This is
due to its contribution to the high polishing of the surface asperities. Moreover, it showed
excellent tribological performance in many studies, either as a single additive [68] or as a
part of hybrid nanoparticles [67]. On the contrary, TiO2 showed a fragile colloidal stability
even when a surface-active agent was used to enhance their dispersion [112]. Figure 22 was
constructed based on 55 studies published during the last decade, regarding the tribological
properties of engine-based nanolubricants.
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Figure 24. Nano additives that have been used for engine lubricants as friction modifiers published during the last decade.

Nanolubricants of base elements, such as Fe, C, Gr, Cu, Co, and other base candi-
dates, showed promising improvement in tribological and thermal properties [20,169].
Despite that, in contrast with the types of nanoparticles, oxides such as CuO, ZnO, and
GrO manifest themselves to have a long-lasting stable time [39]. This is due to the plenty
of hydroxyl or carboxyl groups on their surface, which help their interaction with sur-
factants, improving their dispersion stability in non-polar mediums [170]. Besides their
substantial dispersion stability, oxides have extraordinary tribological, as well as thermal,
properties. CuO and ZnO nanolubricants had been investigated extensively, based on
their rheological and tribological properties. They offered a remarkable intensification to
both characteristics compared to other oxides, whether as a single [52,72,126,130] or hybrid
additive [73,77]. Likewise, from the family of oxides, the hybrid Al2O3/TiO2 nanolubricant
showed a valuable performance at the level of tribological, thermal, and dispersion stability
properties [50].

Regarding the thermal properties, MWCNT had been used in most of the rheological stud-
ies concerning engine-based nanolubricants, even with tiny added mounts [135,139,140,146].
This returns to the fact that MWCNT can provide considerable reinforcement to the rheolog-
ical properties, owing to its high thermal conductivity value, with 3000–5000 W/mK com-
pared to the engine lubricants, which have a value in the range of 0.0139–0.146 W/mK [171].

Furthermore, graphene and its oxide derivatives, such as graphene oxide GO and
reduced graphene oxide rGO, showed a superb tribological and heat transfer performance,
as mentioned in many studies [62,63,65,111,172]. This returns to the multi-layer nature of
this family of nano additives that are easily sheared, due to its high chemical stability and
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weak van der Waals forces between its sheets [64,172]. These characteristics of graphene
and its constituents make them a worthy preference as a lubricant additive.

On top of that, GO and rGO possess better mechanical and thermal conductivity
properties and dispersion stability than pure Gr [172].

Likewise, molybdenum sulphide (MoS2) nano additives attract considerable attention,
due to their distinctive wear properties, as mentioned in some studies [61,173]. It is believed
that the friction-reduction capability of MoS2 returns to its weak van der Waals primary
atomic bonding that eases the slipping of MoS2 layers and hence, forming the protective
tribofilm [61].

As a general rule, it is necessary to consider all the nanolubricants’ working system
parameters. Besides their tribological and rheological features, some other attributes
should be taken into account. This includes their size, surface morphology, and the
internal structure of the nanoparticles, which is determined by the quality and processing
of these nano constituents [172,174]. The size of the nanoparticles defines their internal
physicochemical and mechanical properties, altering their tribological properties. For
instance, their plasticity increases at a size range less than 10 nm [175–177], and their
hardness increases with a reduction in the grain less than 100 nm, according to the Hall–
Petch law [178]. Consequently, if the nanoparticles are harder than the rubbing system, this
can degrade the wear effect.

For surface morphology, lamellar and platelet nanoparticles are preferred, at some
points, to spherical ones. This is because nano-spheres will encounter higher pressure and
more probability of rubbing surface deformation [174]. With reference to the nanoparti-
cles’ internal structure, the Schottky defect in nanostructure develops their mechanical
strength by restraining the dislocation progress, then having a beneficial tribological im-
pact [179,180].

Furthermore, new 2D nanomaterials need to be considered as engine-based lubricant
additives. These 2D nanomaterials have been included in numerous recent studies as a
promising lubricant additives. This includes MXenes, MOF, and CNNS [181–186]. For
instance, a study by Wang reported a significant reduction in the coefficient of friction,
by 63.33%, when MOF was added to 150SN base oil, with 1 wt.% as an optimum concen-
tration [183]. In another study by Yong [187], the MXenes of Ti3C2Tx highly exfoliated
nano sheets had been used as a lubricant’s nano additive. The tribological study that
was conducted on ball-on-disk tribometer showed a fair consolidation in the tribological
properties of the PAO base lubricant. The friction coefficient and wear volume were re-
duced by 10.5% and 7.7%, respectively, in contrast with the pure oil. It is believed that
the enhancement in the tribological performance of MXenes returns to their ability of
forming rich self-lubricating tribo-films. This is due to their low shear resistance, offered
by their weak secondary interlayer bonding [184]. A common drawback of MXenes, which
is mutual with other nanolubricants, is their low dispersion stability that can downgrade
their tribological properties [188].

7. Future Directions and Challenges

In the context of nanolubrication, many challenges need to be considered in future
studies. This includes some factors such as the dispersion stability of the colloidal system,
and tribological and rheological beneficent mechanisms. Although there have been many
articles on nanofluid behaviour, researchers still do not have an adequate grasping and
complete vision of the complex mechanisms behind these factors. For dispersion stability, it
is of high importance to form a system of homogeneous suspension. The nanofluid stability
is influenced by the type of surface modification, pH value, and the sort of nanoparti-
cles [37]. On the other hand, there are many disagreements between the experimental
data and theoretical predictions, regarding the tribological and rheological characteris-
tics [37,47,48,189]. Further, there is a need for more real engine bench and road tests that
have to cover the actual working conditions of these nanolubricants [56,70].
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7.1. Molecular Dynamics Simulations

To better understand the experimental results and theoretical hypotheses confined to
the various properties of nanolubricants, recent studies have been directed to the atomic
level simulations, using molecular dynamics for these nanofluids. Molecular dynamics
(MD) simulations can recompense the shortage of experiments, and provide a clear way to
understand the different characteristics of nanolubricants at the atomic level. The research
studies revealed that molecular dynamics could afford a whole screening method for
studying nanolubricant properties [190–192], as shown in Figure 25.
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In a recent study, nanofluid behaviour was investigated using the near-wall and main
flow model of molecular dynamics [191], as shown in Figure 25b. For the near-wall model,
the nanoparticles that were too close to the wall would have a rotational motion and would
not move with the mainstream of the fluid. This is due to the overlap between the adsorbed
fluid layer around the nanoparticles and the solid-like layer of the particle–wall interface
near the wall. For the main flow model, the nanoparticles would have both translation and
rotational motions.

For the tribological characteristics, the hypotheses of the ball-bearing lubrication
mechanism had been confirmed through the simulation of molecular dynamics [193].
The nanoparticles acted as ball-bearing, and the sliding motion was converted to a mix
between sliding and rolling, leading to a reduction in the coefficient of friction, as shown in
Figure 25c. In another recent study by Fang [194], a theoretical method was generated to
quantify the aggregation and dispersion of nanofluids. The potential of mean force (free
energy), based on the umbrella sampling method for nanoparticles, was considered in
calculating the physical forces that govern the motion of nanoparticles. Based on PMF
curves (Figure 26a), when nanoparticles approach closer, they are acquired to overcome
high energy barriers.
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The difference between the particle diameter and the equilibrium distance is defined
as the critical distance. When the hydroxyl chain on the surfaces of two approaching
particles is less than the critical distance, the particles will be aggregated, forming a low
quality of dispersion. The aggregation number, calculated by the molecular dynamics
simulations, indicates the degree of aggregation. A highly dispersive nanofluid is obtained
when this number increases, and vice versa (Figure 26b,c). Many studies regarding the
theoretical analyses of nanofluids using molecular dynamics are shown in Table 8.

Table 8. Molecular dynamics studies of nanofluids.

Reference Year Substantial Findings Studied Property

[194] 2020 Addressing of effective method to quantify
aggregation/dispersion range through molecular simulation

Dispersion Stability
[195] 2021

MD simulations stated that the transformation from
dispersion state to the reversible state is related to the

Lennard–Jones(LJ) particle number

[190] 2020

Providing a facile method to produce high dispersion stability
of GO suspensions. MD simulations indicated that the used

surface agents could form a high reaggregation barrier on the
surface of nanoparticles

[196] 2021 By increasing the receiving heat flux of nanofluid, the thermal
conductivity is improved.

Rheological and
Thermophysical
Characteristics[191] 2014 Discussing the hypotheses behind the flow of nanofluids

using near and main flow models

[192] 2021
The common hypotheses of the ball-bearing lubrication

mechanism have been confirmed through the MD simulations,
which verified the rolling motion of nanoparticles.

Tribological Characteristics

[197] 2014
A clear investigation was concluded about the effect of sliding

velocity and load capacity on the formation of the nano
tribo-films at the contacted surfaces

[198] 2020 Frictional heating and anti-wear properties of the friction pair
is controlled through the existence of nanoparticles

[199] 2020
Simulations of MD clarified that Gr nano additives could

form a thick layer of tribo-film that can help in reducing the
coefficient of friction and friction force

[200] 2014 Nanofluids have a higher transition pressure than the base
fluid, with an excellent load-carrying capacity

[201] 2020 Theoretical guidance was implemented for the lubrication
mechanism of MOS2 nanoparticles

[193] 2015 Confirmation of the ball-bearing lubrication mechanism of
nanoparticles under mild velocities and loads

[189] 2015 The load-carrying capacity of nanofluid is improved
regarding the base oil before the rupture of the lubricant film

[120] 2018
Atomistic simulations confirmed the mending mechanism of
nanolubricants through which nanoparticles fill in valleys of

the sliding asperities

Over and above that, artificial intelligence models can also predict the different be-
haviours of lubricant performance, regarding their tribological and other behaviours [202–204].
One of these tools is the artificial neural network (ANN), which is considered a widely
accepted novel modelling approach [203]. Basically, the ANN is composed of a network of
mathematical functions, based upon the working methodology of neurons in the human
brain. They can learn in a fashion similar to the way our brains do [202]. The mathematical
functions use a complex dataset of experimental results as inputs, and then build a model
that can predict and optimize the future results under different variations (Figure 27) [204].
In this way, the cost and time of the unaffected experimental work would be minimized.
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The ANN has been used in many studies to predict the performance of a tribo-
system [203]. It has been used in numerous studies regarding the rheological and thermo-
physical properties of these systems [73,129,133,147].

7.2. Ionic Based Nano Lubricants

As a nano concentrate for engine lubricants, ionic liquids have been developed in
the last few years [18,105]. These concentrates are needed to be highlighted strongly in
future studies, as they can offer valuable results regarding the friction and wear charac-
teristics. These particular types of liquids can be used as a lubricant [205,206], lubricant
additive [207–212], a carrier medium for nanoparticles in the form of a concentrated lu-
bricant additive [105,106], and even as a surfactant to enhance the dispersion stability
of nanolubricants [213]. For instance, a concentrate of hairy nano-silica (HSPs) and the
ionic liquid of ([BMIM][NTF2]) as a carrier medium was prepared. It was used as a lubri-
cant additive for 10W-30 fully formulated engine lubricant [105]. The results showed an
outstanding performance regarding friction reduction, prevention of noise, and scuffing
as well.

Unfortunately, there is a major gap in the research field, regarding ionic engine nanol-
ubricants. In addition to their significant tribological properties, many factors should be
considered in future studies, regarding the use of ionic-based nano additives. This includes
their thermophysical and dispersion stability properties, as well as their engine performance.

7.3. Cost and Economics of Nanolubricants

It has been indicated that the cost of nanofluids is one of the most outstanding issues in
many applications [45,214]. The production cost of these fluids relies on the manufacturing
method, which combines the dispersion technique into the base fluid and nanoparticles
fabrication. As discussed previously, two- and single-step methods are the only approaches
used for the production of nanofluids. The equipment used in these techniques, as well
as dispersion testing, are expensive and very sophisticated. This includes probe and bath
sonication, zeta potential, FTIR, sedimentation analysis, and UV.

The work on diminishing nanofluids production cost had been mentioned in many re-
cent studies [215–217]. Sylwia [214] had generated a considerable model that can represent
the cost estimation of any sort of nanofluids, as shown in Equation (6), as follows:

Pn f =
PnpρV
0.001

+ Pothers (6)

where Pn f , is the unit price of the prepared nanofluid in EUR/dm3, Pnp is the price of the
nanoparticles in EUR/g, Pothers the price of other operations, such as dispersion testing,
sonication, and stirring. V and ρ are the base fluid volume and density.
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In a recent study by Bharath [56], the cost estimation of a hybrid ZnO/TiO2 engine-
based nanolubricant had been conducted. The total fabrication cost, including preparation,
nanoparticle, and surface modification expenditures, was found to be around 25% more
than the retail market price of the 5W-30 base oil.

In light of the current research direction of nanolubricants, it is clear that more eco-
nomic studies are needed regarding the production cost.

8. Conclusions

From the conclusions of the various mentioned studies, it can be reported that nano-
materials are considered an ideal preference for improving vehicular engine performance.
This would be conducted by dispersing specific concentrations of nanoparticles into the
lubricating oil. A considerable and effective result of such additives is realized by fostering
thermal and mechanical efficiencies of the engine. Fuel efficiency and power train dura-
bility are considered the most vigorous outcome of this interface nanotechnology. In the
present study, the goal was to present an overview and critical analysis for the potentiality
of engine-based nanolubricants. An entire screening of all the considerations that can affect
the behaviour of these lubricants is extracted from almost all of the studies in this area over
the last ten years. The preparation techniques and the dispersion stability of engine-based
nanolubricants were addressed first. Then, the tribological and rheological properties of
these nanofluids were introduced, with all of the hypothesized lubrication mechanisms
and experimental modelling of the thermal and viscosity behaviours. Potential candidates
of nano additives have been recommended, based on the combined effect of the previously
mentioned factors.

Moreover, the future of this research direction, regarding molecular dynamics and its
economic value, were covered. As a key output, the authors would like to concentrate on
the importance of the engine lubricant’s complete analysis, regarding the future studies of
nano additives. This includes wear and friction properties, thermophysical and rheological
analysis, dispersion stability, and actual engine performance.
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