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Abstract: Stratum corneum (SC) is the outermost skin layer. SC hydration is important for its cosmetic
properties and barrier function. SC trans-epidermal water loss (TEWL) measurements and skin water
content measurements are two key indexes used for SC characterisation. The instrument stability
and accuracy are vitally important when measuring small changes. In this paper, we present our
latest study on the effect of sun tan lotion on skin by using skin TEWL and skin water content
measurements. We developed techniques to improve the measurement stability and to visualise
small changes, as well as developed machine learning algorithms for processing the skin capacitive
images. The overall results show that TEWL and skin water content measurements are capable of
measuring the subtle changes of skin conditions due to the application of sun tan lotions. The results
show that the TEWL values decreased after the sun tan lotion application. The sun tan lotion with
SPF 20 had the lowest decrease, whilst the sun tan lotion with SPF 50+ had the highest decrease. The
results also show that the skin water content increased after the sun tan lotion application, with SPF
20 having the highest increase, whilst SPF 50+ had the lowest increase.

Keywords: capacitive imaging; machine learning; skin water content; sun tan lotions; trans-epidermal
water loss

1. Introduction

Stratum corneum (SC) hydration is important for its cosmetic properties and barrier
function. SC trans-epidermal water loss (TEWL) measurements and skin water content
measurements are two key indices used for SC characterisation [1,2]. Talor investigated
occupational skin health by using TEWL measurements [3]. Mutai et al. studied the effects
of skin moisturiser by tape-stripping and TEWL measurements on the heel of healthy, young
adults [4]. Kis et al. studied effect of non-invasive dermal electroporation on skin barrier
function and skin permeation in combination with different dermal formulations, using
TEWL measurements for skin barrier function evaluation [5]. Uchegbulam et al. studied
the effect of seasonal change on the biomechanical and physical properties of the human
skin, finding an inverse relationship between TEWL and the average epidermal roughness
(AER) [6]. Denzinger et al. conducted a quantitative study of TEWL on conventional and
microclimate management capable mattresses and hospital beds [7].

Our previous studies have shown that capacitance-based fingerprint sensors, origi-
nally designed for fingerprint biometric measurements, can be adapted for skin hydration
imaging, surface analysis, 3-D surface profile, and skin micro-relief measurements [8–10].
Pan et al. studied the occlusion effects in capacitive contact imaging for in vivo skin damage
assessments [11]. Ou et al. conducted an in vivo skin capacitive imaging analysis by using
the Grey Level Co-occurrence Matrix (GLCM) algorithm [12]. Xiao et al. studied membrane
and pig skin solvent penetration by using skin capacitive imaging [13]. Zhang et al. used
capacitive imaging for skin characterisations and solvent penetration measurements [14].
Bontozoglou et al. conducted skin micro-relief analysis with skin capacitive imaging [15].
Elsewhere, Navaraj et al. developed fingerprint-enhanced capacitive-piezoelectric flexible
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sensing skin to discriminate static and dynamic tactile stimuli for robotic arms [16]. Mul-
tispectral fingerprint biometric systems have also recently become quite popular as they
provide high security and recognition [17,18].

In this paper, we present our latest study on the effect of sun tan lotion on skin by
using skin TEWL measurements and skin water content measurements. The purpose of this
study was to develop a new SC barrier characterisation method by using both TEWL and
capacitive imaging measurements in order to measure subtle changes in the skin status. We
first present the theoretical and technical background, then the results and discussions. The
results show that precise measurements of skin TEWL and skin water content measurement
can reveal otherwise undistinguishable changes in skin condition.

2. Materials and Methods

This section describes the skin measurement devices used, the machine learning
algorithms developed, the volunteer information, and the measurement procedures. Two
TEWL measurement devices were used in order to see the effect of instrument variations
on measurement results.

2.1. Skin Measurement Devices

Figure 1 shows photos and schematic diagrams of the Epsilon permittivity imaging
system and the AquaFlux TEWL instrument (Biox Systems Ltd., London, UK). The Epsilon
is based on a Fujistu fingerprint sensor, which has 256 × 300 pixels with 50 mm spatial
resolution and 8-bit grey-scale capacitance resolution per pixel [10–15]. As a contact
technology, consistent contact is a key to the measurement repeatability and accuracy.
Several approaches have been adapted to ensure the consistent contact, a spring loaded
mechanism of the sensing area, measurement starting threshold, and starting delay. With
the Epsilon, we can measure skin surface hydration dynamically during occlusive contact
in order to generate time-dependent grey-scale occlusion curves.
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Figure 1. Epsilon permittivity imaging system (A) and its measurement principle (B); AquaFlux
(C) and its measurement principle (D).

The AquaFlux uses the closed condenser-chamber measurement method [19–21]. Its
cylindrical measurement chamber is open at the end placed onto the skin surface and closed
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at the other end by means of a condenser cooled below the freezing point of water. This
design provides a controlled measurement environment, which enhances the repeatability
and accuracy of the measurements. With the AquaFlux, we can accurately measure TEWL.
AquaFlux and Epsilon were chosen for this study due to their high accuracy and high
repeatability [22,23]. An alternative TEWL device, the VapoMeter (Delfin, Finland), is also
used in the study for comparison reasons.

2.2. Machine Learning Algorithms

Several machine learning algorithms have also been developed for processing skin
capacitive images. A new region of interest (ROI) searching algorithm based on template
matching [24,25] has been developed, with which we can select a ROI from one image and
search and locate exactly the same region in the consequent images.

Six different searching methods were used in order to obtain the best matching re-
sults: squared differences (SqDiff), normalised squared differences (SqDiff_Normed), cross
correlation (CCorr), normalised cross correlation (CCorr_Normed), correlation coefficient
(CCoeff), and normalised correlation coefficient (CCoeff_Normed). By using ROI, we can
improve the accuracy when analysing a sequence of images.

If we use T(x,y) to represent the ROI, where x and y are the horizontal and vertical
positions in the image, respectively, and using I(x,y) to represent the target image, then
we can use the following equation to calculate the matching result image R(x,y) for the
squared differences (SqDiff) method:

R(x, y) = ∑
x′ ,y′

(
T
(
x′, y′

)
− I
(
x + x′, y + y′

))2 (1)

We can also use the following equation to calculate the matching result image R(x,y)
for normalised squared differences (SqDiff_Normed):

R(x, y) =
∑x′ ,y′(T(x′, y′)− I(x + x′, y + y′))2√

∑x′ ,y′(T(x′, y′))2 ∗∑x′ ,y′(I(x + x′, y + y′))2
(2)

For SqDiff and SqDiff_Normed methods, the location (x,y) in R(x,y) that has the
minimum value is the position of the best match.

Similarly, we can use the following equation to calculate the matching result image
R(x,y) for cross correlation (CCorr):

R(x, y) = ∑
x′ ,y′

(
T
(
x′, y′

)
∗ I
(
x + x′, y + y′

))2 (3)

For normalised cross correlation (CCorr_Normed):

R(x, y) =
∑x′ ,y′(T(x′, y′) ∗ I(x + x′, y + y′))2√

∑x′ ,y′(T(x′, y′))2 ∗∑x′ ,y′(I(x + x′, y + y′))2
(4)

For correlation coefficient (CCoeff):

R(x, y) = ∑
x′ ,y′

(
T′
(
x′, y′

)
∗ I′ (x + x′, y + y′

))2 (5)

where
T′(x, y) = T

(
x′, y′

)
− 1

w ∗ h ∑
x′′ ,y′′

T(x′′ , y′′ ) (6)
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Here, w and h are the width and height of the image T(x,y), respectively, and:

I′
(
x + x′, y + y′

)
= I

(
x + x′, y + y′

)
− 1

w ∗ h ∑
x′′ ,y′′

I(x + x′′ , y + y′′ ) (7)

Here, w and h are the width and height of the image I(x,y), respectively. For normalised
correlation coefficient (CCoeff_Normed):

R(x, y) =
∑x′ ,y′(T′(x′, y′) ∗ I′(x + x′, y + y′))2√

∑x′ ,y′(T′(x′, y′))2 ∗∑x′ ,y′(I′(x + x′, y + y′))2
(8)

For the CCorr, CCorr_Normed, CCoeff, and CCoeff_Normed, the location (x,y) in
R(x,y) that has the maximum value is the position of the best match.

Another machine learning algorithm has been developed is based on principal com-
ponent analysis (PCA), which calculates the principal components of the original data in
order to maximise the variance [26,27]. The first principal component is equivalently the
direction that maximises the variance of the projected data. The following principal compo-
nent can be taken as a direction orthogonal to the previous principal component. PCA is
commonly used for making predictive models [28–30], for dimensionality reduction [31,32]
and classifications [33,34].

If we use pc1 and pc2 to represent the principal components of two images, then we
can use the following equation to calculate the Euclidean distance between the two images:

d =
1
N ∑

i

√
∑

j
(pc1(i, j)− pc2(i, j))2 (9)

where i is the ith principal component, j is the jth element in a principal component, and N
is the total number of principal components. For PCA, the smaller the Euclidean distance,
the more similar the two images, and the larger the Euclidean distance, the more different
the two images. By calculating the Euclidean distance, we can understand how similar or
different the two images are.

2.3. Measurement Procedure

Three sunscreens of a well-known brand with SPFs (Sun Protection Factors) of 20, 30,
and 50+ were used in the study. Four skin sites on the volar forearm of healthy volunteers
were chosen: three skin sites as test sites for sunscreens of SPF 20, 30, and 50+; the fourth
skin site was used as a control, as illustrated in Figure 2. TEWL (trans-dermal water loss)
and skin water content measurements were performed both before and after application of
sunscreen. TEWL was measured using both AquaFlux and VapoMeter instruments, and
skin water content was measured using the Epsilon permittivity imaging system.

All the measurements were performed on a healthy volunteer (male, 45–55, Asian),
under normal ambient laboratory conditions of 20–21 ◦C and 40–50% RH. The volunteer
was instructed to avoid excess water intake, and the measurements were performed in the
morning. The volar forearm skin sites used were initially wiped clean with ETOH/H2O
(95/5) solution. The volunteer was then acclimatised in the laboratory for 20 min prior to
the experiments.
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Figure 2. Four skin sites on the volar forearm. Three were test sites for sunscreen with SPF 20, 30,
and 50+. The fourth skin site was chosen as the control.

3. Results
3.1. Skin Water Loss Results

Figure 3 shows skin TEWL values of four volar forearm skin sites, before, 1 h after,
and 2 h after the application of three different sunscreens. Each TEWL measurements
were repeated five times. Figure 3A shows the average AquaFlux TEWL values and the
corresponding standard deviations as error bars, which were found to decrease consistently
on all three sunscreen skin sites after the application of the sunscreens, while the control
site remained more or less the same. Figure 3B shows the VapoMeter TEWL values and the
corresponding standard deviations as error bars, which were found to be not consistent.
This was likely due large instrumental coefficient of variation (CV) of the VapoMeter, as
shown in Figure 3C. CV was calculated as the ratio of standard deviation over the mean
measured TEWL value as a percentage.
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Figure 3. The TEWL values of four volar forearm skin sites before and after the sun tan lotion
application, measured by AquaFlux (A) and VapoMeter (B), and their coefficient of variation (C).

Figure 4 shows the corresponding TEWL value changes before, 1 h after, and 2 h after
the sunscreen application, measured with the AquaFlux and VapoMeter. The AquaFlux
results show that the TEWL values decreased 1 h after the sunscreen application, and
continued to decrease 2 h after. This was the same for sunscreens with SPF 20, SPF 30, and
SPF 50+. Of interest is the proportional decrease in TEWL with SPF number, with SPF
20 having the smallest TEWL decrease and SPF 50+ the largest. The control site had a small
change with time. The VapoMeter results, however, did not show any consistent trend.
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Figure 4. The TEWL value changes before and after sunscreen application, measured by AquaFlux
(A) and VapoMeter (B).

3.2. Skin Water Content Results

Skin water content measurements were also conducted along with the TEWL mea-
surements on the same four volar forearm skin sites, before, 1 h after, and 2 h after the
application of three different sunscreens. Skin water content measurements were repeated
five times. Figure 5 below shows some example Epsilon permittivity images before and
after applying sunscreen. Before application, all four skin sites were relatively dark, indicat-
ing low water content. After one hour, the three skin sites with the lotion applied became
much brighter, indicating moisture content in the sunscreen. The sunscreen with SPF 20 had
the highest brightness, and hence the possible highest moisture content. Conversely, the
sunscreen with SPF 50+ had the lowest brightness, and hence the possible lowest moisture
content. The control site remained more or less the same throughout.
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Figure 5. Epsilon permittivity images of four volar forearm test sites before, 1 h after, and 2 h after
application of sunscreen. SPF 20, SPF 30, and SPF 50+ sunscreen was applied on three skin sites. The
fourth skin site was used as a control.
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In order to improve the Epsilon measurement accuracy, a template matching based
on a selected region of interest (ROI) was used to analyse the results. Figure 6 shows the
template matching results by using CCorr_Normed method, where Figure 6A shows the
ROI in the first image, and Figure 6B,C show the best matching locations in the second
image and the third image. The results show that the template matching can accurately
relocate the ROI in the consequent images despite the similarity of the skin images.
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Figure 7a,b shows the histograms of the analysed results corresponding to the images
in Figure 5 by using the template searching method, again indicating an inverse propor-
tional relationship, between skin hydration and SPF number. Figure 7c shows the ratio of
skin hydration values over TEWL values, e.g., the ratio of and the Epsilon values shown in
Figure 7a over the AquaFlux values shown in Figure 3a, which showed a consistent trend
for the different skin sites.
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3.3. Machine Learning PCA Results

Figure 8 shows the machine learning PCA results, where we calculated the Euclidean
distances of skin control site after 2 h to different skin sites before and after the sun tan
lotion application. The results show that the shortest Euclidean distance to skin control
site after 2 h was itself then followed by the skin control site after 1 h, and skin site before
the sun tan lotion application. The results also show consistent Euclidean distances to skin
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sites with SPF 50+, SPF 30, and SPF 20. In other words, it is possible to use PCA Euclidean
distances to differentiate the effect of different sun tan lotions.
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Figure 8. The Euclidean distances of skin control site after 2 h to different skin sites before and after
the sun tan lotion application, where skin site 1: SPF 20, 2: SPF 30, 3: SPF 50+, and 4: control.

4. Discussion

The TEWL measurement results show the importance of the repeatability and accuracy
of the instruments, especially when looking for small and subtle skin changes. Although
the direct TEWL values did not directly reflect the small skin changes due to different
sun tan lotion SPF, the relative changes before and after the application did reflect the
corresponding changes. The skin capacitive image results show that it is possible to
visualise the effects of different sun tan lotions. The ratio of skin water content values
over skin TEWL values showed a consistent result, and therefore the combination of skin
capacitive measurements and skin TEWL measurements can be a powerful tool for skin
characterisations. The template matching algorithm works well on skin capacitive images
and can improve the accuracy of the data analysis. The PCA is a powerful algorithm that
can extract hidden features from the skin capacitive images. The PCA Euclidean distances
can effectively differentiate the differences of different sun tan lotions. The next step in the
future is to develop a PCA-based algorithm for skin capacitive image classifications and
image searching.

5. Conclusions

We present our latest study on the effect of sun tan lotion on skin by using skin
TEWL measurements and skin water content measurements. We also developed machine
learning algorithms for processing skin capacitive images. The overall results show that
skin TEWL measurements and skin water content measurements are capable of detecting
and quantifying subtle changes in skin condition after the application of different sun tan
lotions. The TEWL results showed a decrease in TEWL after the sunscreen application
compared to the control site, with SPF 50+ having the most effect and SPF 20 the least. The
TEWL results also show the importance of instrument repeatability and accuracy when
measuring small changes. The skin water content measurements by using skin capacitive
imaging showed a significant increase in skin water content after sunscreen application,
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with SPF 20 increasing the most and SPF 50+ the least. The ratio of skin water content
values over skin TEWL values could be a reliable good indicator for skin status.

For future work, we will conduct a larger scale study with more volunteers in order to
observe the effects of age, gender, skin colour, and so on. We will also apply this approach
to other skin products, such as soaps, shampoos, washing liquids, skin creams, and lotions
in order to differentiate the small differences of different products. We will also continue to
develop machine learning algorithms for analysing skin capacitive images, such as image
classifications and image searching.
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5. Kis, N.; Kovács, A.; Budai-Szűcs, M.; Erős, G.; Csányi, E.; Berkó, S. The effect of non-invasive dermal electroporation on skin
barrier function and skin permeation in combination with different dermal formulations. J. Drug Deliv. Sci. Technol. 2022, 69,
103161. [CrossRef]

6. Uchegbulam, I.; Danby, S.G.; Lewis, R.; Carré, M.J.; Maiti, R. Effect of seasonal change on the biomechanical and physical
properties of the human skin. J. Mech. Behav. Biomed. Mater. 2022, 127, 105058. [CrossRef]

7. Denzinger, M.; Rothenberger, J.; Held, M.; Joss, L.; Ehnert, S.; Kolbenschlag, J.; Daigeler, A.; Krauss, S. A quantitative study of
transepidermal water loss (TEWL) on conventional and microclimate management capable mattresses and hospital beds. J. Tissue
Viability 2019, 28, 194–199. [CrossRef]

8. Léveque, J.L.; Querleux, B. SkinChip, a new tool for investigating the skin surface in vivo. Ski. Res. Technol. 2003, 9, 343–347.
[CrossRef]

9. Batisse, D.; Giron, F.; Léveque, J.L. Capacitance imaging of the skin surface. Ski. Res. Technol. 2006, 12, 99–104. [CrossRef]
10. Singh, H.; Xiao, P.; Berg, E.P.; Imhof, R.E. In-Vivo Skin Imaging for Hydration and Micro Relief Measurements. In Proceedings of

the SCV Conference, Cardiff, UK, 11–13 July 2007.
11. Pan, W.; Zhang, X.; Lane, M.E.; Xiao, P. The Occlusion Effects in Capacitive Contact Imaging for In-vivo Skin Damage Assessments.

Int. J. Cosmet. Sci. 2015, 37, 395–400. [CrossRef]
12. Ou, X.; Pan, W.; Xiao, P. In-Vivo Skin Capacitive imaging Analysis by using Grey Level Co-occurrence Matrix (GLCM). Int. J.

Pharm. 2014, 460, 28–32. [CrossRef]
13. Xiao, P.; Abdalghafor, H.; Lane, M.E. Membrane Solvent Penetration Measurements Using Contact Imaging, Book Chapter. In

Advances in Dermatological Science; RSC Publishing: London, UK, 2014; pp. 355–360. ISBN 978-1-84973-398-4. [CrossRef]
14. Zhang, X.; Bontozoglou, C.; Chirikhina, E.; Lane, M.E.; Xiao, P. Capacitive Imaging for Skin Characterizations and Solvent

Penetration Measurements. Cosmetics 2018, 5, 52. [CrossRef]

http://doi.org/10.1016/j.jtv.2021.02.002
http://doi.org/10.1016/j.jddst.2022.103161
http://doi.org/10.1016/j.jmbbm.2021.105058
http://doi.org/10.1016/j.jtv.2019.06.002
http://doi.org/10.1034/j.1600-0846.2003.00043.x
http://doi.org/10.1111/j.0909-752X.2006.00177.x
http://doi.org/10.1111/ics.12209
http://doi.org/10.1016/j.ijpharm.2013.10.024
http://doi.org/10.1039/9781849734639-00355
http://doi.org/10.20944/preprints201806.0331.v1


Sensors 2022, 22, 3595 10 of 10

15. Bontozoglou, C.; Zhang, X.; Xiao, P. Micro-relief analysis with skin capacitive imaging. Ski. Res. Technol. 2019, 25, 165–170.
[CrossRef]

16. Navaraj, W.; Dahiya, R. Fingerprint-Enhanced Capacitive-Piezoelectric Flexible Sensing Skin to Discriminate Static and Dynamic
Tactile Stimuli. First published: 20 September 2019. Adv. Intell. Syst. 2019, 1, 1900051. [CrossRef]

17. Rowe, R.K.; Nixon, K.A.; Butler, P.W. Multispectral Fingerprint Image Acquisition. In Advances in Biometrics; Springer: London,
UK, 2008; pp. 3–23.

18. Sharma, A.; Arya, S.; Chaturvedi, P. A Novel Image Compression Based Method for Multispectral Fingerprint Biometric System.
Procedia Comput. Sci. 2020, 171, 1698–1707. [CrossRef]

19. Berg, E.P.; Pascut, F.C.; Ciortea, L.I.; O’Driscoll, D.; Xiao, P.; Imhof, R.E. AquaFlux—A New Instrument for Water Vapour Flux
Density Measurement. In Proceedings of the 4th International Symposium on Humidity and Moisture; Center for Measurement
Standards, ITRI: Taipei, China, 2020; pp. 288–295. ISBN 957-774-423-0.

20. Imhof, R.E.; Berg, E.P.; Chilcott, R.P.; Ciortea, L.I.; Pascut, F.C.; Xiao, P. New Instrument for the Measurement of Water Vapour
Flux Density from Arbitrary Surfaces. IFSCC Mag. 2002, 5, 297–301.

21. Chirikhina, E.; Chirikhin, A.; Xiao, P.; Dewsbury-Ennis, S.; Bianconi, F. In Vivo Assessment of Water Content, Trans-Epidermial
Water Loss and Thickness in Human Facial Skin. Appl. Sci. 2020, 10, 6139. [CrossRef]

22. Xiao, P.; Ciortea, L.I.; Singh, H.; Cui, Y.; Berg, E.P.; Imhof, R.E. Opto-thermal In-vivo Skin Hydration Measurements—A
Comparison Study of Different Measurement Techniques. J. Phys. Conf. Ser. 2009, 214, 012026. [CrossRef]

23. Imhof, R.E.; de Jesus, M.E.P.; Xiao, P.; Ciortea, L.I.; Berg, E.P. Closed-chamber transepidermal water loss measurement: Microcli-
mate, calibration and performance. Int. J. Cosmet. Sci. 2009, 31, 97–118. [CrossRef]

24. Template Matching. Available online: https://docs.opencv.org/3.4/d4/dc6/tutorial_py_template_matching.html (accessed on
16 March 2022).

25. Brunelli, R. Template Matching Techniques in Computer Vision: Theory and Practice; Wiley: New York, NY, USA, 2009; ISBN 978-0-470-
51706-2.

26. Pearson, K. On Lines and Planes of Closest Fit to Systems of Points in Space. Philos. Mag. 1901, 2, 559–572. [CrossRef]
27. Principal Component Analysis. Available online: https://en.wikipedia.org/wiki/Principal_component_analysis (accessed on

16 March 2022).
28. Toledo-Pérez, D.C.; Martínez-Prado, M.A.; Gómez-Loenzo, R.A.; Paredes-García, W.J.; Rodríguez-Reséndiz, J. A Study of

Movement Classification of the Lower Limb Based on up to 4-EMG Channels. Electronics 2019, 8, 259. [CrossRef]
29. Lu, N.; Niu, J.; Kang, S.; Singh, S.K.; Du, T. A hybrid PCA-SEM-ANN model for the prediction of water use efficiency. Ecol. Model.

2021, 460, 109754. [CrossRef]
30. He, M.; Zhang, Y.; Wen, D.; Wang, Y. Forecasting crude oil prices: A scaled PCA approach. Energy Econ. 2021, 97, 105189.

[CrossRef]
31. Ma, J.; Yuan, Y. Dimension reduction of image deep feature using PCA. J. Vis. Commun. Image Represent. 2019, 63, 102578.

[CrossRef]
32. Anowar, F.; Sadaoui, S.; Selim, B. Conceptual and empirical comparison of dimensionality reduction algorithms (PCA, KPCA,

LDA, MDS, SVD, LLE, ISOMAP, LE, ICA, t-SNE). Comput. Sci. Rev. 2021, 40, 100378. [CrossRef]
33. Biagetti, G.; Crippa, P.; Falaschetti, L.; Luzzi, S.; Turchetti, C. Classification of Alzheimer’s Disease from EEG Signal Using

Robust-PCA Feature Extraction. Procedia Comput. Sci. 2021, 192, 3114–3122. [CrossRef]
34. Sun, Y.; Li, L.; Zheng, L.; Hu, J.; Li, W.; Jiang, Y.; Yan, C. Image classification base on PCA of multi-view deep representation. J.

Vis. Commun. Image Represent. 2019, 62, 253–258. [CrossRef]

http://doi.org/10.1111/srt.12628
http://doi.org/10.1002/aisy.201900051
http://doi.org/10.1016/j.procs.2020.04.182
http://doi.org/10.3390/app10176139
http://doi.org/10.1088/1742-6596/214/1/012026
http://doi.org/10.1111/j.1468-2494.2008.00476.x
https://docs.opencv.org/3.4/d4/dc6/tutorial_py_template_matching.html
http://doi.org/10.1080/14786440109462720
https://en.wikipedia.org/wiki/Principal_component_analysis
http://doi.org/10.3390/electronics8030259
http://doi.org/10.1016/j.ecolmodel.2021.109754
http://doi.org/10.1016/j.eneco.2021.105189
http://doi.org/10.1016/j.jvcir.2019.102578
http://doi.org/10.1016/j.cosrev.2021.100378
http://doi.org/10.1016/j.procs.2021.09.084
http://doi.org/10.1016/j.jvcir.2019.05.016

	Introduction 
	Materials and Methods 
	Skin Measurement Devices 
	Machine Learning Algorithms 
	Measurement Procedure 

	Results 
	Skin Water Loss Results 
	Skin Water Content Results 
	Machine Learning PCA Results 

	Discussion 
	Conclusions 
	References

