
Abstract— Multi-Access Mobile Edge Computing (MEC) 
is proclaimed as a key technology for reducing service 
processing delays in 5G networks. Caching on MEC will 
decrease service latency and improve data access by allowing 
direct content delivery through the edge without fetching 
content from the remote server. Caching on MEC is also 
deemed as an effective approach guarantying more 
reachability due to proximity to end-users. This paper 
proposes a novel hybrid content caching replacement 
algorithm in MEC to increase its caching efficiency where 
future request references are predicted using a polynomial fit 
algorithm along with Lagrange interpolation. Additionally, a 
distributed co-operative caching algorithm to improve data 
access within MECs. Experimental results have shown that 
the proposed scheme obtains more cache hits and lesser 
average CPU utilization due to its selective caching approach 
when compared with existing traditional cache replacement 
algorithms.    

Keywords—Multi-access Mobile Edge Computing, selective 
caching, OPR algorithm, co-operative caching. 

I. INTRODUCTION  

Multi-Access Mobile Edge Computing (MEC) is an 
emerging paradigm that provides computing, storage and 
networking resources within the edge of mobile Radio 
Access Network (RAN) [1]. The idea is to design mini 
servers known as edge nodes that can handle storage and 
computation resources initiated by mobile devices. These 
edge nodes are in close proximity to the end users 
providing a platform for caching and offloading with the 
aim of reducing bandwidth consumption and latency of the 
network [2].  
Caching is a method of keeping the most used data in the 
cache memory to reduce latency and increase user QoE 
(Quality of Experience). The universally accepted metric 
of measuring the cache performance is the cache hit ratio. 
This is the total cache hits obtained by the system at a given 
point in time. Therefore, an increase in the total cache hit 
ratio means better cache performance of the system.  
The aim of this paper is to enhance the cache performance 
of the MEC. To accomplish this, a caching algorithm has 
been designed and developed that supports cache sharing 
among MEC nodes, reduce latency and bandwidth and 
increase network robustness and reliability so that content 
is constantly available even if the server where the point of 
presence is located is down.  
The proposed scheme uses co-operative caching to share 
cache data among the MEC nodes within the same cluster. 
Additionally, a hybrid scheme of the modified version of 
two existing replacement schemes, namely Optimal Page 
Replacement algorithm (OPR) [3] and  Least Frequently 
Used algorithm (LFU) [4] is applied to each MEC to 

improve its cache hit ratio. The OPR algorithm, developed 
by Belady, is a theoretically optimal algorithm that 
replaces the data in the cache that will occur farthest in the 
future with the newly obtained request [4]. The downside 
of Belady’s algorithm is the need for a future reference 
string. Reference string is used to define the incoming page 
requests to be cached [5]. To obtain this, historical data are 
kept in the pre-cache for all the requests received by an 
MEC and its relative frequency. The historical data are 
then used to predict the future occurrences of data in the 
cache. The enhancement of the cache hit rate performance 
would reduce MEC cache access time [5]. The proposed 
algorithm depends on the successful prediction of future 
requests based on past references. Therefore, a polynomial 
regression algorithm is employed to enable the forecast of 
the reference string. 
The remainder of this paper is structured as follows: in 
section II we have reviewed related work and listed our 
contribution. In section III we presented the system 
architecture and the proposed algorithm. In section IV we 
presented the system model. We describe the experimental 
setup, tested and discussed the results in section V. Finally, 
we concluded the article in section VI. 

II. RELATED WORK 

A. State of the Art  

Many Caching policies and algorithms have been 
proposed for content caching. The conventional caching 
policies include First in First Out (FIFO), Least Frequently 
Used (LFU), Least Recently Used (LRU) and Optimal Page 
Replacement (OPR). LRU algorithm chooses its 
replacement victim based on which cache reference that has 
been unused for the longest time while LFU chooses its 
victim based on which of the cache references have the least 
frequency [4]. Content replacement policies such as the 
LFU and LRU have been adopted in a large number of 
caching policies [6] in MEC as compared to OPR which 
has not been applied to MEC. OPR is considered as an 
optimal cache replacement algorithm but labelled 
impractical due to the inability to precisely know the user’s 
future requests. However, there have been some caching 
algorithms developed that are based on the OPR such as 
“Back to the Future: Leveraging Belady’s Algorithm for 
Improved Cache Replacement,” [7]. The proposed cache 
replacement policy learns Belady’s optimal solution (OPT) 
for past accesses to guide future replacement decisions. 

Few researchers have proposed edge caching strategies 
for 5G that combines both computation caching and data 
caching. Markakis et al [8] proposed a proactive edge 
caching strategy that predicts and prefetch popular contents 
based on big data analysis. Sungwook K. [9] leveraged a 
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holistic caching structure for caching in small base stations 
using game theory. The developed hybrid algorithm uses 
split caching where one part caches popular content for 
communication and other part caches computation 
offloading services. In [10] a Mix-Cooperative (MixCo) 
caching strategy was developed for MEC servers in a Fiber-
Wireless (FiWi) access network to reduces latency and 
increase cache performance. Huang et al in [11] proposed a 
CMAC (Cooperative Multicast-Aware Caching) strategy to 
reduce the average latency of delivering content and Yang 
et al in [12] explored ways of avoiding pollution attack on 
cooperative MEC caching. Most of the existing studies of 
content caching in MEC focus on energy efficiency, 
mobility aware caching and cache allocation [13] [14] [15].  

However, to the best of our knowledge, there is no 
existing research that considers the optimization of MEC 
local cache storage by using Belady’s algorithm and 
predicting cache reference patterns using historic cache 
frequency. In this article, a hybrid cache replacement policy 
that supports co-operative caching for MEC platforms has 
been designed and developed. The hybrid algorithm merges 
a modified Belady’s algorithm with a distributed 
cooperative caching algorithm.  

B. Contributions  

The contributions of this article can be summarized as 
follows: 
 A modified LFU replacement algorithm which not 

only compares the frequency of the data in the cache 
but also compares the frequency of a newly obtained 
request 

 A modified OPR algorithm which uses polynomial 
regression to predict future cache data using historical 
data obtained from the relative frequency of the 
cached data 

 A cooperative caching strategy for sharing cache 
information among MECs 

 A selective caching algorithm based on where the 
requested data are obtained. 

III. SYSTEM ARCHITECTURE 

Figure 1 shows system architecture in this study, where 
several MECs form a cluster to provide cached content to 
mobile users. In this architecture, mobile devices are 
connected to the edge node through a wireless Access Point 
(e.g. IEEE 802.11) and the edge node is connected to the 
cloud servers which is in turn connected to the Internet. The 
figure shows the request-response flow for a worst case 
scenario when a particular user’s content request is not 
available in the MEC cluster.  

The focus of this research is on the MEC layer and how 
to leverage its distributed architecture to increase its cache 
efficiency by generating more cache hits while reducing 
network latency. The aim of this research is to reduce 
response time by storing popular data at the cache servers 
of the edge nodes. This will reduce access to the data 
repositories since most of the data are stored locally. An 
algorithmic approach was used in this study to create a 
solution for the problems identified in the earlier section. 
This paper proposes a new caching algorithm that 
optimizes caching mechanism by modification and 
integration of three caching schemes. These caching 
mechanisms are listed as follows. 

A. Co-operative caching 

Co-operative caching is a new way of caching in a 
distributed architecture that supports the sharing of cache 
information. One of the most popular co-operative caching 
methods is to create central storage for the distributed 
servers allowing them to access cache data from the central 
storage [16]. This reduces the burden of managing content 

only on one device. On the other hand, it introduces 
increased latency due to additional access time in fetching 
cached data from a remote location. Another problem 
would be where to locate the central storage device to 
minimize the access time of all the servers involved. In this 
work, distributed cooperative caching is used to reduce the 
impacts of one centralized cache server. The servers in the 
distributed architecture are allowed to keep their own cache 
data but they also keep a synchronized database of what 
data they have and what data are available in all other 
servers in a given cluster. We assume that the cluster size 
is adjusted based on the traffic load and network status to 
balance the content diversity and spectrum efficiency. The 
adjustment of the cluster is outside the scope of this paper.  

If a MEC receives a request from an end-user device, it 
would first search if the request exists in its cache. If the 
request does not exist, it will search if any other MEC in its 
cluster has the requested data. If the requested data is still 
not obtained, then the MEC initiates a request to obtain the 
requested data from the point of presence. 

B. Modified Least Frequently Used (LFU) Cache 
replacement 

LFU cache replacement algorithm is a popular 
algorithm used to manage cache data [4]. It is a counter-
based replacement algorithm. It keeps a counter of the 
number of requests that have been made to each reference. 
The algorithm requires that the reference with the least 
count is replaced because the actively used reference will 
be the one with the most count. To keep a cohesive and 
reliable frequency record, a window size is maintained. 
Since LFU only compares the frequency of the references 
in the cache and not the newly requested data, a problem 
arises when a new request with little or no historic 
frequency record is used to replace an existing cache data 
which has the least frequency in the cache but a higher 
historic frequency record when compared to the newly 
requested data. To address this problem, this paper 
proposes a method not only to compare the frequencies of 
the data in the cache but also the frequency of the newly 
obtained request. A decision is made not to cache the newly 
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obtained request if the frequency of the data is less than the 
frequency of the least frequent data in the cache. This 
method is ideal for caching in MEC in a scenario where the 
newly requested data is obtained from the MEC cluster. 
Therefore, if a decision is made not to cache and the data is 
requested again, the data can be obtained from the MEC 
cluster as the link is less costly than the point of presence.  

C. Modified Optimal Page Replacement (OPR) 
Algorithm 

The Optimal Page Replacement Algorithm (Belady’s 
Algorithm) has been considered as the optimal algorithm 
for cache replacement as it produces fewer page faults than 
any other algorithm [4]. Its working principle is to replace 
the reference which would not be used for the longest of 
time. The OPR algorithm provides the optimum result for 
any given cache reference and frame but it is labelled 
infeasible because it requires large amounts of data of 
future requests and time stamps of cache data.  

In this research, a polynomial fit algorithm with 
Lagrange interpolation [17] has been leveraged to predict 
future cache occurrences using historic relative frequency 
of cache data. 

IV. SYSTEM MODEL 

Here we model the hierarchical content caching placement 
design. This consists of the cloud, the pre-cache and the 
MEC cache. 

�� ⊆ �� ⊆ ��  
                              (1) 

Where �� represents the cloud data, �� represents the pre-
cache and ��  is the MEC local cache. The pre-cache 
contains a set of all the previously requested data and its 
relative frequency stored in the local MEC. Each content 
segment is uniquely identified by a hash function which is 
obtained from a sha256 hash of the request method, the 
URL and the request protocol. 

�� = {ℎ��ℎ: ��������} 
� = {��|� ∈ [0, � − 1]}  is a finite, non-empty reference 
string of reference instances ��  at time stamp  � , with 
window size  � . �� = {�� ∈ �} ⊆ �  is a set of distinct 
content segments from the set �, with cardinality |�� | =
�. The function ��: �� ∈ �� → [0,1] calculates the relative 
frequency of occurrence of each reference ��  of pre-
cache  ��  . it measures the share of occurrences of a 
reference instance over the total window. The function �� 
is defined below. 

��(��) = �

0  �� �� ∉ � 

�(��)

|�|
  ��ℎ������

 

(2)     
Hence the sum of relative frequency of all elements in the 
pre-cache is unity, 

� ��(��) = 1

|��|��

���

 

                                                           (3) 
The proposed co-operative cache mechanism blends two 
different cache replacement techniques. First, OPR, using 
forecasting and second, selective caching using relative 
frequency. The mathematical foundations & modelling of 
these techniques are as follows. A subset of pre-cache is 

MEC cache (�� ⊆ ��) with a finite size. It comprises of 
|��| most frequently used references from ��. 
Let, �� = {��� } be a set of time-stamps when the reference 
�� ∈ �� occurs in the reference string �. By nature, it is a 
monotonically increasing sequence which is bounded 
below.   

� =  ⋃ ��
|��|��
���  ⟺  ∑ |��| = |�| = �

|��|��
���     

(4) 
Let �  be the Lagrange Interpolator. It takes each time 
series ��  and returns a polynomial Φ�(�)  of order  �  that 
fits into the given samples of times-stamps with minimal 
mean squared error. Let �  be the index variable of the 
set  �� . For fitting a curve of order  � , according to the 
convergence criteria of Newton’s divided difference 
technique, it needs at least � + 1 data samples.      

� ∶  �� → Φ�(�) | Φ�(�) =  � ����

�

���

 

   (5) 
Hence the forecasting of the set �� with a period � can be 
written as,  

��
� = {Φ�(|��| + 1), Φ�(|��| + 2) … Φ�(|��| + �)} 

(6) 
Hence, the forecasted reference string �� would be, 

�� = � ��

|��|��

���

 

                                                                                        (7) 
The function � returns the first occurrence of a reference 

�� ∈ �� in the forecast ��  

�: �� → �0, ���� − 1� 

     (8) 
Let at time instance �, a page replacement is invoked. The 
metric ℎ gives the distance between each cached reference 
and their earliest forecasted occurrences.  

ℎ(��) = � − �(��)| �� ∈ �� 
                                           (9) 

Hence, OPR then uses ��  as future data references to 
select via ctim (�) for page replacement. 

� = max(ℎ(��) | ∀�� ∈ ��) 
                                         (10) 
 

Selective caching: In a classical caching system, a miss in 
an overflowing cache yields a replacement. It may so 
happen, that cached data have less frequency of occurrence 
than the victim. Consequently, the victim is more likely to 
appear before the cached data hence it causes a miss. In a 
MEC environment, fetching data from a remote MEC node 
is costly, hence it raises the overall cost significantly. This 
problem can be tackled with the proposed selective 
caching where it keeps track of the relative frequency of 
each reference in pre-cache (��) . The cache (��)  only 
holds the most relative frequently used references from ��. 
Therefore, a miss event with a reference ��  will only be 
served as a replacement if the following condition is met. 

 ��(��) > min���(��)� | �� ∈ ��  

(11) 
 An extrapolation approach has been used to forecast the 
relative frequency is proposed using polynomial 
regression. Since the change in relative frequency follows 
the law of temporal locality of reference, hence it perhaps 



fits in the time series criterion. Extrapolating the curve 
forecasts the probable future occurrences. In order to 
implement, numpy.polyfit(), a python based polynomial fit 
library is used. Depending on the origin of the fetched data, 
the replacement algorithm is determined, given the cache 
is full. The following are the two possible cases of origins. 

a) Data from point of presence: Data obtained from 
point of presence is treated with the highest priority 
because the link between the MEC node and the point of 
presence is very costly in terms of latency.  The proposed 
modified OPR algorithm is used if there is a need for 
replacement and the data obtained are cached. We try to 
maintain any data obtained from the point of presence in 
the local MEC cache units. 

b) Data from MEC cluster: Data obtained from the 
same MEC cluster are given less priority because the link 
between the MEC nodes costs less.  Therefore, the relative 
frequency of data obtained (��) from this link is compared 
with the minimum relative frequency (��) of the data in 
cache. If ��  is greater only then is the data cached else the 
data is sent to the user but not cached in the MEC node. By 
employing such approach, we redefined the key 
replacement algorithms policies which implies that the 
existing data are always replaced by the newly requested 
data upon request when the cache is full. Accessing data 
from the MEC cluster, would not incur much delay on the 
system since the access time to get the data from the MEC 
cluster is less than the time to get the data from the point 
of presence. This also reduces redundant caching in the 
MEC cluster. 

B. Co-Operative and Hybrid Replacement Caching 
Algorithm (CHRCA) 

The proposed algorithm is presented in Algorithm 1. It 
requires two inputs (window size and the degree of the 
fitted polynomial) and consists of 4 steps. Step 1 is an 
initialization of the MEC cache and the pre-cache which 
contains a set of previously requested data and its relative 
frequency. In step two a request is received and the relative 
frequency of the request ��� is calculated. If the requested 
data is not in the cache, the algorithm checks if it can get 
the request from the MEC. The frequency of data obtained 
from MEC is compared with the frequency of the data in 
the cache and only cached when the later is higher. Data 
obtained from the cloud is always cached as the link 
between the MEC and the cloud is assumed to be costly.  

V. EXPERIMENT & RESULTS  

In this section, details are provided of how the proposed 
algorithm was tested, which algorithms were compared 
and how the algorithm was deployed. 

A. Experimental setup  

In this subsection, the deployment set-up is explained. The 
components that make up the system and what tools and 
platform that was used are discussed. The diagram in 
Figure 2, is made up of three layers, this consists of the 
Cloud layer, MEC layer and End-user layer 

a) Cloud Layer: In this article, Google cloud 
environment was used as the cloud platform. In the google 
cloud compute engine, a VM instance is deployed. A 
webserver is then installed which hosts the web 
applications.   
 
Algorithm 1: Co-Operative and Hybrid Replacement Caching 
 
Input: � ∈ �     : window size 
            � ∈ � : Degree of the fitted polynomial 
Output: None 
Data Structure: Multiple Priority Queue 
Steps 1: Initialization 
�� ← �    //Cache Memory   
�� ← �                      //Pre-Cache  
Step 2: Get a Request 
�� ← �� ∪ {��}              //�� : Incoming reference  
�� ← �� ∪ {��}   
Step 3: Calculate Relative Frequency  

��� ←
��

∑��
   

Step 4: Indefinite Loop  
�� ← � ���� ���������� ���� ���     
While |��| ≤ � do 
{ 

Λ ←  {� | ���� �� ��������� �� �������� ��������� } 
        �(�) ← �������(�, �) 
 // fit a polynomial of degree � 
 

       ���� ←  �������������(� + �)� 

                              //� ∶ ������ �� �������� ������������� 
       // Page Replacement  
        If Cache is full and Miss happens { 
 If ��� ∈ ��    //Page comes from Cloud 
  Replace with OPR 
 Else If Page comes from MEC {  

If ∃�� � ��� > min(�� ∈ �)� 

      ������� ← �� ∈ �� | ��� = min(���) 

                    ������ ←   �� ∈ {�� − ��}   

         Replace ������� with ������  using LFU 

//if the popularity by the relative frequency of a 
reference (entering reference) in pre-Cache but not 
in Cache outstands a reference in Cache (departing 
reference) then call replacement. As higher 
popularity is proportional to the probability of 
sooner reference.  

} 
        } 
} 

b) MEC Layer: GNS3 was used to emulate the MEC 
cluster. GNS3 (Graphical Network Simulator- 3) is free 
software used to emulate complex networks [18]. In 
GNS3, a cluster of MEC network has been created. The 
MEC cluster nodes are interconnected using overlay 
networking provided by Open Daylight [19] that also acts 
as a Software-Defined Networking (SDN) controller for 
the testing platform. Each MEC node is a lightweight 
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docker container. A docker container is a lightweight, 
standalone and executable package of software that has 
operating system level virtualization and includes 
everything needed to run an application. The MEC layer is 
connected to the Internet via the public network. A private 
network is also created within the GNS3 with which the 
MECs are connected. Quagga [20] is installed on the MEC 
docker containers and configured to serve as an access 
point for end-user devices. The proposed algorithm is 
written in python and deployed as a Docker application in 
the MEC Docker container. 

Table 1 Experiment Specification 

c) End-user layer: This layer is the final layer and 
it is made up of the end user devices. To simulate the users, 
we assume that the sample space of the generated requests 
uses Gaussian distribution [21]. 

B. Experiment Procedure 

In this section, performance comparisons are made 
between the proposed algorithm and two case study 
algorithms. The first case study algorithm is a combination 
of Co-operative caching and Least Recently Used 
(CLRU). LRU algorithm chooses its replacement victim 
based on which cache reference that has been  
 unused for the longest time [4]. While the second case 
study algorithm is a combination of Co-operative caching 
and Least Frequently Used (CLFU).The caching test 
specifications are summarized in Table1 
 

Average  CLRU CLFU CHRCA 
CPU utilization (%) 41.158 43.285 30.054 
RTT (ms) 94.325 94.127 92.887 

Table 2 Average Resource (CPU and RTT) Utilization 

C.  Experimental Results 

 In this section, we discuss the results obtained after 
experimentation and testing. Here a comparison of the 
resource utilization which includes the CPU and RTT 
(Round Trip Time: this is the RTT between the MEC and 
the web server) utilization is made for the Case study 
algorithms and CHRCA. A comparison is also made for 
the cache performance which includes local cache hits, 
cache misses, total cache hits. 

a) Resource utilization comparison 
Figure 3 shows the CPU and RTT utilization of each 
algorithm respectively over a period during the algorithm 
run time, it can be deduced be that CHRCA obtains lesser 
RTT with an average of 92.887ms. It can also be seen that 

Specification Amount 
Number of MECs deployed 3 
Number of requests received per 
MEC 

500 

Case size of each MEC 4 
Number of content items 20 

Figure 3 Lower RTT implies reduced access time due to high local 
hits. Less CPU consumption implies computational efficiency. 

CHRCA meets both criteria hence its fast and efficient 

Figure 4 Number of nodes is proportional to the cache performance. However, CHRCA shows a better 
convergence (Higher Hits and lower misses) compared to CLFU and CLRU 



CHRCA maintains a lower CPU utilization with an 
average of 30.054%. 
Table 2 shows the average CPU and RTT utilization of 
each algorithm. The CPU utilization drops mainly when 
there are cache hits and the data is fetched locally from the 
device or from the MEC and not from the source.  

b) Cache performance comparison 
Figure 4 shows the local cache hits, cache misses, and 
MEC hits respectively of each algorithm over a varying 
number of MEC nodes. The reference string, cache size 
and the number of requests are kept constant while the 
number of MEC nodes is increased from 3 to 6 nodes. 
Since the reference string and cache size are the same 
throughout the test, the local cache hits remained the same. 
Increase in the number of nodes shows convergence in the 
misses and cooperative hits. Cooperative hits are data 
obtained from a remote MEC using the co-operative 
algorithm when a request is not cached in an MEC. 
Comparing the three algorithms, it can be deduced that the 
proposed algorithm has a better overall performance as the 
proposed algorithm generates more cache hits, fewer cache 
misses and more MEC hits compared to the case study 
algorithms. 

VI. CONCLUSION & FUTURE SCOPE 

In this paper, a co-operative and hybrid replacement 
caching algorithm (CHRCA) for MEC is presented to 
improve the caching efficiency. The proposed algorithm is 
a blend of two cache replacement algorithms (OPR and 
LRU) and a distributed co-operative caching algorithm. 
Lagrange polynomial extrapolation algorithm was 
leveraged to predict the future occurrences of requests 
using historical data of relative frequency of the requests. 
Cache redundancy in cooperative caching is reduced by our 
selective caching approach. Experimental results show a 
better convergence in terms of CPU load and delay, 
compared to CLFU and CLRU.  

There are two planned future extensions,  
i) Recurrent Neural Networks with Long Short-Term 

Memory for better prediction and 
ii) Incorporating IPFS for distributed caching in    

Information-Centric Networking environment.  
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