
Abstract— Multi-Access Mobile Edge Computing (MEC)
is proclaimed as a key technology for reducing service
processing delays in 5G networks. Caching on MEC will
decrease service latency and improve data access by allowing
direct content delivery through the edge without fetching
content from the remote server. Caching on MEC is also
deemed as an effective approach guarantying more
reachability due to proximity to end-users. This paper
proposes a novel hybrid content caching replacement
algorithm in MEC to increase its caching efficiency where
future request references are predicted using a polynomial fit
algorithm along with Lagrange interpolation. Additionally, a
distributed co-operative caching algorithm to improve data
access within MECs. Experimental results have shown that
the proposed scheme obtains more cache hits and lesser
average CPU utilization due to its selective caching approach
when compared with existing traditional cache replacement
algorithms.

Keywords—Multi-access Mobile Edge Computing, selective
caching, OPR algorithm, co-operative caching.

I. INTRODUCTION

Multi-Access Mobile Edge Computing (MEC) is an
emerging paradigm that provides computing, storage and
networking resources within the edge of mobile Radio
Access Network (RAN) [1]. The idea is to design mini
servers known as edge nodes that can handle storage and
computation resources initiated by mobile devices. These
edge nodes are in close proximity to the end users
providing a platform for caching and offloading with the
aim of reducing bandwidth consumption and latency of the
network [2].
Caching is a method of keeping the most used data in the
cache memory to reduce latency and increase user QoE
(Quality of Experience). The universally accepted metric
of measuring the cache performance is the cache hit ratio.
This is the total cache hits obtained by the system at a given
point in time. Therefore, an increase in the total cache hit
ratio means better cache performance of the system.
The aim of this paper is to enhance the cache performance
of the MEC. To accomplish this, a caching algorithm has
been designed and developed that supports cache sharing
among MEC nodes, reduce latency and bandwidth and
increase network robustness and reliability so that content
is constantly available even if the server where the point of
presence is located is down.
The proposed scheme uses co-operative caching to share
cache data among the MEC nodes within the same cluster.
Additionally, a hybrid scheme of the modified version of
two existing replacement schemes, namely Optimal Page
Replacement algorithm (OPR) [3] and Least Frequently
Used algorithm (LFU) [4] is applied to each MEC to

improve its cache hit ratio. The OPR algorithm, developed
by Belady, is a theoretically optimal algorithm that
replaces the data in the cache that will occur farthest in the
future with the newly obtained request [4]. The downside
of Belady’s algorithm is the need for a future reference
string. Reference string is used to define the incoming page
requests to be cached [5]. To obtain this, historical data are
kept in the pre-cache for all the requests received by an
MEC and its relative frequency. The historical data are
then used to predict the future occurrences of data in the
cache. The enhancement of the cache hit rate performance
would reduce MEC cache access time [5]. The proposed
algorithm depends on the successful prediction of future
requests based on past references. Therefore, a polynomial
regression algorithm is employed to enable the forecast of
the reference string.
The remainder of this paper is structured as follows: in
section II we have reviewed related work and listed our
contribution. In section III we presented the system
architecture and the proposed algorithm. In section IV we
presented the system model. We describe the experimental
setup, tested and discussed the results in section V. Finally,
we concluded the article in section VI.

II. RELATED WORK

A. State of the Art

Many Caching policies and algorithms have been
proposed for content caching. The conventional caching
policies include First in First Out (FIFO), Least Frequently
Used (LFU), Least Recently Used (LRU) and Optimal Page
Replacement (OPR). LRU algorithm chooses its
replacement victim based on which cache reference that has
been unused for the longest time while LFU chooses its
victim based on which of the cache references have the least
frequency [4]. Content replacement policies such as the
LFU and LRU have been adopted in a large number of
caching policies [6] in MEC as compared to OPR which
has not been applied to MEC. OPR is considered as an
optimal cache replacement algorithm but labelled
impractical due to the inability to precisely know the user’s
future requests. However, there have been some caching
algorithms developed that are based on the OPR such as
“Back to the Future: Leveraging Belady’s Algorithm for
Improved Cache Replacement,” [7]. The proposed cache
replacement policy learns Belady’s optimal solution (OPT)
for past accesses to guide future replacement decisions.

Few researchers have proposed edge caching strategies
for 5G that combines both computation caching and data
caching. Markakis et al [8] proposed a proactive edge
caching strategy that predicts and prefetch popular contents
based on big data analysis. Sungwook K. [9] leveraged a

Co-Operative and Hybrid Replacement Caching
for Multi-Access Mobile Edge Computing

Emeka E. Ugwuanyi*, Saptarshi Ghosh*, Muddesar Iqbal*, Tasos Dagiuklas*, Shahid Mumtaz#, and Anwer Al-Dulaimi+
*Division of Computer Science and Informatics, London South Bank University, London SE1 0AA, UK

#Instituto de Telecomunicações Universidade de Aveiro, Portugal
+Center of Excellence, EXFO, Montreal, Canada

holistic caching structure for caching in small base stations
using game theory. The developed hybrid algorithm uses
split caching where one part caches popular content for
communication and other part caches computation
offloading services. In [10] a Mix-Cooperative (MixCo)
caching strategy was developed for MEC servers in a Fiber-
Wireless (FiWi) access network to reduces latency and
increase cache performance. Huang et al in [11] proposed a
CMAC (Cooperative Multicast-Aware Caching) strategy to
reduce the average latency of delivering content and Yang
et al in [12] explored ways of avoiding pollution attack on
cooperative MEC caching. Most of the existing studies of
content caching in MEC focus on energy efficiency,
mobility aware caching and cache allocation [13] [14] [15].

However, to the best of our knowledge, there is no
existing research that considers the optimization of MEC
local cache storage by using Belady’s algorithm and
predicting cache reference patterns using historic cache
frequency. In this article, a hybrid cache replacement policy
that supports co-operative caching for MEC platforms has
been designed and developed. The hybrid algorithm merges
a modified Belady’s algorithm with a distributed
cooperative caching algorithm.

B. Contributions

The contributions of this article can be summarized as
follows:
 A modified LFU replacement algorithm which not

only compares the frequency of the data in the cache
but also compares the frequency of a newly obtained
request

 A modified OPR algorithm which uses polynomial
regression to predict future cache data using historical
data obtained from the relative frequency of the
cached data

 A cooperative caching strategy for sharing cache
information among MECs

 A selective caching algorithm based on where the
requested data are obtained.

III. SYSTEM ARCHITECTURE

Figure 1 shows system architecture in this study, where
several MECs form a cluster to provide cached content to
mobile users. In this architecture, mobile devices are
connected to the edge node through a wireless Access Point
(e.g. IEEE 802.11) and the edge node is connected to the
cloud servers which is in turn connected to the Internet. The
figure shows the request-response flow for a worst case
scenario when a particular user’s content request is not
available in the MEC cluster.

The focus of this research is on the MEC layer and how
to leverage its distributed architecture to increase its cache
efficiency by generating more cache hits while reducing
network latency. The aim of this research is to reduce
response time by storing popular data at the cache servers
of the edge nodes. This will reduce access to the data
repositories since most of the data are stored locally. An
algorithmic approach was used in this study to create a
solution for the problems identified in the earlier section.
This paper proposes a new caching algorithm that
optimizes caching mechanism by modification and
integration of three caching schemes. These caching
mechanisms are listed as follows.

A. Co-operative caching

Co-operative caching is a new way of caching in a
distributed architecture that supports the sharing of cache
information. One of the most popular co-operative caching
methods is to create central storage for the distributed
servers allowing them to access cache data from the central
storage [16]. This reduces the burden of managing content

only on one device. On the other hand, it introduces
increased latency due to additional access time in fetching
cached data from a remote location. Another problem
would be where to locate the central storage device to
minimize the access time of all the servers involved. In this
work, distributed cooperative caching is used to reduce the
impacts of one centralized cache server. The servers in the
distributed architecture are allowed to keep their own cache
data but they also keep a synchronized database of what
data they have and what data are available in all other
servers in a given cluster. We assume that the cluster size
is adjusted based on the traffic load and network status to
balance the content diversity and spectrum efficiency. The
adjustment of the cluster is outside the scope of this paper.

If a MEC receives a request from an end-user device, it
would first search if the request exists in its cache. If the
request does not exist, it will search if any other MEC in its
cluster has the requested data. If the requested data is still
not obtained, then the MEC initiates a request to obtain the
requested data from the point of presence.

B. Modified Least Frequently Used (LFU) Cache
replacement

LFU cache replacement algorithm is a popular
algorithm used to manage cache data [4]. It is a counter-
based replacement algorithm. It keeps a counter of the
number of requests that have been made to each reference.
The algorithm requires that the reference with the least
count is replaced because the actively used reference will
be the one with the most count. To keep a cohesive and
reliable frequency record, a window size is maintained.
Since LFU only compares the frequency of the references
in the cache and not the newly requested data, a problem
arises when a new request with little or no historic
frequency record is used to replace an existing cache data
which has the least frequency in the cache but a higher
historic frequency record when compared to the newly
requested data. To address this problem, this paper
proposes a method not only to compare the frequencies of
the data in the cache but also the frequency of the newly
obtained request. A decision is made not to cache the newly

Figure 1 : System Architecture

obtained request if the frequency of the data is less than the
frequency of the least frequent data in the cache. This
method is ideal for caching in MEC in a scenario where the
newly requested data is obtained from the MEC cluster.
Therefore, if a decision is made not to cache and the data is
requested again, the data can be obtained from the MEC
cluster as the link is less costly than the point of presence.

C. Modified Optimal Page Replacement (OPR)
Algorithm

The Optimal Page Replacement Algorithm (Belady’s
Algorithm) has been considered as the optimal algorithm
for cache replacement as it produces fewer page faults than
any other algorithm [4]. Its working principle is to replace
the reference which would not be used for the longest of
time. The OPR algorithm provides the optimum result for
any given cache reference and frame but it is labelled
infeasible because it requires large amounts of data of
future requests and time stamps of cache data.

In this research, a polynomial fit algorithm with
Lagrange interpolation [17] has been leveraged to predict
future cache occurrences using historic relative frequency
of cache data.

IV. SYSTEM MODEL

Here we model the hierarchical content caching placement
design. This consists of the cloud, the pre-cache and the
MEC cache.

�� ⊆ �� ⊆ ��
 (1)

Where �� represents the cloud data, �� represents the pre-
cache and �� is the MEC local cache. The pre-cache
contains a set of all the previously requested data and its
relative frequency stored in the local MEC. Each content
segment is uniquely identified by a hash function which is
obtained from a sha256 hash of the request method, the
URL and the request protocol.

�� = {ℎ��ℎ: ��������}
� = {��|� ∈ [0, � − 1]} is a finite, non-empty reference
string of reference instances �� at time stamp � , with
window size � . �� = {�� ∈ �} ⊆ � is a set of distinct
content segments from the set �, with cardinality |�� | =
�. The function ��: �� ∈ �� → [0,1] calculates the relative
frequency of occurrence of each reference �� of pre-
cache �� . it measures the share of occurrences of a
reference instance over the total window. The function ��
is defined below.

��(��) = �

0 �� �� ∉ �

�(��)

|�|
 ��ℎ������

(2)
Hence the sum of relative frequency of all elements in the
pre-cache is unity,

� ��(��) = 1

|��|��

���

 (3)
The proposed co-operative cache mechanism blends two
different cache replacement techniques. First, OPR, using
forecasting and second, selective caching using relative
frequency. The mathematical foundations & modelling of
these techniques are as follows. A subset of pre-cache is

MEC cache (�� ⊆ ��) with a finite size. It comprises of
|��| most frequently used references from ��.
Let, �� = {��� } be a set of time-stamps when the reference
�� ∈ �� occurs in the reference string �. By nature, it is a
monotonically increasing sequence which is bounded
below.

� = ⋃ ��
|��|��
��� ⟺ ∑ |��| = |�| = �

|��|��
���

(4)
Let � be the Lagrange Interpolator. It takes each time
series �� and returns a polynomial Φ�(�) of order � that
fits into the given samples of times-stamps with minimal
mean squared error. Let � be the index variable of the
set �� . For fitting a curve of order � , according to the
convergence criteria of Newton’s divided difference
technique, it needs at least � + 1 data samples.

� ∶ �� → Φ�(�) | Φ�(�) = � ����

�

���

 (5)
Hence the forecasting of the set �� with a period � can be
written as,

��
� = {Φ�(|��| + 1), Φ�(|��| + 2) … Φ�(|��| + �)}

(6)
Hence, the forecasted reference string �� would be,

�� = � ��

|��|��

���

 (7)
The function � returns the first occurrence of a reference

�� ∈ �� in the forecast ��

�: �� → �0, ���� − 1�

 (8)
Let at time instance �, a page replacement is invoked. The
metric ℎ gives the distance between each cached reference
and their earliest forecasted occurrences.

ℎ(��) = � − �(��)| �� ∈ ��
 (9)

Hence, OPR then uses �� as future data references to
select via ctim (�) for page replacement.

� = max(ℎ(��) | ∀�� ∈ ��)
 (10)

Selective caching: In a classical caching system, a miss in
an overflowing cache yields a replacement. It may so
happen, that cached data have less frequency of occurrence
than the victim. Consequently, the victim is more likely to
appear before the cached data hence it causes a miss. In a
MEC environment, fetching data from a remote MEC node
is costly, hence it raises the overall cost significantly. This
problem can be tackled with the proposed selective
caching where it keeps track of the relative frequency of
each reference in pre-cache (��) . The cache (��) only
holds the most relative frequently used references from ��.
Therefore, a miss event with a reference �� will only be
served as a replacement if the following condition is met.

 ��(��) > min���(��)� | �� ∈ ��

(11)
 An extrapolation approach has been used to forecast the
relative frequency is proposed using polynomial
regression. Since the change in relative frequency follows
the law of temporal locality of reference, hence it perhaps

fits in the time series criterion. Extrapolating the curve
forecasts the probable future occurrences. In order to
implement, numpy.polyfit(), a python based polynomial fit
library is used. Depending on the origin of the fetched data,
the replacement algorithm is determined, given the cache
is full. The following are the two possible cases of origins.

a) Data from point of presence: Data obtained from
point of presence is treated with the highest priority
because the link between the MEC node and the point of
presence is very costly in terms of latency. The proposed
modified OPR algorithm is used if there is a need for
replacement and the data obtained are cached. We try to
maintain any data obtained from the point of presence in
the local MEC cache units.

b) Data from MEC cluster: Data obtained from the
same MEC cluster are given less priority because the link
between the MEC nodes costs less. Therefore, the relative
frequency of data obtained (��) from this link is compared
with the minimum relative frequency (��) of the data in
cache. If �� is greater only then is the data cached else the
data is sent to the user but not cached in the MEC node. By
employing such approach, we redefined the key
replacement algorithms policies which implies that the
existing data are always replaced by the newly requested
data upon request when the cache is full. Accessing data
from the MEC cluster, would not incur much delay on the
system since the access time to get the data from the MEC
cluster is less than the time to get the data from the point
of presence. This also reduces redundant caching in the
MEC cluster.

B. Co-Operative and Hybrid Replacement Caching
Algorithm (CHRCA)

The proposed algorithm is presented in Algorithm 1. It
requires two inputs (window size and the degree of the
fitted polynomial) and consists of 4 steps. Step 1 is an
initialization of the MEC cache and the pre-cache which
contains a set of previously requested data and its relative
frequency. In step two a request is received and the relative
frequency of the request ��� is calculated. If the requested
data is not in the cache, the algorithm checks if it can get
the request from the MEC. The frequency of data obtained
from MEC is compared with the frequency of the data in
the cache and only cached when the later is higher. Data
obtained from the cloud is always cached as the link
between the MEC and the cloud is assumed to be costly.

V. EXPERIMENT & RESULTS

In this section, details are provided of how the proposed
algorithm was tested, which algorithms were compared
and how the algorithm was deployed.

A. Experimental setup

In this subsection, the deployment set-up is explained. The
components that make up the system and what tools and
platform that was used are discussed. The diagram in
Figure 2, is made up of three layers, this consists of the
Cloud layer, MEC layer and End-user layer

a) Cloud Layer: In this article, Google cloud
environment was used as the cloud platform. In the google
cloud compute engine, a VM instance is deployed. A
webserver is then installed which hosts the web
applications.

Algorithm 1: Co-Operative and Hybrid Replacement Caching

Input: � ∈ � : window size
 � ∈ � : Degree of the fitted polynomial
Output: None
Data Structure: Multiple Priority Queue
Steps 1: Initialization
�� ← � //Cache Memory
�� ← � //Pre-Cache
Step 2: Get a Request
�� ← �� ∪ {��} //�� : Incoming reference
�� ← �� ∪ {��}
Step 3: Calculate Relative Frequency

��� ←
��

∑��

Step 4: Indefinite Loop
�� ← � ���� ���������� ���� ���
While |��| ≤ � do
{

Λ ← {� | ���� �� ��������� �� �������� ��������� }
 �(�) ← �������(�, �)
 // fit a polynomial of degree �

 ���� ← �������������(� + �)�

 //� ∶ ������ �� �������� �������������
 // Page Replacement
 If Cache is full and Miss happens {
 If ��� ∈ �� //Page comes from Cloud
 Replace with OPR
 Else If Page comes from MEC {

If ∃�� � ��� > min(�� ∈ �)�

 ������� ← �� ∈ �� | ��� = min(���)

 ������ ← �� ∈ {�� − ��}

 Replace ������� with ������ using LFU

//if the popularity by the relative frequency of a
reference (entering reference) in pre-Cache but not
in Cache outstands a reference in Cache (departing
reference) then call replacement. As higher
popularity is proportional to the probability of
sooner reference.

}
 }
}

b) MEC Layer: GNS3 was used to emulate the MEC
cluster. GNS3 (Graphical Network Simulator- 3) is free
software used to emulate complex networks [18]. In
GNS3, a cluster of MEC network has been created. The
MEC cluster nodes are interconnected using overlay
networking provided by Open Daylight [19] that also acts
as a Software-Defined Networking (SDN) controller for
the testing platform. Each MEC node is a lightweight

Figure 2 Experimental Set-up

docker container. A docker container is a lightweight,
standalone and executable package of software that has
operating system level virtualization and includes
everything needed to run an application. The MEC layer is
connected to the Internet via the public network. A private
network is also created within the GNS3 with which the
MECs are connected. Quagga [20] is installed on the MEC
docker containers and configured to serve as an access
point for end-user devices. The proposed algorithm is
written in python and deployed as a Docker application in
the MEC Docker container.

Table 1 Experiment Specification

c) End-user layer: This layer is the final layer and
it is made up of the end user devices. To simulate the users,
we assume that the sample space of the generated requests
uses Gaussian distribution [21].

B. Experiment Procedure

In this section, performance comparisons are made
between the proposed algorithm and two case study
algorithms. The first case study algorithm is a combination
of Co-operative caching and Least Recently Used
(CLRU). LRU algorithm chooses its replacement victim
based on which cache reference that has been
 unused for the longest time [4]. While the second case
study algorithm is a combination of Co-operative caching
and Least Frequently Used (CLFU).The caching test
specifications are summarized in Table1

Average CLRU CLFU CHRCA
CPU utilization (%) 41.158 43.285 30.054
RTT (ms) 94.325 94.127 92.887

Table 2 Average Resource (CPU and RTT) Utilization

C. Experimental Results

 In this section, we discuss the results obtained after
experimentation and testing. Here a comparison of the
resource utilization which includes the CPU and RTT
(Round Trip Time: this is the RTT between the MEC and
the web server) utilization is made for the Case study
algorithms and CHRCA. A comparison is also made for
the cache performance which includes local cache hits,
cache misses, total cache hits.

a) Resource utilization comparison
Figure 3 shows the CPU and RTT utilization of each
algorithm respectively over a period during the algorithm
run time, it can be deduced be that CHRCA obtains lesser
RTT with an average of 92.887ms. It can also be seen that

Specification Amount
Number of MECs deployed 3
Number of requests received per
MEC

500

Case size of each MEC 4
Number of content items 20

Figure 3 Lower RTT implies reduced access time due to high local
hits. Less CPU consumption implies computational efficiency.

CHRCA meets both criteria hence its fast and efficient

Figure 4 Number of nodes is proportional to the cache performance. However, CHRCA shows a better
convergence (Higher Hits and lower misses) compared to CLFU and CLRU

CHRCA maintains a lower CPU utilization with an
average of 30.054%.
Table 2 shows the average CPU and RTT utilization of
each algorithm. The CPU utilization drops mainly when
there are cache hits and the data is fetched locally from the
device or from the MEC and not from the source.

b) Cache performance comparison
Figure 4 shows the local cache hits, cache misses, and
MEC hits respectively of each algorithm over a varying
number of MEC nodes. The reference string, cache size
and the number of requests are kept constant while the
number of MEC nodes is increased from 3 to 6 nodes.
Since the reference string and cache size are the same
throughout the test, the local cache hits remained the same.
Increase in the number of nodes shows convergence in the
misses and cooperative hits. Cooperative hits are data
obtained from a remote MEC using the co-operative
algorithm when a request is not cached in an MEC.
Comparing the three algorithms, it can be deduced that the
proposed algorithm has a better overall performance as the
proposed algorithm generates more cache hits, fewer cache
misses and more MEC hits compared to the case study
algorithms.

VI. CONCLUSION & FUTURE SCOPE

In this paper, a co-operative and hybrid replacement
caching algorithm (CHRCA) for MEC is presented to
improve the caching efficiency. The proposed algorithm is
a blend of two cache replacement algorithms (OPR and
LRU) and a distributed co-operative caching algorithm.
Lagrange polynomial extrapolation algorithm was
leveraged to predict the future occurrences of requests
using historical data of relative frequency of the requests.
Cache redundancy in cooperative caching is reduced by our
selective caching approach. Experimental results show a
better convergence in terms of CPU load and delay,
compared to CLFU and CLRU.

There are two planned future extensions,
i) Recurrent Neural Networks with Long Short-Term

Memory for better prediction and
ii) Incorporating IPFS for distributed caching in

Information-Centric Networking environment.

ACKNOWLEDGEMENT

This project received research funding from SONNET and
the H2020-MSCA-RISE-2016 European Framework
Program with contract number 734545.

REFERENCES

[1] 5G PPP Architecture Working Group, “View on 5G
architecture,” 2, 2016.

[2] E. E. Ugwuanyi, S. Ghosh, M. Iqbal, and T. Dagiuklas,
“Reliable Resource Provisioning Using Bankers’ Deadlock
Avoidance Algorithm in MEC for Industrial IoT,” IEEE
Access, vol. 6, pp. 43327–43335, 2018.

[3] L. A. Belady, “A study of replacement algorithms for a
virtual-storage computer,” IBM Syst. J., vol. 5, no. 2, pp.
78–101, 1966.

[4] “Operating System Concepts, 9th Edition,” Wiley.com,
1994. [Online]. Available: https://www.wiley.com/en-
us/Operating+System+Concepts%2C+9th+Edition-p-
9781118063330. [Accessed: 11-Sep-2018].

[5] P. Panda, G. Patil, and B. Raveendran, “A survey on
replacement strategies in cache memory for embedded
systems,” in 2016 IEEE Distributed Computing, VLSI,
Electrical Circuits and Robotics (DISCOVER), 2016, pp.
12–17.

[6] S. Wang, X. Zhang, Y. Zhang, L. Wang, J. Yang, and W.
Wang, “A Survey on Mobile Edge Networks: Convergence
of Computing, Caching and Communications,” IEEE
Access, vol. 5, pp. 6757–6779, 2017.

[7] A. Jain and C. Lin, “Back to the Future: Leveraging
Belady’s Algorithm for Improved Cache Replacement,” in
2016 ACM/IEEE 43rd Annual International Symposium on
Computer Architecture (ISCA), 2016, pp. 78–89.

[8] E. K. Markakis, K. Karras, A. Sideris, G. Alexiou, and E.
Pallis, “Computing, Caching, and Communication at the
Edge: The Cornerstone for Building a Versatile 5G
Ecosystem,” IEEE Commun. Mag., vol. 55, no. 11, pp. 152–
157, Nov. 2017.

[9] S. Kim, “5G Network Communication, Caching, and
Computing Algorithms Based on the Two-Tier Game
Model,” ETRI J., vol. 40, no. 1, pp. 61–71, Feb. 2018.

[10] N. Wang, W. Shao, S. K. Bose, and G. Shen, “MixCo:
Optimal Cooperative Caching for Mobile Edge Computing
in Fiber-Wireless Access Networks,” in 2018 Optical Fiber
Communications Conference and Exposition (OFC), 2018,
pp. 1–3.

[11] X. Huang, Z. Zhao, and H. Zhang, “Cooperate Caching with
Multicast for Mobile Edge Computing in 5G Networks,” in
2017 IEEE 85th Vehicular Technology Conference (VTC
Spring), 2017, pp. 1–6.

[12] C. Yang, H. Li, L. Wang, and D. Tang, “Exploring the
behaviors and threats of pollution attack in cooperative
MEC caching,” in 2018 IEEE Wireless Communications
and Networking Conference (WCNC), 2018, pp. 1–6.

[13] Z. Luo, M. LiWang, Z. Lin, L. Huang, X. Du, and M.
Guizani, “Energy-Efficient Caching for Mobile Edge
Computing in 5 G Networks,” 2017.

[14] M. Neishaboori, “Implementation and Evaluation of
Mobile-Edge Computing Cooperative Caching,” Aalto
University School of Science, Espoo, Finland, 2015.

[15] X. Liu, J. Zhang, X. Zhang, and W. Wang, “Mobility-
Aware Coded Probabilistic Caching Scheme for MEC-
Enabled Small Cell Networks,” IEEE Access, vol. 5, pp.
17824–17833, 2017.

[16] A. Abouaomar, A. Filali, and A. Kobbane, “Caching,
device-to-device and fog computing in 5 lt;sup gt;th lt;/sup
gt; cellular networks generation : Survey,” in 2017
International Conference on Wireless Networks and Mobile
Communications (WINCOM), 2017, pp. 1–6.

[17] B. Li, H. Zhang, and H. Lu, “User mobility prediction based
on Lagrange’s interpolation in ultra-dense networks,” in
2016 IEEE 27th Annual International Symposium on
Personal, Indoor, and Mobile Radio Communications
(PIMRC), 2016, pp. 1–6.

[18] “GNS3 | The software that empowers network
professionals.” [Online]. Available:
https://www.gns3.com/. [Accessed: 12-Sep-2018].

[19] “Welcome to OpenDaylight Documentation —
OpenDaylight Documentation Fluorine documentation.”
[Online]. Available:
https://docs.opendaylight.org/en/stable-fluorine/.
[Accessed: 14-Oct-2018].

[20] “Quagga Software Routing Suite.” [Online]. Available:
https://www.quagga.net/. [Accessed: 31-Oct-2018].

[21] G. J. O. ’t Veld and M. C. Gastpar, “Caching Gaussians:
Minimizing total correlation on the Gray-Wyner network,”
in 2016 Annual Conference on Information Science and
Systems (CISS), 2016, pp. 478–483.

