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Abstract

The advancement of nanotechnology demands large scale preparaiamoofystalline powder
of innovative materials. High entropy alloyHEAS) exhibit unique properes mechanical,
thermal, magnetic et¢. making them potentials candidates for applicasom energy
environment andiomaterials etc. Thus, thereasneedo develop novel syntisés methods to
prepare nanocrystalline high puriEAs in large quantity. Conventionalaohanical alloying
(MA) of the multi componentmetallic powder mixtureequireslarger milling time and it is
proneto contaminatios and phase transformation. The g#at investigatiomeportsa unique
approachinvolving casting followed by cryomillingleading to formation of nanocrystalline
HEAs powdey which arerelatively contaminations freavith narrow size distributionUsing
examples of two FCC and one BCC d:mghase HEAs, it has beamown that large scale
nanocrystallineHEAs powder can be prepared after few hours of cryomilling at 123 K. The
formation of nanocrystalline HEAduring cryomillinghas been discussed using theoretically

available approaches.
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1. Introduction
The e&plorationof novel nanomaterials for various applicasamthe field of nanescience and

nanotechnology has slowly been maturing with discovery of ai@ivadvancedaterials.It is
well known that the exceptional properties of nanoaterialshavingsurfacearea- to-volume
ratio make these materials suitalite various applicatios[1], such asatalytic[2,3], optical
[4,5], antibacterial[6,7], magnetic[8], biomedicalapplications[9] etc. In this regardalloy
nanoparticlefound toexhibit exceptional propertidsr theseapplicatiorsdue to the possibility

of different combination oélement beingised Hence, the atly nanoparticles possess distinctly
different properties from the constituent elemeagswell asbulk alloys, allowing them to be
exploited for various applicationghese include Ag/Au bimetallic nanoparticle for cancer
detectior]10], SnAg-Cu for low temperature lead frager-connec{11], Fe/Cunanocrystalline
multilayers for soft magneticapplication [12]. Furthermore, the properties of the alloy
nanoparticles can further be tailored by tuning the number and type of constituent elements, the
composition, degree of chemical ordering and morpholdfgwever, continuous advancement
in the nanotechnologyaquires design and development of noaiby nanoparticles including
multi-metallic high entopy alloys[13-19]. Therefore we requiredevisingnovel strategigto

prepare these nanoparticles in large quantity.

High entropy alloys are considered as muietallic cocktail of at leagtve elements in equal or

near equal proportions and thus termed as concentratedpnultipal element alloyg20,21].
Discovered in 2004, the research activities on these alloys have been vigorous across the globe
[22,23,17,24-27]. They exhibit unique set of mechanical (combination of strength, ductility and
toughnesgp8,29], physical, termal, magnetic properties due to their intrinsic nature and hence,
are deemed to be potential candidates for applications in energy, biomedical, catalysis sectors
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[30-34]. However preparation of nanocrystalline HEA in large quality is a challenge to the

material science community.

Conventionally,nanocrystalline HEAs powddras beermprepared using mechanical alloying of
the elemental mixtureThere exist two expemental pathways tobtainnanocrystallindHEAs
viaball milling [35,36,16]. First, individual powdes of requirecelements are feitto a ball mill

and milled sufficiently long until HEA phases formThis pathway is known as mechanical
alloying (MA). Second approach relatedto crusing of the HEA ingot corventionally casvia

ball milling at extremely low temperature. In the first case, NPs of HEAs may form but it
requires longer millingime, which can impart unanted impurity or contaminatioimom the
milling tools as well asatmospheric oxygeand nitrogn The multicomponent HEAs are prone
to oxidation and hence pure nanocrystalline HEAs are difficult to achiawenventional ball
milling route Being multicomponent, the HEA NPsbtainedvia mechanical alloyingof
individual powder mixture may leaa tformation of metastable phasgd/-39]. On the other
hand, the second rouieg, casting followed by cryomilling, requires the material to be hard and

brittle at low temperature. The consideration of high ductilid0%) and toughness

(>250MPa_my2) of FCCHEA phases from high to low temperature (8001066°C) makes the
formation of NPs of HEAvia cryomilling difficult. The high ductility and taghness leatb
easier cold welding, whiclsiconsidered an obstaclettue formation of NPsvia cryomilling[40].
However, cyomilling has many advantages, including low contamination, reduced oxidation,
suppression of recovery and recrystallizatior] 41e45]. Therefore,fisuccessful, cryomilling is
expected taleliver the solution tasynthesizeof nanocrystalline HEAs in large quantity, useful

for variety of application[46].



In the present investigatiopaper wedemonstraten easily scalab)eryomilling techniqieto
preparehigh entropy alloys nanoparticles (HEAWPS) in largeuantity, We have selectethhree
alloy compositiors; two are single phase FCC high entropy alsofFey 2Cro 2Mng 2Nio 2C0p 2),
(Cw2Ago 2AU0 2Pl 2Ph2) and third one is a single phase 8C high entropy alloy
(Fen2Cro.2Mng 2V 2Al 0.2). FCC are relatively more ductile and tough &etice more difficult to
crush to form HEANPs.In each casalloysnanoparticles have been prepared emaracterized
using X-ray diffracion (XRD), transmisgon electron microscopeTEM), surface plasmon

resonancelhe mechanism of theormationof HEAs-NPs hasilsobeen discussed oretail

2. Experimental
2.1Preparation of HEAs

The three differenbf high entropy allog (Cw.2Ago.2AU0 2P 2P 2), (F&y 2Cro.2Mng2Nig 2Co 2)
and (F@2CrooMno2Vo2Alo2) were prepared using arc melting under higbrity argon
atmospherand purity of the pure elements were 98%, (Alfa Aesar USA). Utilizing this
technique the bulk ingot of single phase FCC (5&Cro2Mno2Nip2Caoo),
(Cuw 2Ago 2AU0 2P 2Pdh2) and BCC (FezCrooMng 2Vo LAl 2) HEAS were obtainedThe alloys
were further homogenized at00CC for 10 hourscastingto obtain large grains with chemical

homogeneity.

2.2 Preparation of HEAs-NPs

The HEA ingots have beenparted in smaller pieces utilizing diamond sgueheler, USA)
Further, these pieces were milledarcustom buil cryomill [47] at-160+10C.The single ball
cryomill (schematids shown inFigure 1) was cooled usingquid nitrogen(LN>). Thedetailed

designand workirg principle of cryomill ware reportedelsewhere[47]. The cryomill is a
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vibratory mill having a single ball with diametércmand vial9.5 cmwith volume of250 cc
Thus,ball amplitude 2 mnwas maintained through milling usiigngsten carbide (WC) ball
vial. The milling chanberwascontinuously purgedsing argor(Ar) gasto protectthe powder
from oxidation during millingAfter six hoursof cryomilling, the HEAsNPswerecollectedfor

characterization.

2.3. Characterization of HEA-NPs

The Xray diffractometer (PanalyticalXPertake PANalytical)wasused with ClKa radiation
(I =1.54056 nm}o studythe phasgin the bulk as well as cryanilled powder The annealed
strain freeSi powder was used to determine instrumental broadenfog crystallite size
measurementhe small quantityof nanocrystallingpowderwasdispersed in ultrapumaethanol
(CHsOH) using sonication The few drops of the prepared solutionwas placed over carbon
coatedcopper (Cu)grid and dried10 hoursprior to TEM measuremest The transmission
electron microscope (FEI, Technai, 2AJT- 20, 200 kv, Netherlandy has been used to size
analysis The surface glsmon (characteristics phenaomoa of NPs)characteristicsvas carried
out using UMvisible spectroscopy (Thermo scientifidK). The composition ofhe as casand
cryomill powdes were estimate using electron probemicro analyzer(EPMA- JXA-8230;
JEOL, Japan. The quantitativeanalyss were performedat 25 kV usingfour types of Xray
detectorsiithium fluoride (LiFH) crystalsLayered dispersion element (EI) Pentaerythritol

(PET), Thalliumacid phthalatéTAP)

3. Results
3.1 X-ray diffraction analysis



The formation of single phase HEANPs has been analyzed using-day diffraction (XRD),
analyses as shown in Figure 2(a-c). The as cast and homogenized alloys,
Fey 2Cro.2Mng 2Nig 2Cp 2 (Cantor dloy[48]) and (Cu 2Agdo.2AUo 2Pt 2Pt 2) aresingle phase FCC
(face centered cubigyhereasFe 2Cro 2Mno 2V .2Al o 2alloyis a single phase BCC (body centered
cubic). The phaseformation has alsteeninvestigaed after cryomilling ofthe HEAs ingot
(bulk). It has been observelddt there is no phase changehieHEAs -NPspostcryomilling. As
compared taheingots, XRD patters of the nanocrystalline powder show the broadening of the
peaks, shown as inset in eachseaThe broadening of the peaks primarily due to
nanocrystallinenature aswell as cold working (lattice straiaccumulatiop as shown each
Figure (a-c) inset Using Hall Williamsonand Schereanalysid49], the crystallite size as well
as lattice have been estibted The measurements areported inTable 1. However, there is
large difference in the crystallite size estimated using TEM and XRB.powder prepared by
cryomilling is expected to produce nanocrystals having irregular shape. In the present case, the
crystallite size of different HEA nanoparticles has been estimated using average value of the
K[50]. In addition, crystallite size has been estimated by direct measurement using TEM images.
However, theras large difference in the crystallite size estimated using TEM and XRD. There
are several reasons for this discrepancy.

1. The shape parameter the crystallite size can from crystallite to crystallite due to irregular

shape.
2. The HEAs subjected to intrinslattice distortion as well as different atomic sizes (all 5
elements), which is might be a reason of abnormal peak broadening causes large

difference in crystallite size compared to other techniq@é€s However, the high



entropy alloys have very distortedtiaes and different atom sizes, which are the reasons
to contribution in broadening.

3. In case of nanoparticles preparation by top down method, the broadening in the XRD
peaks contributed from other sources (dislocation density, stacking fault or defects

generated by cold work in the crystal system).

3.2Size and morphology

The size shape and morphology ifeHEAs-NPs have been studied usitngnsmission electron
microscopg TEM) to decipher the nature of the cryomilled HEA powdegures 3 (a-b) show
the typical bright field imageof Fey 2Cro 2Mno 2Nio 2C 2 alloys nanoparticleg=igure 3b is the
low magnification micrograph revealing distribution of the cryomilled HERs. The higher
magnification bright fieldFig. 3a) and drk field imaggFig. 3(c)) show the irregularly shaped
NPs having size ranging from 30 nm.Table 1 shows the average crystallite size measured
using TEM imagesFig. 3(e) shows bright field image of particles, wheodeylamine haveen
usedas capping agerturing dispersion fothe nanoparticle prioto the sample preparatidor
TEM investigationto estimat size of large number of the NPs 500 particles)Thehistogram
has been generated as showikrig. 3d. The average sizés found to bed° 1 nm. The selected
area diffracion patters (SADP) clearly revalsthe singlephase FCGHEAs. Detailed analysis
indicates that the SADP pattassimilar toXRD patterrs(Fig. 2(a)). Similarly, the bright feld
TEM image ofCu 2Ago 2AU0 2P 2Pth 2alloys nanoparticleis shownin Figure 4(a-b) indicating
the averagecrystallite size 9°5 nm (distributionis shown in Figure 4d).The XRD and

SADP(Figure 4(e)) indicate that this is also single phase FCBe as casBCC HEA andthe



HEA-NPs has also been investigated using TEM and fourlaetsingle phasewith average

crystallitesize of nanoparticle® be6° 2 nmas shown ifrigure 5(a-e).

3.3 Compositional measurements

The compositions of ingot and cryomilled powder have been estimated using Electron Probe
Micro-Analyzer (EPMA) based Waveletig dispersive spectroscopy (WDS) and Energy
dispersive spectroscopy (EDSPhe qualitative WDS spectraas shown inFigure 6. The
gualitative analyses of the spectra clearly indicate that oxygen israplyrity present in the
sample ancclearly reveal theabsence of N. It is to be noted here the carbon arises from the

carbon tape as well as resins utilized for mounting the samples during EMPA analysis.

In addition, quantitative analyses of the composition of the ingot and powder have been carried
out usingePMA. The results are shownTable 2The analyses reveal the oxygen concentration
is low (varying between 1.98.3 to 1.170.2 atom% in the bulk alloy and 1254 to 0.340.4

atom% in the nano powder). It is evident, oxygen content in the powdenifcagtly lower

3.4 Surface plasmon resonance
The past groundbreaking research on biosensors for detection of single viruses, interaction

between different bianoleculeshowsthat metallic nanoparticlesehighly sensitiveo optical
method using SPR teolgue [51]. Therefore, he HEA -NPs containing multiple metallic
elementgould be a promising candidate tbedevices required plasmonic as well as magnetic
propertie§s2]. It is to be notedhat the nanoparticles show surface plasmon resongsier)
band and which is results of electronzollective oscillation[53]. The dielectric of the
surrounding mediunecan havanajor effect on peak position and intengt4. In addition, the

shape and size also affdbe peak positionAs size decreasghe SPRresonance band exhibit



blue shift (blue shift: peak shift to lower wavelengthdared shift: peak shift to higher
wavelength) Hence surface plasmon resonarmecursin nanostructuré materials the position

of the SPRpeaksaredebatable in the literaturdue tothe fact thapeaks positiosaffectedby
severalparametersndicating dielectric of surrounding, refractive index of solvent, shape, size
and distribution of nanoparticles et€he Cantor alloy (Fe2Cro2Mng2Nig2C2) NPs have
shown two SPR basdt| max =239, 293 nnmandCuy 2Ago 2AUo 2Pt 2Pt 2 alloy NPshave shown

two peak at279 and 284 nm. Similarly,Fe& 2Crp2Mnp 2Vo 2Al 02 NPsrevealedthe SPR band at

| max = 354 nmFigure 7(a). There is no literature availablen thesurface plasmon study of
HEAs-NPs. Hence, it is not possible to discuss the peak position f@&-NBs In addition, the
HEAs-NP dispersiogis measuredjuite stable in methanol as showrFigure 7(b) which might

be due to nanocrystallimatureand electrostatic stabilizati$5,56] of the NPs in methanol

4. Discussion

The results of the present investigation categorically shovwHBAs-NPscan be prepared using
cryomilling of the cast ingots which are relatively ductile and toughne3fiese NPgetain
crystals structuref thephassin thebulk ingot.The detailed TEM measurements reveal narrow
size distribution of HEANPs Further we shall explain the mechanisms of formation of
nanocrystalline HEA via cryomilling.

It is to be notedthat cryo-milling is a type of millingin which, powder particlesare
crushed/millecttemperature belod23K. It suppresses thecrystallization, dynamiccovery,
processes leading tefinement of the graiand formation of nanocrystalline materiahsshort
period of time Accordingly, it reduces the millingluration and hencesuppresss the

contaminatioror milling media debrifrom the millingtoolsand atmospher&hus, cryomilling
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takes advantage of the extremely low temperatbling temperatte 77 K) of the liquid
nitrogen(coolingmedia) as well as thoseelatedwith room temperaturieall milling. Cooling of
theball-vial andmilling powders is arfficientwayto increasehe fractumgprocessleadng to

a nanoegraired structures anearly grainrefinement. In addition, the powdeoarsening (cold
bond)andcoating (sticking}o the milling media can effectively be suppressed leading to more
efficient productoutcome likehigheryield andpowder particlesefinement.The milling with

argonatmospherand extremely low temperatureduce thexidationof the powder

Because the formation of nanoparticles using room temperature milling iseggery long

time of milling, it caneasily impart unavoidable contamination frahe milling tools[57]. In

caseof highly ductile andoughmaterials (HEA), it is required toe milledfor very long timeto

obtain nanoparticle via ball milling at room temperaturberefore,the contaminatios are
mixedto milling powderatomically anchenceit might alter the crystal structure as well multi
atomic precalculatedproportion.Therefore, the extremely low temperatdrgingcryomilling

helps in many way$5859]. In the following, we should discuss the various advantages of
cryomilling process, leading to forman of nanocrystalline.Table 3 shows mechanical
properties of the HEA alloys; i.e. FCC d=€r0.2Mng 2Nig 2Cop2and BCC Fg2Crp2Mng 2V 2Al o 2

[17, 53] . To the best of the aut h oA AUk Pl e dge,
is not aailable in the literature. ThEEAs phases exhibit high ductility and toughness even at
LNz temperature and thus making it difficult to suppress the deformation and accelerate the
fracturing process.

According to Fecht et al. grain refinemein& mechanicamilling processoccursin five stages

[40]: (i) flattening,(ii) cold welding,(iii) fracturing,(iv) equiaxed particles formatidollowed

by random welding andv) steady state particl®rmation.In theinitial stage, severe plastic
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deformation ieffectivelyappliad to theparticleswhich is leado the creatiorof theshear bands
due tolocalized severedeformation. Thedeformationgenerallyaccumulate high density of
localized dislocationtanglednetworks,resulting in theincrease of plastic straifurther, tle
second stage involves formation of sgiains separated by leangle grain boundaries. In the
third stage repeateddeformationof the particles createadditional shear bands with further
fracturing of the sheets of particles formed due to random cadttiwg In the last stage, a
steady state is reached between cold welding and fractihagefore thephenomenn of cold
welding is extensively observed during ball milling die ductile metallic materialincluding
HEAs. Thiscan bevigorously suppressiby reducing temperatueryomilling). Therefore, the
mechanical millingextremely low temperatucaneffectivelyshorten fivestage proceds three
stageprocessflattening of particles (sheet formation), fracturing of sheets and steady state nano
particle formationas shown irFigure8. It might be possible that the flattened powder particles
are slightly cold welded but that borstrengthof the cold weldss very low, which is easily
breakableduring further cryomilling. In addition, the low temgrature reducethe dynamic
recovery inHEAs [60,61], which can accelerée the fracturing of particledn addition, the
extremely low temperature reductie rate of oxidatiof62], which is beneficial to protect the
nanccrystals from oxidation during milling.

The formaion of HEAs by casting and pulverized them into nanoparticles by cryomiitige
easiest way to synthesized HEN®S whichis capable to prepare large scale nanomaterials.
The cryomilling is advantageousiue to short time of millingto form nanoparti@ds as it
vigorously reducedebris from milling tool§47,56,63]. Secondly, this process can be utilized to
prepare HEANPs in large quantityln order to estimatiomf the quantity of HEA NPs the

equation 1 has been uset¥,64].
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Percent Yield {Weight of nanoparticleotal weight of milling powderx100 (1)
Earlier study shows that the yield of the process is about 97% with onpBoximatelyof the
milled powder is lost due to coating on the ball and vials. The present crjévilhaving 250
cc vial and 150 cc ball camill maximum 25 gat a timd.e.iswith ball to powder ratio 0f40:1.
It requires 6 hours to synthesize NPs having Bse tharllO nm.Thus, it is possible tobtain
about 97 g HEANPdday. This amount is substantially large as compared to available green
synthesis techniques such wast chemical synthesigyulsed dischargerc dischargeplasma
induced chemical synthesis or even conierdl mechanical alloyingThe detailed literature
survey reveals that yield of the similar processdmmination or arc dressingduring
minerals beneficiation) is about 90% for industrial scales of production several tones. Hence the

yield is true for imustrial scale.

Conclusion
The present investigati@emonstratethe large scalpreparatiorof HEAs-NPssuccessfullyoy

cryomilling bulk high entropyalloy ingots In general, lhe following conclusioscan bemade

i) the cryomilling can prepafdEAs-NPs lesstharllO nm sizewith high yield

i) it allowsretainingequiatomic proportion of compositiaf HEAS.

i) Cryomillingimpartsnegligible contamination from millingpolsand atmosphere

iv) the bulk HEAs and nanoparticles HEAseretain their crystal structure aryomilling

v) large scale preparation of HEAPs can be achieved by cryomilling.
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Figure 2:X-ray diffraction patten of HEAs ingot along with nanoparticl€g) single phase FCC
(F&n 2Cro.2Mng 2Nio 2Cap2); (b) single phase FCC (GWwAgo.Auo Pl Pdh2); (€) single phase
BCC (F&2Cro2Mno2Vo2Alo2), Inset shown the broadening effect of (111) and (110) peaks of
FCC and BCC respectivelylhe intensity ratio peak ins@nage(a) 2.5 image inset (bR.1;
image inset (c2.
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Figure3: (a-b) TEM bright field image of HEAsNPs (Fg.2Cro2Mng 2Nip 2Cap); inset showed
selected area diffractior(c) dark filed mageof nanoparticles(d) distribution of HEANPS
(e)oright field image of nanoparticles stabilized using capping agentOleylamine

24



(d) Average Size =9 + 5 nm
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Figure4: (a-b) TEM bright field image of HEAsNPs Cuw 2Ago.2Auo 2Pt 2P h2); (¢) dark field
image of nanoparticsz(d) distribution of HEANPS; (c) sdected area diffraction pattern.
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Figure 5: (a-b) TEM bright field image of HEASNPs (F@2Cro 2Mno 2Vo2Al 0 2); (c) dark field
image of nanoparticleéd) size distribution of HEANPS (e)selected area diffractioraftern.
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