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 Abstract 
 

The application of ensemble predictive models has been an important research area in 

predicting medical diagnostics, engineering diagnostics, and other related smart devices and 

related technologies.  Most of the current predictive models are complex and not reliable 

despite numerous efforts in the past by the research community. The performance accuracy 

of the predictive models have not always been realised due to many factors such as 

complexity and class imbalance. Therefore there is a need to improve the predictive accuracy 

of current ensemble models and to enhance their applications and reliability and non-visual 

predictive tools.  

The research work presented in this thesis has adopted a pragmatic phased approach to 

propose and develop new ensemble models using multiple methods and validated the 

methods through rigorous testing and implementation in different phases. The first phase 

comprises of empirical investigations on standalone and ensemble algorithms that were 

carried out to ascertain their performance effects on complexity and simplicity of the 

classifiers.  The second phase comprises of an improved ensemble model based on the 

integration of Extended Kalman Filter (EKF), Radial Basis Function Network (RBFN) and 

AdaBoost algorithms. The third phase comprises of an extended model based on early stop 

concepts, AdaBoost algorithm, and statistical performance of the training samples to 

minimize overfitting performance of the proposed model. The fourth phase comprises of an 

enhanced analytical multivariate logistic regression predictive model developed to minimize 

the complexity and improve prediction accuracy of logistic regression model.  
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To facilitate the practical application of the proposed models; an ensemble non-invasive 

analytical tool is proposed and developed. The tool links the gap between theoretical 

concepts and practical application of theories to predict breast cancer survivability.  

The empirical findings suggested that: (1) increasing the complexity and topology of 

algorithms does not necessarily lead to a better algorithmic performance, (2) boosting by 

resampling performs slightly better than boosting by reweighting, (3) the prediction accuracy 

of the proposed ensemble EKF-RBFN-AdaBoost model performed better than several 

established ensemble models, (4) the proposed early stopped model converges faster and 

minimizes overfitting better compare with other models, (5) the proposed multivariate 

logistic regression concept minimizes the complexity models (6) the performance of the 

proposed analytical non-invasive tool performed comparatively better than many of the 

benchmark analytical tools used in predicting breast cancers and diabetics ailments.  

The research contributions to ensemble practice are: (1) the integration and development of 

EKF, RBFN and AdaBoost algorithms as an ensemble model, (2) the development and 

validation of ensemble model based on early stop concepts, AdaBoost,  and statistical 

concepts of the training samples, (3) the development and validation of predictive logistic 

regression model based on breast cancer, and (4) the development and validation of a non-

invasive breast cancer analytic tools based on the proposed and developed predictive models 

in this thesis.  

To validate prediction accuracy of ensemble models, in this thesis the proposed models were 

applied in modelling breast cancer survivability and diabetics’ diagnostic tasks. In comparison 

with other established models the simulation results of the models showed improved 

predictive accuracy.   
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The research outlines the benefits of the proposed models, whilst proposes new directions 

for future work that could further extend and improve the proposed models discussed in this 

thesis. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



5 | P a g e  
 

 

Dedication  
 

I dedicate this thesis to the memory of my beloved parents in gratitude. I also dedicate this 

work to my adored wife Catherine who encourage me to pursue my dreams and finish my 

dissertation and to my children Praise, Precious and Princess for their understanding. This 

dissertation is also dedicated to my senior brother Professor G.0 Adegoke for his active role 

in my life.  

 

 

 

 

 

 

 

 

 

 

 

 

 



6 | P a g e  
 

 

Acknowledgements 
 

I would like to express my sincere appreciation to my supervisors: Dr Daqing Chen, Dr Safia 

Barikzai, Professor Dilip Patel and Professor Ebad Banissi for their invaluable assistance and 

support throughout the research of this thesis.  

In addition, I am also very grateful to John Harper and Louise Thompson for their 

administrative support and advice during my research at the London South Bank University 

(LSBU). I am also grateful to Michael Damiani my Line Manager for his understanding and 

support during the programme. Thanks also to Patrice Seuwou and other colleagues at the 

LSBU for their support.  

The achievements of this thesis would not have been possible without the support and 

understanding of my wife, Catherine and my children: Praise, Precious and Princess during 

this study.  I would eternally be grateful to my senior brother Professor G.O Adegoke who 

took the mantle of parents, worked hard and gave me happy life.  

Above all I would forever be grateful to the Almighty God for His Love and Grace over my life 

and my family.  

 

 



7 | P a g e  
 

 

Declaration 
 

I hereby declare that I have produced this thesis and that it has not been submitted anywhere 

else for any previous award. I did not receive assistance or aids from any third parties, it was 

a self-sponsored research.  

The collaborative notions taken directly or indirectly from other sources have been indicated 

and clearly acknowledged. Some of the work derived from this thesis have been accepted and 

published:  

1. Adegoke, V., Banissi, E. & Barikzai, S., 2019. Improving Prediction Accuracy of Breast 

Cancer Survivability and Diabetes Diagnosis via RBF Networks trained with EKF models. 

International Journal of Computer Information Systems and Industrial Management 

Application, 11(2019), pp. 082-100. 

2. Seuwou, Patrice and Vincent F. Adegoke. "The Changing Global Landscape with Emerging 

Technologies and Their Implications for Smart Societies." Handbook of Research on 5G 

Networks and Advancements in Computing, Electronics, and Electrical Engineering, edited 

by Augustine O. Nwajana and Isibor Kennedy Ihianle, IGI Global, 2021, pp. 402-423. 

3. Adegoke, V., Chen, D., Banissi, E. & Barikzai, S., 2019. Enhancing Ensemble Prediction 

Accuracy of Breast Cancer Survivability and Diabetes Diagnostic Using Optimized EKF-

RBFN Trained Prototypes. In: Madureira A., Abraham A., Gandhi N., Silva C., Antunes 

M. (eds.) Proceedings of the Tenth International Conference on Soft Computing and 

Pattern Recognition (SoCPaR 2018) Advances in Intelligent Systems and Computing, 

vol. 942. Springer, Cham. https://doi.org/10.1007/978-3-030-17065-3_6 

https://doi.org/10.1007/978-3-030-17065-3_6


8 | P a g e  
 

 

4. Adegoke, V., Chen, D., Banissi, E., and Barikzai, S. "Prediction of breast cancer survivability 

using ensemble algorithms," IEEE 2017 International Conference on Smart Systems and 

Technologies (SST), 2017, pp. 223-231, doi: 10.1109/SST.2017.8188699. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



9 | P a g e  
 

 

Table of Contents 

Abstract...................................................................................................................................... 2 

Dedication .................................................................................................................................. 5 

Acknowledgements ................................................................................................................... 6 

Declaration ................................................................................................................................ 7 

Table of Contents ...................................................................................................................... 9 

List of Tables ............................................................................................................................ 15 

List of Figures ........................................................................................................................... 17 

List of Abbreviations and Acronyms ....................................................................................... 19 

Chapter 1: Introduction ........................................................................................................... 21 

1.1 Research Outline ...................................................................................................... 21 

1.2 Research Problem ..................................................................................................... 21 

1.2.1 Background of Ensemble Predictive Methods ................................................. 21 

1.2.2 Importance of Ensemble Predictive Methods .................................................. 22 

1.2.3 Research Problem and Gaps ............................................................................. 23 

1.3 Research Aims and Objectives ................................................................................. 24 

1.4 Research Methodology ............................................................................................ 26 

1.5 Original Contributions to Knowledge ...................................................................... 27 

1.6 Thesis Structure ........................................................................................................ 30 

1.7 Chapter Summary ..................................................................................................... 31 

Chapter 2: Literature Review and Gaps in Knowledge .......................................................... 32 



10 | P a g e  
 

 

 Introduction ................................................................................................................... 32 

 Ensemble Models .......................................................................................................... 33 

2.2.1 Heterogeneous Models .......................................................................................... 34 

2.2.2 Homogeneous Models ............................................................................................ 36 

2.2.3 Potentials and Drawbacks of Ensemble Models ..................................................... 39 

2.2.4 Benefits and Potentials of Ensemble Models ........................................................ 40 

2.2.5 Problems and Limitations of Ensemble Models .................................................... 40 

 Loss and Cost Functions ................................................................................................ 42 

 Historical Timeline of Ensemble Models ...................................................................... 43 

 Radial Basis Function Network (RBFN) and Extended Kalman Filter (EKF) ................. 51 

 Knowledge Gaps and the Need for Extending Ensemble AdaBoost Method ............. 52 

 Evaluation Criteria ......................................................................................................... 54 

2.7.1 ROC and AUC Curve Metrics ................................................................................... 56 

2.7.2 Other Evaluation Metrics ....................................................................................... 57 

 Class Imbalance in Ensemble Modelling ....................................................................... 58 

 Diversity and Ensemble Classification .......................................................................... 59 

2.9.1 Diversity Measures ................................................................................................. 61 

2.9.2 Generalised Diversity .............................................................................................. 63 

 Ensemble Classifier Outputs ....................................................................................... 63 

2.10.1 Combination Methods .......................................................................................... 64 



11 | P a g e  
 

 

2.10 Early Stopping Models .............................................................................................. 66 

2.10.1 Early Stopping Strategy ..................................................................................... 66 

2.10.2 L1 and L2 Regularization Methods ................................................................... 68 

 Chapter Summary ........................................................................................................ 69 

Chapter 3: Boosting Methods, Standalone and Ensemble Models ....................................... 71 

 Introduction ................................................................................................................... 71 

 AdaBoost and Boosting Methods ................................................................................. 71 

3.2.1 Boosting by Reweighting ........................................................................................ 73 

3.2.2 Boosting by Resampling ......................................................................................... 73 

 AdaBoost and Boosting Based Classification................................................................ 74 

3.3.1 Analysis of AdaBoost .............................................................................................. 74 

3.3.2 Margin Explanations of Booting ............................................................................. 78 

3.3.3 Statistical View of Boosting .................................................................................... 80 

 Empirical Investigation on Algorithmic Methods. ........................................................ 81 

3.4.1 Experimental Investigation on Boosting Implementation Methods .................... 81 

3.4.2 Experimental Investigations: Ensemble Methods ................................................. 84 

3.4.3 Results and Discussion ............................................................................................ 87 

 Experimental Investigation: Standalone and Ensemble Models ................................. 94 

3.5.1 Results and Discussion ............................................................................................ 95 

 Chapter Summary .......................................................................................................... 97 



12 | P a g e  
 

 

Chapter 4: EKF-RBFN-ADA Ensemble Models ........................................................................ 98 

 Introduction ................................................................................................................... 98 

 Related Cancer and Diabetic Models ............................................................................ 99 

4.2.1 Breast Cancer Survivability Models ..................................................................... 101 

4.2.2 Diabetes Diagnostic Models ................................................................................. 102 

 Ensemble Modelling .................................................................................................... 103 

4.3.1 Ensemble Model Formulation .............................................................................. 103 

 Hybrid EKF-RBFN-AdaBoost Models ........................................................................... 107 

4.4.1 RBFN Models ......................................................................................................... 107 

4.4.2 Kalman Filter Models ............................................................................................ 109 

4.4.3 Optimization of RBFN using Kalman Filter ........................................................... 112 

4.4.4 Analytical Representation of RBFN ...................................................................... 113 

 Proposed EKF-RBFN-Ada Model Description .............................................................. 115 

 Simulation Results and Discussion .............................................................................. 119 

 Chapter Summary ........................................................................................................ 126 

Chapter 5: Early Stopping Approach and Multivariate Logistic Regression Models .......... 128 

 Introduction ................................................................................................................. 128 

 Early Stopping Model .................................................................................................. 129 

5.2.1 Model Description ................................................................................................ 130 

5.2.2 Simulation Description and Results ..................................................................... 137 



13 | P a g e  
 

 

 Multivariable Logistic Regression Model ................................................................... 139 

5.3.1 Simulation Description and Results ..................................................................... 140 

 Non-Invasive Predictive Analytic Tools ...................................................................... 147 

5.4.1 Predictive Analytic Tools ...................................................................................... 148 

5.4.2 System design: Breast Cancer and Diabetic Diagnostic Tools ............................. 149 

5.4.3 Simulation Results and Discussion ....................................................................... 152 

 Chapter Summary ........................................................................................................ 154 

Chapter 6: Discussion ............................................................................................................ 156 

 Introduction ................................................................................................................. 156 

 Overview of the Models .............................................................................................. 158 

6.2.1 Benefits and Limitation of Ensemble Models ...................................................... 159 

6.2.2 Non Estimation Theory Based Models ................................................................. 159 

6.2.3 Estimation Theory Based Models ......................................................................... 161 

 Estimation Theory Based Versus Non Estimation Theory Based Models ................. 163 

 Chapter Summary ........................................................................................................ 163 

Chapter 7: Conclusions and Future Work ............................................................................. 164 

 Introduction ................................................................................................................. 164 

 Research Novelties, Contributions and Achievements .............................................. 164 

 Future Research and Recommendations .................................................................... 166 

 Conclusion .................................................................................................................... 167 



14 | P a g e  
 

 

Appendix A – Time Line Comparison and Summary of Some of AdaBoost variants ............. 169 

Table A.1 Comparison Summary of Common AdaBoost Variants and Related Boosting 

Algorithms .......................................................................................................................... 169 

References ............................................................................................................................. 171 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



15 | P a g e  
 

 

List of Tables 

Table 2.1 Common Loss Functions with their Derivatives [Adapted from (Arora & Hazan, 

2016)] ....................................................................................................................................... 43 

Table 2.2 Taxonomy of Ensemble Combination Methods and their Characteristics (Jain, et 

al., 2000) .................................................................................................................................. 49 

Table 2.3: Confusion Matrix for a Binary Classifier. ................................................................. 54 

Table 2.4: A 2 × 2 Relationship Table with Probabilities.......................................................... 61 

Table 2.5: Summary of the 10 Diversity measures .................................................................. 62 

Table 3.1: Experimental Datasets. ........................................................................................... 86 

Table 3.2 Different resampling and reweighting strategies .................................................... 88 

Table 3.3: Empirical Results for Boosting by Reweighting and Boosting by Resampling for all 

Model Types. ............................................................................................................................ 90 

Table 3.4: Summary Comparison of Reweighting and Resampling Methods. ........................ 93 

Table 3.5 Performance Comparison among the Committee of Classifiers ............................. 95 

Table 3.6 Performance Comparison among Standalone of Classifiers. ................................... 96 

Table 4.1: Empirical Comparison: Based on Breast Cancer Survivability Sample. ................ 120 

Table 4.2: Empirical Comparison Based on Diabetes Diagnosis Sample ............................... 122 

Table 4.3: Performance Comparison Based on Smoker Absenteeism Workers ................... 123 

Table 4.4: Performance Comparison Based on Clients Credit Card Defaults ........................ 124 

Table 5.1: Diabetics Dataset Summary .................................................................................. 134 

Table 5.2: Comparion of LS-Boost Results with other Early Stopping models ...................... 139 

Table 5.3: Cancer Dataset Summary ...................................................................................... 142 

Table 5.4: Multivariate Logistic Regression Model to Predict Breast Cancer ....................... 144 



16 | P a g e  
 

 

Table 5.5: Statistical Significance of Cancer-Dataset Parameters used in Predicting Cancer 

Prognosis ................................................................................................................................ 145 

Table 5.6: Training Size and Corresponding Classification Error ........................................... 146 

Table 5.7: Some Results of the Evaluation Tool Using Breast Cancer Samples ..................... 152 

Table 5.8: Some Results of the Evaluation Tool Using Diabetes Diagnosis Samples ............. 153 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



17 | P a g e  
 

 

List of Figures 
 

Figure 2-1 Combining Classifiers Trained on Subsets of Samples (Polikar, 2006). .................. 34 

Figure 2-2: Architecture of Stacked Generalization [adapted from (Freund & Schapire, 2014; 

Zhou, 2012)] ............................................................................................................................. 38 

Figure 2-3 Timeline of Extended AdaBoost Variant [Adapted from Several Review Sources] 44 

Figure 2-4: Taxonomy of Machine Learning Techniques Based on their Learning Style 

(Patrick, 2017). ......................................................................................................................... 50 

Figure 2-5: The ROC and the AUC (adapted from: (MBASkills., 2021)]. .................................. 57 

Figure 2-6: Taxonomy of Ensemble Techniques for Imbalance Problems (Galar, et al., 2012).

.................................................................................................................................................. 59 

Figure 2-7: A Multiple Classifier Technique [Adapted from (Polikar, 2006)]. ......................... 65 

Figure 2-8: Overfitting Point and Early Stopping – Validation and Training [Adapted from 

(Igareta, 2021)]. ....................................................................................................................... 67 

Figure 3-1: AdaBoost as an ensemble of Neural Network algorithm with activation functions 

[Adapted from (Lee, et al., 2018)]. .......................................................................................... 73 

Figure 3-2: AdaBoost Algorithm Based on Resampling Implementation Method [Adapted 

from (Freund & Schapire, 2014; Freund & Schapire, 1997) ] .................................................. 75 

Figure 3-3: Illustration of the 10-Fold Cross Validation Technique (Delen, et al., 2005). ....... 84 

Figure 3-4: Classification Comparisons - Standalone Algorithms and Ensemble Classifiers. .. 91 

Figure 3-5: Empirical Comparison of Boosting Implementation Methods. ............................. 92 

Figure 4-1: Radial Basis Function Network (Galar & Kumar, 2017). ...................................... 108 

Figure 4-2: Kalman Filter Recursive Algorithm – A Sequential Ensemble Technique ........... 111 



18 | P a g e  
 

 

Figure 4-3:  Hybrid Structure of EKF-RBFN-AdaBoost Model for Predicting Breast Cancer 

Survivability and Diabetic Diagnostics. .................................................................................. 117 

Figure 4-4: Framework of the Proposed Hybrid EKF-RBFN-AdaBoost Ensemble Model. ..... 118 

Figure 4-5: Three-layer Feed-Forward RBF Network [Adapted from (Galar & Kumar, 2017)].

................................................................................................................................................ 118 

Figure 4-6: Performance of Ensemble Models on Breast Cancer and Diabetes Diagnostic 

Samples .................................................................................................................................. 125 

Figure 5-1 Early Stopping Algorithm Flowchart ..................................................................... 132 

Figure 5-2: Density Plots of the Data. .................................................................................... 135 

Figure 5-3: Scatter Plot Matrix of the Data ............................................................................ 136 

Figure 5-4: LS-Boost Learning Curve ...................................................................................... 138 

Figure 5-5: LS-Boost Loss for each Epoch based on Pima-Indian-diabetics samples ............ 138 

Figure 5-6: Density Plots of the Data: Breast Cancer Survivability. ....................................... 143 

Figure 5-7 Matrix Scatter Plot of the Data: Breast Cancer Survivability................................ 143 

Figure 5-8 Percentage Plot of Training Data and Classification Error. .................................. 147 

Figure 5-9: Simplified Guidelines for the Selection of Appropriate Predictive Model .......... 150 

Figure 5-10:  Use Case for Predicting Breast Cancer Survivability and Diabetes’ Diagnostics

................................................................................................................................................ 151 

 

 

 

 

 



19 | P a g e  
 

 

List of Abbreviations and Acronyms 
 

AUC Area Under Curve 

BI Business Intelligent 

BBM Boost by Majority 

EKF Extended Kalman filter 

EKF-RBFN RBFN models trained with EKF 

EKF-RBFN-AdaBoost Ensembles of RBFN models trained with EKF 

FNR False Negative Rate 

FPR False Positive Rate 

GA Genetic Algorithm 

GA-SVM Hybrid of GA and SVM 

GBM Gradient Boosting Machines 

GD Gradient Descent 

GD-RBFN RBFN models trained with GD 

GD-RBFN-AdaBoost Ensembles of RBFN models trained with GD 

GUI Graphical User Interface 

IDE Integrated Development Environment 

KF Kalman Filter 

KL Kullback-Leibler Divergence 

MAE  Mean Absolute Error 

LAS London Ambulance Service, NHS Trust 

LQE Linear Quadratic Estimate 

MATLAB Matrix Laboratory 

MART Multiple Additive Regression Tree 

MLPNN Multi-Layer Perceptron Neural Networks 

MLP Multi-Layer Perceptron 



20 | P a g e  
 

 

NN Neural Networks 

PSO Particle Swarm Optimization 

PRC Precision Recall curves 

RBFN Radial Basis Function Network 

RMSLE Root Mean Squared Log Error 

ROC  Receiver Operator Characteristic curve 

SVM Support Vector Machine 

TNR True Negative Rate 

UCI UC Irvine Machine Learning Repository 

UKF Unscented Kalman Filter 

UPF Unscented Particle Filter 

TPR True Positive Rate 

WHO World Health Organization 

VAR Vector Auto Regression 

 

 

 

 

 

 

 



21 | P a g e  
 

 

Chapter 1: Introduction 

1.1 Research Outline  

This chapter introduces the proposed research and outlines the research background by 

providing an introduction to the research study undertaken. The study examines the current 

problems of ensemble models and methods to enhance its prediction and performance 

accuracy, a topic that is relatively unexplored in the literature. 

The rest of this chapter is organised as follows. 1.2 provides discussion on background to 

ensemble prediction, importance of ensemble concepts and the research problem.  Section 

1.3 states the research aims, objectives and the research hypothesis. The research approach 

and methodology are presented in Section 1.4. Original contributions to knowledge and 

publications resulting from this thesis are presented in Section 1.5. The structure of the thesis 

is presented and discussed in Section 1.6. Finally, Section 1.7 concludes the chapter with a 

summary. 

1.2 Research Problem  

1.2.1 Background of Ensemble Predictive Methods   

The knowledge of predictive technology is not new, Cogburn states that the ancient Chinese 

farmers created the first predictive solar calendar to forecast climate changes (Cogburn, 

2019). Likewise, in 1940s the British intelligence used advanced predictive techniques 

(Gladwin, 1997) to break the German Machine Ciphers in World War II. The emergence of big 

data, AI and machine learning technologies has triggered the need to identify trends, and to 

accurately predict potential problems.  At the same time it has also increased the reliance on 

AIs and predictive technology to carry out tasks at a greater efficiency and accuracy. This has 

enabled researchers to understand, to monitor and to optimize predictive processes and 
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efficient linguistic decision making for robotic route learning (He, et al., 2014).  The complexity 

of devices that depend on ensemble predictive methods and simulation models in monitoring 

life-dependent and safety-critical systems in the medical and industrial sectors is increasing 

and becoming more demanding (Ishak & Tokhi, 2017). Its predictive accuracy and reliability 

can no longer be ignored. Therefore, there is a need for improved ensemble methods in order 

to maximize the potentials of business intelligence and analytics information that can be 

derived from the Big Data using contemporary data mining methods. Doing this will facilitate 

the development of diagnostic tools that depends on effective performance of the predictive 

ensemble methods.   

1.2.2 Importance of Ensemble Predictive Methods 

Failure of predictive methods and their poor performances that result in fatal accidents and 

misdiagnosis are common problems in industries and health sectors (Zhang, et al., 2019; 

Alharthi, 2018).  The way algorithms are designed and trained plays major roles in machine 

learning predictive accuracy (Walker, et al., 2020; Wang, 2008) and their reliability. Some of 

the numerous factors affecting the performance of ensemble methods among others are the 

inter-classifiers relationship, weight training and updates, combining methods, diversity 

generator and the ensemble size (Kuncheva, 2014) of the members. However, many of these 

have not been fully considered in ensemble development in particular AdaBoost an ensemble 

technique.   

The AdaBoost (that is Adaptive Boosting) algorithm (Freund & Schapire, 1977) is a statistical 

classification meta-algorithm that be used in combination with other learning algorithms to 

boost their predictive performance.  
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AdaBoost has many potential applications and has been applied in many areas such as text 

classification, natural language processing, drug discovery and computational biology (Fan, et 

al., 2015) vision and object recognition (Viola & Jones, 2004; Lee, et al., 2013),  medical 

diagnosis (Abuhasel, et al., 2015) and industrial chemical fault diagnosis (Karimi & Jazayeri-

Rad, 2014), however with predictive accuracy issues and other performance challenges.   

AdaBoost like other ensemble algorithms is primarily based on iterative training of the base 

classifiers on the samples.   

However, recent studies show that their predictive outputs are currently inconsistent (Jeon, 

et al., 2019; Sun, et al., 2006) due to weaknesses such that its predictive accuracy is not as it 

should be.  

Therefore, there is a need to develop improved models that meet the expected predictive 

output and are acceptable to the end users and other stakeholders.  

1.2.3 Research Problem and Gaps  

AdaBoost has two implementation methods, these are boosting by sampling and boosting by 

reweighting.  Souza and Matwin (2012), argues that it is unclear which of these two methods 

performs better (Souza & Matwin, 2012; Seiffert, et al., 2008) therefore there is a need to find 

out which of the methods performs better and enhance the predictive accuracy of the 

algorithms (Wang, 2008; Freund & Schapire, 2014). This will allow to determine which 

implementation method could improve overall predictive performance of the AdaBoost 

technique. This could also provide performance breakdown of the implementation methods 

and further direction on which of the two methods could be enhanced to increase predictive 

performance of AdaBoost technique. Even though several standalone algorithms have proved 

to be impressive in many applications. However, study shows that there are some situations 
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where standalone methods might not be able to produce the required predictive results (Lee, 

2018) when handling complicated tasks and applications that predictive accuracy is essential. 

The advantage of predictive ensemble methods is essential for predictive tasks that requires 

high likelihoods accuracy such as in non-invasive breast cancer analytical tool as addressed in 

this study.  

EKF (Lima, et al., 2017; Chernodub, 2014), RBFN (Wang, et al., 2006; Oliveira, 2012) and 

AdaBoost (Freund & Schapire, 2014) models have been used extensively in predictive areas 

and classification tasks with promising results.  However, reviews show that no research has 

been conducted to bridge the three algorithms together as an ensemble model to address 

current:  predictive accuracy, class imbalance and overfitting problems of ensemble methods.  

 Therefore, one of the goals of this study  is to investigate the prediction performance of 

training RBFN (Wang, 2017; Zhang & Yang, 2013) with EKF (Kamath, et al., 2011; Krok, 2013), 

then apply the trained networks model as a base classifier with ensemble AdaBoost (Lin & 

Wang, 2011; Karimi & Jazayeri-Rad, 2014) to improve the predictive performance of the 

model.  Doing this would enable AdaBoost to generate and combine several weak classifiers 

that produces a stronger predictive output. Additionally, the Extended Kalman Filter (EKF) 

would serve as an optimizing agent to train the Radial Basis Function Network (RBFN) 

parameters. 

1.3 Research Aims and Objectives  

Reviews show that, contemporary developments in predictive technology coupled with 

advanced language processing and deeper artificial intelligence can help to forecast and 

mitigate infectious diseases such as Covid-19 outbreak, flu epidemic (GT, 2020; Imhoff & 

Lamberty, 2020). Therefore, application of predictive technology could promote smart living 
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society (Seuwou & Adegoke, 2021) and supplement environmental sustainability. However, 

relatively few studies have been focused on enhancing ensemble predictive accuracy and 

non-invasive analytical diagnostic tools that can enhance the adoption of the techniques.  

Therefore, in this research the focus is to investigate, propose extended ensemble models to 

enhance the performance accuracy of ensemble methods.  The specific objectives of this 

study are: 

1. Objective 1 - To review and carry out empirical investigations in comparing performance 

of boosting methods, predictive performance of ensemble and standalone predictive 

techniques. The investigation outcome will assist in understanding the current 

performance issues of predictive methods and possible ways of addressing them. It will 

also provide answer to the following hypothesis:  

Hypothesis 1 – Boosting implementation method of AdaBoost: boosting by reweighting 

or boosting by resampling is positively connected to the predictive accuracy of the 

technique. 

Hypothesis 2 – The predictive performance of ensemble AdaBoost method is positively 

linked to the complexity and topology of the chosen classifier.  

2. Objective 2 - To propose and develop a new ensemble model by integrating Extended 

Kalman Filter (EKF) in training Radial Basis Function Networks (RBFN) to optimize the 

parameters of the network. Then apply the trained network prototypes (EKF- RBFN) as a 

base classifier with AdaBoost as a meta-model to enhance stronger predictions.  

3. Objective 3 To propose and develop an ensemble model based on early stopping concept, 

and statistics data of the training samples namely the mean, standard deviation and 
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thresholds in order to minimise generalization error and to avoid overtraining that may 

result in overfitting. 

4. Objective 4 To propose and develop ensemble model based on the concepts of ensemble 

multivariate logistic regression that best predicts the binary response variable 𝑌 for the 

values of multiple 𝑋 variables of the predictors. 

5. Objective 5 To develop analytical tools that combine the theoretical concepts and 

practical application of the proposed models as non-invasive breast cancer survivability 

and dietetics diagnostic predictive devices.   

6. Objective 6 To validate the performance of the proposed models using benchmark 

samples and to suggest recommendations on best approach for future work. 

1.4 Research Methodology  

For the purpose of accomplishing the above stated objectives, the research was divided into 

four phases and conducted accordingly as summarised below: 

1. Phase One -The main purpose of this phase is to achieve Objective 1 and are in two stages. 

Firstly, to resolve boosting methods performance discrepancies in the literature. 

Secondly, to compare performance efficiencies of ensemble and standalone models in 

order to provide answers to Hypothesis 1 and Hypothesis 2. Doing this will enable better 

understanding of the boosting methods, standalone and ensemble techniques and how 

to improve their performance. 

2. Phase Two - The emphasis of this phase is to improve the prediction accuracy of AdaBoost 

as an ensemble model by integrating EKF, RBFN and ensemble AdaBoost as meta-classifier 

to achieve the purpose of Objective 2 of this study.  



27 | P a g e  
 

 

3. Phase Three - The focus of this phase is to realise Objective 3, to improve the performance 

of AdaBoost by applying early stopping notions and the statistical performance of the 

training sample to overcome overfitting and generalization issues. 

4. Phase Four – To achieve Objective 4, this phase is implemented in two parts, the first part 

is to identify breast cancer prognostic feature and develop a logistic regression model 

using multivariate features of the samples. The second part of this phase is to develop a 

visual non-invasive breast cancer analytical tool in order to accomplish Objective 5.  The 

tool makes exclusive use of the proposed model to show how the proposed models can 

be translated into practice to facilitate the application and evaluation of the proposed 

models and focuses on the empirical testing and analysis of the proposed models and 

assessment of the analytical tool.  

To accomplish Objective 6, at each phase of the study the performance of the proposed 

models were tested and validated using benchmark samples. To accomplish Objective 7 

recommendations and suggestions for future research were also provided   

1.5 Original Contributions to Knowledge 

The key contributions of this work are:  

I. Extended 3-in-1 ensemble predictive model. This model integrates EKF- RBFN 

prototypes and ensemble AdaBoost as a meta-classifier to improve the 

performance of ensemble models.  

II. Extended model based on early stopping concepts. This model using the 

statistical performance and thresholds of the training models to minimize 

overfitting problem in ensemble models.  
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III. Development of Logistic regression approach model. The model was based on 

multivariate concept to develop a predictive breast cancer logistic model.  

IV. Development of analytical breast cancer and diabetics diagnostic tools. Using the 

concepts of developed ensemble models developed in this thesis. The developed 

tool is cost-effective, non-invasive that could be used to predict the breast cancer 

and diabetics diagnostics.  

V. Hypothesis and Boosting Methods.  The study has confirmed that the 

complication and the topology (the computational geometry and computational 

complexity) of algorithms does not necessarily improve the performance accuracy 

of algorithmic methods. The study further indicates that implementing AdaBoost 

by resampling method performs slightly better than implementing it by 

reweighting method. 

In addition, the proposed models have been tested and validated. The prediction 

performances were better than some of the benchmark models. The study has achieved the 

objective of developing ensemble models that improved the prediction accuracy of existing 

models.   

Publications Resulting from the Thesis  

The research outcomes to date have been published in peer reviewed conferences, journals 

and book chapters, see below:  

Journal Publications 

1. Adegoke, V., Banissi, E. & Barikzai, S., 2019. Improving Prediction Accuracy of Breast 

Cancer Survivability and Diabetes Diagnosis via RBF Networks trained with EKF models. 
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International Journal of Computer Information Systems and Industrial Management 

Application, 11(2019), pp. 082-100. 

Book Chapters  

1. Seuwou, Patrice and Vincent F. Adegoke. "The Changing Global Landscape with Emerging 

Technologies and Their Implications for Smart Societies." Handbook of Research on 5G 

Networks and Advancements in Computing, Electronics, and Electrical Engineering, edited 

by Augustine O. Nwajana and Isibor Kennedy Ihianle, IGI Global, 2021, pp. 402-423. 

2. Adegoke, V., Chen, D., Banissi, E. & Barikzai, S., 2019. -Enhancing Ensemble Prediction 

Accuracy of Breast Cancer Survivability and Diabetes Diagnostic Using Optimized EKF-

RBFN Trained Prototypes. In: Madureira A., Abraham A., Gandhi N., Silva  C., Antunes 

M. (eds.) Proceedings of the Tenth International Conference on Soft Computing and 

Pattern Recognition (SoCPaR 2018) Advances in Intelligent Systems and Computing, 

vol. 942. Springer, Cham. https://doi.org/10.1007/978-3-030-17065-3_6 

  International Conference Publications 

1. Adegoke, V., Chen, D., Banissi, E., and Barikzai, S. "Prediction of breast cancer survivability 

using ensemble algorithms," IEEE 2017 International Conference on Smart Systems and 

Technologies (SST), 2017, pp. 223-231, doi: 10.1109/SST.2017.8188699. 

2. Adegoke, V., Chen, D., Banissi, E. & Barikzai, S., 2017. IEEE Predictive Ensemble Modelling: 

An Experimental Comparison of Boosting Implementation Methods. European Modelling 

Symposium on Mathematical modelling and Computer simulation, Manchester, UK. 20-22 

November 2017. 

https://doi.org/10.1007/978-3-030-17065-3_6
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The Google scholar url for above publications is 

https://scholar.google.com/citations?hl=en&user=Igh_IGQAAAAJ  

1.6 Thesis Structure 

In order to achieve the aims and objectives of the research, this thesis comprises of seven 

chapters which is outlined here. 

Chapter 1 provides a brief introduction to the background, rationale and objectives of the 

study. The chapter also outlines the contributions, publications resulting from the research 

and structure of this thesis.   

Chapter 2, presents a generic and critical literature of some of the relevant research work 

that are related to ensemble modelling. It also states the research hypothesis, in provides and 

identify reasonable research gaps in the literature.   

Chapter 3 focuses on empirical investigations: ensemble boosting methods, standalone and 

ensemble models. It also validates and provide answers to Hypothesis 1 and Hypothesis 2 

stated in chapter 2 of this thesis.  

Chapter 4, proposes a new algorithm framework named LSB-EKF-RBFN-AdaBoost in order to 

enhance the predictive performance of ensemble model. In the framework, EKF is applied to 

train and optimize the training parameters of Radial Basis Function Networks (RBFN) to 

generate optimized EKF-RBFN prototypes.  The optimized prototypes are then applied as base 

classifiers with AdaBoost as an ensemble meta-algorithm to train and combined prediction as 

final output. The simulation results are presented and discussed. 

Chapter 5 explores how to enhance ensemble prediction accuracy, and proposes two 

algorithms that were based on early stopping and logistic regression concepts respectively. 

https://scholar.google.com/citations?hl=en&user=Igh_IGQAAAAJ


31 | P a g e  
 

 

The research also proposes a non-invasive analytic model for the predicting of breast cancer 

in patients. The framework was integrated with the predictive models developed in this thesis 

using benchmarked Wisconsin breast cancer survivability datasets.  

Chapter 6 presents the discussion and conclusion of the thesis. It also provides some of the 

main benefits, limitations of the proposed models, methods presented in this thesis, and 

recommendations when to apply the models.  

Chapter 7 presents the summary of the research and   concluding remarks of the results of 

the models presented in this thesis, and finally propose prospective directions for future 

research.                                                                                                                               

1.7 Chapter Summary 

The discussion in this chapter has elucidated the background of this thesis.  The aim of this 

study was to improve the performance output of predictive ensemble techniques by 

developing new ensemble models and non-invasive visual diagnostic tool based on the 

developed models. This chapter has provided an introduction to the research problems and 

gaps. It further establish the focus of this study.  The research methodology and research 

contributions of the study in various phases have been briefly discussed and analysed. The 

resulting publications from the research have been provided.   Finally, the structure and brief 

description of all the chapters of this thesis have also discussed and presented.  The next 

chapter will provide literature review on ensemble techniques and related technologies in 

order to identify research gaps. 
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Chapter 2: Literature Review and Gaps in Knowledge 
 

 Introduction 
 

The main purpose of ensemble algorithms is to integrate and combine the predictions of 

multiple trained models in order to obtain a highly accurate classification and prediction rules.  

The final prediction is based on the combinational output of a set of participating learners 

instead of relying on a single classifier.  There are two paradigms of ensemble methods, these 

are sequential ensemble methods where the base learners are generated sequentially and 

parallel ensemble methods where the base learners are generated in parallel.    

This is because ensemble model combines multiple (mainly diverse) models together to 

deliver more stable and predict better than a single model. The concept is synonymous to 

seeking the opinion of experts before taking a final decision in responding or resolving a 

problem at hand (Polikar, 2006). 

Ensemble methods create multiple models then combine the decision boundaries of the 

participating members or committees to produce more accurate and improved predictive 

results. 

Despite the fact that there are numerous interesting research works in ensemble methods, 

reviews show that many of the variants of ensemble methods are still limited in performance 

efficiency, prediction accuracy and computational overhead requirements than expected due 

to the complexity (time and space) and topology of the algorithms.  

The complexity of an algorithm is a measure of amount of time, and memory or space 

describing the efficiency of the algorithm in terms of the amount of data or size the algorithm 

must process (Jimenez, 1998; Gao & Xu, 2014). Complexity efficiency can be measured in 
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terms of time and space. Time complexity is a function of the amount of time an algorithm 

takes in terms of the amount of input to the algorithm. Space complexity is a function of the 

amount of memory an algorithm takes in terms of the amount of input to the algorithm.  

Hence, one of the main objectives of this research is to develop simple and non-complex 

ensemble models with few nodes that can perform more effectively than current methods.   

 

Due to the complexities and task requirements in ensemble predictions, researchers have 

come up with a variety of models and theories to explain their performance and adoption. 

Therefore, it is important to purposefully study them, their theoretical concepts and 

implications.  This would provide sound knowledge of current methods, their limitations, and 

problems and how it could be improved for better predictive performance.  

Therefore, reducing the current issues such as overfitting, complexity and improving 

prediction performance of current models. 

The structure of this chapter is as follows. Section 2.2 provides a review of current state of 

ensemble models. It also explores the limitations and potential benefits of ensemble models.  

Section 2.3 is a brief chronological timeline of ensemble models. Section 2.4 provides a review 

of the concepts and theories underlying RFFN and EKF techniques.  Section 2.5 discusses 

identified gaps in the literature. Section 2.6 provides the evaluation criteria of ensemble 

models. Section 2.7 provides ensemble class imbalance. Section 2.8 discusses ensemble 

diversity. Section 2.9 presents ensemble classifier outputs and Section 2.10 provides 

summary of the chapter. 

 Ensemble Models  

The primary purpose of ensemble methods in classification tasks are to improve the 

prediction accuracy of models by producing a stronger output model through the 
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combination of multiple weak models. The classification process of ensemble techniques is in 

two stages: the selection and training of the base classifiers, and the process of combining 

the weak classifiers to form a stronger classifier better than guessing.  It has been proven that 

the concept boosts the overall performance of ensemble models by taking the dependency 

advantage and diversity among the various base learners to form a stronger classifier (Freund 

& Schapire, 2014).  

The idea is as graphically illustrated in Figure 2-1, it shows overlapping training sample subsets 

that are randomly selected to train 3-classifiers: Model 1, Model 2 and Model 3. The classifiers 

are trained and the three diverse decision boundaries are then combined to obtain a more 

accurate classification.    

 

Figure 2-1 Combining Classifiers Trained on Subsets of Samples (Polikar, 2006). 

 

2.2.1 Heterogeneous Models  

In heterogeneous ensemble methods, two or more different learning algorithms are applied 

on the same samples. For example, ANN, RBFN and Decision Tree algorithm could be applied 
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on the same task as base classifiers and their predicted outputs are then combined to from 

the final predictive of the classifier. Barry and Linoff shows that this approach is a good way 

of discovering meaningful rules and patterns (Berry & Linoff, 2011) in samples; in some cases 

it outperforms single or standalone predictive models.  However, a number of studies show 

that the approach decreases the prediction error of the final model (Mishra, et al., 2010; Yeh, 

et al., 2012) to some extent.  

With the error limitations the method has been applied in solving various classification tasks 

such as  traffic incident management (Lee, et al., 2004), predicting and controlling crimes 

(Malathi & Baboo, 2011a; Malathi, et al., 2011b), predicting and optimising demand for 

Ambulance Services (Sasaki, et al., 2010) and emergency evacuation planning (Miah, 2011), 

banking and financial predictions (Jadhav & He, 2015), to detect medical fraud in health 

insurance (Lin & Yeh, 2012) and  dynamic prediction of customer profitability over time (Chen, 

et al., 2019).  

Despite the fact that several heterogeneous ensembles have been proposed their 

performance comparisons are difficult to evaluate because most of the methods are 

evaluated using different models and samples. Recent studies show that several challenges 

and problems are associated with heterogeneous models (Whalen & Pandey, 2013; Dunlavy 

& Gilpin, 2018). It also suffers from performance constraints (Day & Khoshgofaar, 2017). It 

also suffers from several other limitations such as merging the decision of different base 

classifiers (Tewari & Dwivedi, 2020) with different parametric training values. Another 

problem amongst others is the impact of their calibration on prediction accuracy of the 

model. This is a major challenge because of their high CPU usage and several parameters that 

are required to be optimized the base classifiers either in series or in parallel while training. 
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Even though few published studies have explored the ensemble heterogeneous predictive 

modelling, however many of these reports are purely descriptive and suffers from inadequate 

predictive output and are therefore inconclusive. 

2.2.2 Homogeneous Models 

On the other hand, ensemble homogeneous methods unlike the ensemble heterogeneous 

methods do not implement classifiers of their own. The concept however combines multiple 

weak classifiers of the same base classifier that are trained on the same distribution task to 

obtain the overall classifier output. The most common homogeneous models are the 

boosting, random forest and bagging techniques. However, each of the model has its own 

advantages and limitations. For example, Latinne, et al., 2001 argues that limiting the number 

of trees in random forests to minimum level could improve the prediction accuracy of the 

algorithm to some extent (Latinne, et al., 2001) before performance degradation occurs.  

Recent evidence reveals that the ensemble size of base classifiers could significantly influence 

the prediction accuracy of ensemble models (HernáNdez-Lobato, et al., 2013). However there 

is a limited studies to address this concept. More recently a theoretical framework was 

proposed; "the law of diminishing returns in ensemble construction” (Bonab & Can, 2018; 

Bonab & Can, 2016). The framework shows that using a fixed number of independent base 

classifiers in ensemble models can perform more efficiently than using non-fixed number 

dependent of base classifiers. 

Bootstrap Methods  

Bootstrap is a meta-algorithm that is based on random resampling of datasets with 

replacement (Duda, et al., 2000). It uses statistics techniques to improve the accuracy of 

machine learning algorithms. The main advantage of bootstrap are mainly its ability to reduce 
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variance, a major problem in machine learning.  However, review shows that there is a 

tenancy for overfitting and under-fitting issues that can lead to poor performance. This is 

because samples could appear more often than others and in some cases it does not appear 

at all while training the samples (Ghojogh & Crowley, 2019).  

Bagging Methods  

Bagging on the hand is an ensemble meta-learning (Breiman, 1996) algorithm that is based 

on bootstrap. Bagging constructs several independent base learner predictions on subsets of 

training samples with replacement. The concept uses bootstrap sampling to obtain the 

subsets of samples for training its base learners.  Despite the models’ ability to reduce 

variance, like bootstrap it could results in poor performance due overrepresentation or 

underrepresentation of training samples. Like the Bootstrap it has been demonstrated that 

this could lead to overtraining or undertraining of sample subsets. This is because during 

training subsets of sample data may appear more than once while others may not feature at 

all.  

Stacked Generalization  

This concept is based on using high-level models to combine lower-level models to reduce 

generalization error and achieve greater predictive accuracy (Wolpert, 1992). Stacked 

generalization or stacking is an ensemble technique that uses different learning algorithms 

algorithm to learn how to best combine the predictions from different models that are trained 

on the same dataset. The concept is graphically illustrated in Figure 2-2. 

Stacking unlike the bagging and boosting methods, can be used as a hybrid-model to combine 

several homogeneous and heterogeneous algorithm types unlike boosting or bagging that 
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train learners of the same model. The outputs of the models are combined to compute the 

final prediction of any instance x such that: 

 
�̂�    =      ∑𝛼𝑗  ℎ𝑗(𝑥)

𝑚

𝑗=1

 
           2.1 

This is unlike boosting that sequentially computes weights 𝛼𝑗 using an empirical formula. 

Stacking uses a level-1 algorithm that is meta-learner for learning the weights of the level-0 

predictors. Such that the predictions of each instance 𝑥𝑗 become the training data for the 

level-1 learner.    

 

Figure 2-2: Architecture of Stacked Generalization [adapted from (Freund & Schapire, 2014; Zhou, 
2012)] 

It has been argued that theoretically, the concept of stacking can be viewed as a 

generalization of several ensemble methods (Zhou, 2012).  
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Previous study have also revealed that the method suffers from two main issues namely the 

required attributes at level-1 data and the type of level-1 learner to use in order to avoid 

generalization error (Ting & Witten, 1999); thereby improving performance of the concept.  

Therefore, the method is not widely used compare to bagging and boosting models.   

2.2.3 Potentials and Drawbacks of Ensemble Models 

Some of the factors that differentiate between the various ensembles methods (Rokach, 

2005) among these are: 

i. Inter-classifiers relationship - how classifier affects each other.  

ii. Combining methods – the strategy for combining generated base classifiers together to 

form a single predictor.  

iii. Diversity generator – since, diversity affect the performance of ensemble models, 

therefore to make the ensemble models efficient there should be a level of diversity 

between the generated hypotheses.  Ensemble diversity is the differences in the decision 

or predictions made the ensemble leaners. Recent evidence suggests that combining only 

accurate learners is often worse than combining some accurate ones together with some 

relatively weak ones, since complementarity is more important than pure accuracy (Xu, 

et al., 2015). The performance of ensemble model is a balance or trade-off between the 

diversity of the classifiers and performance of individual classifiers.  

iv. Ensemble size – the appropriate number of classifiers in an ensemble model.  

Despite the diversification and aggregation ability of ensemble models over individual 

models; it also has a number of advantages and limitations. Some of these are discussed in 

this section.  



40 | P a g e  
 

 

2.2.4 Benefits and Potentials of Ensemble Models 
 

Ensemble methods has the potential to trains several weak learners and then combine them 

to obtain a better final predictive output.  The combination method of ensemble technique 

rather than randomly selection plays crucial role in the concept’s ability to achieve strong 

generalization output compare to single classifiers. In his research into ensemble methods, 

Diettrerich attributed the good performance of ensemble methods to three main 

fundamental reasons namely statistical, computational and representational (Dietterich, 

2000). Review also shows that the algorithm is easy to implement therefore make it an 

attractive learning technique.  

However, ensemble techniques and most of the extended families in particular AdaBoost 

offers several theoretical, practical advantages and disadvantages (Schapire, 2013; Zhou, 

2012) that limits their performances.  However, it has been demonstrated that ensemble 

techniques improved predictive accuracy in several analytic and data mining applications 

(Rokach, 2010). Therefore it has been used in generating prediction hypothesis through 

collaborative learning (Arsov, et al., 2017) that are accurate to some levels. More recently, it 

has been used for predicting major cryptocurrency time series (Livieris & et, 2020) on hourly 

basis. 

2.2.5 Problems and Limitations of Ensemble Models 
 

Review shows that both heterogeneous and homogeneous methods suffer from several 

problems, however there is a lack of empirical performance comparison of the two methods. 

For example in heterogeneous method, there is a need to consider synchronization and 

communication between the base classifiers when evaluating which implementation method 

will give the best performance. Therefore, when one classifier finishes earlier than others that 
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are in synchronization, it must wait until other classifiers are ready. This can lead to wasted 

CPU, time wasting and diminished prediction performance accuracy (Wilson, 1996). Another 

problem with heterogeneous method is the issue of weak and strong collaborators amongst 

the base classifiers (Sublime, et al., 2015) which can also lead to misclassification problems if 

not accurately addressed or minimised. 

Homogeneous classifiers on the other hand are sensitive to noisy data and outliers (Schapire, 

2013), which can result in overfitting and subsequent poor classification accuracy.  Review 

further shows that diversity among the ensemble weak models, decision making strategy, and 

the number of members to use (Kuncheva & Whitaker, 2003; Yang, 2011; Bian, 2007) to form 

the final classifier are challenges that affects the performance accuracy of boosting technique.  

The prediction performance of homogeneous classifiers also depends on the amount of 

training samples, type of base classifiers and the combination method of the samples. Several 

issues have also been associated with the algorithm (Wang, 2008; Galar, et al., 2012; Pintelas 

& Livieris, 2020) and its extended methods.  

Like other machine learning concepts, difficulties arise in developing ensemble models.  These 

include factors affecting the accuracy of ensemble models, class imbalance problems and to 

what level do they affect the predictive performance of the models (Wang, 2008; Sagi & 

Rockach, 2018). Other challenges among others include decision making strategy  (He, et al., 

2014) that ensures optimum inclusion, accuracy of individual models and diversity  (Kuncheva 

& Whiitaker, 2003; Butler, et al., 2018) among the models.   

A comparisons of existing ensemble models, problems and challenging in developing them are 

provided in Appendix A.1 Table A.1. 
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 Loss and Cost Functions   
 

The loss function is a mathematical method that uses the optimization concept (i.e. cost 

function) to enhance algorithm’s performance as it learns in order to reduce task’s predictive 

error.  It accounts for the penalty paid for inaccuracy of predictions in classification problems. 

There are different types of Loss functions, however it can be classified according to the type 

of response of the prediction (Murphy, 2012; Natekin & Knoll, 2013) either as a classification 

or regression output.  

For instance, AdaBoost is an optimization process that tries to fit an additive model based on 

a surrogate loss functions. Therefore, many variants of the algorithm have been developed 

based on different loss functions and other mathematical methods to address the issue of 

weight distributions (Zhou, 2012; Friedman, et al., 2000) among the weak learners in order to 

improve performance efficiency of the model. 

Review shows that the choice of loss function is determined by the classification tasks. For 

instance, in a binary label problem loss function are used while in multi-class label task multi-

class loss function are used. Therefore, the choice of loss function is primarily influenced by 

the characteristics of the dataset distribution and the classification objectives. Table 2.1 

summarizes common loss functions and their derivatives that are associated with various 

ensemble methods. 
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Table 2.1 Common Loss Functions with their Derivatives [Adapted from (Arora & Hazan, 2016)] 

 

However, reviews further show that there are several problems that are associated with the 

loss functions, for instance, the exponential loss function puts a lot of weight on misclassified 

samples as the exponential curve shoot up on the left-hand side. This makes the function very 

sensitive to outliers and susceptible to misclassification problems. Therefore, loss function 

criterion used for classification should be able to penalize negative margins more heavily than 

the positives as the positive margins are already correctly classified (Hastie, et al., 2009). In 

general most studies have linked the performance of ensemble methods to crucial role that 

loss function plays in machine learning (Nie, et al., 2018; Hajiabadi, et al., 2020) and model 

optimizations.  It is therefore essential to integrate a loss function that maximises output 

accuracy, minimises overfitting and generalization errors. The next section of the review 

focuses on the AdaBoost and its related variants.  

 Historical Timeline of Ensemble Models 
 

Over the last decades, ensemble methods have been a major concern for researchers and 

practitioners in the area of machine learning and data mining.  As a result, a significant 

number of several variants of the algorithm that addresses one problem or the other, in an 

attempt to enhance the performance of the method have been proposed. Many of which are 

instrumental to the development of several data science applications and contemporary 
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smart devices. This section provides a review of some of the historical development of 

ensemble variants in particular AdaBoost, their related theories for binary supervised learning 

problems.  The review shows that several of the variants were based on theoretical and 

performance optimization properties of AdaBoost. Therefore, most of the variants were 

developed at targeting specific issues or problems that other variants could not tackle such 

as object detection, letter recognition, text categorization, class predictions, and optimization 

issues.  The historical timeline of some of the common methods is illustrated in Figure 2-3.  

The arrows in Figure 2-3 indicates the direction of ensemble variants progress from year 1989 

to year 2020. Firstly, the development of Boosting variant in year 1989 to the development 

of Modest AdaBoost/WaldBoost variant in year 2005. Secondly, the development of 

MildBoost/EmphasisBoost in year 2006 to the development of RegBoost variant in year 2020.  

 

 

Figure 2-3 Timeline of Extended AdaBoost Variant [Adapted from Several Review Sources] 
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Boosting and Existing AdaBoost Methods    

Boosting is an ensemble process of building strong classifier by combining sequence of several 

weak classifiers. It is an adaptive concept that maintains set of examples, class weights and 

focuses on base learners of the samples that are difficult to classify. Therefore, turns weak 

and difficult to train classifiers into strong learners. AdaBoost is an ensemble learning 

technique that is widely regarded as the most common family of boosting (Schapire & Freund, 

2014) algorithms. It is also known as meta-learning and the name AdaBoost is coined from 

Adaptive Boosting. It was originally designed to boost the performance of binary clarifiers. It 

uses induction method to combine series of weak learners to form a stronger classifier instead 

of randomly selecting various classifiers. The predictions are then combined by a weighted 

majority vote for classification tasks and a weighted sum for regression tasks. 

AdaBoost unlike other classifiers places extra weights on those cases that are most difficult 

to classify and therefore can be used to identify and remove outliers.  

The method has been applied in many applications such as text classification, natural 

language processing, drug discovery and computational biology (Lin & Wang, 2011). Similarly 

in vision and object recognition (Viola & Jones, 2004), medical diagnosis (Thongkam, et al., 

2008; Abuhasel, et al., 2015) identification, chemical fault detection and diagnosis (Karimi & 

Jazayeri-Rad, 2014) applications, however with numerous challenges and limitations.   

In efforts to address some of AdaBoost limitations, numerous experimental studies has led to 

the introduction of variants of the algorithm by several authors. Albeit, many of these variants 

also have their own advantages, limitations and problems. For instance, Friedman proposed 

Gentle AdaBoost (Friedman, et al., 2000) in an attempt to improve the performance of Real 

AdaBoost variant. Contrary to the Real AdaBoost that applies the estimates of the weighted 
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class probabilities to perform training update, Gentle AdaBoost uses weighted least-squares 

regression during the training process. Though reviews show that Real AdaBoost converges 

faster compared to Gentle AdaBoost.  However, Gentle AdaBoost is more stable compared to 

Real AdaBoost with respect to generalization error.  Still, Gentle AdaBoost suffers from 

overfitting problems and increase in computation time especially when training noisy data. In 

addressing this problem another approach that limits the weight distortion based on a 

stretched distribution of the whole sample weights was introduced (Wu & Nagahashi, 2014), 

however with CPU challenges and other problems.  

Another study to address some of the problems of Real AdaBoost and Gentle AdaBoost 

Modest AdaBoost algorithm (Vezhnevets & Vezhnevets, 2005) was proposed. The variant 

uses inverted weighing distribution scheme for the correctly and incorrectly classified weak 

classifiers and able to classify instances with small boundaries. Review shows that the 

algorithm outperforms Gentle AdaBoost in term of generalization error. However, the 

improved performance was compensated for by higher training errors also the performance 

evaluation of the algorithm are not stable (Wu & Nagahashi, 2015).  

In an effort to address the generalization problem of ensemble AdaBoost, Real AdaBoost was 

introduced. However, the variant suffers from misclassification of samples that have been 

correctly classified. This limitation was further addressed by proposing Parameterized 

AdaBoost variant (Wu & Nagahashi, 2014) that uses parameter to penalize the 

misclassification of samples that are correctly classified. Experimental result of the variant 

shows that the variant improves the generalization error to some degree when compared 

with Real AdaBoost. 
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Penalized AdaBoost variant was also proposed (Wu & Nagahashi, 2015) in an attempt to 

address distortion problem in Gentle AdaBoost. The variant penalizes the misclassification of 

instances with small margins. It also introduces penalty policy that restrains the weight 

increase for instances with minimal margin. Experimental results show the method performs 

better that Gentle AdaBoost however with a similar training speed. 

The unsatisfactory efficiency and scalability problems in Gradient Boosting Decision Tree 

(GBDT) when handling high feature dimensions large data is a major concern despite 

implementation of several optimizations methods.  In resolving the problem, LightGBM (Ke & 

et.al., 2017) a variant that combines Gradient-based One-Side Sampling that resolves large 

number of data instances and Exclusive Feature Bundling that handles large number of 

features was proposed. Experimental results of the variant shows that it performs 

significantly better than XGBoost and GBDT in terms of computational speed and memory 

consumption.  

Li et. al. in their work proposed the RegBoost variant (Li, et al., 2020), a multivariate regression 

ensemble algorithm based on the concepts of gradient boosted decision tree (GBDT), which 

combines the linear regression predictors from two distinct branches that are recursively 

trained to obtain the final predictive output. Though, the algorithm achieves similar 

performance as GBDT, however the method is only applicable to tasks with few datasets. 

Additional comparison review of ensemble AdaBoost variants and other related boosting 

methods are as presented in Appendix A.  

This section provides an overview of some of the emerging ensemble methods with focus on 

their applications, problems and limitations. Ensemble based methods is valuable concept.  It 
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improves the predictive output of ensemble based models compare with single or standalone 

classifiers. However, the issue hinders the performance of the technique.  

Taxonomy Ensemble of Methods 

Studies show that there is no standard taxonomy of ensemble learning. Therefore, there are 

inconsistencies of various methods and techniques that are currently proposed in the 

literature. For example, Witten and Frank (Anon., 2005) details four techniques of ensemble 

modelling;  Bishop (Bishop, 2006) covers five methods; Marsland (Marsland, 2009) details 

three methods; Alpaydin (Alpaydin, 2010) covers seven methods. In their work Jain et al 

categorized taxonomy in ensemble methods into seventeen methods (Jain, et al., 2000) as 

shown in Table 2.2. Conversely, most algorithms can be categorized mainly in two ways. Firstly, 

grouping them by their learning styles either supervised (predictive) or unsupervised (non-

predictive).  Secondly, grouping them by their similarity in terms of their functions or how 

they work for example tree-based methods and neural network methods.   

A number of studies suggests that a verse number of ensemble frameworks have been 

proposed, among these methods, the statistical approach has been the most intensively 

studied and used in practice (Jain, et al., 2000; Tsoumakas, et al., 2008). More significantly, 

review regarding importance of various predictive classifiers reveal that there is no objective 

conclusion about superiority of one classifier over the other. This is because the performance 

of any classifier depends on the nature of the problem, the type of dataset to be used and 

behaviour of the variables (Anjum., 2013).   

Table 2.2 depicts the taxonomy of machine learning techniques based on their combination 

methods and characteristics (Jain, et al., 2000).   
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Table 2.2 Taxonomy of Ensemble Combination Methods and their Characteristics (Jain, et al., 2000) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2-4 illustrates the taxonomy of machine learning techniques (supervised and 

unsupervised) based on their learning styles (Patrick, 2017).  

Scheme Architecture Trainable Adaptive Comments 

Voting Parallel No No Assumes independent classifiers 

Sum, mean, 

median 

Parallel No No Assumes independent features 

Product, min, 

max 

Parallel Yes No Considers error correlation 

Adaptive 

weighting 

Parallel Yes Yes Explores local expertise 

Stacking Parallel Yes No Good utilization of training data 

Borda count Parallel Yes No Converts ranks into confidences 

Logistic 

regression 

Parallel Yes No Converts ranks into confidences 

Class set 

reduction 

Parallel 

cascading 

Yes/No No Efficient 

Dempster -

Shafer 

Parallel Yes No Fuses non-probabilistic 

confidences 

Fuzzy integrals Parallel Yes No Fuses non-probabilistic 

confidences 

Mixture of local 

experts (MLE) 

Gated parallel No Yes Explores local expertise; joint 

optimization 

Hierarchical 

MLE 

Gated parallel 

hierarchical 

Yes Yes Same as MLE; hierarchical 

Associative 

switch 

Parallel Yes Yes Same as MLE, but no joint 

optimization 

Bagging Parallel Yes No Needs many comparable 

classifiers 

Boosting Parallel 

hierarchical 

Yes No Improves margins; unlikely to 

over-train, sensitive to mislabels; 

needs many comparable 

classifiers 

Random 

subspace 

Parallel Yes No Needs many comparable 

classifiers 

Neural trees Hierarchical Yes No Handles large numbers of classes 



 

Figure 2-4: Taxonomy of Machine Learning Techniques Based on their Learning Style (Patrick, 2017).



 Radial Basis Function Network (RBFN) and Extended Kalman Filter (EKF)   
 

Despite the availability of RBFN and EKF concepts, there is no reliable evidence that the two 

techniques have been utilized in addressing ensemble predictive performance issues.  In one 

hand, RBFN is an alternative to multi-layer perceptron neural network algorithm that maps 

nonlinear inputs to linear outputs.  On the other hand, there is a need to train the network 

parameters in order to optimize its predictive performance. However, this can be carried out 

in many ways unlike multi-layer perceptron network (MLPN) that mainly uses back-

propagation concept.  

EKF is an optimization procedure (that linearizes the estimate of the current mean and current 

covariance that reduces errors in predicted estimates). Recent studies suggest that the filter 

has been demonstrated to be a good candidate to train RBFN (Wang, et al., 2006; Chernodub, 

2014) to enhance its predictive output performance.   The application of EKF amongst others 

in various industries include object tracking, state estimation, navigation systems, GPS (Niu & 

Hu, 2016; Yang, et al., 2016). Therefore, the filter has been considered as a standard algorithm 

(He, et al., 2018; Wan & Merwe, 2002) in the theory of nonlinear estimation and transition 

models. 

Theoretically, the main purpose of Kalman Filter is to minimize the mean square error 

between the actual and estimated data (Attarian, et al., 2012; Dróżdż & Szabat, 2016; 

Ramadurai, et al., 2012) which can serve as a good base classifiers trainers in order to enhance 

their predictive performance. 



52 | P a g e  
 

 

Therefore, in recent years several researchers have used EKF to train Neural Network models 

(Shareef, et al., 2007; Krok, 2013) and least square fitting (Lacey, 2018) with encouraging 

results however with challenges. Recent studies reports that EKF has a number of issues 

(Kurban & Beşdok, 2009; Kamath, et al., 2011) such as the need to improve the convergence 

of the filter and parameters initialization setting amongst others.  

However, it has been argued the filter’s estimation performance could be improved by 

intelligently initializing the training process and accurately determining the tuning parameters 

(Guerci, et al., 1994). 

Since the process of estimating training weights of ensemble models can be considered as a 

discrete-data linear filtering problem. Therefore, EKF can be applied to train RBFN 

parameters. This approach will help to optimize the network parameters and improve the 

performance of the network in particular when training samples are limited or samples have 

partly missing (Liu, et al., 2018; Bohler, et al., 2021) values.  However, there is no considerable 

evidence in the literature to show that EKF and RBFN concepts have been jointly applied to 

model ensemble tasks in particular with AdaBoost to boost ensemble performance.  

 Knowledge Gaps and the Need for Extending Ensemble AdaBoost Method 

As has been noted there has been numerous streams of different research on how to optimize 

and improve the performance of ensemble predictive methods. Several of these streams of 
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research make a significant contributions to the literature of ensemble predictive models and 

help to understand the performance factors and problems of several techniques (Anjum., 

2013; Chou, et al., 2013; Freund & Schapire, 1977; Raskutti, et al., 2014). However, several 

studies show that current ensemble models suffer from numerous performance issues 

(Wang, et al., 2015; Cao, et al., 2012; Kim, et al., 2017; Xiao, et al., 2018; Merjildo & Ling, 

2012) limitation and problems.  A number of important limitations need to be considered amongst 

other are:  

i. The need for large amount of historical data to train the base classifiers 

ii. Application of complex empirical equations that are difficult to implement and 

may introduce prediction errors. 

iii. Problem with base classifiers that are not capable of handling complex and 

imbalance samples. 

iv. Overfitting and generalization problems. 

v. Loss function and optimization difficulties 

vi. Complexity and topology of ensemble models in terms of time and space 

(Jimenez, 1998; Gao & Xu, 2014) 

As technology advances and dependency on ensemble related technique increases (for 

example IoT, smart devices, etc.) the performance improvement of ensemble predictive 

methods in order to ensure their reliability are therefore inevitable. 
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Subsequently, investigation on how to improve their reliability, avoid the complexity of the 

models and their predictive performance is increasingly important. Despite the fact that 

several models, theories and conceptual models have been proposed in the past, 

nevertheless none of these techniques have included and tested the integration of EKF, RBFN 

and AdaBoost as an ensemble technique.  

 Evaluation Criteria  

For a two-class or multi-class task, the ultimate accuracy measurement is generally based on 

the overall performance of the algorithm. However, review shows that it is possible for a 

clarifier to achieve a very high accuracy in large classes due to bias but performs poorly when 

predicting from smaller or unbalanced classes. This can be misleading, therefore, it is 

important to consider other forms of performance measures to ascertain the performance 

and reliability of predictive algorithms. Classification performance of a two-class task can be 

represented by a 2x2 confusion matrix as depict in the Table 2.3 

Table 2.3: Confusion Matrix for a Binary Classifier. 

 Predicted Classes 

Actual classes Predicted - No  Predicted – Yes 

Actual - No True Negative - TN False Positive –FP 

Actual - Yes False Negative - FN True Positive -TP 
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As illustrated in the table it produces four types of predictive outcomes on a two-class task: 

i. True positives – These are the correctly classified positive cases that belongs 

to the positive class. 

ii. True negatives - These are the correctly classified negative cases that belongs 

to the negative class. 

iii. False positives - These are the incorrectly classified positive cases that actually 

belongs to the negative class. 

iv. False negatives - These are the incorrectly classified negative cases that 

actually belongs to the positive class.  

Single Class and Other Performance Measures 

As previously highlighted, accuracy can be a misleading measurement in a model that involves 

large class of imbalance samples. It is possible for such model to predict majority class for all 

possible predictions with a high classification accuracy which does not reflect minority class 

predictions. To address this issue a number of standard metrics that are related to 

information retrieval area have been adopted to further evaluate the performance 

(Gunawardana & Shani, 2009) of a binary predictive classifier. For a binary class Recall or the 

Sensitivity (R) or the True positive Rate (TPR), the Precision (P), the F-Measure (F1-Score) and 

the Specificity (S) or the True negative rate (TNR) are defined as follows.  
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 𝑅 =  𝑇𝑃/𝑇𝑃 +  𝐹𝑁                                               (2.1) 

 𝑃 =  𝑇𝑃/𝑇𝑃 +  𝐹𝑃                                               (2.2)  

 𝐹 =  2 ∗  𝑃 ∗ 𝑅/𝑃 +  𝑅                                               (2.3)  

 𝑆 = 𝑇𝑁/𝑇𝑁 +  𝐹𝑃                                                (2.4) 

 
Precision is a measure of how many of the correctly predicted cases actually turned out to be 

positive. Recall is a measure of how many of the actual positive cases were able to be 

predicted correctly with our model. On the other hand, the traditional F1-score is a harmonic 

mean of Precision and Recall. It gives a combined idea of the Recall and the Precision metrics 

and has been regarded as a better measure of the incorrectly classified cases than the 

accuracy metric. 

2.7.1 ROC and AUC Curve Metrics  

The receiver operating characteristic curve (ROC) is a graph showing the performance of a 

classification model at all classification thresholds as depict in Figure 2-5. The curve takes TPR 

and FPR as parameters on the y-axis and x-axis respectively.  The area under curve (AUC) 

measures the entire 2-D area underneath the entire ROC curve. The AUC provides an 

aggregate measure of performance across entire likely classification thresholds (Mandrekar, 

2010; Bradley, 1997). 
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Figure 2-5: The ROC and the AUC (adapted from: (MBASkills., 2021)]. 

 

2.7.2 Other Evaluation Metrics  

RMSE, MAE and 𝑅2  are other statistical metrics that are adopted to assess the performance 

evaluation of classifiers. These are defined as:  

 

𝑀𝑆𝐸 =  √
1

𝑁 − 1
∑(𝑦𝑖 − 𝑦�̂�)2

𝑁

𝑖=1

 

(2.4) 

 

𝑀𝐴𝐸 =  
1

𝑁
∑(𝑦𝑖 − 𝑦�̂�)

𝑁

𝑖=1

 

(2.5) 

 
𝑅2 = 1 − 

∑ (𝑦𝑖 − 𝑦�̂�)
2𝑁

𝑖=1

∑ (𝑦𝑖 − 𝑦�̂�)
𝑁
𝑖=1

 
(2.6) 

 

When the values of RMSE or 𝑀𝐴𝐸 are small it shows the prediction is close to the expected 

value. On the other hand, when the value of 𝑅2 are large or 1 at most, it shows that the 
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predicted value is close to the expected value.  Additionally, other related equations and 

expressions are described in the subsequent chapters of the thesis.  

 Class Imbalance in Ensemble Modelling 

Class imbalance occurs when the number of samples that represent one class is much lower 

or greater than the ones of the other classes of the same sample.  Review shows that many 

of the well-established models are unable to adequately learn from imbalance distributions. 

Therefore, majority of the traditional models predicts poorly with skewed minority class 

distribution resulting in unsatisfied suboptimal results (Batuwita & Palade, 2013; Wang, et al., 

2017) such that the model cannot be applied for future predictions. Negative and 

unpredictable effects of imbalance class classifiers have also been reported in the literature 

such as classification performance (Luque, et al., 2019; Vuttipittayamongkol, et al., 2021; 

Peng, et al., 2021) problems.   

Today various methods have been developed and introduced to address the problem of class 

imbalance in ensemble modelling  such as over-sampling method (Wang, et al., 2017), margin 

theory (Feng, et al., 2018), constraint projection (Guo, et al., 2020), cost-sensitive, data pre-

processing  and hybrids approach (Wu, et al., 2019).   

Majority of the suggested techniques to address the problem are either at the data-level or 

at the algorithmic-level.  

At the data-level are several approaches such as resampling methods and manipulation of the 

training data to correct the skewed imbalance class distribution such as data sampling.  
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At the algorithm-level are various methods such as cost-sensitive, and hybrid or ensemble 

(Leevy, et al., 2018; Blagus & Lusa, 2013) methods that ensures the accuracy of the imbalance 

class during sample training.  

 

Figure 2-6: Taxonomy of Ensemble Techniques for Imbalance Problems (Galar, et al., 2012). 

Galar et. al. proposed taxonomy for ensemble methods that was based on techniques that 

are used to address the imbalanced datasets (Galar, et al., 2012). The taxonomy is as depict 

in Figure 2-6. The focus of the taxonomy is to address the class imbalance where each method 

can be categorized depending on the ensemble method that is used in addressing the class 

imbalance problem either at the data-level or at the algorithm-level. In this research several 

methods were considered and implemented by exploring resampling techniques, reweighting 

and other methods.   

 Diversity and Ensemble Classification  
 

Diversity in ensemble model is the difference or disagreement among the generated base 

classifiers that are combined to form the final classifier. A number of authors have 

demonstrated that substantial diversity among classifiers play important factor in ensemble 

accuracy (Kuncheva & Whiitaker, 2003; Butler, et al., 2018) when combining the various weak 
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classifiers. However, review shows that determining diversity among the classifiers is not a 

straight fordward concept.  

In regression estimators, Brown, et al. (2005) argued that diversity can be “formulated in 

terms of the covariance between individual estimator outputs, and the optimum level is 

expressed in terms of a bias-variance-covariance trade-off”. However, Reeve and Brown 

argued that to accomplish optimum performance in ensemble classifier the diversity among 

the weak classifiers and loss function in regression task is essential (Reeve & Brown, 2018). 

Similarly, in classification the important of diversity has also been emphasised (Mellor & 

Boukir, 2017) in order to obtain an optimum predictive performance.  

 In their work, Kuncheva and Whitaker examined the importance of diversity based on ten 

different statistical metrics which can measure diversity (Kuncheva & Whitaker, 2003) 

between different binary classifier outputs and their relationship with ensemble classification 

accuracy. However, several other studies show that there is a trade-off between ensemble 

classification accuracy and the diversity (Chandra, et al., 2006; Reeve & Brown, 2018) of the 

different ensemble classifiers to achieve an optimum accuracy. That is the more diverse the 

classifiers are the more accurate the classification output. This shows that there is no perfect 

classifier (Park & Cho, 2003; Guo, et al., 2013), therefore in machine learning the objective is 

to look for the best set of weak classifiers with different errors and prediction accuracies; then 

combine them with the best possible combination methods under appropriate conditions to 

obtain a better classifier.   
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2.9.1  Diversity Measures  

There are different diversity measures many are available from the mainstreams of statistics 

and statistical pattern recognition that are primarily developed to address classifier 

ensembles (Kuncheva, 2014)  problems.     

In her work Kuncheva shows that quantitatively diversity can be defined in terms of pairwise 

and non-pairwise comparisons. The pairwise consider a pair of a classifier at a time: for 

example an ensemble 𝐿 classifiers will produce 𝐿(𝐿 − 1)/2 pairwise diversity the average 

across all possible pairs is taken as the as the diversity of the pool.  

To illustrate diversity calculation, consider a table of the joined outputs of classifiers 𝐷𝑖  and 

𝐷𝑗as shown in Table 2.4. The entries in the table are the probabilities for the respective pair 

of correct or incorrect outputs. 

 

Table 2.4: A 2 × 2 Relationship Table with Probabilities. 

 𝐷𝑖correct(1) 𝐷𝑗wrong(0) 

𝐷𝑖correct(1) a b 

𝐷𝑗wrong(0) c d 

Total, a + b +c + d = 1 

 

The disagreement measures, the probability that two classifiers ℎ𝑖  and ℎ𝑗   will disagree on 

their prediction, that is, two classifiers making different predictions (Kuncheva, 2014; Zhou, 

2012; Ho, 1998), is illustrated in Equation 2.7.  

 𝐷𝑖𝑠𝑖,𝑗 = 𝑏 + 𝑐           (2.7)  

Where 𝑏 𝑎𝑛𝑑 𝑐 are the probability values, as illustrated in Table 2.4. 
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The value  of disagreement is in[0, 1], the larger the value the larger the diversity. On the 

other hand, the non-pairwise access the entire ensemble diversity together rather than 

averaging pairwise measurements (Kuncheva, 2014; Zhou, 2012) and calculates directly one 

diversity for the ensembles.  There are ten well established methods for measuring diversity 

(Kuncheva & Whiitaker, 2003) as summarized in Table 2.5.  

Table 2.5: Summary of the 10 Diversity measures1 

Name Notation Direction  Pairwise/Non-

pairwise 

Q-statistic  𝑄 ↓ Pairwise 

Correlation coefficient  ꓑ ↓ Pairwise 

Disagreement measure 𝐷 ↑ Pairwise 

Double-fault 𝐷𝐹 ↓ Pairwise 

Kohavi-Wolpert variance 𝐾𝑊 ↑ Non-pairwise 

Interrater agreement 𝐾 ↓ Non-pairwise 

Entropy measure 𝐸𝑛𝑡 ↑ Non-pairwise 

Difficulty Measure Ꝋ ↓ Non-pairwise 

Generalized diversity 𝐺𝐷 ↑ Non-pairwise 

Coincident failure diversity  𝐶𝐹𝐷 ↑ Non-pairwise 

                                                           
1 The arrow specifies whether diversity is greater if the measure is lower (↓). The higher the value 
the less diverse (i.e. similarity or greater (↑)) the classifier.  The higher the value the more diverse 
(Kuncheva & Whiitaker, 2003) is the classifier.  
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2.9.2 Generalised Diversity 

It has been demonstrated that the diversity of ensemble is maximized when the failure of one 

classifier is accompanied by the correct prediction of another classifier; minimum diversity 

occurs when a failure of one classifier is always accompanied by a failure of the other classifier 

(Kuncheva, 2014; Kuncheva & Whitaker, 2003). Then the probability of both classifiers failing 

is the same as the probability of randomly picked classifier failing, that is  𝑝(1) using 

 
𝑝(1) = ∑

𝑖

𝐿

𝐿

𝑖=1

 𝑝𝑖 
                          (2.8) 

 
𝑝(2) = ∑

𝑖(𝑖 − 𝐿)

𝐿(𝐿 − 1)

𝐿

𝑖=1

  𝑝𝑖  
                          (2.9) 

The generalization diversity measure 𝐺𝐷 is expressed as: 

 
𝐺𝐷 = 1 − 

𝑝(2)

𝑝(1)
 

                       (2.10) 

Where,    

𝑝𝑖    denotes the probability of  randomly chosen classifier failing on a randomly from pool 𝐿. 

𝐺𝐷 varies between  0, minimum diversity when 𝑝(2)  =  𝑝(1) and 1, maximum diversity 

when 𝑝(2)  =  0.  

 Ensemble Classifier Outputs  

The choice of classifier fusion algorithm of ensemble classifier 𝐿 depends on the accuracy and 

the diversity of the ensemble members.   Kuncheva identified four classes of classifier outputs. 

These are the abstract type, rank type, measurement type and the oracle type (Kuncheva, 

2014).  The abstract type produces a class level that is of the most universal type. The 

measurement level produces a c-dimensional vector that outputs between 0 and 1, each 

classifier output spanning [0, 1]𝑐 and contains the most amount of information. The rank level 

is suitable for problems with a large number of classes. The oracle output is artificial, this is 
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because it can only be applied to a labelled dataset. For a given dataset Z, the classifier 𝐷𝑖  

produces an output vector 𝑦𝑖 such that:   

 𝑦𝑖𝑗  =  {
1,
0,

   
  𝑖𝑓 𝐷𝑖  classifies    𝑜𝑏𝑗𝑒𝑐𝑡 𝑧𝑖   correctly,

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 
              2.11  

 

2.10.1 Combination Methods 

As previously described instead of trying to find the best single classifier from a set of base 

learners, an ensemble method resort to combination of the base classifiers to achieve a strong 

generalization output. This concept is variously referred to by various names like:  committee 

of learners, mixtures of learners, classifier ensemble, consensus theory or multiple classifier 

systems.  The benefits of this concept have been attributed to three fundamental reasons 

namely statistical issues, computational issues, and representational issue (Dietterich, 2000).  

Therefore, when developing or enhancing an ensemble algorithm it is essential that the issues 

are adequately addressed to avoid performance failures.  It has been noted that a learning 

algorithm that suffers from statistical issues will fail due to high variance.  A learning method 

that suffers from the computational issue can be described as having high computational 

variance; a learning process that suffers from the representational issue is generally said to 

have a high bias (Zhou, 2012; Dietterich, 2000). Therefore, a through combination of the 

variance and bias of learning algorithm is essential for good predictive performance. Figure 

2-7  shows how a committee of classifier works and how the results are combined to form the 

final prediction.  
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Figure 2-7: A Multiple Classifier Technique [Adapted from (Polikar, 2006)]. 

 

The feature value of object  𝑥, (𝑥1, … , 𝑥𝑛) are individually submitted to the 𝐿 classifiers. The 

classifiers uses the features values of object 𝑥 to predict an outputs of the features 𝑥 inputs.   

The results from the classifiers are then combined to provide the final classification for 

object 𝑥 that predicts the possible outcome.  The main two approaches to this combination 

are:  

Dynamic classification selection: A concept that predicts which of classifiers is most likely to 

be correct for each input object that can be assigned a single class label 𝑥.  

Classifier fusion: This method assigns weight to all the case classifiers based on their 

importance in a multiple decision system and combine it to output the final classifier.  

Kuncheva shows that technically, there are various aspects of ensemble classifier systems that 

one could alter or manipulate to improve the classification accuracy. These are the classifier 



66 | P a g e  
 

 

models, the feature subsets submitted to the classifier, the training sets or the combination 

of any of these (Kuncheva, 2014).   

There are many experimental comparisons and methods in the field of statistical pattern 

recognition and machine learning to combine the outputs of the individual ensemble 

classifiers. Several well-established combination concepts have also been proposed, these 

among other are the majority vote, weighted majority vote, soft voting, naïve Bayes 

combination and multinomial methods (Kuncheva, 2014; Zhou, 2012). However, there are 

limitations and theoretical issues with some of these methods. 

2.10 Early Stopping Models  

Early stopping concept allows halting sample training once the model performance stops 

improving in order to avoid over training of the sample that can lead to overfitting. The 

technique of early stopping modelling methods are widely applied on process based models 

(Wu & Liu, 2009; Simsek & Turk, 2016; Wei, et al., 2019; Lauer & Bloch, 2005) to enhance their 

predictive performances with promising results.   Albeit, the challenge is to train the network 

to a point such that it is capable of learning and adequately mapping the input objects to the 

corresponding output objects, that is to the point of eluding  the problem of under-fitting or 

overfitting of the model while training. However, the irony about early stopping concept is 

that too many epochs can lead to overfitting of the training dataset, at the same time too few 

epochs can also result in under-fitting the model (Yu & Zhu, 2020; IBM, 2021; Anon., 2020).  

2.10.1 Early Stopping Strategy  
 

The strategic focus of early stopping model is on the learning speed in order to avoid 

overfitting (Ying, 2019; Botvinick, et al., 2019) and under fitting problems.  The concept is one 

of the regularization techniques that is used to stop sample training as soon as the validation 
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loss starts to stray away from the training loss function.  As illustrated in Figure 2-8, originally 

both training and validation loss start decreasing as the algorithm learns something about the 

data. Then at some point the validation loss starts to increase while the training loss continues 

to decrease, this is often when over-fitting starts to happen (ICL., 2021; Ying, 

2019).  Therefore, if the model continues learning after this point, the validation error will 

increase while the training error will continue decreasing. Likewise, if the model stop learning 

before this point, it will lead to under fitting and if the model stop learning after the point it 

will also result to over fitting. 

 

 

Figure 2-8: Overfitting Point and Early Stopping – Validation and Training [Adapted from (Igareta, 
2021)]. 

Recent evidence suggests that one way model can over fit is when its weights are allowed to 

grow out of control (ICL., 2021; Nielsen, 2015).  In the case of artificial neural nets, the learning 

process is to find a perfect set of weights and bias. The neurons learn at a rate that is 

determined by the partial derivatives of the cost-function, 
𝜕𝑐

𝜕𝑤
 and 

𝜕𝑐

𝜕𝑏
. It has been 
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demonstrated that the speed of learning depends on the values of the two partial derivatives, 

such that:  

 𝜕𝑐

𝜕𝑤𝑗
=

1

𝑛
 ∑𝑋𝑗(𝜎(𝑧 − 𝑦)

𝑥

 
         (2.12) 

 𝜕𝑐

𝜕𝑏
=

1

𝑛
 ∑(𝜎(𝑧 − 𝑦)

𝑥

 
         (2.13) 

Where, 𝑤𝑗 is the 𝑗𝑡ℎ weight, 𝑏 is the bias, 𝐶 is the cost, 𝑋𝑗 is the 𝑗𝑡ℎ input and  𝑦 is the output.  

 

2.10.2 L1 and L2 Regularization Methods 

It has also been demonstrated that over-fitting problem can be penalized by applying L1 and 

L2 regularisation (ICL., 2021; Karim, 2018; Valverde, 2018).  The notions of L1 and its 

derivatives are as illustrated in Equation (2.14) and Equation (2.15) respectively. Likewise the 

notions of L2 and its derivatives are as illustrated in Equation (2.16) and Equation (2.17) 

respectively.   

The 𝜆 indicates the regularization size. 

 
𝐽(𝜃) = 𝐿𝑜𝑠𝑠(𝑦, �̂�) +  𝜆 ∑|𝑤|

𝑤

 
                  (2.14) 

 
𝑤 ← 𝑤 − α(

𝜕𝐿𝑜𝑠𝑠

𝜕𝑤
+  λ𝑠𝑖𝑔𝑛(𝑤)) 

                  (2.15) 

 

 
𝐽(𝜃) = 𝐿𝑜𝑠𝑠(𝑦, �̂�) +  𝜆 ∑𝑤2

𝑤

 
                  (2.16) 

 
𝑤 ← 𝑤 − α(

𝜕𝐿𝑜𝑠𝑠

𝜕𝑤
+  2λ𝑤) 

                  (2.17) 

 

In one hand L1 regularization tries to estimate the median of the data while on the other hand 

the L2 regularization tries to estimate the mean of the data to avoid overfitting the model.   
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 Chapter Summary  

This section is a discussion on the background knowledge and reviews of relevant literature 

on predictive ensemble methods. It includes deliberations on previous works, problems and 

limitations in order to identify knowledge gaps.  

Amongst these problems, challenges and limitations are: 

i. Ensemble method require large historical data and is difficult to obtain and to 

train. 

ii. Ensemble methods require complex empirical equations. These are difficult to 

implement and may introduce prediction errors. 

iii. The issue of topology and complexity of ensemble methods in terms of space and 

time (Gao & Xu, 2014). 

iv. The generalization and optimization difficulties of the ensemble techniques. 

There are various concepts and methods that have not been considered in the literature that 

can be applied in addressing some of these problems and limitations. Some of these 

approaches amongst others include:   

i. The integration of EKF, RBFN and AdaBoost concepts as an ensemble technique to 

address ensemble issues.  

ii. Statistical approach of threshold separation and stopping sample training early to 

avoid overfitting problems 

iii. Application of identified breast cancer prognostic features to develop a 

multivariate ensemble logistic regression model based on features of the sample. 
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iv. The development of non-invasive breast cancer survivability visual tool that 

integrates theoretical concepts of ensemble research and practice as 

demonstrated in this thesis. 

Section one reviews ensemble learning methods and their limitations.  Section two reviews 

existing boosting methods from which the main research gaps are identified. Section three 

reviews loss function optimization methods and diversity in ensemble methods. Section four 

reviews Radial Basis Function Network (RBFN) and Extended Kalman Filter (EKF) and section 

five discussed and identified research gaps.  Section six and seven discusses ensemble 

evaluation criteria and class imbalance. Sections eight and nine presents diversity and 

ensemble classification, and ensemble classifier output respectively.  Section ten provides 

brief description of regularization methods. Finally, section eleven provides summary of the 

chapter. In the next chapter, the research methodology and the philosophy underlying the 

epistemological and ontological of the research will be discussed.   
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Chapter 3: Boosting Methods, Standalone and Ensemble Models 
 

 Introduction  

The previous chapter discussed relevant models and theories proposed in the past to enhance 

the performance of ensemble models. In this chapter and subsequent three chapters, the aim 

is to provide an overview of the research procedures exploited in this study that leads to the 

selection of appropriate research methods for guiding the proposed ensemble models and 

their performance validations in this thesis.  However, due to the nature of the research tasks, 

mixed research methods were implemented to enable the accomplishment of the aims and 

objectives of the research highlighted in the previous chapter.  As presented in the previous 

chapter, the study was divided into four phases. This chapter covers Phase One of the study.  

The focus of this phase is to address Objective 1 of the work. To achieve this objective several 

empirical investigations on boosting methods and related theories were carried out using 

different predictive techniques. This was realised by conducting various experimental studies, 

simulations and modelling of ensemble AdaBoost, standalone algorithms, and ensemble 

methods in order to understand, and establish some of the features that affect the 

performance of standalone and ensemble methods. This was followed by the analysis and 

discussion of the various results. 

 AdaBoost and Boosting Methods  

Boosting is an ensemble meta-algorithm for primarily reducing bias, and variance in 

supervised learning algorithms. It is a family of boosting machine learning algorithms that 

convert weak learners to strong learners. Weak learners are model that are slightly better 

than random guessing, while strong learners are models that have good predictive output 
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that is well-correlated with the true classification (Ambati, 2021; Freund & Schapire, 2014; 

Zhou, 2012) 

In general, AdaBoost algorithm can be viewed as a Neural Network algorithm in which the 

weak and the strong learners form the hidden part of the network for the hidden and the 

output parts of the network respectively as illustrated in Figure 3-1. Based on the concept of 

AdaBoost strategies; using several Neural Network (NN) algorithms as base classifiers while 

training the samples. These committees of NN base classifiers are then combined to obtain 

the final predictive output via a combination function, 𝐹 (. ) to obtain the final predictive 

output 𝑦.   

 

As presented in Chapter 2, AdaBoost has two main approaches of implementation. These are 

boosting by sampling and boosting by reweighting respectively. It is unclear from the 

literature review which of the two methods performs better than the other. Therefore it is 

crucial to carry out empirical studies to find out which of the methods actually performs 

better. Albeit, the difference between the two methods is a matter of their implementation 

and training techniques.  

In reweighting method, AdaBoost minimizes the training errors by varying weights assigned 

to the samples during training based on their performance.  Boosting by resampling method 

does not rely on training errors by varying weights, instead it uses the subset of training data 

in training its base classifiers which are then combined to form the final classifier. 
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Figure 3-1: AdaBoost as an ensemble of Neural Network algorithm with activation functions 
[Adapted from (Lee, et al., 2018)]. 

3.2.1 Boosting by Reweighting 

In boosting by reweighting the numerical weights for each sample are passed directly to the 

base learner. The base learner uses the weighting information when forming its hypothesis. 

Therefore, in boosting by reweighing equal distribution weights are assigned to the base 

classifiers at the beginning of the training. As training progresses the weight assigned to a 

classifier is increased if the classification is wrong.  The weight is reduced if the classification 

is correct. Therefore, the weighted training error is minimized explicitly (Freund & Schapire, 

2014; Zhou, 2012) to the exponential loss function.  

3.2.2 Boosting by Resampling 

Classically, boosting by resampling is also known as bootstrapping. It uses a given distribution 

𝐷𝑡 to generate an unweighted training samples by randomly selecting a sequence of 

examples S according to 𝐷𝑡, with replacement such that: 

 S =  (𝑥𝑖1 , 𝑦𝑖1),… , (xi
m′

 , yi
m′

)    (3.1) 
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where each 𝑖𝑡 is selected independently at random with replacement using the distribution 

𝐷𝑡, from the original dataset which is fed to the base learning algorithm such that  xi1  are 

the selected features and  yi1 are the expected outputs of the selected features.  The method 

consists of drawing pools of repeated samples from the original data population i.e. the 

selection of randomized repetitive cases with replacement. It therefore generates a unique 

sub distribution (sampling) that is based on the actual data population. Therefore, in 

resampling method there is a tendency that some examples will be included more than once 

in a given distribution while others might be omitted entirely.  This can therefore, in one hand 

lead to overfitting of some samples when they are overrepresented. On the other hand it can 

also result in under fitting when some samples are underrepresented.  

 

  AdaBoost and Boosting Based Classification 

3.3.1 Analysis of AdaBoost 

Unlike most algorithms, AdaBoost automatically adapts to the error rate of their base 

classifiers and dynamically regulate the weight of the samples during training to enhance their 

predictive performance (Freund & Schapire, 2014).  The combined output of the base 

classifiers is stronger and better than the individual classifiers acting alone on their own. 

However, review shows that the algorithm is susceptible to noise, and its accuracy also 

depends on the predictive accuracy performance of the chosen base classifier and tasks at 

hand (Zhou, 2012; Randhawa, et al., 2018). Figure 3-2 illustrates the basic flow chart for 

AdaBoost algorithm based on the resampling implementation method.  The accompanying 

pseudocode is as illustrated overleaf.  

 



 

                        Figure 3-2: AdaBoost Algorithm Based on Resampling Implementation Method [Adapted from (Freund & Schapire, 2014; Freund & Schapire, 1997) ]



In essence the final classifier 𝐻(𝑥) is computed as a weighted majority of the weak hypothesis 

ℎ𝑡 by vote where each hypothesis is assigned a weight 𝛼𝑡. This is given in equation (3.1) below. 

This is further demonstrated in Figure 3-2 above and the associated AdaBoost algorithm 

pseudocode below. 

1. Given the training data : {(𝑥1,   𝑦1), (𝑥2, 𝑦2), … , (𝑥𝑛, 𝑦𝑛)}𝑤ℎ𝑒𝑟𝑒 𝑥𝑖 ∈ 𝑋, 𝑦 ∈ 𝑌 =

(−1,+1) 

2. Initialize the weight vector: 𝐷1 (𝑖) = 1/𝑛  

3. For 𝑡 = 1,… , 𝑇 ∶ 

i. Training a Weak Classifier using distribution 𝐷𝑡 

ii. Get weak classifier ℎ𝑡 ∶ 𝑋 → {−1,+1 } 𝑠. 𝑡 𝑡ℎ𝑒 𝑒𝑟𝑟𝑜𝑟  

iii. Calculate the error: 𝜀𝑡 = 𝑃𝑟𝑖~𝐷𝑡
[ℎ𝑡(𝑥𝑡)] ≠  𝑦𝑖  

iv. Compute the weight ℎ𝑡(𝑥𝑡): 𝛼𝑡 = 1/2 log((1 − 𝜀𝑡) / 𝜀𝑡)   

v. Update the weights: 

       

𝐷𝑡+1 (𝑖) =  
𝐷𝑡 (𝑖)

𝑍𝑡
 𝑋 {

𝑒−𝛼𝑡 ,   𝑖𝑓 ℎ𝑡(𝑥𝑡) =  ℎ𝑡  

𝑒𝛼𝑡 , 𝑖𝑓 ℎ𝑡(𝑥𝑡)  ≠   ℎ𝑡  
 

= 
𝐷𝑡  (𝑖)exp (𝛼𝑡𝑦𝑡 ℎ𝑡(𝑥𝑖))

𝑍𝑡
 

  
4. Out the final classification: 

        

𝐻(𝑥) = 𝑠𝑖𝑔𝑛(∑𝛼𝑡ℎ𝑡

𝑇

𝑡=1

(𝑥)) 

Pseudocode of AdaBoost Algorithm (Schapire & Freund, 2014)  

 

 
𝐻(𝑥) = 𝑠𝑖𝑔𝑛 (∑𝛼𝑡ℎ𝑡(𝑥) 

𝑇

𝑡=1

)          
 (3.1) 

 

 

The accuracy of the hypothesis is calculated as an error measure as illustrated in equation 3.2.  

 𝜀𝑡 = 𝑝𝑟𝑖~𝐷𝑡[ℎ𝑡(𝑖) ≠  𝑦𝑖]                                     
(3.2) 
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The weight of the hypothesis is a linear combination of all the hypotheses participating as 

shown in equation (3.3).  

 
𝛼𝑡 = 

1

2
ln (

1 − 𝜀𝑡

𝜀𝑡
)  

                                             
(3.3) 

The distribution vector 𝐷𝑡 is expressed as function many parameters illustrated in equation 

(3.4), where Zt is a normalization factor such that the weights add up to 1 and makes Dt+1 a 

normal distribution.  

 
𝐷𝑡+1(𝑖) =

𝐷𝑡(𝑖) exp(−𝛼𝑡𝑦𝑖ℎ𝑡(𝑥𝑖)) 

𝑍𝑡
 

(3.4) 

Theorem: Suppose the weak learning algorithm, WeakLearn when called by AdaBoost, 

generates hypotheses with errors  𝜀1, 𝜀2, … , 𝜀𝑇. Freund and Schapire (1997) proved that the 

𝑒𝑟𝑟𝑜𝑟 𝜀𝑡 = 𝑃𝑟𝑖~𝐷𝑡[ℎ𝑡(𝑖) ≠  𝑦𝑖] of the final hypothesis ℎ𝑡 output by AdaBoost is bounded by 

equation (3.6).  

 
ϵ =  Pri~D [hf(xi) ≠  yi ]2

T  ∏√ϵt(1 − ϵt)

T

t=1

≤ e−2  ∑γ2
t

T

t=1

                                               

 

                 

(3.5) 

 

where 𝛾𝑡 = 0.5 − 𝜀𝑡. This shows that AdaBoost reduces the error at an exponential rate.  It 

can be shown that to achieve an error 𝜀., the number of learning round 𝑇 is upper bounded 

by the natural logarithm  (ln)  of ∈  (Freund & Schapire, 2014; Zhou, 2012) as  shown equation 

(3.6). 

 
𝑇 ≤ [

1

2𝛾2
𝑙𝑛

1

∈
] 

          (3.6) 
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Since the estimates can only be carried out on training data 𝐷 such that ∈𝐷=

 𝑃𝑟𝑖~𝐷𝑡[ℎ𝑡(𝑖) ≠  𝑦𝑖] i.e. the generalization error.   Thus, the errors are training errors, while 

the generalization error ∈𝐷 is more important. It has been demonstrated that the 

generalization error (∈𝐷) of AdaBoost (Freund & Schapire, 1997; Freund & Schapire, 1999) is 

upper bounded by equation (3.7). 

 

∈𝐷≤ ∈𝐷+ �̂� (√
𝑑𝑇

𝑚
) 

(3.7) 

 

The probability is at least 1 −  𝛿 (𝛿 > 0), where d is the VC-dimension of the base learners, m 

is the number of training instances, T is the number of learning rounds and �̂�(. ) is the 

logarithmic terms and constant factors (Freund & Schapire, 1977; Freund & Schapire, 2014).  

Where, ∈𝐷= generalization error, 𝑇= number of learning round,  𝑚 = number of training 

samples, 𝛿 > 0 and λ𝑡 = 0.5 −∈𝑡  

3.3.2 Margin Explanations of Booting  

The margin theory provides explanations to the success of AdaBoost as the key for 

characterizing its performance. Though Gao and Zhou(2003) and other researchers argue that 

AdaBoost does not usually over fit because it enlarge its margin after the training error 

reaches zero (Gao & Zhou, 2013) following a large number of training rounds. However, 

review further shows that this is a contradiction with the Occam’s razor which prefers simple 

hypotheses to complex ones when both fit empirical observations well.  

However, the generalization equation (3.9), and previous equations show that to achieve a 

good generalization. Therefore, it is important to constrain the complexity of the base 

classifiers and the number of learning rounds in order to avoid overfitting of AdaBoost (Zhou, 

2012). In addition to this, Schapire et. al. (1998) proposed a margin-based theory that 
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provides margin explanation to AdaBoost. The authors argued that the theory is related to 

the distribution of margins of the training samples and the normalized margin of an ensemble 

as expressed in equation (3.9).  

 

 
𝑓(𝑥)𝐻(𝑥) =  

∑ 𝛼𝑡𝑓(𝑥)ℎ𝑡(𝑥)𝑇
𝑡=1

∑ 𝛼𝑡
𝑇
𝑡=1

 
          (3.9) 

 
Where 𝛼𝑡 are the weights of the base learners. Based on the concept of margin the authors 

proved that, given any threshold 𝜃 > 0 over the training sample 𝐷, with probability 1 − 𝜎, 

the generalization error of the ensemble ∈𝐷= 𝑃𝑥~𝐷(𝑓(𝑥)  ≠ 𝐻(𝑥) are  bounded as 

 
 

 

             (3.10) 

 
 

 

                         
             (3.11) 

 

where 𝑑,𝑚, 𝑇 and �̂�(. ) are as previously defined. Observation shows that above equations 

depend on the smallest margin as the probability 𝑃𝑥~𝐷(𝑓(𝑥)𝐻(𝑥) ≤  𝜃.  In addressing this 

problem Breiman proposed a variant of boosting algorithm 𝑎𝑟𝑐 − 𝑔𝑣 that generates a larger 

minimum margins but with worse error compare with AdaBoost (Breiman, 1996) 

 

 

             (3.12) 

  
Such that in each round, 𝑎𝑟𝑐 − 𝑔𝑣 updates 𝛼𝑡 as 
 
 

 

             (3.13) 

  
Where 𝛾𝑡 is the edge of ℎ𝑡 and 𝛼𝑡 is the minimum margin of the combined classifier up to the 

current round.   
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3.3.3 Statistical View of Boosting 

A number of authors have shown the margin theory has a strong correlation with boosting 

and the support-vector machines (Vapnik, 1995; Awad & Khanna, 2015).  

Unlike the other non-ensemble learning algorithms, after finding good weak hypotheses to 

combine in order to obtain good predictive rate while avoiding overfitting problem, the 

concept is interested in choosing a good coefficients 𝛼𝑡.  Freund and Schapire argues that one 

realistic approach is to choose the coefficients such that the bound in equation 3.14 is 

minimized (Freund & Schapire, 1999). 

 
 

 

                                      

                          (3.14) 

 
Similarly, in their work Friedman et. al. also argue that boosting can be viewed in terms of 

statistical principles of additive modelling and maximum likelihood (Friedman, et al., 2000). 

However the concept required modifications in order to optimize the process. Likewise, 

Schapire & Singer presents the exponential loss function of AdaBoost as a differentiable upper 

bound of the 0/1-loss function, a notion that is normally used for measuring misclassification 

error (Schapire & Singer, 1999).  

Therefore, different explanations and various ambiguity have led to the development of 

variants of the algorithms by considering different surrogate loss functions and related 

methods to improve predictive performance of the algorithm as presented in the previous 

chapter. 

It has been demonstrated that when regarding boosting procedure as an optimization of a 

loss function, then a mathematical programming can be applied to maximize the weights of 

weak learners (Demiriz, et al., 2002; Warmuth, et al., 2008; Xie, et al., 2019) and therefore 
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enhance its performance. This approach is adopted in subsequent sections of this report 

where various extensions of the ensemble models are established and demonstrated in 

improving the predictive performance of algorithm. 

Therefore, considering an additive model ∑ 𝛼ℎℎ ∈𝐻 ℎ of pool 𝐻 of committee of weak learners, 

where 𝜇𝑖 is the loss of the model on instance 𝑥𝑖. It has been demonstrated that the sum of 

the coefficients and losses (Demiriz, et al., 2002) is bounded as illustrated in Equation 3.15.  

 
 

∑ 𝛼ℎ

ℎ ∈𝐻

 +  ∑ 𝜇𝑖

𝑚

𝑖=1
≤ 𝐵 

         (3.15)                       

 
According to Zhou, equation (3.15) bounds the complexity (Zhou, 2012) of the model such 

that the generalization error is bounded by equation (3.16) (Zhang, 1999).  

 
 

∈𝐷≤ �̂�(
ln𝑚

𝑚
𝐵2 ln(𝐵𝑚) + 

1

𝑚
𝑙𝑛

1

𝜕
) 

 

        (3.16) 

Where 𝐵 ≥ 1 and 𝛼ℎ ≥ 0.  
 
Therefore, considering 𝑇 weak learners such that  𝑦𝑖 = 𝑓(𝑥𝑖) is the label of training instance 

𝑥𝑖 , and 𝐻𝑖,𝑗 = ℎ𝑗(𝑥𝑖)  is the output of weak learner ℎ𝑗  on 𝑥, such that the optimization task 

is as illustrated in  equation (3.17). 

 
 

min
𝛼𝑗𝜇𝑖

 ∑𝛼𝑗 + 𝐵 ∑𝜇𝑖

𝑚

𝑖=1

𝑇

𝑗=1

 
         (3.17) 

 Empirical Investigation on Algorithmic Methods.  

3.4.1 Experimental Investigation on Boosting Implementation Methods  

One of the main interests in this study is to compare the accuracy performances of some of 

the commonly used ensemble implementation methods based on different base classifiers 

and datasets. Firstly, it will assist in examining the performance and correlation between the 
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outputs of the two implementation methods. Secondly, help to determine which method is 

easier to implement, how it can be improved, how they relate to each other under different 

experimental sources. In addition, it will provide answers to Hypothesis 1 and Hypothesis 2 of 

the thesis.  

3.4.2 Base Classifiers  

In this section a brief description of the algorithms that are used during the experimental 

investigation to train and build the classifiers that map the input data to output category or 

class are provided.   The algorithms are: Decision Stumps, Neural Network, Random Forest, 

Support Vector Machine (SVM) and AdaBoost as a meta-algorithm. The algorithms were 

selected based on their popularity and application in diverse projects (Schapire & Freund, 

2014; Witten, et al., 2011) and ability to handle training by reweighting and resampling 

methods, and the classifiers’ cost matrix compatibility with the training datasets.  

Decision Stumps  

Boosting with decision stumps is quite popular in data mining and have been shown to 

achieve better performance compared to unbounded decision trees due to their simplicity. 

It consists of a one-level decision tree and one internal node which are connected to the 

terminal nodes. It makes prediction based on the value of a single input feature (Witten, et 

al., 2011). Therefore, it has been used as a base classifier in various machine learning models 

such as Viola-Jones’ face detection framework that employs AdaBoost as a main classifier 

(Viola & Jones, 2004). 
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Artificial Neural Network  

The artificial neural network (ANN) is a family of artificial intelligence models like the 

biological brain that is capable of mapping complex and non-linear functions that depend on 

many inputs into linear outputs. It is generally presented as systems of interconnected 

neurons that exchange messages between each other. Like AdaBoost, ANN connections have 

numeric weights that can be changed thereby making neural networks adaptive to inputs and 

capable of learning and solving complex problems (Witten, et al., 2011). However, in this 

study we used the multilayer perception (MLP) with back-propagation which is a popular 

architecture of ANN (Haykin, 2008).  During the study, we observed that ANN models took a 

longer time to run compared with other models. This is due to the complexity of the 

algorithm’s architecture and topology such as the number of neurons, number hidden layers 

and other parameter settings. 

Random Forest  

 Random forest is an ensemble of several decision trees. It is a meta-estimator algorithm that 

fits several decision tree classifiers on various sub-samples of the dataset. It operates by 

constructing many decision trees at training time. It then outputs the class that is the mode of 

the classes as mean prediction of the individual trees. 

Support Vector Machine  

SVM has its roots in statistical   learning   theory   and   represents   the   decision boundary 

using a subset of the training examples known as support vector (Cheng & Tan, 2010; Cheng, 

et al., 2007). It is a discriminative classifier that is formally defined by separating hyperplanes 

and has been successfully used in many classification and regression analysis problems. In 

Support Vector Machine new examples of data are mapped into points in a separating 

https://en.wikipedia.org/wiki/Decision_tree_learning
https://en.wikipedia.org/wiki/Mode_(statistics)
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hyperplane and are predicted to belong to a category based on which side of the hyperplane 

the data falls on (Witten, et al., 2011; Corinna & Vladimir, 1995).  

Recent studies show that the algorithm works well with high-dimensional data and avoids the 

dimensionality problem that other algorithms faces.  

3.4.2 Experimental Investigations: Ensemble Methods 

The focus of this experimental study is to understand the performance of boosting methods. 

To see whether there is a link between boosting by reweighing, boosting by resampling and   

accuracy of ensembles modelled by using AdaBoost algorithm.  To investigate if there is a 

connection between ensemble accuracy and complexity of the base classifiers.  For the 

experiment a total of 13 different datasets obtained from the Machine Learning Repository 

(Dua & Karra Taniskidou, 2017) as illustrated in Table 5 were used. The reason for doing this 

is to ensure that the datasets used in the case study are derived from different domains to 

generalize outcomes of the study.  

Ten-fold cross validation approach (i.e. splitting the original datasets into K (10) folds or 

subsets of equal size) was applied to estimate the performance of the classifiers (Delen, et al., 

2005) as illustrated in Figure 3-3. This method has the advantage of using all the datasets for 

both training and testing the model thereby avoids overfitting problems.  The stratified cross-

validation tend to generate comparison results with lower bias and lower variance.  

 

Figure 3-3: Illustration of the 10-Fold Cross Validation Technique (Delen, et al., 2005).  
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The datasets were divided into learning and validation samples, the learning samples were 

used for acquiring rules. The validation samples were used for validating the acquired rules 

obtained during the training. The process is carried out ten times.  

i. For each fold train the classifier using all the folds except one (K-1)  

ii. Use the left out fold to test the model by calculating the cross validation 

metrics  

iii. Run the k-fold cross validation run several k times (that is 10 times) 

iv. Average the validation metrics across the subsets to get the final cross 

validation metrics. 

The following learning algorithms were implemented as base classifiers during the   simulation 

process: Decision Stumps, Neural   Network,   Random   Forest   and Support Vector Machine. 

The base classifiers were obtained from the UCI   Machine   Learning   Repository (UCI, 2015) 

and the London Ambulance Service, NHS Trust (LAS) as illustrated in Table 5. They were 

selected due to their ability to handle training by reweighting and their applications in 

managing controlling disease such as breast cancer. In the study, the original version of 

AdaBoost algorithm i.e. AdaBoost.M1 was applied as the boosting technique (Schapire, 1999).  

There  are  two  main  reasons  for  using this  version  of  the  algorithm:  

i. Firstly,  to  have  a  generalized experimental  set  up  that  is  independent  of  any  

AdaBoost variant.     

ii. Secondly,  to  have  an  experimental  conclusion  that is  based  on  the  original  

version  of  the  algorithm  which serves as a primary algorithm for other variants.   

iii. Thirdly, the research was based on  secondary  datasets, errors  in  datasets  and  

missing  data cannot  be  ruled  out.   



86 | P a g e  
 

 

iv. Fourthly, various parameters were configured to meet the needs of the 

experimental simulation. Changes to parameter settings can significantly affect 

the simulation results. 

Table 3.1: Experimental Datasets. 

Dataset Instances Attributes Source 

Breast Cancer 286 10 UCI2 

Diabetes diagnostic   1000 20 UCI 

Credit Card 14980 14 UCI 

Hepatitis 155 20 UCI 

EEG Eyes Data    

Hypothyroid 3772 30 UCI 

Hepatitis    

Labour 57 16 UCI 

Supermarket 4625 217 UCI 

Thoracic Surgery 470 33 UCI 

Primary Tumour     

Unbalanced data 856 33 UCI 

Congressional 

Voting 

435 16 UCI 

Zoo 101 18 UCI 

Incidents 1 data 1200 7 LAS3 

Incident 2 data 1200 7 LAS 

 

The test involves application of AdaBoost with 10-fold validation and ensembles of 5 to 25 

classifiers based on the size of the samples in Table 3.1. The experimental datasets illustrated 

                                                           
2 UC Irvine Machine Learning Repository 

3 London Ambulance Service 
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in Table 3.1 compromises of 16 different datasets that were obtained from different sources. 

The two sources are the UC Irvine Machine Learning Repository (UCI, 2015) and the London 

Ambulance Service (LAS., 2021). It also illustrated the number of instances and attributes in 

datasets. Several pre-processing of the datasets were carried out to eliminate anomalies and 

missing instances to avoid misclassifications.  

Four different types of base classifiers were used: decision stump, artificial neural network, 

random forest and support vector machine. Two different tests were carried out. The first 

test was based on boosting by reweighting and boosting by resampling.  The second test was 

based on standalone classifiers. In both tests as each classifier is added to the ensemble the 

following were considered:  training accuracy of the ensembles, testing accuracy of the 

ensembles and time complexity i.e. the time taken to run and finish the execution of the 

ensembles.   

3.4.3 Results and Discussion 

Table 3.3 illustrates the statistical performance results and comparison of boosting by 

resampling and boosting by reweighting.   It comprises of 16 datasets in column the dataset 

columns as illustrated in Table 3.1 and 5 different base classifiers as revealed in section 3.4.2. 

The base classifiers are namely Decision stump, Neural Network, Random Forest, Support 

Vector machine and AdaBoost as meta-classifier. In order to meticulously compare the 

performances of the two methods; different statistical concepts and measures were adopted. 

These strategies as demonstrated Table 3.1 are is illustrated in Table 3.2 below.  
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                                            Table 3.2 Different resampling and reweighting strategies 

Evaluation metrics  Description of Evaluation metrics  

C+ sample Correctly classified with cost-sensitive evaluation by resampling  

C- sample Correctly classified without cost-sensitive evaluation by resampling   

C+ weight Correctly classified with cost-sensitive evaluation by reweighting    

C- weight Correctly classified without cost-sensitive evaluation by reweighing     

VR sample Validation results based on Booting by resampling 

VR weight Validation results based on Booting by reweighting  

TE sample Test results based on Booting by resampling  

TE weight Test results based on Boosting by reweighting  

KS sample Kappa statistics based on Booting by resampling 

KS weight Kappa statistics based on Booting by reweighting 

PRC-A weight Precision Recall curve based on  Booting by reweighting 

PRC-A sample Precision Recall curve based on Booting by resampling 

ROC-A weight Receiver operating characteristic – Boosting by reweighting 

ROC-A sample Receiver operating characteristic – based on Boosting by resampling 

RMSE weight RMSE result based on Boosting by reweighing 

RMSE sample RMSE result based on Boosting by resampling 

 

Table 3.3 shows the comparative results of the two methods from the table, it illustrates some of the 

main performance metrics of the two AdaBoost boosting methods. 



Dataset/Algorithms Performance comparison of  Boosting by Resampling (sample) /Boosting by Reweighting (weight) 

Dataset Algorithm C+ 

sample 

C+ 

weight 

C- 

sample 

C- weight KS sample KS 

weight 

PRC-A 

sample 

PRC-A 

weight 

ROC-A 

sample 

ROC-A 

weight 

RMSE 

sample  

RMSE 

weight 

VR | TR VR | TR VR | TR VR | TR 

Breast cancer DS 72 | 76 70 | 76 28 | 24 30 | 24 0.283 0.256 0.716 0.732 0.682 0.697 0.437 0.430 

NN 71 | 98 71 | 98 29 | 02 29 | 02 .272 .272 .700 .700 .670 .670 .524 .524 

RF 66 | 98 66 | 98 34 | 02 34 | 02 .163 .150 .667 .676 .610 .632 .562 .551 

SVM 73 | 77 73 | 77 27 | 23 27 | 23 .286 .287 .730 .730 .683 .683 .441 .441 

AdaBoost 70 |74 69 |76 30 | 26 31 | 24 .233 .210 .691 .677 .661 .635 .461 .465 

Credit data DS 71 | 77 69 | 76 29 | 23 31 | 24 .210 .169 .754 .740 .737 .732 .426 .431 

NN 71 | 100 71 |99 29 | 0 |1 29 | 1 .318 .318 .693 .693 .672 .672 .525 .525 

RF 74 |100 73|100 26 | 0 27 |0 .335 .303 .767 .768 .750 .732 .482 .508 

SVM 66 |100 66|100 34 | 0 34 |0 -.013 -.013 .592 .592 .517 .517 .578 .578 

AdaBoost 75 |76 72 | 78 25 | 24 28 |22 .359 .268 .783 .750 .762 .730 .426 .442 

Diabetes DS 76 |77 76 |77 24 |23 24 |23 .560 .460 .822 .822 .817 .822 .405 .405 

NN 75 |90 75 | 81 25 | 10 25 | 19 .432 .432 .789 .789 .789` .789 .432 .432 

RF 73 |100 74 |100 27 |0 26 | 0 .371 .401 .775 .778 .772 .778 .267 .506 

SVM 65 |100 66|100 35 |0 34 | 0 0 -.013 .562 .592 .519 .517 .589 .578 

AdaBoost 75 | 81 75 | 79 25 | 19 25 | 21 .445 .446 .778 .780 .783 .784 .445 .438 

EEG Eye Data DS 67 | 71 67 |70 33 | 29 33 | 30 .310 .308 .704 .705 .716 .717 .463 .463 

NN 55 | 62 55 |56 46 | 38 46 | |44 .072 .072 .558 .558 .554 .554 .500 .500 

RF 95|100 94|100 5 |0 6 |0 .892 .884 .987 .984 .987 .986 .218 .231 

SVM 55 |100 55|100 45|0 54|0 .001 .001 .506 .506 .501 .501 .448 .350 

AdaBoost 69 | 70 70 |70 31 | 30 30 |30 .370 .374 .740 .733 .749 .747 .448 .449 

Hepatitis DS 82 |85 83 |90 18 |15 17 |10 .377 .450 .852 .876 .812 .851 .367 .351 

NN 70 | 100 70 |100 30 |0 30 | 0 .383 .383 .767 .767 .768 .768 .437 .437 

RF 84 | 100 85 |100 6 |0 15 | 0 .464 .531 .880 .884 .831 .850 .390 .371 

SVM 79 | 100 79|100 21 |0 21|0 0 0 .673 .673 .498 .498 .454 .454 

AdaBoost 76 | 97 81 | 97 24 |3 19 | 3 .311 .435 .826 .882 .775 .771 .461 .420 

Hypothyroid DS 93 |93 93 | 93 7 | 7 7 | 7 .032 .032 .966 .965 .989 .990 .121 .122 

NN 96 | 100 96 | 97 4 | 0 4 | 3 .560 .560 .947 .947 .865 .865 .500 .500 

RF 99 |100 99 |100 1 | 0 1 |0 .956 .008 .997 .997 .996 .999 .056 .058 

SVM 93 | 100 93|100 7 | 0 7 | 0 .251 .251 .907 .907 .735 .735 .035 .186 

AdaBoost 95 |95 95 |95 5|5 5 | 5 .588 .595 .973 .974 .987 .987 .118 .117 

Labor DS 89 |100 88|98 11|0 12 | 2 .283 .727 .901 .871 .912 .870 .300 .341 

NN 86 | 100 86|100 14 | 0 14 | 0 .272 .692 .939 .939 .923 .923 .337 .337 

RF 88 | 100 89 |100 12 |0 11|0 .163 .764 .916 .947 .908 .942 .329 .324 

SVM 89 |100 89| 100 11|0 11 |0 .286 .774 .925 .925 .947 .947 .324 .324 

AdaBoost 89 |100 88 |100 11|0 22|0 .233 .727 .872 .871 .882 .870 .328 .341 

Primary Tumor DS 28 |27 29 |29 72 | 73 71 |71 .145 .152 .193 .176 .664 .634 .195 .194 

NN 42 | 90 42 | 91 58 | 10 58 | 9 .338 .338 .423 .423 .779 .779 .194 .194 

RF 43 |86 42 |88 57 | 14 58 | 22 .352 .340 .402 .387 .763 .742 .182 .191 

SVM 39 | 47 39 | 47 61 | 53 61 | 53 .257 .257 .222 .222 .623 .623 .236 .520 

AdaBoost 28 | 27 29 | 29 72 | 73 71| 71 .145 .152 .193 .176 .664 .634 .195 .194 

Supermarket DS 75 | 76 75 |76 25 | 24 25 | 24 .434 .434 .791 .791 .795 .795 .414 .414 

NN 64 | 64 64 | 64 36 |36 36 | 36 .468 .468 .538 .538 .500 .500 .482 .482 

RF 64 | 64 64 | 64 36 | 36 36 | 36 0 0 .538 .538 .500 .500 .481 .481 

SVM 47 | 64 47 | 36 53 | 36 53 | 64 -.001 -.001 .537 .537 .500 .500 .767 .528 
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AdaBoost 81 | 79 81 | 80 19| 21 19 | 20 .589 .243 .864 .852 .865 .857 .373 .377 

Thoracic surgery DS 84 | 85 84 |85 16 | 15 16 | 15 0 0 .767 .760 .599 .599 .366 .367 

NN 80 | 98 80 | 95 20 | 2 20 | 5 .062 .062 .771 .771 .554 .554 .431 .431 

RF 43 | 100 42| 100 67 | 0 58 |100 .352 .191 .402 .387 .763 .742 .186 .191 

SVM 81| 92 81 | 93 19 | 8 20 |7 -.023 -.023 .767 .767 .537 .537 .393 .393 

AdaBoost 78 | 85 83 |85 22 | 15 17 | 15 .052 .036 .784 .788 .575 .592 .441 .390 

Unbalanced data DS 98 |100 98| 100 2 | 0 2 |0 0 .026 .977 .974 .971 .773 .129 .128 

NN 98 |100 98 |100 2 | 0 2 | 0 .215 -.006 .978 .973 .607 .526 .128 .132 

RF 98 |100 98 |100 2 | 0 2 | 0 -.006 -.004 .973 .974 .526 .554 .132 .125 

SVM 98 |100 98| 100 2 | 0 2 | 0 -.012 -.012 .972 .972 .490 .490 .024 .155 

AdaBoost 98 | 100 98| 100 2 | 0 2 | 0 .119 -.008 .977 .976 .610 .644 .128 .136 

Congressional 

Voting 

DS 98 | 97 98 |98 2 | 3 2 |2 .959 .959 .998 .998 .998 .998 .127 .127 

NN 96 | 100 96| 100 4 | 100 4 |0 .908 .908 .964 .964 .974 .974 .197 .197 

RF 94 |100 95| 100 6 | 0 5 | 0 .880 .903 .983 .984 .983 .983 .231 .206 

SVM 96 | 100 96 |100 4 | 0 4 | 0 .913 .913 .989 .989 .989 .989 .191 .042 

AdaBoost 95 | 100 95 |100 5 | 0 5 | 0 .903 .903 .987 .983 .982 .983 .214 .210 

Zoo DS 56 | 60 56 | 60 44 | 40 44 |40 .378 .408 .552 .532 .849 .830 .338 .271 

NN 96 | 100 96 |100 4 |0 4 |0 .945 .945 .973 .973 .993 .993 .105 .105 

RF 97 |100 86|100 4 | 0 14|100 .948 .814 .981 .923 .998 .988 .098 .214 

SVM 75 | 89 75 | 79 25 | 11 25 | 20 .662 .662 .739 .739 .916 .916 .264 .264 

AdaBoost 59 | 60 61| 60 41 | 40 39 | 40 .432 .448 .533 .534 .834 .830 .309 .294 

Incidents 1 DS 78 | 14 79 |14 21 | 86 21 | 86 0 0 .651 .643 .546 .526 .138 .138 

NN 79 | 78 | 21 | 21 | 0 0 .643 .651 .526 .546 .138 .138 

RF 97 | 100 74| 100 4 | 0 26 |0 .948 .027 .981 .659 .998 .587 .098 .163 

SVM 79 | 87 79 | 52 21 | 13 21| 47 0 .008 .509 .646 .637 .527 .148 .143 

AdaBoost 79 | 15 79 | 15 21 | 85 21 | 85 0 0 .651 .643 .546 .526 .138 .138 

Incidents 2 DS 15 | 15 15 | 15 85 | 85 85 | 85 .079 .078 .100 .096 .746 .736 .207 .207 

NN 47 | 47 | 53 | 53| 0 0 .315 .315 .579 .579 .184 .184 

RF 47 | 100 45 |100 53 |100 56|100 .005 .0178 .295 .278 .547 .522 .138 .195 

SVM 51 | 33 42 | 49 49 | 67 58 | 51 .472 .023 .554 .280 .855 .522 .203 .215 

AdaBoost 47 | 15 47 | 15 53 | 15 53 | 85 0 0 .596 .315 .319 .579 .185 .067 

Average / Performance 73.575 73.375 26.438 26.875 .341 .306 .727 .719 .731 .721 .325 .326 

Max /Performance 99 15 85 1 .959 -.043 .998 .096 .998 .333 .767 .042 

Min /Performance 15 99 1 85 -.043 .959 0.1 .998 .167 .999 .024 0.594 

Table 3.3: Empirical Results for Boosting by Reweighting and Boosting by Resampling for all Model Types.  
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Figure 3-4: Classification Comparisons - Standalone Algorithms and Ensemble Classifiers. 
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Figure 3-5: Empirical Comparison of Boosting Implementation Methods. 
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Table 3.4: Summary Comparison of Reweighting and Resampling Methods.  

Boosting methods 

Measure Reweighting  Resampling  

Accuracy 73 74 

KS 0.316 0.341 

PRC 0.719 0.727 

ROC 0.721 0.723 

RMSE 0.326 0.325 

 

Table 3.4 compares the summary performance for boosting reweighting and boosting 

resampling based on accuracy, KS, PRC, ROC and RMSE. As can be seen from Table 3.4, in 

summary these results show that in both methods the average of the correctly classified and 

incorrectly classified are comparatively the same.  As illustrated in the table the performance 

accuracy are 73% and 74% for boosting reweighing and boosting resampling respectively. 

However, the average values of the RMSE in both methods are slightly different, these are 

0.326 and 0.325 for boosting reweighing and boosting resampling respectively. Similarly, as 

can be seen from the table the KS, PRC and ROC values are also slightly different.  

The results in Table 3.4 further shows that the performance of boosting by reweighting and 

boosting by resampling are independent of the datasets used during the investigation. In 

comparison, the training accuracy and testing accuracy of the ensembles are significantly the 

same. Therefore, there is no correlation to the performance accuracy.  

More importantly, as can be seen from the comparison data in Table 3.3 and graphical 

illustration in Figure 3-5, the experimental investigation shows that the complexity of the 

chosen ensemble technique, boosting method and base classifier do not necessarily lead to a 

better performance of the models.  
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 Experimental Investigation: Standalone and Ensemble Models 
 

The emphasis of the investigation in this section is to understand the performance accuracy 

of standalone and ensemble techniques. To understand this, accuracy of the standalone 

algorithms and time complexity i.e. the time taken to run and finish the execution of the 

standalone algorithms were also measured.   

Study shows that in many cases standalone models have been applied to estimate the 

prediction outcome of many systems, however, many have resulted in a lower prediction 

accuracy than expected.  Therefore, in addressing this issue, a number of studies have focused 

on ensemble methods (Kazienko, et al., 2013; Zhukova, et al., 2017; Hamze-Ziabaria & 

Bakhshpoorib, 2017; Vašát, et al., 2017; Yousefi, et al., 2018)  in order to reduce the variance 

(Polikar, 2012) and improve prediction accuracy the models.  

To investigate and compare performance accuracy of ensemble techniques and standalone 

models: two experimental investigations were developed bas C4.5, K-NN and Logistics 

Regression on Breast Cancer Survivability samples.   

The purpose of using breast cancer survivability samples   is because of the death rates and 

negative societal impact of the disease globally most especially among women of all ages 

(Kwon & Lee, 2016; Society, 2015; Fitzmaurice, et al., 2015; Youlden, et al., 2014; WHO, 2017; 

WHOa, 2021; WHOb, 2020). Therefore, it necessitates the need to develop a non-invasive 

model to predict the survivability of the disease as part of this thesis to address the problem.  

For the ensemble model performance investigation, Random Forest, Radial Basis Function 

Network and Artificial Neural Network algorithms were applied as base learners.  The 
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following ensemble models: AdAM1, RA and MBAB were applied as meta-classifiers to train 

the base learners.  

Likewise, for the performance investigation of the standalone models ten different 

standalone classifiers were constructed on the same breast cancer datasets. The standalone 

algorithms applied in building the models are: Random Forest ANN, RBFN, RIPPER, Naïve 

Bayes, SMO, SVM, C4.5, K-NN and Logistics Regression.  

3.5.1 Results and Discussion  
 

The performance results for the ensemble and the standalone classifiers are as illustrated in 

Table 3.5  and Table 3.6 respectively and graphically illustrated in Figure 3-4. 

                                       Table 3.5 Performance Comparison among the Committee of Classifiers 

 

 

Metrics / 

Models Accuracy RMSE 

TP 

Rate 

FP 

Rate Precision 

Recall 

Curve 

ROC 

Area 

PRC 

Area Time(s) 

AdaM1 + 

RF 0.97 0.17 0.97 0.04 0.97 0.97 0.99 0.99 0.20 

AdaM1 + 

ANN 0.96 0.2 0.96 0.05 0.96 0.96 0.97 0.97 4.77 

AdaM1 + 

RBFN 0.95 0.2 0.95 0.08 0.96 0.95 0.99 0.98 0.41 

RA + RF 0.96 0.18 0.96 0.04 0.97 0.96 0.99 0.99 1.44 

RA + ANN 0.88 0.29 0.88 0.22 0.9 0.88 0.98 0.98 4.61 

RA+ RBFN 0.95 0.2 0.95 0.06 0.95 0.95 0.99 0.99 0.28 

MBAB + RF 0.97 0.17 0.97 0.04 0.97 0.97 0.99 0.98 0.14 

MBAB+ 

ANN 0.96 0.19 0.96 0.05 0.96 0.96 0.98 0.98 11.73 

MBAB + 

RBFN 0.96 0.19 0.96 0.03 0.96 0.96 0.99 0.98 0.37 
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Table 3.6 Performance Comparison among Standalone of Classifiers. 

 

In the case of the ensemble models, referring to Table 3.5 and Figure 3-4, we can see that the 

AdaM1 + RF, RA + RBFN, MBAB+RF and MBAB + RBFN models produced prediction accuracy 

of 97%, 95%, 95%, 97% and 96% respectively with execution time of 0.20s,  0.28s, 014s and 

0.37s, respectively.  However, ANN ensembles: AdaM1 + ANN, RA + ANN and MBAB+ ANN 

models produced prediction accuracy of 96%, 88% and 96% respectively with execution time 

of 4.77s, 4.61s and 11.73s respectively.  

The results further shows that the complexity and topology of a chosen base classifiers does 

not automatically leads to improved ensemble predictive results of the models. Contrarily, in 

some cases it produces the worst performance results despite high execution time and CPU 

resources required for training. As can be seen in Table 3.5, RA + ANN model produces worst 

prediction accuracy of 88% and execution time of 4.61s.  

Metrics / 

Algorithms Accuracy RMSE 

TP 

Rate 

FP 

Rate Precision 

Recall 

Curve 

ROC 

Area 

PRC 

Area Time(s) 

Random 

Forest 0.97 0.17 0.97 0.04 0.97 0.97 0.99 0.99 0.13 

ANN 0.95 0.2 0.96 0.06 0.97 0.96 0.99 0.98 1.17 

RBFN 0.96 0.18 0.96 0.04 0.96 0.96 0.99 0.98 0.05 

RIPPER 0.96 0.2 0.96 0.04 0.96 0.96 0.96 0.95 0.06 

Naïve Bayes 0.97 0.16 0.97 0.02 0.97 0.97 0.99 0.99 0.03 

SMO 0.97 0.17 0.97 0.03 0.97 0.97 0.97 0.96 0.05 

SVM 0.96 0.04 0.96 0.03 0.96 0.96 0.97 0.95 0.05 

C4.5 0.95 0.22 0.94 0.06 0.94 0.94 0.96 0.94 0.01 

K-NN 0.95 0.21 0.95 0.06 0.95 0.95 0.97 0.96 0.02 

Logistics 

Regression 0.97 0.17 0.97 0.05 0.97 0.97 0.99 0.99 0.05 
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The performance results of the standalone models are as details in Table 3.6 and graphically 

illustrated in Figure 3-4. As can be seen in Table 3.6 random forest, logistic regression, naïve 

Bayes and SMO all have the same performance accuracy of 97%, with different execution 

times. However, it takes Random Forest and Naïve Bayes models 0.13s and 0.03s to execute the 

sample while it takes SMO and Logistic regression 0.05s respectively to execute the same sample.  It 

can be seen from the data in Table 3.6 that it takes ANN model 1.17s with a prediction accuracy 

of 95%. As illustrated in Figure 3-4 it further shows that complexity of the standalone ANN 

model with execution time of 1.17s and predictive accuracy of 95%.  The model did not 

outperform any of the simple standalone models as can be seen in Table 3.6 

 Chapter Summary 

In this chapter two distinct empirical investigations to establish the performance of the 

various standalone and ensemble techniques have been carried out. These are:  

I. Pragmatic comparison of boosting methods; boosting resampling and boosting by 

reweighting implementation techniques.  

II. Experimental performance and comparison of standalone and ensemble methods.  

The results from both experimental investigations provide answers to the Hypothesis 1 and 

Hypothesis 2 of this thesis. The results presented in this chapter shows that boosting by 

sampling method performs relatedly better than boosting by reweighting method. The 

complexity and topology of algorithm models (in terms of time and space) does not 

necessarily make them perform better than the simple models. 

It the next chapter the proposal, development, discussion and testing of ensemble EKF-RBFN-

ADA concept is presented. A model that integrates there concepts namely: EKF, RBFN, and 

AdaBoost as a framework to enhance the predictive performance of ensemble models. 
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Chapter 4: EKF-RBFN-ADA Ensemble Models  

 Introduction  

In the previous chapter various experimental investigations to compare the performance of 

boosting methods were carried out. Performances of standalone and ensemble algorithms 

were also considered and compared which provide answer to Hypothesis 1 and Hypothesis 2 

of the thesis that were derived from the literature reviews.     

A number of reports show that hybrid modelling concepts are widely used to predict changes 

of process variables and to enhance the overall performance of such systems (Zu, et al., 2012; 

Olsson, et al., 2001; Chou, et al., 2013; Aly, 2020; Javid, et al., 2020; Zain & Tokhi, 2004).  The 

procedures improve the performance of machine learning methods by leveraging and 

combining the strengths and weaknesses of several models to obtain a better and stronger 

classifier than averaging the models.  

The focus of this phase is to address Objective 2, the integration of EKF, RBFN and AdaBoost 

algorithms to combine the weak classifiers that could provide relatively parsimonious 

framework compared to existing ensemble methods.   

However, review of the literature shows that no previous research especially on how to 

develop hybrid ensemble models that amalgamate the three methods that is EKF, RBFN and 

AdaBoost models, has been considered as an alternative solution to improve predictive 

performance of ensemble models.  

In this chapter a brief outline of the proposed EKF-RBFN-AdaBoost models that is based on 

consolidation of Extended Kalman Filter (EKF), Radial Basis Function Networks (RBFN) and 

AdaBoost modes, is discussed. Doing this enables us to address the current inefficient 
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performance of ensemble models.  In the proposed model, EKF is applied as training algorithm 

to train and optimize the parameters of Radial Basis Function Networks (RBFN) to produce 

EKF-RBFN object as output. Then AdaBoost as a meta-algorithm accepts the EKF-RBFN 

outputs as input prototypes which are further trained as committee of weak classifiers by 

AdaBoost to output a stronger classifier. The methodology extends the application of hybrid 

modelling concept to non-linear dynamical systems that is approximated using the first or 

second order derivatives of the EKF and RBFN models.  

The following sections and subsections of this chapter focus on how to develop and integrate 

the three models as an ensemble model in order to improve its prediction accuracy with focus 

on breast cancer survivability and diabetic models. Firstly, a brief background and related 

work on Cancer and Diabetic models are presented. Secondly, the theory of ensemble 

modelling is described, and thirdly the proposed model is discussed followed by the model’s 

performance analysis and conclusion is outlined.   

 Related Cancer and Diabetic Models 

Review shows that ensemble algorithms are essentially iterative, notwithstanding their 

results are inconsistent and not as accurate as it should be. For instance, the application of 

ensemble algorithms in early prediction of breast cancer and diabetes diagnosis which are the 

two common diseases that affects a lot of people requires algorithms with high predictive 

accuracy and reliability (Thomas, 2019; Kelly, et al., 2019; Ghassemi, et al., 2020).  

Breast cancer has been classified as one of the most common causes of cancer related death 

mostly among women in the world in the past years. In the USA alone, in 2015 an estimated 

231,840 new cases of invasive breast cancer were diagnosed among women and 60,290 

additional cases of in-situ breast cancer (American-Cancer-Society, 2015; Adegoke, et al., 
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2017). Similarly, in the UK over 55,222 women were diagnosed with new cases of the disease 

in 2014 which amounted to 11, 433 deaths (UK, 2018) and the ailment reached 25.2% of 

women worldwide (Kwon & Lee, 2016).  

There have been several investigations that show that the disease is also a looming epidemic 

in the developing countries where advanced techniques for early detection and treatments 

are not readily available (Formenti, et al., 2012).  

Similarly, “Diabetes is a chronic progressive disease that is characterized by elevated levels of 

blood glucose. It has been argued that diabetes of all types can lead to complications in many 

parts of the body.  Therefore, it can increase the overall risk of dying prematurely” (WHO, 

2016). According to the British Heart Foundation “the increasing number of people suffering 

from the epidemic could trigger a 29% rise in the number of heart attacks and strokes linked 

to the condition by 2035” (BHF, 2018; ITV, 2018). Recent analysis show that about four million 

people in the UK have diabetes with condition accounting for 10% of all NHS spending (BBC, 

2018).  

In recent years researchers have investigated a variety of approaches in data mining using 

different ensemble techniques in predicting probable events based on historical datasets. 

One of the key challenges is the choice of the base classifiers and the appropriate loss 

functions that go with it. The goal of any ensemble algorithm is to minimize error rate in order 

to achieve accuracy and improve reliability. Despite the successful research efforts and 

application of ensemble methods recent work shows that the problem with prediction 

accuracy, speed and computational cost are still puzzling tasks. Therefore, the development 

of reliable ensemble models that can be applied for efficient medical diagnosis, incidents 

management and execution of automated technologies that are decision based, and in some 
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cases life dependent are highly essential. To address the issue of prediction accuracy, 

reliability and to extend the applications of ensemble algorithms, the research proposed a 

new model that bridges the performance potentials of RBFN, EKF and AdaBoost algorithms.  

4.2.1 Breast Cancer Survivability Models 
 

Medically, breast cancer can be detected early during screening examinations through 

mammography or after a woman notices an unusual lump (American-Cancer-Society, 2015) 

in her breast. Owing to advancement in technology and availability of patient medical records, 

computer aided diagnosis cancer detection systems have been developed to detect and thus 

control the spread of the disease. However, such systems rely on pattern recognition 

algorithms that are used to process and analyse medical information of images obtained from 

mammograms for diagnostic and decision making (Weedon-Fekjær, et al., 2014; Sapate & 

Talbar, 2016).   

Different algorithms have also been proposed to extract relevant patterns from patients’ 

breast cancer ailments; for instance Yang et al (Yang, et al., 2013) came up with a genetic 

algorithm that identify the relationship between genotypes that can lead to cancer  cases 

using mathematical analysis. Similarly, McGinley et al (McGinley, et al., 2010) applied Spiking 

Neural Networks algorithm as a novel tumour classification method in classifying cancer 

tumours as either benign or malignant.   

Recently, a deep learning-based approach has been applied to high dimensional, high-

volume, and high-sparsity medical data to identify critical casual attributions that might affect 

the survival of a breast cancer patient.  More recently, a deep learning-based approach has 

been applied to high dimensional, high-volume, and high-sparsity medical data to identify 
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critical casual attributions that might affect the survival of breast cancer patients (Chen, et 

al., 2021).  

In another approach (Pak, et al., 2015) proposed a breast cancer detection and classification 

in digital mammography based on Non-Subsampled Contourlet Transform (NSCT). The 

authors proposed a Super Resolution to improve the quality of digital mammography images. 

The authors then applied AdaBoost algorithm to determine the probability of a disease being 

a benign or malign cancer.  Likewise, in breast mass cancer classification (Xie, et al., 2015) the 

authors used computer-aided diagnosis (CAD) system for the processing and diagnosis of 

breast cancer.  

4.2.2 Diabetes Diagnostic Models 
 

In their study Alghamdi et. al. using SMOTE and ensemble techniques carried out 

experimental work applying a number of algorithms to establish and compare their 

performances in predicting diabetes-based data obtained from patients’ medical history 

(Alghamdi, et al., 2017). The model comprises of ensemble-based predictive method that uses 

13 out of the 62 available classified attributes. The selected attribute for the model depends 

on clinical importance, multiple linear regression (MLR) and the Information Gain (IG). The 

authors reported an accuracy performance of 89% for G1/G2 attributes and accuracy (AUC) 

of 0.922 for the ensemble method. Similarly, in (Zheng, et al., 2017), the authors proposed a 

framework that identifies type 2 diabetes using patient’s medical data. They utilized various 

classification models that extract features to predict identification of T2DM in datasets. 

According to the authors, the average results of the framework was 0.98 (UAC) compare with 

other algorithms at 0.71. To validate whether there is a connection between diabetes mellitus 

and glaucoma chronic diseases, in their work (Apreutesei, et al., 2018) applied a simulation 
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technique constructed using artificial neural networks on clinical observations datasets. 

According to the authors the model was able to predict an accuracy of 95%.  

In another study (Barakat, et al., 2010) the authors proposed a multi-purpose model for the 

diagnosis and prediction of diabetes using support vector machines algorithm. According to 

the authors, the results of the model show a prediction accuracy of 94%. 

 Ensemble Modelling 

As previously highlighted, the purpose of ensemble modelling is to improve prediction 

accuracy by producing a stronger learner through the combination of multiple weak models. 

Therefore, the overall performance of the combined ensemble weak classifiers is boosted by 

taking the advantage of the dependency and diversity among the base learners.  The concept 

penalize instances that are not correctly classified with higher weights.  Therefore, it awards 

instances that are correctly classified with little or no weights as a performance 

compensation.  In general, ensemble model consists of several related ensemble members 

that are combined with their ensemble weights into a predictive model.  The purpose of this 

approach instead of the conventional or standalone classifier method that is based on a single 

pool of dataset is to decrease variance and bias, and therefore improve predictions 

accuracy.  In this session, more emphasis is laid on the concept and formulation of ensemble 

models.  

 

4.3.1 Ensemble Model Formulation  

An ensemble model with 𝑚 weak classifiers can be described as shown in Equation (4.1):  

 𝑌 =  𝑤1 𝑦1 + 𝑤2 𝑦2 + 𝑤3𝑦3 … . . + 𝑤𝑚𝑦𝑚                                                      (4.1) 
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where 𝑌 is the output of the ensemble models, 𝑦1, 𝑦2, 𝑦3 … , 𝑦𝑚 are the prediction output of 

ensemble members and 𝑤1, 𝑤2, 𝑤3, … , 𝑤𝑚 are the corresponding ensemble weights of 

ensemble members 1, 2, 3, … . . 𝑎𝑛𝑑 𝑚, respectively. The accuracy of equation (4.1) is 

determined by the ensemble weights of the weak classifiers which are determined during 

training. In ensemble modelling the tasks is to minimize the difference between the predicted 

outputs and the actual class label, the right hand and left hand sides of Equation (4.1) 

respectively.  

Therefore, we can re-arrange Equation (4.1) in the form of an objective function that 

describes the classification error such that:   

 
𝐸 =  ∑(𝑦𝑖 − �̅�)2

𝑚

𝑖=0

               
(4.2) 

where 𝐸 is the classification error, 𝑦𝑖 is the prediction 𝑖 instance and �̅� is the mean of all the 

target in the group. As mentioned, in any modelling the goal is to improve the prediction 

accuracy by reducing the error,  𝐸.  Therefore, if we introduce weights and biases into 

Equation (4.2), it can be rearranged and expressed the equation in the form of a cost function 

as in Equation (4.3) such that:  

 
𝐹(𝑤, 𝑏) =  ∑(𝑦𝑖 − �̅�)2

𝑚

𝑖=0

               
(4.3) 

Thus in Equation (4.3), the cost function shows how accurate the prediction error is, if it is 

high it shows poor prediction performance.  While on the other hand, a low value indicates a 

higher performance accuracy. The predicted output in Equation (4.3) can consequently be 

expressed as shown in Equation 4.4, such that:  
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�̅� =    ∑𝑊 ∗ 𝑋 +  𝑏

𝑚

𝑗

             
(4.4) 

Equation 4.4 can also be rearranged such that the error can be expressed in form of ∆ (delta) 

that is change in the input and output values in Equation (4.4) as expressed in Equation (4.5), 

such that:  

 
 ∆�̅� =  ∑∆𝑊 ∗ ∆𝑋 + ∆𝑏

𝑚

𝑗

               
(4.5) 

In Equation 4.4 and Equation 4.5 ensemble weights (𝑊 𝑎𝑛𝑑 ∆𝑊) and the biases (𝑏 and ∆𝑏)  

play important role on the classification and performance accuracy of ensemble models.  

The weights and biases are the learnable parameters of machine learning models. For 

instance in the neural networks the weights control the signal between two neurons. It 

determines the influence of the input on the output while the biases are additional input to 

the next layer (Géron, 2018; Schmidt, et al., 2019) and essential in optimizing ensemble model 

analysis and performance (Shahhosseini, et al., 2019; Kotu & Deshpande, 2019).  

Assuming that two ensemble members that are unbiased with outputs of  𝑦1 and 𝑦2, and 

independent variances 𝜎1 and 𝜎2 such that:   

𝛽(𝑌 − 𝑦1)  = 𝛽(𝑌 − 𝑦2)  =  0 

𝐶𝑂𝑉𝐴𝑅(𝑦1, 𝑦2)  =  0 

Therefore, an ensemble model with two members can be shown as 

𝑌′ = 𝑤1 𝑦1  + 𝑤2 𝑦2 
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where 𝑤1 and 𝑤2 are the ensemble weights.  For 𝑤1 and 𝑤1 that are non-negative and 

normalised ensemble weights, such that 𝑤1 + 𝑤2 = 1. Therefore, the bias of the model can be 

expressed as:     

𝛽(𝑌 − 𝑌′) =  𝛽((𝑤1 + 𝑤2)𝑌 − 𝑤1 𝑦1 − 𝑤2 𝑦2)) = 0 

This can further be rearranged as  

𝛽(𝑌 − 𝑌′) = 𝑤1 𝛽(𝑌 − 𝑦1) + 𝑤2 𝛽(𝑌 − 𝑦2) = 0 

Hence, the variance, 𝑌′ can be expressed as: 

𝑉𝐴𝑅(𝑌′) = 𝑉𝐴𝑅(𝑤1 𝑦1 + 𝑤2 𝑦2) =  𝑤1
2 𝜎1 + 𝑤2

2 𝜎2 = 𝑤1
2 𝜎1 + (1 − 𝑤1)

2𝜎2 

Taking the derivate of 𝑉𝐴𝑅(𝑌′)  with respect to 𝑤1 and 𝑤2 and setting the result to zero 

respectively will minimize 𝑉𝐴𝑅(𝑌′) such that: 

𝜕𝑉𝐴𝑅(𝑌′)

𝜕𝑤1
=  

𝜕𝑉𝐴𝑅(𝑌′)

𝜕𝑤2
= 0 

Therefore, 

𝑤1 = 
𝜎2 

𝜎1+𝜎2 
 and  𝑤2 = 

𝜎1 

𝜎1+𝜎2 
 

Alternatively,  

𝑤2 = 1 − 𝑤1 =  
𝜎1 

𝜎1+𝜎2 
 

Therefore, whenever  𝜎2  >  𝜎1 then:  

 𝑉𝐴𝑅(𝑌′) − 𝜎1 = 𝑤1
2 𝜎1 + (1 − 𝑤1)

2𝜎2 − 𝜎1                                               (4.6) 

This shows that when the output of Equation (4.6) is negative, then the performance of the 

ensemble model is better than performance of individual members of the classifier. However, 
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if the output value of the model is positive, then other member of the classifiers should be 

used as estimator instead of 𝑌 𝑜𝑟 𝑌′. 

The above variance-bias analysis shows that ensemble weights play crucial impact on the 

performance of machine learning concepts that are based on ensemble modelling (Schapire & 

Freund, 2014; Cover & Thomas, 2006).  It is therefore significant to effectively optimize 

ensemble weights in order to enhance their predictive performance efficiency, robustness and 

reliability.  

 Hybrid EKF-RBFN-AdaBoost Models 

In this section and other subsections, a brief outline theory and the structures of the three 

models: EKF, RBFN and AdaBoost that were integrated to form the framework of the 

proposed hybrid models are discussed. The development of the hybrid model that was 

centred on differentiable based-process models are also briefly discoursed.   

4.4.1 RBFN Models  

RBF network implements an input–output mapping using a linear combination of radially 

symmetric functions (Moody & Darken, 1989). The algorithm have characteristics similar to 

those of back propagation networks. The algorithm can be viewed as an alternative to the 

multi-layer perceptron neural network (MLPNN) for non-linear modelling (Nabney, 2002).  

They do a nonlinear, through localized, transformation and a weighted linear combination. It 

has three layers, with feedforward connections between the nodes, as illustrated in Figure 

4-1 (Galar & Kumar, 2017).  

https://www.sciencedirect.com/topics/engineering/feedforward
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Figure 4-1: Radial Basis Function Network (Galar & Kumar, 2017). 

Several algorithms have been proposed that are used by researchers to train RBF Networks.  

Rather than picking random data points, a principled clustering technique to find a set of RBF centres 

which accurately reflect the distribution of the data points has been used. This technique include 

unsupervised methods such as the K-means clustering (Qiao, et al., 2016; Xing, et al., 2015) 

and self-organizing maps (Yamashita, et al., 2010; Chang, et al., 2007). 

Some researchers have also used supervised methods such as Particle Swarm Optimization 

(PSO) (Kelwade & Salankar, 2016; Wang, et al., 2015) and Gradient Descent (Malathi & Suresh, 

2014; Soni, et al., 2015), at the same time others have used Artificial Bee Colony (Kurbban & 

Besdok, 2009) algorithms to determine the parameters of the network.  However, in this 

research EKF is used to train RBF networks in order to optimize the network parameters. This 

is because EKF is regarded as an accurate function estimator that converges faster during 

training (Rhudy, 2015; Rivals & Personnaz, 1998).  The algorithm can also handle small training 

samples and missing data effectively compare to other available methods.  As previously 
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described after the training of the network with EKF, AdaBoost is employed as a meta-

technique to train the EKF-RFFN model as an ensemble of RBF networks.   

4.4.2 Kalman Filter Models 

Kalman Filter (Kalman, 1960; Li, et al., 2015) is an optimal estimator algorithm that deduces 

unknown values of interest from inaccurate and uncertain or inaccurate observations. Even 

though the filter was originally developed as a recursive solution to the discrete data linear 

filtering problem, it has been used to estimate linear system models with additive 

independent white noises. The filter uses a number of measurements observed over time that 

contains noises and other inaccuracies which it filters to predict the future behaviour of a 

system based on the system’s past behaviour, taking into consideration the environmental 

constraints of the system. Therefore, the filter minimizes the mean square error of the 

estimate.  

The extended Kalman filter (EKF) is the nonlinear version of the Kalman Filter which linearizes 

the estimate of the current mean and covariance Lacey shows that the filter has been 

considered as a standard in the theory of nonlinear state estimation, navigation systems, data 

prediction tasks (Lacey, 2020) and other related problems by several researchers over the last 

decades.  

As demonstrated in the previous section the process of calculating the ensemble weights can 

be considered as a discrete and sequential estimation problem (Kalman, 1960; Lacey, 2020).  

Therefore, the state-space model can be derived in terms of the weights and outputs of the 

ensemble model described in Equation 4.1 can be sequentially represented as follows in 

Equation (4.7) and Equation (4.8), respectively.  
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𝑤1 = 𝑤𝑘−1 + 𝜔𝑘−1 =

[
 
 
 
 
𝑤𝑘−1,1
𝑤𝑘−1,2

⋮
⋮

𝑤𝑘−1,𝑛]
 
 
 
 

 + 𝜔𝑘−1  

 

(4.7) 

 

 

𝑌𝑘=𝑌𝑘
′ + 𝑣𝑘 = [𝑦𝑘,1 𝑦𝑘,2  ⋯⋯ 𝑦𝑘,𝑛] + 

[
 
 
 
 
𝑤𝑘,1
𝑤𝑘,2

⋮
⋮

𝑤𝑘,𝑛]
 
 
 
 

 +  𝑣𝑘    

 

(4.8) 

 

Where   

𝑤𝑘 is the ensemble weights at time 𝑘,  

𝑌𝑘
′  is the output of the model at time 𝑘, 

 𝑌𝑘 is the measurent at time 𝑘, 

 𝜔𝑘−1 is process noise, and  

𝑣𝑘is the measurement noise  

Assuming that the process noise 𝜔𝑘−1, and the measurement noise 𝑣𝑘 , are Gaussian white 

noises with covariance 𝑄𝑘−1 and 𝑅𝑘, respectively,   therefore, KF can be applied to estimate 

and optimize the training weights in Equation (4.1)  and Equation (4.2). In addition, KF can be 

recursively applied as a sequential ensemble method that represents the concept of 

sequential ensemble modelling described in this session as illustrated in Equation (4.7) and 

Equation (4.8).  The recursive nature of Kalman Filter algorithm as sequential ensemble 

technique is as illustrated in Figure 4-2. 
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Figure 4-2: Kalman Filter Recursive Algorithm – A Sequential Ensemble Technique 

The bias and the variance of 𝑌𝑘
′ in Equation 4.8 can be calculated as shown below assuming 

that 𝐸(𝑎𝑘−1 − �̂�𝑘−1) =  𝐵𝑘−1 

Bias of 𝒀𝒌
′ :  

𝐸(𝑌𝑘 − 𝑌𝑘
′) = 𝐸(𝐻𝑘𝑎𝑘 + 𝑣𝑘 − 𝐻𝑘�̂�𝑘) 

                                                                      = 𝐻𝑘. 𝐸(𝑎𝑘 − �̂�𝑘) 

                                                                     = 𝐻𝑘. 𝐸(𝑎𝑘−1 + 𝜇𝑘−2 − �̂�𝑘−1) 

                                                                     = 𝐻𝑘. 𝐸(𝑎𝑘−1 − �̂�𝑘−1) 

                                                                     = 𝐻𝑘. 𝐵𝑘−1 

Variance of 𝒀𝒌
′ :  

𝑉𝐴𝑅(𝑌𝑘 − 𝑌𝑘
′) =  𝐸[(𝑌𝑘 − 𝑌𝑘

′)(𝑌𝑘 − 𝑌𝑘
′)𝑇] 

                                                                         = 𝐸{[𝐻𝑘(𝑎𝑘 − �̂�𝑘) + 𝑣𝑘][𝐻𝑘(𝑎𝑘 − �̂�𝑘) + 𝑣𝑘]𝑇} 
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                                                                         = 𝐻𝑘 𝐸[(𝑎𝑘 − �̂�𝑘)(𝑎𝑘 − �̂�𝑘)
𝑇]𝐻𝑘

𝑇 + 𝑅𝑘   

                                                                          = 𝐻𝑘�̂�𝑘 𝐻𝑘
𝑇 + 𝑅𝑘      

where,  

  �̂�𝑘 = �̂�𝑘+1 +  𝑄𝑘−1 , and �̂�𝑘+1 is the trace which is minimised at time,  𝑡 =  𝑘 − 1. This 

makes the trace of 𝑌𝑘
′ to be minimum and therefore can be visualised as a form of 

sequential Mean Square estimation.  

4.4.3 Optimization of RBFN using Kalman Filter  

As demonstrated in the previous section the optimization of the ensemble weights is a type 

of discrete data filtering problem. Therefore, it is possible to use Kalman Filter to optimize the 

weight matrix problems. Also, the training error of the ensemble model can be treated as a 

least square minimization problem. The derivation of extended Kalman Filter (EKF) as a 

sequential ensemble method are widely available in the literature (Wan & Van Der Merwe, 

2000; Haykin, 1996; Ribeiro, 2004).   

Therefore, in this session importance is laid on how Kalman filter can be applied to optimize 

the training parameters of Radial Basis Function Networks in order to improve the algorithm’s 

prediction performance. 

Assuming a non-linear finite dimension discrete time system (Chernodub, 2014; Haykin, 2008; 

Simon, 2013; Simon, 2002) we can represent the state and measurements as  

 𝜃𝑘+1 = 𝑓(𝜃𝑘) + 𝜔𝑘 (4.9) 

 𝑦𝑘 = ℎ(𝜃𝑘) + 𝑣𝑘  (4.10) 

where the vector 𝜃𝑘  is the state of the system at time 𝑘, 𝜔𝑘 is the process noise, 𝑦𝑘 is the 

observation vector, 𝑣𝑘 is the observation noise and 𝑓(𝜃𝑘) and ℎ(𝜃𝑘) are the non-linear vector 
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functions of the state and process respectively.  If the dynamic state 𝑓(𝜃𝑘) and process ℎ(𝜃𝑘) 

in equations 4.9 and 4.10 are assumed known, then EKF can be used as the standard method 

of choice to approximate maximum likelihood estimation of the state 𝜃𝑘  (Wan & Van Der 

Merwe, 2000). Therefore, the optimization of RBFN with weight 𝑊 and the prototype 𝑣𝑗  as a 

weighed least-square minimization (WLSM) problem can be viewed.  

The error vector can also be viewed as the difference between the RBFN outputs and the 

expected target values. Therefore, the optimization problem of RBFN can be represented 

using Kalman filter algorithm by letting the output of the weight W and the elements of the 

prototype vj represent the state of a nonlinear system and the output of the RBFN network 

respectively (Chernodub, 2014; Simon, 2002). Therefore, the problem addressed by EKF is to 

find an estimated values for  𝜃𝑛+1 of 𝜃𝑘+1 given that 𝑦𝑗(𝑗 = 0, … , 𝑘).  Hence, the estimated 

value 𝜃𝑛  can be obtained using recursion expressions as  

 �̂�𝑘 = 𝑓(�̂�𝑘−1  +  𝐾𝑘[𝑦𝑘 − ℎ(�̂�𝑘−1 )])   (4.11) 

 𝐾𝑘 = 𝑃𝑘𝐾𝑘(𝑅 + 𝐻𝑘  
𝑇 𝑃𝑘  𝐻𝑘)−1   (4.12) 

 𝑃𝑘+1 = 𝐹𝑘(𝑃𝑘 − 𝐾𝑘𝐻𝑘  
𝑇 𝑃𝑘)𝐹𝑘  

𝑇 + 𝑄   (4.13) 

𝑤ℎ𝑒𝑟𝑒 𝐾𝑘 is the Kaman Gain, 𝑃𝑘 is the covariance matrix of the estimation error,  𝜃𝑘+1 is state 

estimation, 𝑄 is the process noise covariance matrix for  𝜔𝑘 and 𝑅 is the measurement noise 

covariance matrix.  

4.4.4 Analytical Representation of RBFN 

Assuming a RBFN model with 𝑚 inputs, 𝑐 prototypes, 𝑛 outputs, using 𝑦 to denote the target 

vector for the network output, �̂� (otherwise ℎ(𝜃𝑘 )) to represent the actual output of the 
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model at the 𝑘𝑡ℎ iteration of the optimization model. The optimization of the weight 𝑤 and 

the prototypes 𝑣𝑗  can be viewed as a weighted least-squares minimization task.  

The error vector is the difference between the RBF Network outputs and the expected output 

values, such that:  

𝑦 = [𝑦11  ⋯ 𝑦1𝑀  ⋯ 𝑦𝑛1  ⋯ 𝑦𝑛𝑀]𝑇 

�̂� = [�̂�11  ⋯ �̂�1𝑀  ⋯ �̂�𝑛1  ⋯ �̂�𝑛𝑀]𝑇 

where 𝑦 and  �̂� are vectors that consists of 𝑛𝑀 elements: 𝑛 is the dimension of the RBFN and 

𝑀 is the number of training samples. To use KF to represent and optimize RBFN parameters 

firstly, let the elements of the weight matrix 𝑊 and the elements of the prototypes 

𝑦𝑖 constitute the state of a nonlinear system.   Secondly, let the output of the RBF network 

constitute the input of the nonlinear system to which the KF is applied. Therefore, the state 

of the nonlinear system of the RBFN can therefore be characterised as:  

𝜃 =  [𝑤1 
𝑇  ⋯  𝑤𝑛 

𝑇    𝑣1 
𝑇  ⋯ 𝑣𝑐 

𝑇]𝑇  

It is important to note that the vector 𝜃 is a linear array of all (𝑛(𝑐 + 1) + 𝑚𝑐) of the RBFN 

parameters. Therefore, the non-linear model to which Kalman can be applied is as expressed 

in Equation (4.5) and Equation (4.6) as  

 𝜃𝑘+1 = 𝜃𝑘 + 𝜔𝑘 (4.14) 

 𝑦𝑘 = ℎ(𝜃𝑘) + 𝑣𝑘  (4.15) 

where ℎ(𝜃𝑘) is RBFN’s nonlinear mapping between its parameters and its outputs, 𝜔𝑘 and 𝑣𝑘 

are the process and measurement noises (Simon, 2013) respectively. 
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 Proposed EKF-RBFN-Ada Model Description  
 

In this subsection and the next, a description of the various components of the proposed 

model is provided.  One of the key benefits of the model is that parameters in the ensemble 

members are sequentially adjusted during training as iterated above. Therefore, using Kalman 

filter as a sequential algorithm does not necessarily depends on large data or missing data to 

make adequate prediction. However, it only needs the past state and current state of the 

system to make a prediction of the next state of the system. This is unlike the conventional 

classifiers that suffers from performance issues such as overfitting because of inadequate 

samples or missing data from the samples available while training.  

The detailed structure of the proposed RBFN-EKF-AdaBoost model is shown in Figure 4-3 and 

the framework of the model is illustrated in Figure 4-4.  As shown in Figure 4-4, it is possible 

to interchange the dotted part of the diagram that is the RBFN parameters optimization part 

of the framework with other optimization methods such as training the network with 

Decoupled Kalman filter or Particle Swarm Optimization (PSO) algorithms. 

In the simulation, the weak classifier RBFN is fitted to a version of the dataset described in 

the previous section. The structure of the RBFN used is as illustrated in Figure 4-5. Then, EKF 

is used to train the RBFN at each iteration. The training process comprises of several training 

points (𝑋𝑖, 𝑌𝑖) where 𝑋𝑖,  ∈  𝑋 and 𝑌𝑖  ∈  {−1,+1}, on round 𝑡, 𝑤ℎ𝑒𝑟𝑒 𝑡 =  1, . . . 𝑇.  Then 

compute the weighted misclassification rate of the learner and update the weighting measure 

used in the next round t + 1. During the training process AdaBoost called the base classifier 𝑇 

times, in this case 20 times. As AdaBoost trains RBF network at each round, RBFN layers are 

optimized using EKF to train and update the network training parameters, namely the: 
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standard deviation (𝜎), mean (𝜇) and the weights (𝑤). At each training cycle, the model 

continuously adjusts the weights of the RBFN weak classifiers until stopping criteria is met.  

During simulation process it was observed that the optimized parameters were different at 

the initial stage but remains unchanged after few training cycles. This indicates how quickly 

EKF was able to learn from the data, generate optimized RBFN training parameters. 

Therefore, it enables the model to converge quite fast compare to other predictive models 

described in the previous chapter of this thesis.  
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Figure 4-3:  Hybrid Structure of EKF-RBFN-AdaBoost Model for Predicting Breast Cancer 

Survivability and Diabetic Diagnostics. 

  

 



118 | P a g e  
 

 

 

Figure 4-4: Framework of the Proposed Hybrid EKF-RBFN-AdaBoost Ensemble Model. 

 

 

 

Figure 4-5: Three-layer Feed-Forward RBF Network [Adapted from (Galar & Kumar, 2017)]. 
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 Simulation Results and Discussion  

In this section the application of EKF in training RBFN is briefly described, then training the 

output EKF-RBFN prototypes with AdaBoost as a meta-ensemble algorithm to obtain the final 

predictive output of the model.  

Firstly, during the simulation process the sample is randomly divided into training and test 

sets, the data is normalised by replacing each feature value x by x̅ (x − μx)/σx, where μx and 

σx symbolise the sample mean and standard deviation respectively. Secondly, the training 

algorithms were initialized with prototype vectors that were randomly selected from the 

input data. The weight matrix w is initialized to 0, then apply EKF to train the RBFN 

parameters as described above. The output of the models were then passed as input to the 

AdaBoost model to train the prototypes and output the final predictive ensemble results as 

illustrated in the framework illustrated in Figure 4-4.  The model was applied to Breast Cancer 

Survivability, Diabetes Diagnosis datasets, Workers Absenteeism, and Clients Credit Card 

Defaults tasks.  

The empirical performance of the proposed models on the samples compared with other 

benchmarked standalone and ensemble models are as illustrated in Table 4.1, Table 4.2, Table 

4.3 and Table 4.4 respectively. The predicted results of models are also as shown in Figure 4-6 

and Figure 4.7 

It can be seen from the Tables and Figures that the performance of the proposed ensemble 

models varies, this is because different ensemble methods generated different ensemble 

weights and combinations of different weak classifiers on different ensemble training 

samples. The performance results for the proposed ensemble EKF-RBFN-AdaBoost model 
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based Breast Cancer survivability, Diabetes Diagnosis, Workers Absenteeism and Credit Card 

Defaults are as illustrated in Table 4.1, Table 4.2  

 

 

 

 

 

 

 

Table 4.3 and Table 4.4 respectively.  The headings of Table 4.1, Table 4.2  

 

 

 

 

 

 

 

Table 4.3 and Table 4.4  are the evaluation metrics:  true positive rates (TPR), false positive 

rates (FPR), Recall, precision, F-Measure and prediction accuracy of the model respectively.  

Table 4.1: Empirical Comparison: Based on Breast Cancer Survivability Sample. 

Models/Metrics TPR FPR Recall Precision F-

Measure 

Accuracy  

Ensemble Predictive models 

EKF-RBFN-AdaBoost 

(proposed model) 

0.93 0.03 0.80 0.97 0.87 0.96 
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AdaBoostM1 with Decision 

stump 

0.94 0.08 0.94 0.94 0.94 0.94 

AdaBoostM1 with RBFN 

trained with K-Means 

0.96 0.04 0.96 0.96 0.96 0.96 

AdaBoostM1 with Random 

Forest 

0.97 0.04 0.97 0.97 0.97 0.97 

AdaBoostM1 with Support 

Vector Machine 

0.97 0.04 0.96 0.96 0.96 0.96 

Standalone predictive models 

Random Forest 0.97 0.04 0.97 0.97 0.97 0.97 

Support Vector machine 0.97 0.03 0.97 0.97 0.97 0.96 

K-NN 0.96 0.06 0.96 0.96 0.96 0.96 

ANN 0.96 0.04 0.96 0.96 0.96 0.96 

Naïve Bayes 0.96 0.03 0.96 0.97 0.96 0.96 

 

As illustrated in Table 4.1, the simulation result shows that the proposed model outperformed 

other benchmark models apart from Random Forest as standalone and RF as an ensemble 

algorithm. Likewise, Table 4.2 

 

 

 

 

 

Table 4.2  also shows that it was only Random Forest when simulated as an ensemble 

algorithm or standalone model that outperformed the proposed models by 2% respectively.   
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The results, as illustrated in  

 

 

 

 

 

 

 

Table 4.3 are based on Workers Absenteeism shows the proposed model outperformed other 

ensemble models apart from the ensemble random forest model. 

The more striking result to emerge from the result as shown in the table is that the proposed 

model only outperformed Support Vector machine and Naïve Bayes standalone models.  

However, as shown in Table 4.4 the proposed model outperformed all other models when 
simulated on Clients Credit Card Defaults samples. Comparing the performances of all the 

models as Table 4.1, Table 4.2,  

 

 

 

 

 

 

 

Table 4.3 and Table 4.4. It shows that despite the topology and complexity (in terms of space 

and time) of ANN models, ANN models did not outperform the proposed EKF-RFFN-AdaBoost 

models and most of the non-complex standalone and ensemble models.  
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Table 4.2: Empirical Comparison Based on Diabetes Diagnosis Sample 

Models/Metrics TPR FPR Recall Precision F-

Measure 

Accuracy  

Ensemble predictive models 

EKF-RBFN-AdaBoost (proposed 

model) 

0.74 0.34 0.74 0.74 0.74 0.76 

AdaBoostM1 with Decision 

stump 

0.74 0.35 0.74 0.74 0.74 0.74 

AdaBoostM1 with RBFN trained 

with K-Means 

0.74 0.34 0.74 0.74 0.74 0.74 

AdaBoostM1 with Random 

Forest 

0.76 0.32 0.76 0.76 0.76 0.76 

AdaBoostM1 with Support 

Vector Machine 

0.77 0.54 0.78 0.76 0.77 0.78 

Standalone predictive models 

Random Forest 0.76 0.31 0.76 0.75 0.76 0.76 

Support Vector machine 0.65 0.65 0.65 0.42 0.79 0.65 

K-NN 0.65 0.65 0.65 0.42 0.51 0.65 

ANN 0.75 0.31 0.75 0.75 0.75 0.75 

Naïve Bayes 0.76 0.31 0.76 0.76 0.76 0.76 
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Table 4.3: Performance Comparison Based on Smoker Absenteeism Workers 

 

 

 

 

 

 

 

Algorithms/Measures TPR FPR Recall Precision F-

Measure 

Accuracy  

Predictive Models based on Ensemble Classifiers 

EKF-RBFN-AdaBoost 

(proposed model) 

0.95 0.85 0.95 0.94 0.95 96 

AdaBoostM1 + Decision 

stump 

0.94 0.81 0.94 0.94 0.91 94 

AdaBoostM1 + K-Means 0.94 0.52 0.94 0.93 0.93 94 

AdaBoostM1 + with 

Random Forest 

0.98 0.31 0.98 0.98 0.98 98 

AdaBoostM1 + Support 

Vector Machine 

0.91 0.72 0.91 0.90 0.90 92 

Predictive Models Based Standalone Classifiers 

Random Forest 0.98 0.28 0.98  0.98  0.98  98  

K-NN  0.98 0.52 0.94 0.93 0.93 94 

Support Vector machine  0.92 0.91 0.92 0.88 0.89 92 

ANN 0.97 0.34 0.97 0.96 0.97 96 

Naïve Bayes 0.93 0.52 0.93 0.92 0.93 93 
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Table 4.4: Performance Comparison Based on Clients Credit Card Defaults 

Algorithms/Measures TPR FPR Recall Precision F-

Measure 

Accuracy  

Predictive Models based on Ensemble Classifiers 

EKF-RBFN-AdaBoost 

(proposed model) 

0.80 0.85 0.82 0.84 0.88 85 

AdaBoostM1 with Decision 

stump 

0.80 0.59 0.81 0.78 0.78 81 

AdaBoostM1 with RBFN 

trained with K-Means 

   

0.73 

0.55 0.73 0.73 0.73 73 

AdaBoostM1 with Random 

Forest 

0.79 0.77 0.79 0.73 0.70 78 

AdaBoostM1 with Support 

Vector Machine 

0.78 0.54 0.78 0.76 0.76 78 

Predictive Models based on Standalone Classifiers 

Random Forest 0.78 0.76 0.79 0.75 0.70 78 

Support Vector machine 0.78 0.54 0.78 0.76 0.74 78 

K-NN 0.73 0.55 0.73 0.73 0.73 73 

ANN - - - - - - 

Naïve Bayes 0.53 0.43 0.53 0.70 0.57 53 

 

The comparison results of the proposed models with other benchmark ensemble models and 

standalone classifiers based on breast cancer, diabetes diagnostic, workers absenteeism and 

credit card default samples are as illustrated in Figure 4-6 and Figure 4.7 respectively. 
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Vertical Axis: Performance Accuracy 

 

Vertical Axis: Performance Accuracy 

 

Vertical Axis: Performance Accuracy 

 

Vertical Axis: Performance Accuracy  

Figure 4-6: Performance of Ensemble Models on Breast Cancer and Diabetes Diagnostic Samples 
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              Vertical Axis: Performance Accuracy 

 

 

 

 

Vertical Axis: Performance Accuracy 

 

 

             Vertical Axis: Performance Accuracy 

 

 

Vertical Axis: Performance Accuracy 

 

Figure 4.7 Performance of Ensemble Models: Workers absenteeism and credit card default datasets 

 

 Chapter Summary  
 

In this chapter, a hybrid EKF-RBFN-AdaBoost ensemble model framework was developed 

aiming at improving prediction accuracy of ensemble models. The model uses EKF model to 

optimize the parameters of the RBFN members to output EKF-RBFN prototypes. It then uses 

AdaBoost as a meta-algorithm and the EKF-RBFN prototypes as input to train the base 

classifiers and output the final prediction. The framework of the proposed model could also 



129 | P a g e  
 

be applied to other optimization training methods such as Decoupled Kalman filter or Particle 

Swarm Optimization (PSO) algorithms. 

 The theoretical simulation results and the analysis of the results on breast cancer 

survivability, diabetic diagnosis and other databases shows that the proposed EKF-RBFN-

AdaBoost model framework is a promising concept with high prediction accuracy. The model 

outperformed most of the established standalone and ensemble models discussed in this 

chapter. Additionally, the results further shows that despite the topology and complexity of 

the established K-NN and ANN techniques, neither of the algorithms outperforms the 

proposed models.  

In the next chapter, the proposal of two additional ensemble methods that are based on early 

stopping concept and multivariable logistic model are presented respectively.  The chapter 

also discussed the proposal of a non-invasive predictive analytical tool that is grounded on 

the practical application of the ensemble models proposed in this thesis.  
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Chapter 5: Early Stopping Approach and Multivariate Logistic Regression Models 

 Introduction 

In this section two ensemble models namely the early stopping model and the logistic 

regression model are proposed.  They are based on early stopping and multivariate logistic 

concepts, respectively. Early stopping methods are widely applied techniques to prevent poor 

regularization performance in gradient-based optimization problems.  However, there is a 

limited previous research on improving ensemble classification with the AdaBoost meta-

algorithm; based on the mean, standard deviation and thresholds of the training samples to 

estimate and build a stronger classifier.  

The focus of this chapter is to address Objective 3, which is based on early stopping concept 

and the statistics of the training samples. To address Objective 4, which is based on 

development of a breast cancer multivariate logistic regression. To address Objective 5, which 

is based on development of a non-invasive analytical predictive tool using the predictive 

ensemble model developed in this thesis. To achieve this objectives the content of these 

session are presented in three in parts.  

In the first part of this session discussion and investigation on early stopping concept (Wei, et 

al., 2019; Raskutti, et al., 2014) in conjunction with boosting concept to enhance predictive 

accuracy is presented. The proposed model extends ensemble and early stopping 

frameworks.  In the proposed model the training of the samples are stopped early during 

training to avoid overfitting once there is no tangible performance improvement on the 

output of the training samples. 
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In the second part of this session, discussion and investigation on the multiple logistic 

regression models (Zhang, et al., 2017; Venkatesan & Sasikala, 2019) are presented.  The main 

drive behind the use of multivariate logistic regression is to determine the significant, and the 

credible combination of the independent variables of training samples that best fit the 

dependent variable for optimum performance of predictive models. Therefore, the proposed 

and developed logistic model discussed in this thesis is primarily focused on feature selection 

of samples to enhance the accuracy performance of breast cancer survivability models.   

In the third part of this session, discussion on development on non-invasive predictive 

analytical tools that is based on the application of ensemble predictive models proposed and 

developed in this work are presented.  

 Early Stopping Model  
 

Early stopping or halting training after a limited number of rounds is equivalent to 

regularization4 (Schapire, 2013; Schapire & Freund, 2012) to avoid incorrect prediction. In 

machine learning it comes to a point that the performance of an algorithm can no longer be 

improved due to noise and uncertainty.  Recent developments in early stopping concept shows 

that several early stopping techniques that are based on different criteria have been 

suggested. Some of the significant developments among others include an approach without 

validation set (Maclaurin, et al., 2015), a nonparametric variation inference method 

(Duvenaud, et al., 2016) and a loss of validation set (Prechelt, 2012) procedure.   

One of the major problems when training algorithms is the choice of the number of training 

epochs and when to stop training. It has been demonstrated that selection of too few epochs 

                                                           
4 Regularization is a technique that protects against overfitting by constraining, smoothing, and or promoting 
sparsity. 
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during the training of samples can result in under-fitting of the models.  Equally, the selection 

of too many epochs can lead to overfitting of the models. Many authors have demonstrated 

that both overfitting and under-fitting are common problems in machine learning (Zhang, et 

al., 2019; Anon., 2019) that generally leads to undesirable and misleading results.  

In this section and other subsections the concept of early stopping, and a regularization rule 

that was apply to stop training of data early in order to avoid inaccurate predictive outputs as 

a result of overfitting or under fitting problems was discussed.  

5.2.1 Model Description  

The early stopping concept model proposed in this thesis is based on data dependent rules. 

The concept applies the mean, standard deviation, and threshold of training sample to stop 

further training of the model to avoid regulation error, thereby enhancing the predictive 

performance of the model.   

The threshold function is as depict as 

 
(𝜎) =  {

1,
0,

  
𝑖𝑓 𝜇 ≥ 0,

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
      

                                      (5.1)  

The model demonstrates a direct connection between the performance of early stopped 

iterations and the localized Gaussian complexity of the associated loss function.  As argued 

when there is no indication for further improvement on the prediction performance there is 

a need to stop the training instead of going through the entire epochs that could subsequently 

lead to the deterioration performance of the model.  

As discussed in the previous chapters, several ensemble models train weak classifiers and 

combine them into a more efficient single algorithm.  However, there is a problem when 

outliers and noises are present in the training data that can lead to class mislabelling as a 

result under-fitting and overfitting problems.  
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This is because the sample weights were normalized at each iteration cycle during training 

such that the sum of the weights of the samples is always equal to one. Therefore, change in 

weights during training can be treated as a Gaussian Probability distribution.  

The proposed early stopping concept minimizes overtraining and undertraining of samples by 

stopping further training of the samples when the stopping criterion for the classification 

threshold and for the early stopping criterion of the training algorithm has been reached.  

The stopping criterion and the MSE is as illustrated in Equation (5.2) and Equation (5.3) 

respectively.  

 

𝑖𝑓 ( (ℎ𝑡(𝑥𝑡) <  (𝜇𝑡  + 𝜎𝑡 ) &&  (ℎ𝑡(𝑥𝑡) >  (𝜇𝑡 − 𝜎𝑡 )) == 𝑡𝑟𝑢𝑒) 

Set ℎ𝑡 == 1 (classify the sample as 1) 

else 

Set ℎ𝑡 == −1 (classify the sample as -1) 

𝑒𝑛𝑑 𝑖𝑓 

 

 

 

 

(5.2)  

 
𝑀𝑆𝐸 =  

1

𝑁
∑(𝑦𝑖 − �̂�𝑖)

2

𝑁

𝑖=1

 
 

(5.3) 

 

where 𝑥𝑡 represent training sample, 𝜇𝑡 is the mean and 𝜎𝑡 is the standard deviation of training 

samples. The flowchart of the proposed Early Stopping algorithm is as illustrated in Figure 5.1. 

As illustrated in Figure 5-1 the classification or prediction of the sample is based on the criterion shown 

in Equation (5.2). In one hand, if the threshold is true the sample is classified/predicted as positive 

or having diabetic’s ailment.  On the other hand, if the threshold is false the sample is 

classified/predicted as negative or having no diabetics ailment.  
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Figure 5-1 Early Stopping Algorithm Flowchart 

 

The purpose of this approach is to avoid awarding unnecessary bias penalties to samples that 

are hard to train. Theoretically, as in AdaBoost as a meta-algorithm large weight penalizes 

hard to train weak models by increasing their weights if they predicted wrongly. 

Consequently, they are also compensated with little or no weights if they predicted correctly 

as expected at each epoch of training.  

The threshold of the mean and the standard deviation of the weak classifier at each cycle of 

the proposed model are as expressed in Equation 5.4 and Equation 5.5, respectively, where 

𝑥𝑡  is the input data i.e., (𝑓(𝑥𝑡)), 𝑎𝑛𝑑 𝑛 is the total number of input data, 𝜇 is the mean and 

𝜎 is the standard deviation of the training samples. 
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𝜇 =  

1

𝑛
∑𝑥𝑡

𝑛

𝑖=1

 
               (5.4) 
 
 
 

 

𝜎 =  √
1

𝑛 − 1
∑(   𝑥𝑡 −  𝜇)2

𝑛

𝑖=1

 

       
                     
               (5.5) 
 
 

Therefore, by applying the Gaussian probability distribution, the weak classifier equation can 

be expressed as depict in Equation (5.4) and classification threshold as in Equation (5.5) 

respectively.  

 
ℎ(𝒙 | 𝜎𝟐, 𝜇) =  

1

√2𝜋𝜎2
𝑒

−
(𝑥−𝜇)2

2𝜎2  
 

(5.6) 

 

 ℎ𝑡((𝑥𝑡) ∶ 𝑋 → 1) 𝑠. 𝑡 ( (𝑓(𝑥𝑡) <   (𝜇𝑡  + 2𝜎𝑡 ) &&  (𝑓(𝑥𝑡) >  (𝜇𝑡 −  2𝜎𝑡 ) ) =

= 𝑡𝑟𝑢𝑒 

 

(5.7) 

As demonstrated in the Equation 5.7 it shows that the classification threshold of the model 

was derived based on the statistical concepts of the weights 𝑤 of the base classifier, the mean 

and the standard deviation of the training samples.  Therefore, as the training weights 𝑤 of 

the base classifier increases without performance improvement of the algorithm, the concept 

stop the training of the algorithm early  based on the stopping rules illustrated in Equation 

(5.2) and Equation (5.3).   

As shown in Equation (5.3), the MSE is expressed as the mean square difference between the 

predictive output and the expected target.  In the proposed concept it is based on weight 

update and performance of the model after several repetitions the best selected values of µ 

considered during the study are 0.025, 0.01 and 0.1 respectively.  
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Table 5.1: Diabetics Dataset Summary 

Summary Pregnancies Glucose Bld_Pre Sk_Thi Insulin BMI Dia_Ped Age 

Mean 3.845 120.895 69.105 20.536 79.799 31.993 0.472 33.241 

Mode 1.000 100.000 70.000 0.000 0.000 32.000 0.254 22.000 

Median 3.000 117.000 72.000 23.000 30.500 32.000 0.373 29.000 

Std. dev. 3.370 31.973 19.356 15.952 115.244 7.884 0.331 11.760 

Minimum 0.000 0.000 0.000 0.000 0.000 0.078 0.078 21.000 

Maximum 17.000 199.000 122.000 99.000 846.000 67.100 2.420 81.000 

 

During this study, current parameters at each stage of the training were stored and updated. 

However, after a set of iterations and when parameter updates no longer result in prediction 

improvement, we stop training of the samples and use the last best parameters to output the 

final predictive value of the model.  Therefore, it reduces the like hood of overfitting by 

monitoring performance of the model throughout training and restricting optimization 

procedure to a smaller parameter space compare to other conventional models. The 

summary of the diabetic dataset is illustrated in Table 5.1. 

Figure 5-2  shows the density plots that illustrates the distribution of variables in the Pima-

Indian-diabetics dataset; Figure 5-3  depict the scatter plots that display plot pairs of variables 

of the data samples that were used in training and testing the proposed early stopping model.  
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Figure 5-2: Density Plots of the Data. 
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Figure 5-3: Scatter Plot Matrix of the Data
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5.2.2 Simulation Description and Results  
 

In this section the application of the proposed Early Stopping concept and simulation results 

to in developing a model named London Southbank Boost loss (LS-Boost loss) are briefly 

described. During the simulation process the sample is randomly divided into training, test 

and validation sets.  The data is normalised by replacing each feature value x by x̅ (x −

μx)/σx, where μx and σx symbolise the sample mean and standard deviation respectively. 

The proposed model was applied to Pima-Indian-diabetics dataset with eight features and 

768 instances.  The dataset is used to predict whether or not a patient has diabetes that is 

centred on diagnostic features that are included in the dataset.  

After the model was developed it was applied to estimate prediction performance of the 

Pima-Indian-diabetics datasets as illustrated above. Figure 5-4 and Figure 5-5 shows that the 

learning curve and the LS-Boost loss for each epoch of the proposed models on the diabetics 

samples.  The performance results of the model are compared with other stopping algorithms 

as illustrated in Table 5.2.  

The analysis in Table 5.2, shows that the early stopping method of the proposed model stops 

training earliest, with lowest number of epochs compare with other models. However, it has 

a lower precision performance compare with LOGLOSS and MAE but same as AUC and RMSLE 

early stopping algorithms. Albeit, the proposed method demonstrates to some extent that 

the overfitting problem in sample can be reduced and therefore the generalization ability of 

ensemble algorithm can be improved.  The training and testing curves of the proposed model 

is as shown in Figure 5-4 and Figure 5-5 respectively. The vertical axis depict the classification 

error and the horizontal axis represents the number of iterations in both figures.  As can be 
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seen in the training and testing curves in Figure 5-4 and Figure 5-5 respectively; the training 

of samples were stopped when the validation error began to rise without significant 

performance improvement of the model.  

 

Figure 5-4: LS-Boost Learning Curve 

 

Figure 5-5: LS-Boost Loss for each Epoch based on Pima-Indian-diabetics samples 
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Table 5.2: Comparion of LS-Boost Results with other Early Stopping models 

Stopping 

Algorithms  

Stopping 

Error  

Number 

of 

Epochs 

Training 

performance 

Validation 

performance 

LS-Boost 0.42344 15 74.02 74.41 

Log-Loss 0.48727 32 77.95 75.00 

MAE 0.29870 31 74.02 76.38 

AUC 0.25984 16 74.02 74.41 

RMSLE 0.28496 16 74.02 74.41 

 

  Multivariable Logistic Regression Model  

In recent years, there has been an increasing interest in the application of multivariate logistic 

regression models for the analysis and predictions in different fields (Sarker, 2021; Lynam, et 

al., 2020; Mai, et al., 2019; Joshi & Dhakai, 2021) and professions.  

The proposed model in this session is similar to the linear regression technique to predict the 

dependent variable of samples. The models utilizes logistic regression models and Stepwise 

selection algorithm in R programming in understanding and predicting breast cancer 

survivability and diabetics’ diagnostic of patents. Though, unlike the former the only 

exception is that the outcome of the logistic regression model is one dichotomous. This is 

analogous to the linear regression, it uses an equation as representation to predict the 

output of a categorical dependable variable that is as either: success or failure; yes or no; 
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infected or not infected, etc. However, far too little attention has been directed toward the 

application of the concept in addressing the prediction of invasive ailments such as diabetics 

diagnostic and breast cancer survivability. Despite its long predictive success, multivariable 

logistic regression concept suffers from several major drawbacks and controversial issues 

(McDonald, 2014) such as the assumption of linearity between the dependent variable and 

the independent variables.   

Another problem is the multi-collinearity issue that exist when an independent variable is 

highly correlated with one or more of the other independent variables in a multiple regression 

equation. This is because it undermines the statistical significance of an independent variable 

(Lin, 2008; Allen, 1997) and the sparsity of the data.  

In addressing this issue, using Surveillance Epidemiology and End Results (SEER) 

breast cancer dataset, Chen, et. al. applied a learning-based approach to high 

dimensional, high-volume, and high-sparsity data to identify critical casual attributions 

that might affect the survival of a breast cancer patient (Chen, et al., 2021).   

However, the multivariable logistic regression model projected in this section is based on a 

single dichotomous outcome taking into consideration t critical casual attributions that 

might affect the breast cancer survivability. The model is grounded on the multiple 

independent variables to improve predictive output of training samples.   

5.3.1 Simulation Description and Results  

The proposed multivariable logistic regression and the simulation results of the proposed 

model are briefly described in this section. The main drive behind the use of multivariable 

logistic regression is to determine the significant and the credible combination of the 

independent variables that best fit the dependent variable. The multivariable logistic 
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regression model was constructed by modelling various independent variables of breast 

cancer survivability sample. The dataset has eight features and 698 instances. The sample was 

normalised by replacing each feature value x by x̅ (x − μx)/σx, where μx and σx symbolise 

the sample mean and standard deviation respectively.  The sample used for the simulation 

was randomly divided into the training, test and validation sets.  The summary of the dataset 

is illustrated in Table 5.3. It shows the statistical valuation metrics, namely mean, mode, 

median, standard deviation values and the minimum and maximum values of the samples(as 

illustrated in the footnote) used in the study.  

The dataset is used to predict whether or not a patient will survive breast cancer that is 

centred on diagnostic features that are included the survivability dataset. Thus it represents 

a multivariable regression model which clinicians can easily use to predict the likelihood of 

breast cancer survivability in their patients.  Figure 5-6 shows the density plots that illustrates 

the distribution of variables in the breast cancer survivability dataset. Figure 5-7 depict the 

scatter plots that display plot pairs of variables of the data samples that were used in training 

and testing the proposed multivariate logistic model.  
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Table 5.3: Cancer Dataset Summary5 

Summary C_Thick C_Size C_Sha Mar_Adh S_Cs Ba_Nu Bl_Ch N_Nu Mit 

Mean 4.418 3.134 3.207 2.807 3.216 3.545 3.438 2.867 1.589 

Mode 1.000 1.000 1.000 1.000 1.000 2.000 2.000 1.000 1.000 

Median 4.000 1.000 1.000 1.000 2.000 1.000 3.000 1.000 1.000 

Std. dev. 2.816 3.051 2.972 2.855 2.214 3.644 2.438 3.054 1.715 

Minimum 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

Maximum 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 

 

Stepwise selection in R was used for the variable selection of the samples. It is a combination 

of forward and backward selection that sequentially add the most contributed predictors, like 

the forward selection model. Like the backward model it also remove variables that no longer 

contributes improvement in fitting the model (Zhang & Z., 2017; James, et al., 2014).  The 

selected features are as illustrated in Table 5.4 while the statistical significance of the selected 

features is as shown in Table 5.5. 

 

                                                           
5 In all cases N=699  

C_Thick  = Clump Thickness; C_Size= Cell_Size_Uniformity;C_Sha= Cell Shape Uniformity; Mar_Adh= 

Marginal Adhesion; S_CS= Single_Epi_Cell_Size; Ba_Nu= Bare Nuclei; Bl_Ch = Bland Chromatin; N_Nu 

= Normal Nucleoli; Mit= Mitoses 
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Figure 5-6: Density Plots of the Data: Breast Cancer Survivability.    

 

 

Figure 5-7 Matrix Scatter Plot of the Data: Breast Cancer Survivability    
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The evaluated details of the selected features, the correlations and some of the statistical 

properties of the model is as illustrated in Table 5.4 and in Table 5.5 respectively. These are 

used in formulating the multivariable logistic regression equation, as illustrated in Equation 

(5.8). 

𝑙𝑛 (𝑌) =  −10.10394 +  0.53501 ∗  𝑋1 − 0.00628 ∗  𝑋2 +  0.32271 ∗  𝑋3 +  0.33064 ∗  𝑋4 +  0.09663 ∗

 𝑋5 +  0.38303 ∗  𝑋6 +  0.44719 ∗  𝑋7 +  0.21303 ∗  𝑋8 +  0.53484 ∗  𝑋9                                               (5.8)  

 

Table 5.4: Multivariate Logistic Regression Model to Predict Breast Cancer 

 

 

 

 

                             

 

                                     

 

 

 

 

 

 

Some of the statistical performance of the proposed multivariate logistic model are as shown 

in Table 5.6 and Figure 5-8.  As can be seen in Table 5.6, the significant level of accuracy among 

 Intercept Std. Error Z-value Significant 

Variables -10.10394 1.17488 -8.600 0 

Clump thickness (X1) 0.53501 0.14202 3.767 0 

Uni-Cell Size (X2) -0.00628 0.20908 -0.030 1 

Uni-Cell Shape (X3) 0.32271 0.23060 1.399 1 

Single epithelia (X4) 20.33064 0.12345 2.678 0.001 

Epithelial Cell size 

(X5) 

0.09663 0.15659 0.617 1 

Bare Nuclei (X6) 0.38303 0.09384 4.082 0 

Bland Chromatin (x7) 0.44719 0.17138 2.609 0.001 

Normal Nucleoli (X8) 0.21303 0.11287 1.887 0.1 

Mitoses (X9) 0.53484 0.32877 1.627 1 
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the dependent features of the breast cancer samples ranges from 79% to 92%. This 

demonstrates that all the variables are tightly associated. Therefore they contributes 

significantly to the overall prediction accuracy of the proposed logistic model.  

Table 5.5: Statistical Significance of Cancer-Dataset Parameters used in Predicting Cancer Prognosis 

Metrics/ 

Features  

Accuracy  RSME  KAPPA  TP  FP  Precision  Recall  F-

Measure  

Features  

Clump 

thickness  

85  0.324  0.651  0.855  0.260  0.874  0.989  0.899  X1  

Uni-Cell 

Size  

92  0.240  0.823  0.919  0.076  0.923  0.919  0.920  X2  

Uni-Cell 

Shape  

92  0.234  0.826  0.920  0.076  0.923  0.919  0.919  X3  

Single 

epithelia  

85  0.326  0.673  0.859  0.222  0.863  0.859  0.854  X4  

Epithelial 

Cell Size  

90  0.290  0.786  9.900  0.096  0.905  0.900  0.901  X5  

Bare 

Nuclei  

90  0.269  0.798  0.908  0.106  0.908  0.908  0.908  X6  

Bland 

Chromatin  

90  0.270  0.800  0.908  0.106  0.908  0.908  0.908  X7  

Normal 

Nucleoli  

89  0.302  0.769  0.898  0.146  0.897  0.898  0.896  X8  

Mitoses  79  0.406  0.473  0.788  0.369  0.810  0.788  0.765  X9  

 

During the training and simulation stages it was observed  that the  classification errors of the  

model is directly influenced  by  the  percentage  of  dataset  used  in  training,  and the 

percentage  of samples used   in testing  the   model. In this particular case, as the percentage 

of training data increases the misclassification error also increases until it got to a pick at 80% 

of training data before it starts to drop. The performance of the model using different training 
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and testing samples, and the corresponding performance of the model are as shown in Table 

5.6. The performance correlation of the misclassification error and the corresponding 

percentage of the training data is as illustrated in Figure 5-8. This could be as result of the 

features of the proposed learning algorithm and training samples (Schmidt, et al., 2019; 

RaEng., 2014) used during the research.  

Table 5.6: Training Size and Corresponding Classification Error 

Classification  

 Error 

Training data 

(%) 

Testing Data 

(%) 

3.41 40 60 

3.72 45 55 

4.09 50 50 

4.55 55 45 

4.74 60 40 

4.42 65 35 

6.34 70 30 

6.43 75 25 

6.57 80 20 

4.85 85 15 

4.35 90 10 
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Figure 5-8 Percentage Plot of Training Data and Classification Error. 

 

 Non-Invasive Predictive Analytic Tools  

Predictive analytics is both existing and an expansive area of research. The concept involves 

combination of statistical methods in data mining, predictive modelling, and machine learning 

that analyse historical data to make predictions about future events (Nyce, 2007).  It is widely 

used to boost marketing results, machine diagnosis and automated processes in the industrial 

sectors. Recently, it has also been used extensively in the healthcare sector to detect early 

signs of patients’ deterioration in the hospitals; identifying at-risk patients in the comfort of 

their homes to prevent hospital readmissions (Philips., 2020), thus saving taxpayer’s money, 

time  and lives of patients.  

 According to the WHO the overall number of people diagnosed with cancer has nearly 

doubled, from an estimated 10 million in 2000 to 19.3 million in 2020. It has overtaken lung 

cancer as the world’s mostly commonly diagnosed cancer with 19.3 million new cases and 

10.0 million deaths in 2020 (WHOa, 2021). Similarly, about 422 million people worldwide have 
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diabetes, and 1.6 million deaths are directly attributed to diabetes each year. Report shows 

that the number of cases and the prevalence of diabetes have been steadily increasing in the 

last decades (WHOb, 2020).  

Similarly, about 422 million people worldwide have diabetes, and 1.6 million deaths are 

directly attributed to diabetes each year. Report further shows that the number of cases and 

the prevalence of diabetes have been steadily increasing in the last decades (WHOb, 2020).  

Technology is changing and ever evolving, therefore the quest for this phase of the thesis is 

to develop non-invasive predictive analytic tools for the prediction of breast cancer and 

diabetics diagnostics in patients.  

Therefore, the main drive of this model is to exploit the potentials of the proposed extended 

ensemble models and utilize it in the medical field as a heath software tool in predicting 

breast cancer survivability of patients and diabetic diagnosis without risks or and privacy 

invasion.  This is achieved by extending the concepts of some of the proposed models in this 

study as an easy to use predictive analytical tool by healthcare practitioners.  A number of 

web technology tools and programming languages were selected for the development and 

testing of the analytic tool.  

5.4.1 Predictive Analytic Tools  

Predictive analytic tools are crucial to identify patterns and forecast the likelihood of future 

outcomes based on historical data. It has been applied in various fields and industries: 

finance, healthcare, transportation, business, quality improvement and fraud prevention. A 

number of predictive breast cancer models have been proposed (NIH, 2020; Colozza, et al., 

2005; Singh & Thakral, 2018) using different set of risk input and output based factors. 

Similarly several diagnostic model tools for predicting diabetes types 1 and 2 have been 
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proposed using different classifiers (Li, et al., 2021; Yang, et al., 2021; Saiti, et al., 2020)   and 

several other methods. However, many of these models are costly, privacy invasive and are 

mostly designed for health-care professionals use only.  

5.4.2 System design: Breast Cancer and Diabetic Diagnostic Tools  

The analytical tool proposed in this section is privacy protected and non-invasive, cost 

effective and could be used at any time through the World Wide Web portals. The proposed 

breast cancer analytical and diabetic analytical tool described in this section includes a 

separate digital interfaces where users can supply breast cancer or diabetic diagnostic data.  

The proposed predictive tool has two user interfaces: one for the breast cancer prediction 

and the second interface for the prediction of diabetes diagnostic disease.  Based on the 

selected interface by the user, the required predictive model interface is loaded, the tool 

displays a form for user to enter the required features of the selected predictive model.  

The tool validates the parameters that were entered by the user, otherwise appropriate 

messages for correction are displayed.  When the user submits the form content; the tool 

calls a back end function that integrates the entered data with the selected predictive model 

proposed and developed in this study. This could be either predictive cancer model or diabetic 

predictive model depending on the selected technique at the interface level.  

At the backend, the tool maps the submitted data with functions that integrates appropriate 

predictive model in decision-making.  Based on the validated data the tool make appropriate 

decision. The decision is send back to the client interface that displays appropriate predictive 

message to the user.  The user interface flowchart of the proposed non-invasive analytical 

tool is as illustrated in Figure 5-9.  The software lifecycle development cycle (SDLC) 

methodology (Langer, 2016) was used to develop, build and test the proposed system. 
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Figure 5-9: Simplified Guidelines for the Selection of Appropriate Predictive Model  

The Use Case diagram of the proposed web application analytic tool is as depict in Figure 5-10:  

Use Case for Predicting Breast Cancer Survivability and Diabetes’ Diagnostics. It has two different 

types of users:  

I. Administrator and support staff – These are users with high level of access to 

the software.  

II. Patients – These are breast cancer and diabetics diagnostic patients with read 

only access.  
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Figure 5-10:  Use Case for Predicting Breast Cancer Survivability and Diabetes’ Diagnostics
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5.4.3 Simulation Results and Discussion  

Some of the predicted results of the proposed tool based on breast cancer samples is as 

illustrated in Table 5.7. The table displays the predictive parameters of the testing sample 

(and their corresponding values as descried in the footnotes), the expected label values and 

the predicted label values. During the testing phase several tests were carried out in order to 

validate the performance efficiency of the model. As illustrated in Table 5.7, it is apparent 

from the table performance average of the model for breast cancer is 100% after 10 randomly 

tests were carried out.  

                                      Table 5.7: Some Results of the Evaluation Tool Using Breast Cancer Samples6 

Regression 

variables/ 

Test number 

V1 V2 V3 V4 V5 V6 V7 V8 V9 Expected 

Label  

Predicted 

Label  

1 1 1 1 1 2 1 1 1 1 -1 -1 

2 5 8 9 4 3 10 7 1 1 1 1 

3 4 1 1 1 1 1 2 1 1 -1 -1 

3 5 10 10 10 6 10 6 5 2 1 1 

5 5 1 2 10 4 5 2 1 1 -1 -1 

6 3 1 1 1 1 1 2 1 1 -1 -1 

7 1 1 1 1 1 1 1 1 1 -1 -1 

8 4 2 1 1 2 1 1 1 1 -1 -1 

9 3 3 1 1 2 1 1 1 1 -1 -1 

10 6 6 7 10 3 10 8 10 2 1 1 

Breast Cancer Predictive Model Average Performance 100% 

                                                           
6 V1, V2…V9 are the Breast Cancer predictive model parameters. These are Clump thickness, Uni-Cell Size, Uni-Cell Shape, 

Single epithelia, Epithelial Cell Size, Bare Nuclei, Bland Chromatin, Normal Nucleoli, and Mitoses respectively  
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Likewise, some of the predicted results of the proposed tool based on Diabetes Diagnosis 

Samples is as presented in Table 5.8.   

As illustrated in Table 5.8, it shows the predictive parameters of the sample (with their 

equivalent values as descried in the footnotes), the expected label values and the predicted 

label values. Several tests were also carried to ascertain the performance accuracy of the 

proposed analytical non-invasive model. Table 5.8 depicts the performance outcome of the 

model based on 10 randomly test samples. The results, as shown Table 5.8, indicates that the 

average performance of the model on Diabetes Diagnosis Samples was 90%. 

Table 5.8: Some Results of the Evaluation Tool Using Diabetes Diagnosis Samples7  

Test variables/ 

Test number 

V1 V2 V3 V4 V5 V6 V7 V8 Expected 

Class Label  

Predicted 

Class Label  

1 1 109 38 18 120 23.1 0.407 26 -1 -1 

2 3 129 92 49 155 36.4 0.968 32 1   1 

3 8 100 74 40 215 39.4 0.661 43 1   1 

3 3 128 72 25 190 32.4 0.549 27 1   -1 

5 2 197 70 99 0 34.7 0.575 62 1    1 

6 0 151 90 46 0 42.1 0.371 21 1   1 

7 6 109 60 27 0 25 0.206 27 -1  -1 

8 12 121 78 17 0 26.5 0.259 62 -1  -1 

9 1 124 60 32 0 35.8 0.514 21 -1  -1 

10 2 68 62 13 15 20.1 0.257 23 -1  -1 

Diabetics Diagnostic Predictive Model Average Performance 90% 

                                                           
7 V1, V2…V8 are the Diabetic diagnostic predictive model. These are Pregnancies, Glucose, Blood Pressure, Skin Thickness, 

Insulin, BMI, diabetes Pedigree Function and Age respectively. 
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The results as shown Table 5.8 indicates that only 1 in 10 of the selected samples is incorrectly 

classified and 9 in 10 selected samples are correctly classified.  Therefore, the prediction of 

the errors model are moderately low compared with other predictive analytical models. 

 Chapter Summary 

In this chapter, early stopping forecasting model has been developed to prevent poor 

regularization performance problems in ensemble model, it was applied to the Pima Indians 

Diabetic and breast cancer samples.   

A multivariate logistic regression models was also developed in order to improve the 

predictive performance of breast cancer model. The model was applied to Breast Cancer 

survivability and diabetic diagnostic tasks. Both models show promising results that could be 

effectively used in predicting diabetic diagnostic and breast cancer survivability in patients 

respectively.  

This chapter also focus on practical application of the predictive models proposed in this 

thesis by proposing a non-invasive analytical breast cancer survivability and diabetic 

diagnostic tools. That could be used in predicting breast cancer survivability and diabetic 

diagnostic. The analytical breast cancer and the diabetic diagnostic tools integrates the breast 

cancer predictive model and diabetic diagnostic model that were developed in this thesis 

respectively.  Unlike most of the existing breast cancer and diabetic predictive methods, the 
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tools are cost effective, it does not intrude privacy of users and can be used online. The 

predictive performance efficiency of the tools are 100% and 90% on randomly selected tests 

using breast cancer survivability and diabetic diagnostic samples respectively.  Overall, the 

results in this chapter encouraging. The concepts are simple and non-invasive. The next 

chapter presents the discussion of this thesis.  
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Chapter 6: Discussion  

 Introduction   

The previous chapter presented the performances and the findings obtained from the 

proposed early stopping, multivariate predictive concepts and the non-invasive analytic tools 

that were developed and tested.   

The purpose of this chapter is to address Objectives 6 and 7, which are based on discussion 

and reflection of the research investigations, findings, and analysing the performance outputs 

of the proposed research models.  In addition, to clarify on some of the research’s benefits 

and limitations, and to make recommendations for further research respectively. 

After literature review of previous work on ensemble modelling and establishing some 

research gaps, research hypothesis were raised. Then experimental investigations on the 

performances of AdaBoost implementation methods, standalone and ensemble techniques 

were also conducted. Doing this offers avenue to provide answers to the research hypothesis 

and address some of the misunderstanding concepts among researchers in the area of 

ensemble development. This further provides adequate knowledge on how to investigate, 

propose and develop new standalone and ensemble methods in order to enhance their 

predictive performances and reliabilities.   

The initial investigations specifically covered during phase one of this study are:  

I. The implementation and comparisons of AdaBoost implementation methods namely: 

implementation by resampling, implementation by reweighing and their effects on 

ensemble modelling performance.     
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II. The development and performance comparison of standalone, complex (in terms of 

space and time) and non- complex ensemble models.   

During this study in other phases of the thesis the following new ensemble predictive models 

and analytical tools were specifically proposed, developed and tested after the initial 

investigation:  

I. An ensemble EKF-RBFN-AdaBoost model - In phase two of the research a model that 

uses EKF to train and enhance the training parameters of RBNF models was proposed 

and developed.  Then ensemble AdaBoost, a meta-algorithm was applied to train the 

EKF-RBFN prototypes as a committee of classifiers, and combine them to obtain a 

better classifier as a predictive output. To demonstrate the effective and accuracy of 

the EKF-RBFN-AdaBoost model concept, it was applied to Breast Cancer samples and 

several other samples.  

II. Early Stopping Approach Model – To improve the performance of ensemble model, a 

concept based on the early stopping idea and statistical performance of the training 

weak learners was proposed.  The purpose of this was to avoid overfitting ensemble 

models once certain criteria and threshold were reached. To demonstrate the 

effective and accuracy of the concept it was applied to diabetics’ diagnostic samples.  

III. Multivariate Logistic Regression Models – To minimize the complexity of predictive 

models, a model based on the concept of multivariate logistic regression was 

proposed. The model uses a multivariate equation to represent and predict the output 

of a categorical dependable variable. To demonstrate the effective and accuracy of 

the regression model it was applied to breast cancer survivability modelling tasks.  
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IV. Non-invasive Predictive Analytical Tools – To further integrate the theoretical aspect 

of the models developed in this thesis with practical applications; ensemble non-

invasive predictive analytical tools based on the proposed ensemble models in this 

thesis were implemented. The proposed models in this thesis served as backend 

predictive objects for the proposed non-invasive analytic tools.  To demonstrate the 

effective and accuracy of the tools, it was implemented and tested on breast cancer 

survivability and diabetics diagnostic modelling tasks respectively. 

V. Models and Tools Effectiveness - To investigate the performance effectiveness of the 

proposed ensemble models and non-invasive analytical tools discussed in this thesis 

their performance outputs were compared with established benchmark models.   

It has been argued that every ensemble model and learning method have their own benefits 

and limitations (Cordis., 2018; EPRS., 2019). Therefore, in the sub-sections that follow, 

discussion of the empirical investigations, the proposed models and learning methods, and 

the non-invasive predictive models are presented; in order to express their benefits, 

limitations and drawbacks.  

 Overview of the Models  

This study incorporated factors from other well established theories and models applied in 

artificial intelligence (AI) and ensemble research streams. With this background, the purpose 

of this study include among others: improving the predictive performance of ensemble based 

models; testing and validating the performance of the proposed models. Applying and 

exploring the performance of the non-invasive predictive analytical tools that were developed 

based on the proposed and tested models in this thesis. 
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6.2.1 Benefits and Limitation of Ensemble Models  

As demonstrated in this thesis, some of the motives why ensemble models are developed 

among others are:   

I. After the models have been trained it can be applied on a wide range of tasks 

where the task conditions are similar or correlated.  In addition, it is also possible 

to apply some predictive pre-conditions to the models. 

II. Integrating sequential or EKF estimation techniques with ensemble models to 

address problem of lack of adequate historical data that is required to train the 

conventional ensemble models.  Therefore, sequential learning methods or EKF 

estimation approaches are more reliable in the absence of large or missing values 

from the available data. It also performs better than batch (group of historical 

data) based learning techniques.    

III. The possibility of integrating and enhancing the model once it has been trained 

and developed with visual interface models that can be used as a non-invasive 

analytic predictive models as demonstrated in this thesis.  

6.2.2 Non Estimation Theory Based Models 

When developing and testing algorithms availability of adequate historical data is very 

important in order to obtain good predictive performance.  The predictive models described 

in Phase One, Phase Three, Phase Four and Phase Five were based on batch techniques 

(Rodríguez-Jiménez, et al., 2019).  However, the EKF-RBFN in phase 2 was based on the 

concept of estimation theory. A non-estimation based learning models relies on available or 

historical data that can be divided into total dataset size at the time of training.   
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However, apart from the historical data requirements in batch learning methods there is a 

need for insights into the diversity of the individual models, decision making strategy and 

predictive committee members used in creating the models which the final ensemble models 

are based on.   

The benefits of ensemble models that are based on non-estimation (batch-based) concept 

among other are:  

I. The deep understanding of the data enables the model to create lower bias and 

variance. Therefore, it reduces classification errors by adjusting to the error rates 

of the weak hypotheses that forms the final predictive outcome. 

II. The models have the capacity to reduce the spread or distribution of prediction 

therefore the overall model performance is better than single contribution model. 

III. The models are capable of learning and remembering the input and output 

patterns of the dataset. Therefore, it can generate reasonable predictive output 

and applying trained models on unseen datasets. However, such unseen tasks 

must be similar or belong to the same domain as the original dataset used in 

training the model.   

IV. The models are capable of representing the non-linear and complex topologies (in 

terms of time and space) that relates the input datasets to the predictive outcome 

results.  

The limitations of ensemble models that are not based on non-estimation theory among 

others are: 

I. Adequate and sufficient historical data are required to obtain a robust and reliable 

results. 
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II. The topology and computational complexity of the model coupled with the 

required training time and CPU is a major setback.  As demonstrated in this 

research, the topology and computational complexity of standalone and ensemble 

models does not necessarily improve the predictive performance of the predictive 

models.  

III. The model is static and cannot be used to simulate systems that are dynamic in 

nature or changes frequently in practice. The performance of the model is 

dependent on the undelaying loss function used in training and simulating the data 

and the weak classifiers. 

IV. It could perform poorly when it is used on new tasks it has not learned from 

therefore, it may produce unexpected predictive outcomes that are not reliable 

and could not be used in non-invasive analytic predictive models.  

V. The model is like a black box, therefore it cannot remember all the patterns and 

procedures in the training data. In addition the model is also sensitive to outliers. 

It is not tolerant to noise and can lead to under fitting and overfitting problems. It 

is demonstrated in this thesis by applying early stopping concept to lessen the 

limitation. 

 

6.2.3 Estimation Theory Based Models  

The predictive models described in Phase 2 were based on estimation theory.  As 

demonstrated in the phase, it uses the Kalman filter algorithm to sequentially update and 

optimize parameters of RBFN models in order to enhance the performance of the integrated 

ensemble models.  Firstly, one of the main reason of developing models that are sequential 
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(estimation theory) based is the unavailability of sufficient data to train the model. Secondly, 

the training data can only be collected and measured serially as it arrives. Thirdly, some data 

may be missing or arrived late than expected. Therefore, based on the previous and current 

states of the model, and environmental observations the previously predicted state can be 

corrected, the next state of the system can also be predicted and adjusted as new data arrive 

or are made available.    

Some of the benefits of the models that were based on estimation theory among other are:  

I. It can be used to model and simulate complex systems with little or no knowledge 

of the inner structure and complexity of the system.  

II. After few iterations it is capable to adjust itself to the input and output structure 

of the system. It does this by using previous, current data and environment factors 

to correct and adjust itself.  

III. Unlike the batch training method that is a case were the require data are available, 

it does not require large historical data to operate. 

IV. It can be used to unravel complex and non-linear problems; as it is capable of 

linearizing the connection between the input and the output states of the system.  

The drawbacks of some of the models that are based on estimation theory (UmaMageswari, 

et al., 2012; Lacambre, et al., 2013) among others include: 

I. The linearization can lead to approximation errors which are not taken into 

consideration in the prediction and update steps.  Therefore, it can underestimate the 

state uncertainties of the system.  
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II. The measurements that are applied in updating the weights and parameters of the 

system must be carried out at every iteration step of the system as new data arrives 

or are made available to the system. This can be time consuming and costly to achieve.  

III. There is a possibility of generating unreliable output results when linearize on extreme 

volatile and irregular systems.    

IV. The linear approximation of a nonlinear problem are based on assumptions which are 

not precise at all times as the environmental conditions changes. 

 Estimation Theory Based Versus Non Estimation Theory Based Models  

The experimental investigations on ensemble models and learning methods, show that 

sequential learning technique should be applied when there is no adequate historical data. In 

a situation when the data only available consecutively, and the system to be modelled is 

complex and lacks insight. The investigations further demonstrates that batch learning 

methods should be applied when sufficient historical data to train the models are available,  

and there is sufficient knowledge of the process that can be used to model the system. 

 Chapter Summary  

This chapter discussed and reflected on the proposed predictive models, and learning 

methods applied in this study. Firstly, the discussion highlights some of the motives why batch 

and sequential models are developed. It further discussed the benefits and drawbacks of the 

models’ learning methods.  Secondly, this chapter also presented key factors to be considered 

when selecting models, and training methods under different conditions and circumstances. 

The next chapter, therefore, moves on to discuss the conclusion future work.  
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Chapter 7: Conclusions and Future Work  

 Introduction  

This chapter provides a conclusion to the results and discussions of the research presented in 

this thesis. The main motivation of the research has been to provide answers to the research 

hypothesis, develop new ensemble models with high prediction accuracy, and to provide an 

integrated non-invasive analytical tool based on the predictive models proposed in this thesis.  

Following previous studies in ensemble modelling, this research has carried out investigations 

on how to develop different types of ensemble models with high prediction accuracy using 

different methods, conditions and tasks.  The study investigated several aspects of AdaBoost 

methods, prognostic models, and predictive concepts to establish the features that affects 

the performance of standalone and ensemble methods. 

 Research Novelties, Contributions and Achievements  

In this thesis extensive literature review and numerous empirical investigations were carried 

out. This was followed by the proposal, testing and validation of new ensemble predictive 

models, and non-invasive visual analytical predictive tools.  Therefore, this session presents 

the research objectives that were accomplished during the study. It also highlights the 

research’s novelty and contribution to knowledge. 

I. Objective One - Review and empirical investigations in comparing performance 

of boosting methods, predictive performance of ensemble and standalone 

predictive techniques have been carried out.  This has provided answers to 

Hypothesis 1 and Hypothesis 2 of this thesis.  



167 | P a g e  
 

II. Objective Two - An ensemble EKF-RBFN-AdaBoost that integrates EKF in training 

Radial Basis Function Networks (RBFN) in order to optimize the network 

parameters and applying AdaBoost as a meta-model to enhance stronger 

predictions accuracy has been proposed, developed and tested. 

III. Objective Three - An ensemble model that is based on the concept of early 

stopping, and statistics data of the training samples: the mean, standard 

deviation and thresholds in order to minimise generalization error and to avoid 

overtraining that could result in overfitting has been proposed, developed and 

tested. 

IV. Objective Four - An ensemble model that is based on the concepts of ensemble 

multivariate logistic regression that best predicts the binary response variable 𝑌 

for the values of multiple 𝑋 variables of the predictors have been proposed, 

developed and tested.  

V. Objective Five - Analytical tools that were based on the theoretical concepts and 

practical application of the proposed ensemble models were used in proposing 

and developing non-invasive breast cancer survivability and diabetic diagnostic 

predictive analytical tools. The non-invasive analytical tools have been developed 

and tested.  

VI. Objective Six - The performances of the ensemble models and the predictive 

analytical tools proposed and developed in this thesis have been tested and 

validated using benchmark samples.  

VII. Objective Seven - Recommendations on the best approach for future work have 

been suggested. It has also been demonstrated that boosting method by 
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sampling performs relatively better than boosting by weighing. The thesis has 

therefore addressed this controversial issue in the literature.    

 

 Future Research and Recommendations 

More broadly, this research has investigated different ensemble modelling methods, carried 

out experimental case studies, proposed, developed and tested new ensemble methods, 

multivariate logistic models and non-invasive analytical tools. However, it is recommended 

that further research can be undertaken in the following areas:  

I. To advance the capabilities of the proposed EKF-RBFN-AdaBoost model by 

extending the model so that it can handle multiple base classifiers and datasets 

for users to select from. This could involve the development of a model reference 

control interface such as GUI toolkits. This would enable users to load different 

datasets, select the required base learners, and carry out pre-training algorithmic 

settings before training.  

II. It would also be interesting to investigate further the effects of diversity of weak 

classifiers on performance of the proposed models.  

III. To explore and investigate the potential and predictive effects of imbalanced and 

complex training tasks on the proposed models.  

IV. To investigate the application of UKF (Unscented Kalman Filter), UPF (Unscented 

Particle Filter) in training the RBFN as these methods could perform better than 

EKF in terms of estimation accuracy (György, et al., 2014; Mariani & Ghisi, 2007).  

V. To further investigate algorithmic factors that could affect performance of 

ensemble classification accuracy.  
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 Conclusion  

One of the main aims and objectives of this research is to improve the prediction accuracy of 

ensemble models. Following reviews of previous work on ensemble modelling, this research 

has explored some of the existing gaps in the literature and how to fill them.   

Based on current issues of ensemble models: empirical investigations were carried out to 

provide answers to the research hypothesis.  Then three different predictive modes, and two 

predictive analytical tool were proposed and developed.   

The proposed models and tools models were tested on Breast Cancer survivability, Diabetes 

diagnosis, and Staff Absenteeism, Credit Card Default Payment and many other datasets. The 

results of the tests on the proposed models shows improved prediction accuracy of the 

models when compared with a number of benchmarked standalone and ensemble models.  

Some of the findings and conclusions of this thesis are: 

I. The study has shown and confirmed that the complexity, the topology of 

algorithm, and time required to train the tasks does not necessarily improve the 

performance and accuracy of the models. Even though more difficult models such 

as Neural Network and Support Vector Machine requires more time, tuning 

efforts, and CPU resources while training.  

II. The results of this study indicate that implementing AdaBoost by resampling 

method perform slightly better than implementing the model by reweighting 

method. It was found that the average performance of correctly classified by 

reweighting method is 73% compared with boosting by resampling method which 

was 74%.  



170 | P a g e  
 

III. The study has gone some way towards enhancing the understanding and the 

possibility of integrating EKF, RBFN and AdaBoost as an optimized predictive 

model.  

IV. The results of the studies further demonstrate that the prediction accuracies of 

some of the proposed models are more accurate compared to other benchmark 

models used during the research.  

V. This study has found that the proposed EKF-RBFN-AdaBoost, and the early 

stopping concepts models predict quite faster after few iterations. It also 

converges faster compare to other conventional algorithms used in this study. 

VI. This study has demonstrated the usefulness of the ensemble models proposed in 

this thesis by proposing, developing and testing non-invasive analytical tools. The 

tools links the gaps between theoretical concepts and practical application of the 

proposed models to predict breast cancer survivability and diabetic diagnostics in 

patients. The tool is privacy protective and non-invasive, cost effective and could 

be used over the internet.   

VII. Some of the findings of this study have been peer reviewed, presented and 

published in five different international proceedings, journals and chapters in 

books. 
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Appendix A – Time Line Comparison and Summary of Some of AdaBoost variants 

Table A.1 Comparison Summary of Common AdaBoost Variants and Related Boosting Algorithms 
 

Variants Modified 

Variant 

Application  Binary/

Multi-

class 

Base 

Classifier 

Benefits and 

Advantages 

Limitations and 

Problems 

Loss Function Remarks / 

Comments 

AdaBoost (Freund & 

Schapire, 1995; Freund 

& Schapire, 1997) 

- Image recognition Yes Decision 

Stump 

Reduces 

classification 

error 

The performance 

depends on the on the 

weak learners 

generated during 

boosting process. 

Exponential 

function 

Generates 

classifiers whose 

performance is a 

little better than 

random guess 

AdaBoost.M1 (Freund 

& Schapire, 1996) 

AdaBoost Image 

/Photography and 

number recording 

Yes /Yes Decision 

Stump 

It adjusts to the 

error rates of the 

weak hypotheses 

Performs poorly on 

noisy datasets. 

Exponential 

function 

The weak learner is 

measured only in 

terms of error rate 

AdaBoost.M2 (Freund 

& Schapire, 1996) 

AdaBoost.M1 Digital and 

Electronic 

recognition 

Yes / Yes C4.5 Corrects 

AdaBoost.M1 

limitation on 

maximum error 

weight. 

Overfitting/Slow 

convergence rate 

Exponential 

function 

It has same 

performance in 

minimizing the 

training and test 

error rates 

LogitBoost (Friedman, 

et al., 2000), 

(Friedman, 1997) 

AdaBoost.M1 Credit 

Appraising/Traceab

ility 

Yes /Yes Decision 

Stump 

Handle noisy 

data/Perform 

better than 

AdaBoost.M1/Fa

st Computation 

It produces complex 

regression tree 

Logistic loss Uses logistic 

regression techniqu

es /Newton 

algorithm to fit 

additive logistic 

regression model 

Real AdaBoost 

(Schapire & Singer, 

1999) (Friedman, et al., 

2000) 

AdaBoost Face Detection Yes/No Decision 

Stump 

Weighted 

probability / 

additive logistic 

model 

Numerical and 

overfitting problems. 

Additive logistic 

regression. 

The weak learner 

returns a class 

probability. The 

contribution to the 

final classifier is 

half the logit 

transform of the 

probability.  
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BrownBoost (Freund, 

2001) 

AdaBoost Face Detection Yes /No Non-

convex loss 

function 

Handle multi-

class tasks 

Convergence 

problem/Noisy 

resistant 

Differential 

equations/ 

Brownian motion 

It is an adaptive 

version of BBM8 

 

FloatBoost (Li, et al., 

2003) (Li & Zhang, 

2004) 

Floating search 

/AdaBoost 

Face detection 

systems /Face 

detection 

Yes /No Decision 

Stump 

Error rate / fewer 

weaker classifiers 

Overhead 

costs/Deletes 

unfavourable weak 

classifiers 

Incorporates 

Floating Search  

Uses input-

dependent 

regularisers 

WeightBoost (Jin, et al., 

2003) 

AdaBoost Text categorization Yes/No Decision 

Stump 

Overfitting / 

noisy data 

problem 

More robust than 

AdaBoost on noisy 

data and performs 

better 

Exponential 

function 

It guaranteed to 

minimize training 

errors. 

Modest AdaBoost 

(Vezhnevets & 

Vezhnevets, 2005) 

Real AdaBoost 

and Gentle 

AdaBoost 

Object detection Yes/No Decision 

Stump 

Less 

generalization 

error compares 

with Gentle 

AdaBoost and 

Real AdaBoost  

Unstable performance  It uses inverted 

distributions scheme 

It has a higher 

training error 

Ent-Boost (Le & and 

Satoh, 2007) 

AdaBoost Computer vision / 

face detector 

Yes/No  It has good 

performance and 

compact storage 

space 

Expensive and 

cumbersome stopping 

criterion  

Entropy function It uses class entropy 

information to 

estimate optimal 

number of bins  

ReweightBoost 

(Rodríguez & Maudes, 

2008) 

AdaBoost Computer vision / 

face detector 

Yes /No ADA9 Computational 

complexity 

Uses few base 

classifiers /Rely on 

parameters 

 It decreases the 

generalization error 

Gentle AdaBoost (Wu 

& Nagahashi, 2014) 

Real AdaBoost Object detection Yes /No Decision 

Stump 

Reliable/stable 

than Real 

AdaBoost/ 

Outperforms 

Real AdaBoost 

and LogitBoost 

Overfitting and high 

computational cost 

Newton stepping 

/Least-square 

regression 

It uses Newton 

stepping instead of 

exact optimization 

at each step 

                                                           
8 Boosting-By-Majority 
9 Adaptive Discriminant Analysis  
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