
1

Dynamic Wireless Information and Power Transfer
Optimization Scheme for Nano-Empowered

Vehicular Networks
Li Feng, Amjad Ali, Muddesar Iqbal, Farman Ali, Imran Raza, Muhammad Hameed Saddiqui, Muhammad

Shafiq, and Syed Asad Hussain

Abstract—In this paper, we investigate the wireless power transfer
and energy-efficiency (EE) optimization problem for nano-centric
vehicular networks operating over the terahertz band. The in-
body nano-sensors harvest energy from a power station via
radio-frequency signal and then use the harvested energy to
transmit data to the sink node. By considering the properties of
terahertz band (i.e., sensitivity to distance and frequency over the
communication path), we adopt the Brownian motion model to
develop a time-variant terahertz channel model and to describe
the mobility of the nano-sensors. Thus, based on the channel
model and energy resources, we further develop a long-term EE
optimization problem. The EE optimization is further converted
into a series of energy-efficient resource allocation problems over
the time slots via equivalent transformation method. The resource
allocation problem for each timeslot, which is formulated as a
mixed integer nonlinear programming (MINLP), is solved based
on the particle swarm optimization (PSO) method. In addition,
a dynamic PSO-based EE optimization (DPEEO) algorithm
is developed to obtain the sub-optimal solution for the EE
optimization problem. By exploiting the special structure of
the reformulated problem, an improved DPEEO algorithm, is
presented which can handle the problem’s constraints quite well,
decreases the research space, and greatly reduces the length of
the convergence time. Simulation results validate the theoretical
analysis of our system.

Key words: nano-communications vehicular networks, wireless
power transfer, energy-efficiency optimization, terahertz band

I. INTRODUCTION

In the present era of advance technology, vehicles are get-
ting more efficient, sophisticated, faster than the past. More-
over, with the significant advancements in nanotechnology,
nanotechnology-empowered sensors over terahertz band are
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expected to bring a wide range of applications in vehicular
networks from the comfort to entertainment [1]. From 0.1 THz
- 10 THz wireless spectrum is reserved for terahertz com-
munication which has great capability to support extremely
high bandwidths communication. However, some constraints,
such as frequency selective path-loss and noise may lead
fluctuations in terahertz channel capacity [2]. Besides, due to
their physical dimensions, nano-sensors implanted in vehicles
are always limited by the requirement for a battery. Therefore,
wireless power transfer (WPT) technology over the air inter-
face is introduced as a viable solution to solve the problem of
battery and network lifetime [3].
Energy efficiency (EE) optimization has become a vital design
objective in green vehicular communications. Despite the nu-
merous advantages of nano-centric vehicular communications
over terahertz band, there are still many challenges being faced
in energy efficient transmissions using nano-sensors which
requires innovative techniques to be develop. Thus, due to
the fact that a nano-sensor’s energy resource will change
with its energy harvesting and consumption processes, first we
need to build a dynamic equation to describe the time-varying
energy resources. Secondly, since the channel character varies
with the frequency and distance on the communication path,
a comprehensive mathematical model is required to portray
the time-variant channels of the terahertz band for vehic-
ular networks. Thirdly, considering the time-varying energy
resources and channels, a dynamic EE optimization problem
shall be addressed to improve the vehicular network perfor-
mance. Besides, owing to the complex channel property of
the terahertz band, the problem built is non-convex, which
is difficult to solve. Some efficient mathematic methods are
needed to obtain the problem’s sub-optimal solutions. There-
fore, in this paper, we propose a dynamic wireless information
and power transfer scheme to maximize the long-term EE by
jointly considering the time-varying energy resources and the
channels for nanotechnology-empowered vehicular networks
using terahertz band.
In our paper, we employ Brownian motion to describe the
mobility of a nano-sensor and build a time-variant terahertz
channel model, due to the fact that terahertz communications
is sensitive to distance and frequency over the communication
path. Meanwhile, based on the power transfer and energy con-
sumption processes, we build a stochastic equation to model
the dynamic energy resource of the nano-sensor. Consider-
ing nano-sensors’ dynamic channel information and energy
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resources, we develop a long-term optimization to maximize
the EE in the vehicular networks. To solve the non-convex
optimization problem, we convert it into a series of energy-
efficient resource allocation problems based on the equivalent
transformation method. The resource allocation problem for
each time slot is further solved based on particle swarm
optimization (PSO) method [4]. Some major contributions of
this paper are given below.
• We employ wireless power transfer technology, and

build time-varying channel and energy models of the
nanotechnology-empowered sensor implanted in vehicu-
lar networks over the terahertz band.

• We build a long-term optimization for EE under energy
resources and the time-varying channel model for the
nano-sensors.

• A dynamic PSO-based EE optimization (DPEEO) algo-
rithm is proposed to obtain the sub-optimal solution to the
optimization problem. Based on the special structure of
the reformulated problem, we further present an improved
DPEEO algorithm, which can handle the problem’s con-
straints quite well, decreases the research space, and
greatly reduces the length of convergence time.

Our remaining paper’s organization is as follows. Section
II presents the state-of-the-art. Section III and IV discusses
the system model and the problem formulation, respectively.
Section V proposes the two dynamic EE optimization algo-
rithms. Finally, simulation results and conclusion is presented
in Section VI, and VII, respectively.

II. RELATED WORKS

Studies [5-6] discussed the resource allocation problems for
improving the energy in wireless networks. A EE optimiza-
tion algorithm is proposed that jointly consider the power
allocation and sub-carrier for improving the energy efficiency
in multiuser wireless networks. Similarly, in [6], an opti-
mization objective function is developed to deal with energy
efficiency under the queue-aware multimedia heterogeneous
cloud radio access networks. However, the proposed solutions
may not be directly adopted nano sensors based vehicular
network. When it comes to the nanoscale scene, there are
some resource allocation strategies for nano-sensors. Thus,
in order to improve the overall network transmission rate, a
channel selection scheme for nanoscale devices is introduced
in [7] that is based on terahertz band. Similarly, in order to
improve a channel capacity, a power allocation technique is
also proposed for terahertz band in [8]. To ensure the improved
data transmissions, a energy-aware routing protocol is devel-
oped in [9]. Works [7-9] introduced some resource allocation
methods; however, they do not consider nanotechnology for
communication. Furthermore, some other dynamic properties,
such as the change in distance on the communication path and
the time-varying chemical composition also not considered,
which may cause a variant channel in the terahertz band and
strongly affects the achievable data rates.
By considering the time-varying chemical composition prop-
erties, a frequency-hopping technique for adjusting the rate
of frequency switching for nano-sensors is introduced in

[10]. For modeling the mobility of nano-sensors in nano-
communications networks and to deal with the mobile nano-
sensors, a random walk-based model is proposed in [11].
Both [10-11] do not considered the terahertz band for nano-
communications networks. Because of the technological limi-
tations, the conventional energy harvesting techniques, such as
underwater turbulence, solar energy, and wind power cannot be
directly adopted in nano-communications networks. Therefore,
some novel schemes are required to provide energy to nano-
sensors. Thus, energy harvesting is considered as one of the
vital solution to solve the energy-related problems in wireless
devices [12]. In [3], authors proposed a energy harvesting
scheme for piezoelectric nano-generators. In [14], authors
introduced a complex energy harvesting scheme for wireless
nano-networks operating over terahertz band. However, the
energy harvesting models are mostly not much reliable and
controllable, or do not capture the properties of wireless
communications in nano-communications networks.
Recently, performance maximization in wireless networks is
usually formulated as a convex optimization problem, where
conventional solving techniques are adopted [15-16]. However,
practical data transmission systems always introduce non-
convex utility functions, and a very few works addressed
the non-convex optimization problems. In front of the non-
convex optimization including integer and continuous vari-
ables, in order to obtain the sub-optimal solution to energy-
efficient resource optimization a continuous convex approxi-
mation method is introduced in [17]. To deal with the power
consumption optimization problem under wireless networks,
a branch-and-bound scheme is used in [18]. However, owing
to the channel’s complex property for the terahertz band, it
is still difficult to find a convex problem to approximate the
proposed original non-convex problem. Then, the methods
presented above cannot be applied well to the EE optimization
problem of nano-communications networks in the terahertz
band. Thus, there is a need to develop intelligent technique
to achieve the optimum solution for the nanotechnology-
empowered vehicular networks. Particle swarm optimization
(PSO) technique belongs to the evolutionary solution’s family
that is mainly based on the imitation of the foraging behavior
for a flock of birds learning and grouping the best experiences
[19]. To find the optimal deployment problem solution in a
non-convex region, a discrete PSO scheme is introduced in
[20]. PSO is computationally more efficient and has the ad-
vantages of the ease of implementation and good convergence.
In our previous work [38], we proposed a resource allocation
scheme for time-variant channel under nano-coomunication
networks. In the scheme, we addressed the power allocation
and channel selection optimization problems and solve them
by employing the Lyapunov optimization. Finally, a algorithm
called “CoRA” is developed.

III. SYSTEM MODEL

A. Network Model

In the considered nano-centric vehicular communications sys-
tem, there are N nano-sensors, one sink node, and one power
station. The nano-sensors, N , travel via Brownian motion with
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Fig. 1: System model for nano-centric vehicular communica-
tions networks operating over the terahertz band.

drift. These nano-sensors sense some vital statistic, such as
trajectory of enemy vehicles and transmit the sensed data to the
sink node over a single-hop communication as demonstrated
in Fig. 1. Besides, the sink node is capable of performing
complex tasks, and it also forward the collected packets to
higher layers, e.g., a road side units (RSUs). Then, the nano-
sensors can access the Internet via the RSU. To execute data
transmission, each nano-sensor is comprised on a communica-
tion block and a power block along with the relevant storage
units and transmission process. Due to the limitation of nano-
sensor’s small size, both power block and communication
block are finite [21].
To ensure the system operates smoothly, each nano-sensor
(which has no embedded power supply available) needs to
harvest energy to power itself. Here, we introduce wireless
power transfer (WPT) technology into the considered network
scenario, and the power station (PS), which acts as a wireless
power source, can transmit the wireless power to each nano-
sensor via radio frequency signals (e.g., WiFi, ultra-wide
band and so on). The nano-sensors operate over the terahertz
band and total bandwidth of the terahertz band is divided
into M narrow frequencies or channel with equal-width ∆f .
Thus, multiple nano-sensors can operate over different sub-
frequency bands or channels. Moreover, due to operating over
orthogonal channel, we assume no interference exists among
nano-sensors. M, denotes the channel set, a nano-sensor n
can transmit its data over a discrete frequency fm, m ∈M.
We considered that the channel characteristics of data trans-
mission for nano-sensors may vary with their motions and
similarly, energy resources may also vary over the time during
power transfer and data transmission processes. Thus, we
considered a time-slotted environment where a time is slotted
into equal intervals indexed by t, t = {0, 1, 2, · · · }. The
network state (power block information and channel property)
for each nano-sensor is assumed to be constant for the duration
of one time slot, but potentially change at slot boundaries. In a
specific time slot, a harvest-then-transmit protocol is employed
for data transmission in the network. The protocol is divided
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Fig. 2: Wireless information and power transfer for nano-
centric vehicular communications networks.

into two parts: (a) Wireless energy transfer (WET), i.e., the PS
provides wireless power for the nano-sensors via RF signals,
and the nano-sensors store the harvested energy in their limited
power blocks. (b) Wireless information transfer (WIT), i.e.,
the nano-sensors employ the received power resources to
forward the data packets to the sink node using terahertz bands.
Specifically, for a θ duration of time slot t (the WET stage),
each nano-sensor decides the amount of energy required based
on its power block information at the beginning1, and then
sends a power request to the PS. When the PS receives the
power requests, it transfers power resources to the nano-
sensors via RF signal. At the rest of the time (the WIT
stage), the nano-sensors may utilize the received power and
forward the data packets to the sink node via terahertz bands.
When the network state changes and time slot t + 1 comes,
new power transfer and data transmission periods (among the
nano-sensors, sink node and PS) start, as shown in Fig. 2.
Additionally, due to the fact that the energy transfer and data
forwarding processes are executed at different times and at
different frequencies2, no interference exists between the nano-
sensors and the PS.

B. Motion Model

In this paper, ~dE,tn denotes the energy transmission distance
between nano-sensor n and the PS during the WET stage,
and ~dI,tn indicates the data communications distance between
the sink node and nano-sensor n for the WIT stage in time
slot t, as shown in Fig. 3. Note that a nano-sensor travels
via Brownian motion with a drift. In this paper, we employ
Langevin equation3 to describe the mobility of a nano-sensor.
Motivated by [22], the dynamic energy transmission distance
of nano-sensor n is

d~dE,tn
dt

=
βLn,E
αLn,E

d ~Wn(t)

dt
, (1)

1In this paper, the nano-sensor will send the power request when its
available energy resource is below a preset threshold.

2The PS transmits the wireless power to nano-sensors in the WET stage
via RF signals, while the nano-sensors forward the data packets in the WIT
stage via terahertz bands.

3The Langevin equation was originally to describe the Brownian motion of
a particle.



4

,E t

n
d

,,
d

, 1I t

n
d

+I tI t, 1, 1
dd

, 1, 1

Nano-sensor

Sink node

PS

, 1E t

n
d

+, 1E tE t, 1, 1, 1
d

, 1, 1

,I t

n
d

,,
d

( )
n
t( )( )( )( )

nn
( )( )( )( )

( )
n
t

n
( )( )( )( )

Fig. 3: Motion of mobile nano-sensors.

where βLn,E and αLn,E are the positive constants determining
the noise, the nano-sensor’s resistance to motion, respectively.
~Wn(t) is the vector Wiener process. Then, we can obtain the
dynamic energy transmission distance between nano-sensor n
and the PS for discrete time slot t, which is

~dE,t+1
n = ~dE,tn +

βLn,E
αLn,E

~G(τ), (2)

where ~G(τ) = ~W (t+1)− ~W (t) is a random Gaussian process
and τ denotes the duration of one time slot. Similarly, the
dynamic data communications distance between nano-sensor
n and the sink node for the discrete time slot t can be described
by

~dI,t+1
n = ~dI,tn +

βLn,I
αLn,I

~G(τ), (3)

where αLn,I and βLn,I are positive constants.

C. Dynamic Channel Model of the Terahertz Band for Data
Transmission

Data transmission in the terahertz band communications dur-
ing the WIT stage for each time slot may incur significant
path loss. xtn,m is a binary variable indicator function. If
xtn,m = 1 it represents that nano-sensor n transmitting its
radio signal over channel fm in time slot t; otherwise, channel
fm is idle over time slot t. Path loss of the terahertz band
is jointly affected by the absorption loss PLtabs(x

t
n,m,

~dI,tn ),
and spread path loss PLtspr(x

t
n,m,

~dI,tn ). Motivated from [23],
the expression of the path loss in decibels PLt(xtn,m, ~d

I,t
n ) of

nano-sensor n over frequency band fm, can be expressed as

PLt(xtn,m,
~dI,tn )[dB]

= PLtspr(x
t
n,m,

~dI,tn )[dB] + PLtabs(x
t
n,m,

~dI,tn )[dB]

= 20log(
4π~dI,tn x

t
n,mfm

c
)[dB]+10Kn

t,xtn,m,
~dI,tn
log(e)[dB],(4)

where Km
t,xtn,m,

~dI,tn
= 4πKn

~dI,tn x
t
n,mfm is the molecular ab-

sorption coefficient which is the function of the extinction
Km. xtn,mfm is the operating channel of nano-sensor n and
c is the speed of light. From Eq. (4), it is clear that the
path loss PLt(xtn,m,

~dI,tn ) is the function of the terahertz
frequency, and that the frequency selective feature is dominant
for transmissions involving longer distances ~dI,tn . The noise for

nano-sensor n in the terahertz band is primarily due to the
molecular absorption noise, which is given by

Nn
abs(t, x

t
n,m,

~dI,tn ) = kBT0(1− e
−Kn

t,xtn,m,
~d
I,t
n ), (5)

where T0 is the reference temperature, kB is the Boltzmann
constant. If Stn,m is the power spectral density of the trans-
mitted radio signal in time slot t over channel fm. Then, the
SNR of nano-sensor n over fm and distance ~dI,tn in time slot
t is given as below:

SNRmn (t, xtn,m,
~dI,tn ) =

Stn,m

PLt(xtn,m,
~dI,tn )Nn

abs(t, x
t
n,m,

~dI,tn )

=
Stn,m

Ψ(t, ~dI,tn , xtn,m)
, (6)

where Ψ(t, ~dI,tn , x
t
n,m) = (

4π~dI,tn x
t
n,mfm
c )2kBT0(e4πKt

n
~dI,tn x

t
n,mfm−

1). As each nano-sensor operates over an orthogonal channel.
Then, we have the following constraint,∑

n

xtn,m ≤ 1, xtn,m ∈ {0, 1},∀m ∈M. (7)

Where
∑
n =

∑N
1 . The transmission rate of nano-sensor n

towards the sink node over time slot t can be represented with
the help of Shannon capacity formula as follows:

rmn (t) = 4f log
(

1 + SNRmn (t, xtn,m,
~dI,tn )

)
,∀t>0, n∈N .

Where 4f is the width of each terahertz channel band.

IV. PROBLEM REFORMULATION

A. Problem Formulation

In this section, we discuss the joint consideration the long-
term channel capacity and energy consumption to ensure
the effective data transmission in nano-empowered vehicular
networks.
1) Energy Consumption and Supply for Nano-sensors: In this
paper, we employ WPT technology in nano-communications
networks. A nano-sensor’s energy resource will change with
the energy transfer process during the WET stage and with
the data communications process during the WIT stage. Note
that, for the WET stage, when the PS receives energy requests,
it will send power resources to nano-sensors via RF signals.
Based on [24], we know that the energy transfer model from
the PS to the nano-sensor encompasses both the distance-
dependent path loss and small-scale fading. Then, the channel
power gain for energy transmission to nano-sensor n, htn, is
calculated using the following formula [25],

htn = 10−
PLt(~d

I,t
n )[dB]+ψtn[dB]

10 ~dI,tn β
t
n, (8)

where PLt(~dI,tn ) is the path loss in decibels for distance ~dI,tn ,
ψtn is the loss margin between the PS and nano-sensor n in
decibels, and βtn is the small-scale fading power gain between
the PS and nano-sensor n. During the WET stage in time slot
t, the PS is assumed to transmit etn wireless power, where
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0 ≤ etn ≤ on, to nano-sensor n. Then, the amount of power
received for nano-sensor n from the PS in time slot t is

Ctcapn = ςtn(T0)etnh
t
nθτ,

where ςtn(T0) is the power transfer efficiency at nano-sensor
n. Then, the energy consumption of nano-sensor n in the WIT
stage for time slot t is

EWET
n (t) = PCnθτ − Ctcapn , (9)

where PCn is the constant circuit power consumption of nano-
sensor n.
During the WIT stage, each nano-sensor transmits the data
packets in its communication block to the sink. Motivated by
[26], the energy required to handle the transmission for the
WIT stage is given by EnTr(t) =

∑
m x

t
n,mS

t
n,m(1 − θ)τ .

The energy consumption for nano-deceive n receiving packets
during (1 − θ)τ is EnRe(t) = ptr(1 − θ)τ , where the nano-
sensor’s receive power ptr is assumed to be constant in this
paper. Then, the energy consumption of nano-sensor n during
the WIT stage in time slot t is

EWIT
n (t) = EnRe(t) + EnTr(t) + PCn(1− θ)τ

=(
∑
m

xtn,mS
t
n,m + PCn + ptr)(1− θ)τ. (10)

where Etn is a positive value. Moreover, to ensure the energy
balance among the nano-sensors, we shall consider the dif-
ferent energy levels of the nano-sensor. Noting that, for their
energy consumptions to execute data transmission, the nano-
sensor with less energy resource will pay relative more price
than others. We define the nano-sensor’s energy consumption
considering the current energy state as its relative energy cost.
Then, the related energy costs for nano-sensors in overall time
slot t is

P totalt (xt,St) =
∑
n

EWET
n (t) + EWIT

n (t)

Etn

=
∑
n

PCn+(
∑
m x

t
n,mS

t
n,m+ptr)(1−θ)τ −Ctcapn
Etn

. (11)

where xt = {xtn,m}n∈N ,m∈M, St = {Stn,m}n∈N ,m∈M. The
notation Etn is nano-sensor n’s energy state in time slot t,
which is updated as

Et+1
n = max{0, Etn − EWET

n (t)− EWIT
n (t)}, (12)

where Etn is a positive value.
2) Channel Capacity: In this section, with the help of Shan-
non capacity formula, we can present overall terahertz channel
capacity as a summation of each sub-channel over time slot t,
given as follows:

CTHz(x
t,St)=

∑
n

∑
m

4f log2

(
1 + SNRmn (t, xtn,m,

~dI,tn )
)

=
∑
n

∑
m

4f log2(1 +
Stn,m

Ψ(t, ~dI,tn , xtn,m)
), (13)

where log2 is the binary logarithm.
Motivated by [27] and [28], the energy efficiency (EE) ρtotalEE

for the nano-communication networks is defined as the ratio

of the long-term sum channel capacity to the corresponding
long-term total related energy costs, given as,

ρTotalEE =

∑∞
t=1 CTHz(x

t,St)∑∞
t=1 P

total
t (xt,St)

, (14)

Compared with the traditional EE, the EE defined in this paper
benefits from the energy balance among the nano-sensors.
According to EE definition discuss above, we conclude the
larger ρTotalEE is desirable. As, our objectives is to maximize
the long-term EE ρTotalEE by jointly considering the power
constraints and channel property of THz band. Thus, the long-
term EE optimization problem can be formulated as,

P1: max
xt,St

ρToatlEE =

∑∞
t=1 CTHz(x

t,St)∑∞
t=1 P

total
t (xt,St)

(15)

s.t.
∑
n

xtn,m ≤ 1, xtn,m ∈ {0, 1},∀m ∈M, (C1)∑
n

∑
m

xtn,mS
t
n,m ≤ Pmax,∀t ≥ 0. (C2)

In the problem P1, the Constraint (C1) ensure the orthog-
onality of terahertz channels allocated to nano-sensors; (C2)
denotes the total energy constraint. Due to the fractional forms
of the EE function, the Problem P1 is a non-convex optimiza-
tion problem, that cannot be solved by the conventional con-
vex optimization techniques. Moreover, the binary variables
xt makes textbfP1 a mixed-integer non-linear programming
(MINLP) that is hard to solve [29].

B. Resource Allocation Problem in Time Slot t

P1 can be classified as a non-linear fractional program with the
definition of EE. In this subsection, we will convert problem
P1 into a series of solvable resource allocation problems
for EE over the time slots, and propose the energy-efficient
resource allocation problem in a specific time slot.
Noting that, the optimal EE is defined as ρTotal

∗

EE =∑∞
t=1 CTHz(xt

∗
,St
∗

)∑∞
t=1 P

total
t (xt∗ ,St∗ )

, where xt
∗

and St
∗

are the optimal so-
lutions of problem P1 in time slot t. Then, based on the
equivalent transformation method [30], the resource allocation
decisions can achieve the optimal EE ρTotal

∗

EE if and only if

∞∑
t=1

CTHz(x
t∗ ,St

∗
)− ρTotal

∗

EE

∞∑
t=1

P totalt (xt
∗
,St

∗
) = 0.

From above, we know that if the optimal value ρTotal
∗

EE is
given, problem P1 is equivalent to the following optimization
problem,

P2: max

∞∑
t=1

CTHz(x
t,St)− ρTotal

∗

EE

∞∑
t=1

P totalt (xt,St)

s.t. (C1) and (C2). (16)

Problem P2 is a long-term optimization problem, which is
also difficult to solve. By defining ρtEE as the EE over the
past interval [0, t], we obtain the following theorem for the
convergence performance of ρtEE .
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Theorem 1. Updating ρtEE as

ρtEE =

∑t
t=1 CTHz(x

t,St)∑t
t=1 P

total
t (xt,St)

, (17)

for each time slot, ηtEE will gradually reach to ρTotal
∗

EE . The
resource allocation decisions (xt and St) in the equation
above obtained via

max
xt,St

CTHz(x
t,St)− ρtEEP totalt (xt,St). (18)

Proof. Similar proof can be found in [30].

After the transformation, the difficulty for solving problem
P1 turns into solving Eq. (18) under a given ρtEE . Then, the
energy-efficient resource allocation problem for nano-sensors
in time slot t can be written as

P3: max
xt,St

CTHz(x
t,St)− ρtEEP totalt (xt,St)

=
∑
n


∑
m4f log2(1 +

Stn,m

Ψ(t,~dI,tn ,xtn,m)
)

−ρ
t
EE(1−θ)
Etn

∑
m x

t
n,mS

t
n,m −

ρtEE
Etn

Φn(t)


s.t. (C1) and (C2), (19)

where Φ(t) = PCn+ptr(1−θ)τ −Ctcapn . Problem P3 is an
MINLP problem, and is dependent on variables xt and St.
A simple way to get the MINLP problem solution is to
use exhaustive search [29]. However, this is computationally
expensive and intractable. Recently, two approximate methods
are proposed for the sub-optimal solution of the MINLP: the
branch-and-bound method [18], and the continuous convex
approximation [17]. However, the sufficient condition of using
the approximate methods above is that the MINLP problem
can be transformed into a convex optimization problem. Thus,
due to the complex properties of of terahertz channel it is hard
to convert P3 into a convex optimization problem. Therefore,
sub-optimal solution of the problem is derived by using the
heuristic approach with acceptable time complexity. In the
following section, we will employ an intelligence method to
solve problem P3, and propose two dynamic EE optimization
algorithms to obtain the sub-optimal solution for problem P3.

V. DYNAMIC EE OPTIMIZATION ALGORITHMS

Note that PSO method [31] is a kind of swarm intelligence
technology, which is suitable for solving the complicated op-
timization problems. In this section, we first employ quantum-
behaved particle swarm optimization (QPSO) method, which
is a new version of PSO, to obtain the sub-optimal solution
to problem P3. Then, a dynamic PSO-based EE optimization
algorithm (DPEEO) for problem P1 is proposed in harmony
with the time-varying network state. Based on the special
structures of the objective function and the constraints in
problem P3, an improved DPEEO algorithm is presented,
which performs better in handing the constraints and reducing
the length of the convergence time.

A. Dynamic PSO-Based EE Optimization Algorithm

From the perspective of quantum mechanism, QPSO algorithm
is proposed whose global search ability is better than the
standard PSO. Number of quantum particles in a swarm for
QPSO method are represented by J . The solution can be
obtained from the position of each individual quantum particle
Oj , j ∈ J , where Oj , j ∈ J gradually move towards
the optimal position by increasing the number of iterations.
Thus, the fitness function is opted to evaluate the quality of a
quantum particle’s position. The detailed process of the QPSO
method for problem P3 is as follows.
1) Positions for the quantum particle: The exact position and
velocity values cannot be determined simultaneously due to the
uncertainty principle [32]. As a consequence, only the position
vector is defined in the QPSO method. Specially, in the i-th
iteration, the position of quantum particle Oj in the swarm is
denoted by

Zj,it =
[
{xtn,m

j,i}n∈N ,m∈M, {Stn,m
j,i}n∈N ,m∈M

]
.

The previous best position for particle Oj and all particles
respectively, are

pZj,it =
[
{pxtn,m

j,i}n∈N ,m∈M, {pStn,m
j,i}n∈N ,m∈M

]
,

and

gZit=
[
{gxtn,m

i}n∈N ,m∈M, {gStn,m
i}n∈N ,m∈M

]
.

The position for particle Oj is updated based on the following
iterative equation

Zj,i+1
t =

{
Bj,i
t + β|mZit − Zj,it |ln( 1

ξ ) if ε ≥ 0.5,

Bj,i
t − β|mZit − Zj,it |ln( 1

ξ ) otherwise,
(20)

where ξ and ε are the random numbers between 0 and 1. β is
the contraction-expansion coefficient, which can be calculated
by β = 1− i

2intermax where intermax is the maximum number
of iterations. In addition, the local attractor Bj,i

t is acquired
by

Bj,i
t = ηpZj,it + (1− η)gZt, (21)

and the mean position for all particle is

mZit =
1

J

∑
j

pZj,it , (22)

where η is a random weight between 0 and 1.
2) Fitness for the quantum particle: In order to apply the
QPSO method to solve problem P3, the original constrained
optimization problem needs to be transformed into an uncon-
strained form, which can be done with the penalty function
method. Thus, motivated by [33], a fitness function in the i-
th iteration that consists of one objective function and one
penalty function is constructed in Eq. (23) at the top of the next
page, where γ denotes the penalty factor, and Pf (xtn,m, S

t
n,m)

indicates the penalty function that includes two items, i.e.,

Pf (xtn,m, S
t
n,m)=(

∑
n

∑
m

xtn,mS
t
n,m−Pmax)+(

∑
n

xtn,m−1). (24)

In terms of the time-varying network state, we propose a
DPEEO algorithm, whose details are shown in Algorithm 1.
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Fitness(Zj,in )=
∑
n

∑
m

[
4f log2(1+

Stn,m
j,i

Ψ(t, ~dI,tn , xtn,m
j,i)

)−ρ
t
EE(1− θ)
Etn

xtn,m
j,i
Stn,m

j,i−γPf (xtn,m
j,i
, Stn,m

j,i
)

]
−
∑
n

ρtEE
Etn

Φn(t), (23)

Algorithm 1 DPEEO

1: Input: Network state at time slot t.
2: Output: Decisions for resource allocation gZj,it .
3: Randomly selection 20% of particles to restart their

positions, then denote particle Oj’s position as
initialposition(Zjt );

4: for Each particle Oj do
5: pZj,0t = initialposition(Zjt );
6: end for
7: for pZj,0t of particle Oj do
8: gZjt = arg max[{Fitness(pZj,0t )}j∈J ];
9: end for

10: for i = 1 : intermax do
11: for Each particle Oi do
12: Update position Zj,it ;
13: Calculate fitness based on Eq. (23);
14: Update pZj,it based on

pZj,it =

{
Zj,it if Fitness(Zj,in ) > Fitness(pZj,in )

pZj,i−1
t otherwise;

;

15: Update gZj,it based on
gZj,it = argmaxFitness(pZj,in )j ;

16: end for
17: end for
18: Update ρtEE based on Eq. (17).

Remark 1. By virtue of the coherence of the network state
between two adjacent timeslots, 20% of the particles are
randomly selected to restart their positions, and the initial
position for each particle in the swarm is generated (Step 3).
If the number of iterations reaches intermax, the solution is
obtained, and the run is terminated.

B. Improved Dynamic PSO-Based EE Optimization Algorithm

From Algorithm 1, the sub-solution of problem P1 is
achieved. However, some things remain to be enhanced: a)
In Algorithm 1, we employ a penalty function to handle the
constraint in problem P3. Then, the algorithm’s performance
is significantly affected by the value of penalty parameter γ.
Particles can enter into the feasible region quickly if γ value is
large enough. However, this may leads to miss some valuable
information in the infeasible region, which could result in
the algorithm being trapped in local minima. While, a too-
small γ may induce an unacceptable infeasible solution. b) In
Algorithm 1, the dimensionality of the variable for a particle
is (2N) ×M , which means each particle has to potentially
search a larger area in the available space. Then, the swarm
may lose its diversity in some dimensions, and Algorithm 1
may suffer from the curse of dimensionality, which greatly
deteriorates its performance.
We can obtain the relationship between the power control

Stn,m and frequency selection xtn,m, based on the property
of the objective function in P3, and then can develop a new
optimization problem for variables xt. By jointly solving the
new problem for variables xt and exploiting the relationship
between variables, we propose an improved DPEEO algorithm
for problem P1. The proposed algorithm can handle the
constraint of the problem quite well, and greatly decreases the
length of time required to convergence to the optimal solution.
The details are illustrated as follows.
1) Relationship between frequency selection and power con-
trol: In P3, we first relaxes xtn,m over a continuous interval
[0, 1], which is represented by x̆tn,m, and then introduce a
new variable, S̆tn,m = x̆tn,mS

t
n,m based on the primal-dual

decomposition method [34]. Then, we can rewrite P3 as

max
S̆t

∑
n

∑
m

4f log2(1 +
S̆tn,m

x̆tn,mΨ(t, ~dI,tn , x̆tn,m)
)

−
∑
n

ρtEE(1− θ)
Etn

∑
m

S̆tn,m −
∑
n

ρtEE
Etn

Φn(t)

s.t.
∑
m

x̆tn,m ≤ 1, 0 ≤ x̆tn,m ≤ 1, (C3)∑
n

∑
m

S̆tn,m ≤ Pmax,∀t ≥ 0. (C4) (25)

The Eq. (25) is the convex optimization problem over variable
S̆tn,m, in which constraint (C3) is an affine function and
feasible set of constraints is a convex set. Thus, we can derive
the relationship between the variable x̆tn,m and S̆tn,m and by
solving Eq. (25) according to gradient descent (GD) method
introduced in [35]. Moreover, by introducing the Lagrange
multiplier u, we can relax the power constraint in Eq. (25)
and can get the Lagrange function from Eq. (26).
When using the Karush-Kuhn-Tucker (KKT) conditions on Eq.
(26), the relationship between S̆tn,m and x̆tn,m can be written
as

S̆tn,m =

 4f
u+

ρtEE(1−θ)
Etn

−Ψ(t, ~dI,tn , x̆
t
n,m)

 x̆tn,m. (27)

2) Improved dynamic PSO-based EE optimization algorithm:
We can obtain Eq. (28) for binary variable xmn,k, by substituting
Eq. (27) into Eq. (25) which is a typical nonlinear 0-1 integer
programming problem.
The overlapping of frequencies

∑
n x

t
n,m ≤ 1, ∀m ∈ M are

avoided in Eq. (28) which means that one frequency band
or terahertz channel can only be assigned to one nano-sensor.
Thus, we can rewrite frequency allocation xt as a new variable
at = [{atm}m∈M ]. Among it, the element atm taking value
from the set [0, N ], denotes which nano-sensor the frequency
fm is allocated to. Especially, when atm = 0, it means the
fm is not occupied by any of nano-sensor. The notation at
naturally prevents the overlapping of frequencies. In this way,
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L(S, un)=
∑
n

∑
m

4f log2(1+
S̆tn,m

x̆tn,mΨ(t, ~dI,tn , xtn,m)
)−ρ

t
EE(1− θ)
Etn

S̆tn,m−
∑
n

ρtEE
Etn

Φn(t)+u(
∑
n

∑
m

S̆tn,m−Pmax). (26)

max
x

∑
m

∑
n

4f log2(
4f

(u+
ρtEE(1−θ)

Etn
Ψ(t, ~dI,tn , xtn,m)

)−
∑
n

ρtEE(1−θ)
Etn

∑
m

(
4f

u+
ρtEE(1−θ)

Etn

−Ψ(t, ~dI,tn , x
t
n,m))xtn,m−

∑
n

ρtEE
Etn

Φn(t)

s.t.
∑
n

∑
m

xtn,m ≤ 1, xtn,m ∈ {0, 1}. (28)

we can convent Eq. (28) into an unconstrained optimization
problem, and employ an improved PSO method to find the
sub-optimal frequency allocation by expanding the basic PSO
in a binary space. Similarly, J is used to denote the number of
quantum particles in a swarm for the improved PSO method. In
the i-th iteration, the position and velocity of the j-th particle
in the swarm can be denoted by

aj,it =
[
{atm

j,i}m∈M
]
, and Ṽj,i

t =
[
{Ṽ j,im }m∈M

]
.

The previous best positions for the j-th particle and all
particles in the i-th iteration respectively are

paj,it =
[
{patm

j,i}m∈M
]
, and gait=

[
{gatn,m

i}m∈M
]
.

The new velocity of each particle can be found as follows,

Algorithm 2 Improved DPEEO

1: Input: Network state in time slot t.
2: Output: Decisions on frequency selection xt, and power

control St.
3: Select 20% of the particles that have the worst fitness

value to restart their positions, and then denote particle
Oj’s position as initialposition(aj,0t );

4: for Each particle Oj do
5: paj,0t = initialposition(aj,0t );
6: end for
7: for paj,0t of each particle Oj do

8: ga0
t = arg max[{ ˜Fitness(pa

j,0

t )}j∈J ];
9: end for

10: for i = 1 : ĩnter
max

do
11: for Each particle Oj do
12: Update velocity Ṽj,i

t and position aj,it ;
13: if Position aj,it is feasible then
14: break;
15: else
16: Correct aj,it by using homomorphous mapping;
17: end if
18: Calculate fitness F̃itnessi;
19: Update paj,it and gait;
20: end for
21: end for
22: Update St based on Eqs. (33);
23: Update ρtEE based on Eq. (17).

Ṽj,i+1
t =$j,iṼ

j,i+1
t +c1r1(paj,it −a

j,i
t )+c2r2(gait−a

j,i
t ). (29)

where r1 and r2 are two independent random numbers uni-
formly distributed over [0, 1] and c1 and c2 denotes the
acceleration coefficients constants. inertia factor $j,i is as
follows:

$j,i = $max −
i($max −$min)

ĩnter
max , (30)

where ĩnter
max

denotes the maximum number of iterations
and $min and $max represent the minimum and maximum
inertia weights, respectively. Then, the position xj,it for particle
Oj in the i-th iteration is updated as

atn
j,i+1

=

{
[xj,it +Ṽj,i+1

m ]− ifmod(xj,it +Ṽj,i+1
n ) > randj,im ,

[xj,it +Ṽj,i+1
m ]− + 1 otherwise,

(31)
The fitness function is constructed in Eq. (32). Whereas, [·]−
is the maximal integer which is less than the value in [·].
Thus, optimal frequency allocation xt is achieved using the
optimal variable gat. Thus, we can further, obtain optimal
power control Stn,m for the i-th iteration with the help of
relationship established between variables in Eq. (27) which
is as follows:

Stn,m =

 0 if xtn,m = 0,
4f

u+
ρt
EE

(1−θ)
Etn

−Ψ(t, ~dI,tn , 1) otherwise. (33)

In terms of dynamic network state, an improved DPEEO
algorithm is shown in Algorithm 2. 20% of the particles
that have the worst fitness valves are selected to restart their
positions, which can make the algorithm achieve the optimal
values more quickly. In Step 3, the initial position of each
swarm particle over time slot t is generated. From Steps 4-21,
the relevant velocities and positions of the swarm particles are
updated until it reaches to ĩnter

max
, iterations. From Step 13-

17, we corrected the invalid positions, in case when the particle
may be out of range with the help of homomorphous mapping
[36]. This is more efficient method than the general schemes
in which invalid positions are discarded simply. Furthermore,
the power control variable is achieved based on Eq. (42) (Step
22), and the EE ρtEE is updated based on Eq. (17) (Step 23).

Remark 2. In this subsection, to tackle the original stochastic
optimization problem in problem P3, we employ continuity
relaxation and obtain Eq. (25). Considering the convex prop-
erty of variables S̆tn,m in Eq. (25), the relationship between
power control and frequency selection is achieved using the
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F̃itness(aj,im )=
∑
n

4f log2(
4f

(u+
ρtEE(1−θ)

Etn
)Ψ(t, ~dI,tn , a

j,i
m )

)−ρ
t
EE(1−θ)
Etn

 4f
u+

ρtEE(1−θ)
Etn

−Ψ(t, ~dI,tn , a
j,i
m )

−∑
n

ρtEE
MEtn

Φn(t)

 . (32)
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Fig. 4: Channel property of terahertz band.

GD method. Submitting the obtained relationship into Eq.
(25), a new problem is built in Eq. (28). Eq. (28) is a
typical nonlinear 0-1 integer programming problem, which
is difficult to solve. In terms of the property of constraint in
Eq. (28), we translate Eq. (28) as an unconstrained optimal
problem and employ an improved PSO method to solve. Then,
Algorithm 2 is proposed to find the solution to problem P1. In
this way, the dimensionality of the variables is reduced from
(2N) ×M for mixed variables to M for integer variables,
which greatly decreases the computational complexity of the
system. Compared with Algorithm 1, Algorithm 2 can handle
the constraints quite well, decreases the research space, and
greatly reduces the length of the convergence time.

VI. SIMULATION RESULTS

In this section, we first provide the channel property of tera-
hertz band. Then, the performance of the proposed algorithms
are given.
1) Parameter setting: For the simulations, there are six nano-
sensors with eight discrete THz sub-bands, i.e, N = 6 and
M = 8. The nano-sensors start to transmission with following
energy resource: E0

1 = 60pJ , E0
2 = 50pJ , E0

3 = 40pJ ,
E0

4 = 30pJ , E0
5 = 20pJ and E0

6 = 10pJ . The time is
advanced in discrete slots of 5 seconds, i.e., τ = 5s. In each
time slot of a simulation, the nano-sensor undergoes random
walks [37]. Moreover, by sampling Gaussian random variables

TABLE I: Algorithm performance

Approach Network EE Convergence
size time (s)

Normal PSO 6.4107 3.718
DPEEO (N=6, M=8) 6.4110 0.797
IDPEEO 6.4110 0.684
Normal PSO 6.6905 17.498
DPEEO (N=14, M=16) 6.6920 2.182
IDPEEO 6.6924 0.882
Normal PSO 7.0399 46.621
DPEEO (N=22, M=24) 7.0402 3.751
IDPEEO 7.0404 1.118
Normal PSO 7.3811 104.877
DPEEO (N=30, M=32) 7.3809 5.884
IDPEEO 7.3812 1.373

with mean %τ and standard deviation
√
D%τ the nano-sensor’s

new position can be estimated. Furthermore, the parameters
are assigned the values, such as maximum transmit power
Pmax = 80pJ , frequency width ∆f = 0.1THz, capacity of
the power block is 200pJ , and receive power ptr = 1pJ .
2) Channel property of terahertz band: Figure 4 (a) and figure
4 (b) sequentially plot the total path loss and noise of the
terahertz channel model versus the transmission distance and
the frequency. To investigate the channel property of terahertz
band, the transmission distance between nano-sensor and the
sink node varies in the range from 0.5mm to 4mm, and
the frequency of the entire terahertz band from 0.5 THz to
8 THz is utilized. In Fig. 4, we observe that the Z-axis
values are raised with the increase of the frequency and/or the
transmission distance, especially for the path loss. It indicates
that the distance and the frequency on communication path
are dominant for the properties of the terahertz band.
3)Performance of the proposed algorithms: To verify the
effectiveness of our algorithms, we compare our algorithms
with a normal PSO. Table I shows the performance of the
proposed algorithms over different network sizes. Compared
with both the normal PSO and the DPEEO algorithm, the
improved DPEEO algorithm can achieve a satisfactory EE
within a shorter time. From Table I, we also observe that the
EE and the convergence time both gradually increase with the
network size.
Figure 5 plots the updates of the nano-sensors’ transmit power
strategies for one time slot by using the improved DPEEO
algorithm. From figure 5, we see that the nano-sensor with
high energy level will undertake more transmission tasks,
owing to that our algorithm also considers the different en-
ergy states for various nano-sensors when executing resource
allocation. Moreover, figure 5 not just shows the influences of
energy resource on the nano-sensors’ power controls, it also
indicates the convergence of our algorithm. Figure 6 exhibits
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the dynamic power block process for nano-sensors over time.
In figure 6, we can see that the gaps of the power blocks
between different nano-sensors gradually decrease with time
owing to that the nano-sensor with high energy level transmits
more data packets, which can contribute to the energy balance
among the nano-sensors in the networks. Figure 7 shows the
achieved EEs versus the circuit power PC under the improved
DPEEO algorithm. From figure 7, we observe that when the
circuit power increases, the EE of the algorithm reduces. That
is because the channel capacity of network are independent of
the circuit powers of nano-sensors, so that larger circuit power
always leads to the smaller EE. Moreover, the initial positions
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Fig. 7: Long-term EE vs. circuit power.

of nano-sensors also have a influence on EE, and the smaller
initial positions will result in a larger EE for the network due
to relative low path loss and noise.

VII. CONCLUSIONS

In this paper, we introduced Brownian motion to describe
the mobility of nano-sensors, and to built a time-variant
terahertz channel model. Then, a long-term EE optimization
problem is developed by virtue of the built channel model
and the dynamic energy resources of nano-sensors. Based
on equivalent transformation method, the non-convex opti-
mization problem is then converted into a series of energy-
efficient resource allocation problems over the time slots. By
employing the PSO method to solve the resource allocation
problem, a DPEEO algorithm is devised to obtain a sub-
optimal solution for the EE optimization problem. Thus, by
exploiting the special structure of the reformulated problems,
an improved DPEEO algorithm is presented, which performed
well in handling the problem’s constraints and reducing the
length of the convergence time.
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