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Abstract. The paper investigates the application of the Artificial Neural Network (ANN) in 
modeling of double-link flexible robotic manipulator (DLFRM). The system was categorized 
under multi-input multi-output. In this research, the dynamic models of DLFRM were separated 
into single-input single-output in the modeling stage. Thus, the characteristics of DLFRM were 
defined separately in each model and the coupling effect was assumed to be minimized. There are 
four discrete SISO model of double link flexible manipulator were developed from torque input 
to the hub angle and from torque input to the end point accelerations of each link. An experimental 
work was established to collect the input-output data pairs and used in developing the system 
model. Since the system is highly nonlinear, NARX model was chosen as the model structure 
because of its simplicity. The nonlinear characteristic of the system was estimated using the ANN 
whereby multi-layer perceptron (MLP) and ELMAN neural network (ENN) structure were 
utilized. The implementation of the ANN and its’ effectiveness in developing the model of 
DLFRM was emphasized. The performance of the MLP was compared to ENN based on the 
validation of the mean-squared error (MSE) and correlation tests of the developed models. The 
results indicated that the identification of the DLFRM system using the MLP outperformed the 
ENN with lower mean squared prediction error and unbiased results for all the models. Thus, the 
MLP provides a good approximation of the DLFRM dynamic model compared to the ENN. 
Keywords: double-link flexible manipulator, flexible manipulator, artificial neural network, 
non-parametric modeling. 

1. Introduction 

Robotic manipulators are extensively used in a wide range of industries that ranged from 
simple pick and place task to more complex operations such as those in the field of space 
exploration, automotive industry, electronic based industry, oil and gas industry and the medical 
field. They are cost effective and were proven to be more reliable than humans. Previously, robotic 
manipulator structures were generally large and heavy that resulted in rigid arm and stiff joint 
designs. Thus, their usage is limited to light loads and their movement is slow. Hence, the 
conventional design is not favorable in current industries as it is not efficient in term of speed, 
productivity and power consumption. Moreover, it has become a requirement for any engineering 
systems to have a lighter structure.  

Hitherto, there are several well-established dynamic models of the system ranging from simple 
model such as the lumped parameters to complex models such as the assumed mode method 
(AMM) and the finite element method (FEM). Many papers have reported the implementation of 
AMM and the finite FEM toward designing an efficient controller for flexible manipulator system. 
They offer better accuracy as compared to lump parameters model. In [1] mentioned that studies 
on the dynamics modeling of flexible manipulator has been well documented in text books. Recent 
studies by [2, 3] utilized the Finite Element Method (FEM) when developing the model of two 
link flexible manipulator. The first model considered the concurrent large deflection in a system 

Intelligent modeling of double link flexible robotic 
manipulator using artificial neural network 

https://crossmark.crossref.org/dialog/?doi=10.21595/jve.2017.18575&domain=pdf&date_stamp=2018-03-31
tokhim
Typewritten text
Journal of Vibroengineering, 2018



and the second model included the significant dynamics associated with the system. Apart from 
that, Assume Mode Method is used in [4] whereby the modeling was confirmed with the frequency 
domain obtained from experiments. Paper [5] exploited Assume Mode Method by incorporating 
sensor and payload. The drawbacks of applying these dynamic modeling is that there are 
assumptions that need to be taken care of to reduce the complexity of the system. In some works, 
linearized models were used. However, these linear models did not capture the non-linear 
dynamics of the flexible robot. 

System identification has been used over the last two decades and had recently received a lot 
of attention for its ability to find an accurate model of dynamics systems. It was used extensively 
in many flexible structures applications such as the flexible beam modeling [6, 7], flexible plate 
modeling, [8, 9], single-flexible manipulator modeling [10], double link flexible manipulator 
[4, 11], flexible mounted pipe applications modeling [12] and many more. Therefore, there was a 
high motivation to use the system identification technique to develop a dynamic model that 
characterised the DLFRM based on the collected data from a real plant. The utilization of these 
methods enabled the developed models to represent the dynamic characteristic of the system and 
avoided the complexities associated with mathematical and physical model development. Several 
estimations using parametric approaches have been utilized for modeling the flexible manipulators 
such as the conventional RL [13], RELS [14] and RLS and least mean square (LMS) [15]. Apart 
from that, parametric approaches using intelligent methods have attracted many researchers to 
model the system such as, Genetic Algorithm [16] particle swarm optimization (PSO) [17], 
Bacteria Foraging Algorithm [18], Differential evolutionary (DE) algorithm [19] and Cuckoo 
Search Algorithm [20]. A number of research works considered parametric model structure 
because of its simplicity. Most of the works used simulated data which are less precise than 
utilizing real time data. 

In this study, non-parametric approaches were utilized to characterize the dynamics of the 
DLFRM using the experimental data. The non-linear system is preferable because it captures the 
real non-linear dynamics of the flexible robot and provides a good platform of control application. 
It is reported that ANN identification technique has been increasingly applied into many nonlinear 
systems since its inception. Among all the regressors, NARX has an algebraic relationship 
between prediction and past data only and thus, it has a predictor without feedback which makes 
the model less complicated. Until now, there are very limited research work on developing 
nonlinear modeling for the system. The attempt on using non-parametric NARMAX model in [21] 
showed that the work was inclined to adaptive control. Though NARMAX model structure 
showed good approximation, it could give over fitting estimation as the model has predictor with 
feedback. 

There are various examples of NARX model based system identification that have successfully 
accomplished very complex nonlinear system, for example, the modeling of Humanoid 
Robot 3-DOF [22], robot catheter manipulating system [23], electromechanical manipulator [24] 
and steel surface roughness for the milling machine [25]. Apart from that, ANN is used for 
representing flood level water modeling [26], solar radiation model [27], Industrial power plat gas 
turbine [28], magnetic levitation system [29] and meteorological wireless sensor network [30]. 
Therefore, the present study will carry out the system identification of DLFRM using Neural 
Network Auto Regressive model with eXogenous inputs (NNARX).  

The paper presents the intelligent modeling of DLFRM using non-parametric approaches 
utilizing data from the experimental rig which none of previous research have carried out in the 
modelling of DLFRM. Since the system was categorized under MIMO system, the interaction of 
matrices in the model is a major challenge. The matrices must be decoupled before it can be used 
in control strategies. In this proposed method, the model of DLFRM were decentralized in the 
modeling stage. The dynamic models of DLFRM were separated into single-input single-output 
system. Thus, the characteristics of DLFRM were defined in each model using the collected data 
and the coupling effect was assumed to be minimized. The collected data was then estimated using 
ANN by using NARX model structure. 



2. Design and development of DLFRM 

The schematic diagram in Fig. 1(a) shows a planar double link flexible manipulator (DLFRM). 
A rectangular steel base was constructed to hold the overall system. The connector shaft coupling 
was fabricated using the aluminium block to attach the second motor with link 1 and link 2. It was 
designed in such a way that allowed movement of second link at ±90°. The first link (thickness: 2 
mm) held the 30 mm Maxon DC motor and the second link. Meanwhile the second link (thickness: 
1 mm) moved freely. A 40 mm Maxon DC motor was attached at the hub of link 1. The ESCON 
50/5 servo controller was used as a motor driver for both motors. An encoder of model 
HEDL-5540 was utilized to measure the angular position of each of the motor. The miniature and 
lightweight single axis accelerometers, type 8640A50 were positioned at the end of each link. The 
accelerometers converted the mechanical signals produced by manipulators to electrical signal. 
National Instruments (NI) data acquisition card model PCI-6259 and its input output connector 
block SCC-68 were employed as the interface unit in this study. A personal computer (PC) with 
Intel core I5, 2.93 GHz was operated as a processer of the system. Meanwhile, 
MATLAB/Simulink was implemented as the environment for the development of the controller. 
The main toolbox of the Real Time Window Target was executed to interface the system. The 
actual view of DLFRM is shown in Fig. 1(b). 

 
a) 

 
b) 

Fig. 1. a) Schematic diagram of DLFRM, b) double link flexible robotic manipulator rig 



3. System identification 

In general, there are several steps involved in system identification (SI). They are data 
acquisition, model structure selection, model estimation and model validation. In modeling the 
dynamic system, data acquisition provides an important role whereby numerous set of data are 
collected. After the model structure is determined, the main task of identification is to estimate the 
model parameters. The estimated model must have similar properties to that of the true one and 
predict future values of the output. Once a model of the system is obtained, it is required to verify 
the model. Model validity tests are procedures to detect the adequacy of a fitted model. This is 
very important to ensure the model developed is sufficient in representing the system.  

4. Experimentation set up and data acquisition 

The experimental set up must be verified before the data can be used for further analysis of SI. 
Two tests were carried out that is experimental test and impact test. From the tests, the results 
showed that the data collected from experimental set up was suitable for SI. The details of those 
tests can be found in [31].  

In data acquisition, the input-output data required for the modeling process were collected 
experimentally using the DLFRM test rig described in Section 2. Simulink program was 
developed as the tool for collecting the data. A different bang-bang signal with ±0.7 V amplitude 
and ±0.5 V amplitude were used to provide the required torque to excite the double-link 
simultaneously. Four outputs were collected from two encoders and two accelerometers which 
represent the hub angles and end point accelerations of each link respectively. The experiment 
was carried out for the duration of 9 s with sampling time of 0.01 s. The experimental  
hub-angle 1, hub-angle 2, end point acceleration 1 and end point acceleration 2 responses were 
captured and recorded as in Fig. 2(a)-(d).  

 
a) 

 
b) 

 
c) 

 
d) 

Fig. 2. a) Experimental hub-angle 1 response, b) experimental hub-angle 2 response, c) experimental end 
point acceleration 1 response, d) experimental end point acceleration 2 response 

5. Model estimation by using neural network 

In this work, Neural network was used to predict the non-parametric model (model estimation). 
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Neural networks architectures mimic biological neural networks. The networks are made up of a 
great number of highly interconnected identical or similar simple processing units. The important 
networks feature is its adaptive nature. The networks can learn the knowledge it acquired from the 
environment. The neural networks used for system modelling usually apply two basic processing 
elements that is perceptron and the basis function neuron. The perceptron is a nonlinear model of 
a neuron. This simple neural model consists of two basic parts: a linear combiner and a nonlinear 
activation function. A linear combiner computes the product of input vector,  of the neuron and 
the parameter vector, . And a nonlinear activation function applied to the output of the linear 
combiner. The purpose of system identification is to identify the dynamic systems. Thus, the neural 
architectures are emphasised on dynamic neural networks.  

5.1. Multi-layer perceptron 

The research utilized back propagation for multi-layer perceptron (MLP) neural network for 
modeling four sets of a Single Input Single Output (SISO) DLFRM system. The MLP is the most 
popular of the neural network family because of its ability to provide simple model and estimate 
a highly complicated formula association.  

The MLP consist of one layer of nodes that forms the input layer whilst a second layer forms 
the output of NN, with a number of intermediate or hidden layers existing between them. The 
layer of network forms the input layer, , the output, , with a number of neuron, , a hidden 
layer that has different weight of strength, . The function (. )  can be linear, threshold,  
sigmoid, hyperbolic tangent and radial basis. The mapping allows the network to predict the output, 

 as close to the true output. The MLP output is presented in Eq. (1): 

( , ) = =1 • =1 + 0 + 0 . (1)

Levenberg-Marquardt (LM) is chosen for network training due to short convergence time 
although it takes substantial amount of memory than another algorithm. The LM optimizes the 
error by minimizing the residual, ( , ) = ( ) − ( , ) based on the criterion in Eq. (2): ( ) = 12 ( , ) ≈ ( , ), (2)

where  is the training data set. 

5.2. ELMAN neural network 

Another class of Neural Networks that is Elman neural networks (ENN). ENN is two-layer 
back propagation networks, with the addition of a feedback connection from the output of the 
hidden layer to its input. This feedback path allows Elman networks to learn, recognize, and 
generate temporal patterns, as well as spatial patterns. Gradient descent with momentum and 
adaptive learning rate back propagation is chosen for the network training function. It updates 
weight and bias values according to gradient descent momentum and an adaptive learning rate. 
Back propagation is used to calculate derivatives of performance with respect to the weight and 
bias variables . Each variable is adjusted according to gradient descent with momentum as 
presented in Eq. (3): ( ) =  × ( − 1) +  ×  × perf( ) , (3)



where ( − 1) is the former adjustment to the weight or bias.  

5.3. NARX model structure 

NARX model is the nonlinear generalization of the well-known ARX model, which constitute 
a standard tool in the linear black-box identification. For estimating the nonlinear part of the ARX 
structure, the neural network is utilized. The general NNARX model structure is shown in Fig. 5. 
The NNARX model structure regression vector is given by Eq. (4): ( ) = ( − 1), … . , ( − ), ( − ), … . , ( − − + 1) . (4)

The regression vector is formed of past values of the input and output of the system. The OSA 
prediction of the NNARX model is given by Eq. (5): = − 1 , = ( ( ), ), (5)

where  is the function realized by the neural network method. 

5.4. Model validation 

The validation phase is a must to ensure that the model being developed is adequate. The model 
validation is carried out by using three methods that is One Step Ahead (OSA) prediction, Mean 
Squared Error (MSE) and Correlation Test. The correlation functions are five as following: ( ) = ( − ) ( ) = ( ), ( ) = ( − ) ( ) = 0,    ∀ , ( ) = ( − ) − ( ) ( ) = 0,    ∀ , ( ) = ( − ) − ( ) ( ) = 0,    ∀ , ( ) ( ) = ( ) ( − 1 − ) ( − 1 − ) = 0,    ≥ 0, (6)

where ( )  indicates the cross correlation function between ( )  and ( ),  ( ) = ( + 1) ( + 1), ( ) is an impulse function. The model is developed using NARX 
structure that is a nonlinear system, thus all the five conditions must be fulfilled. The research 
used a range of 20 data to be used in the test. The 95 % confidence bands are implied which are 
approximately ±1.96/√ , (  data) and any significant correlation will be indicated by one or 
more points of the function lying outside the bands. Therefore, if the correlation functions are 
within the confidence intervals, the model is regarded as adequate [32]. 

6. Results and discussion 

Several MATLAB programs have been created based on MLP and ELMAN NN for modeling 
the hub angle and end point acceleration from the voltage input to the hub-angle output utilizing 
the data obtained from the DLFRM test rig as described in section 2 of this study. The data set, 
consist of 900 data points, was split into two sets of 675 and 225 data points respectively. The first 
set (estimation set) was utilized for modeling phase whilst the second set (test set) was utilized for 
validation phase.  

A heuristic method has been performed for the structure realization since there was no prior 
information about the appropriate delay numbers and the model structure. The input-output data 
were regulated during the exercise for the range of –1 and 1. There were three main factors that 
needed to be considered during the process and there were the number of delay signals, the size 
of NN structure or the number of neuron and the error. The last factor was assessed along the 
process of getting the best number of delay signals and the structure for each model. This was due 



to the stochastic behavioral of the procedure on getting the optimal model. It is worth noting that 
the criterion was used to select the best model based on validation MSE, modeling MSE and 
correlation tests.  

In the earlier stage of investigation, the model was estimated by using NN with one hidden 
layer. However, the model estimation results were very poor. Then, additional hidden layer was 
added. As the layer increased to three, the estimation time became longer but there was no 
significant improvement as compared to the two layers. Thus, the model structure was fixed to 
two layers. In this research, the number of neurons start with 2 neurons in the first hidden layer, 
2 neurons in the second hidden layer and one neuron in the output layer ([2 2 1] model structure). 
Delay number represent the input layer. 

6.1. Modelling of hub angle 

The modeling prediction result of hub angle 1 and 2 using MLP and ENN prediction structure 
were compared. Fig. 3 and 4 shows the MLP predictions of the joint angle. The validated data are 
indicated as a red vertical line located at point 675. It is observed from both graphs that the MLP 
could follow the actual data closely. The error between actual and predicted MLP output almost 
negligible or close to zero.  

 
Fig. 3. Output and estimated outputs  

of Hub angle 1 (MLP) 

 
Fig. 4. Output and estimated outputs  

of Hub angle 2 (MLP) 
 

 
Fig. 5. Output and estimated outputs  

of Hub angle 1 (ENN) 

 
Fig. 6. Output and estimated outputs  

of Hub angle 2 (ENN) 

Meanwhile, Fig. 5 and 6 shows the ENN prediction of joint angle 1 and joint angle 2 for the 
same data. From the graphs, it was noticed that ENN can trace the actual data but there was a 
significant discrepancy between the actual data and predicted data. The deviation was even more 
noticeable on the validated data section. The error was substantial and cannot be disregarded. 



The correlation test for each link as depicted in Fig. 7 till Fig. 10. For the MLP, the results fall 
within 95 % confidence level thus confirmed the accuracy of the model. However, the correlations 
of the error for both models using ENN are obviously fall far-off 95 % confidence level. 

   

  
Fig. 7. Correlation test for hub angle 1 using MLP 

   

  
Fig. 8. Correlation test for hub angle 2 using MLP 

   

  
Fig. 9. Correlation test for hub angle 1 using ENN 
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Fig. 10. Correlation test for hub angle 2 using ENN 

6.2. Modelling of end point acceleration  

The same pattern was found in the model of the end point acceleration for both link 1 and 2 
using MLP and ENN. The MLP was superior in predicting the model compared to ENN. The error 
between the actual and predicted MLP output was almost negligible or close to zero where there 
was no significant blue line observed in the Fig. 11 and 12. But, not in the case of ENN as the blue 
line can be observed clearly in Fig. 13 and 14 which indirectly portrayed the error in the prediction 
process.  

 
Fig. 11. Output and estimated outputs  

of E.P. acc.1 (MLP) 

 
Fig. 12. Output and estimated outputs  

of E.P. acc.2 (MLP) 

 
Fig. 13. Output and estimated outputs  

of E.P. acc.1 (ENN) 

 
Fig. 14. Output and estimated outputs  

of E.P. acc.2 (ENN) 
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Fig. 15. Correlation test for end point acc. 1 (MLP) 

   

  
Fig. 16. Correlation test for end point acc. 2 (MLP) 

   

  
Fig. 17. Correlation test for end point acc. 1 (ENN) 

Fig. 15 till Fig. 18 show the correlation test for the end point acceleration of both link 1 and 2. 
For the MLP, the results fall within 95 % confidence level thus confirmed the accuracy of the 
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model. However, the correlations of the error for both models using ENN were obviously far-off 
the 95 % confidence level. Thus, it can be concluded that both models predicted by ENN were 
biased. 

   

  
Fig. 18. Correlation test for end point acc. 2 (ENN) 

6.3. Overall comparative assessment and discussion 

The MLP and ELMAN were two NN structures that were utilized to perform a non-parametric 
modelling of the DLFRM hub-angle. The heuristic method was used to find the optimized model. 
The model realization starts by fixing the model structure to [2 2 1]. The effect of the increasing 
delay number on to the MSE results of the MLP was observed. It was found that, the MSE reduced 
until the delay number of input-output is 8 for both hub angle 1 and 2.  

Thereafter, the value of the MSE increased in trend. The time taken to converge also increases. 
At this point, the delay numbers are fixed to 8 while the model structure is changed. There is no 
significant improvement of the MSE as the model structure increased. The similar method was 
implemented for the model realization of the end point acceleration. The same trend was observed 
in the first part of the modeling. The MSE reduced until the delay number of input-output for both 
links is 6. However, the changed in model structure did significant improvement of MSE until it 
reached the model structure [8 8 1].  

MLP was able to follow the actual output very well. Meanwhile, the model optimized by ENN 
was capable to track the actual output with the bigger error range. The summary of the best model 
and overall comparative performance for the hub angle and end point acceleration are tabulated 
in Table 1.  

Table 1. Summary of the best performance achieved in non-parametric modelling 
 Model Model structure  (s) MSE Correlation test 

MLP 

Hub 1 MS: [2 2 1], Delay: 8 3 0.0000685 Unbiased 
Hub 2 MS: [2 2 1], Delay: 8 3 0.000752 Unbiased 

End point acceleration 1 MS: [8 8 1], Delay: 6 3 0.0025 Unbiased 
End point acceleration 2 MS: [8 8 1], Delay: 6 3 0.0049 Unbiased 

ENN 

Hub 1 MS: [2 2 1], Delay: 5 2 0.0047 Biased 
Hub 2 MS: [ 2 2 1], Delay: 5 2 0.0023 Biased 

End point acceleration 1 MS: [2 2 1], Delay: 8 3 0.018 Biased 
End point acceleration 2 MS: [2 2 1], Delay: 8 3 0.015 Biased 
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7. Conclusions 

In this work, NNARX model is developed for DLFRM. The links are maneuvered at various 
angles by giving bang-bang torque to the system. The movement of the motors are collected via 
the encoder. The vibration of the flexible arms was captured by using the accelerometer. The entire 
signal was transmitted to a data acquisition card for analog-to-digital conversion of the signal. In 
the second stage, the data was treated to acquire the system modeling. The modeling development 
is performed via simulation within MATLAB/Simulink environment. The structure of NARX 
model was used in consideration of the nonlinear system exhibits by DLFRM. The system was 
mapped out to construct four sets of separate models that represent the entire system of DLFRM. 
The performances of MLP and ENN models were assessed based on the validation mean-squared 
error, modeling mean-squared error and correlation tests. It was confirmed that the MLP attained 
superior mean-squared error value in all modeling and validation stages. It predicted well for the 
system response, and thus deliver superior model than ENN. The best model of the DLFRM which 
was obtained from MLP will be used in the subsequent development of control approaches for 
hub-angle and end-point acceleration of the DLFRM. The models produced through the proposed 
intelligent method was utilized for the controller parameters’ optimization. The models will be 
employed as preliminary test to explore and comprehend the control schemes reacting to the 
variation of control constraints or disturbances prior to the experimental study. 

Acknowledgements 

The authors would like to express their gratitude to Minister of Education Malaysia (MOE), 
University Technology Malaysia (UTM) and University Malaysia Sarawak (UNIMAS) for 
funding and providing facilities to conduct this research.  

References 

[1] Chang T. K., Spowage A., Yoong C. K. Review of control and sensor system of flexible. Journal 
International Robot System, Vol. 77, Issue 1, 2015, p. 187-213. 

[2] Heidari H. R., Korayem M. H., Haghpanahi M., Feliu B. V. A new nonlinear finite element model 
for the dynamic modeling of flexible link manipulators undergoing large deflections. International 
Conference on Mechatronics, 2011. 

[3] Reddy M. P. P., Jacob J. Accurate modeling and nonlinear finite element analysis of a flexible-link 
manipulator. International Journal of Mechanical and Mechatronics Engineering, Vol. 8, Issue 1, 2014, 
p. 165-170. 

[4] Khairudin M., Mohamed Z., Husain A. R. System identification and LMI based robust PID control 
of a two-link flexible manipulator. Journal of Telecommunication, Computing, Electronics and 
Control, Vol. 12, Issue 4, 2014, p. 829-838. 

[5] Gripp J. A. D. B., Santos F. L., Bernardo C. R., Góes L. C. S. Modeling and identification of a 
two-link flexible manipulator. Symposium Series in Mechatronics, Section VII Robotics, Vol. 5, 
Issue 1, 2012, p. 1092-1101. 

[6] Jalil N. A., Mat Darus I. Z. System identification of flexible beam structure using artificial neural 
network. Proceedings of the 5th IEEE International Conference on Computational Intelligence, 
Modeling and Simulation, 2013. 

[7] Saad M. S. Evolutionary Optimization and Real-Time Self-Tuning Active Vibration Control of a 
Flexible Beam System. Ph.D. Thesis, Faculty of Mechanical Engineering, Malaysia University of 
Technology, 2014. 

[8] Mat Darus I. Z. M., Al Khafaji A.-A.-M. Nonparametric modeling of a rectangular flexible plate 
structure. International Journal of Engineering Application of Artificial Intelligence, Vol. 25, Issue 1, 
2012, p. 94-106. 

[9] Tavakolpour A. R., Mat Darus I. Z., Tokhi O., Mailah M. Genetic algorithm-based identification 
of transfer function parameters for a rectangular flexible plate system. Engineering Applications of 
Artificial Intelligence, Vol. 23, Issue 8, 2010, p. 1388-1397. 



[10] Mohd Yatim H., Mat Darus I. Z. Intelligent parametric identification of flexible manipulator system. 
International Review of Mechanical Engineering, Vol. 8, Issue 1, 2014, p. 11-21. 

[11] Shawky A., Zydek D., Elhalwagy Y. Z., Ordys A. Modeling and nonlinear control of a flexible-link 
manipulator. Applied Mathematical Modelling, Vol. 37, Issue 23, 2013, p. 9591-9602. 

[12] Shaharuddin N. M. R., Mat Darus I. Z. System identification of flexibly mounted cylindrical pipe 
due to vortex induced vibration. Proceedings of the IEEE International Conference on Computer and 
Informatics, 2013, p. 30-34. 

[13] Mute D., Ghosh, Subudhi B. Iterative learning control of a single-link flexible manipulator based on 
an identified adaptive NARX model. Annual IEEE Indian Conference, 2013. 

[14] Pradhan S. K., Subudhi B. NARMAX modelling of a two-link flexible robot. Proceedings of Indian 
Conference, 2011, p. 1-5. 

[15] Shaheed M. H., Tokhi M. O. Dynamic modeling of a single-link flexible manipulator: parametric 
and non-parametric approaches. Robotica, Vol. 20, Issue 1, 2002, p. 93-109. 

[16] Md Zain B. A., Tokhi M. O., Md Salleh S. Dynamic modeling of a single link flexible manipulator 
using parametric techniques with genetic algorithms. Proceedings of 3rd UK Sim European 
Symposium on Computer Modeling and Simulation, 2009, p. 373-378. 

[17] Alam M. S., Tokhi M. O. Dynamic modeling of a single-link flexible manipulator system: a particle 
swarm optimization approach. Journal of Low Frequency Noise, Vibration and Active Control, 
Vol. 26, Issue 1, 2007, p. 57-72. 

[18] Supriyono H., Tokhi M. O. Parametric modelling approach using bacterial foraging algorithms for 
modelling of flexible manipulator systems. Engineering Applications of Artificial Intelligence, 
Vol. 25, Issue 5, 2012, p. 898-916. 

[19] Al Khafaji A.-A.-M., Shaharuddin N. M. R., Mat Darus I. Z. Evolutionary algorithm for 
identification of a flexible single-link manipulator system. World Scientific and Engineering Academy 
and Society Transactions on Systems and Control, Vol. 10, Issue 1, 2015, p. 58-75. 

[20] Al Khafaji A.-A.-M., Shaharuddin N. M. R., Mat Darus I. Z. Modeling of a flexible single-link 
manipulator using metaheuristic algorithms. International Review of Mechanical Engineering, Vol. 8, 
Issue 1, 2014, p. 1075-1092. 

[21] Pradhan S. K., Subudhi B. NARMAX modeling of a two-link flexible robot. Proceedings Annual 
IEEE India Conference: Engineering Sustainable Solutions, 2011. 

[22] Pham H., Anh H. Adaptive Trajectory modeling of humanoid robot 3-DOF arm using inverse neural 
MIMO NARX model. International Conference on Control, Automation and Information Sciences, 
2012, p. 381-386. 

[23] Ma X., Guo S., Xiao N., Guo J., Yoshida S. NARX Model-based identification for the developed 
novel robotic catheter manipulating system. Proceedings of IEEE International Conference on 
Mechatronics and Automation, 2012, p. 2225-2229. 

[24] Meira A. S. Recursive nonlinear identification an electromechanical manipulator using the MIMO 
NARX model. International Journal of Innovative Research in Advanced Engineering, Vol. 2, Issue 1, 
2015, p. 108-113. 

[25] Saric T., Simunovic G., Simunovic K. Use of neural networks in prediction and simulation surface 
roughness. International Journal of Simulation Modeling, Vol. 12, Issue 4, 2013, p. 225-236. 

[26] Ruslan F. A., Samad A. M., Zain Z., Adnan R. Flood water level modeling and prediction using 
NARX neural network: case study at Kelang river. 10th International Colloquium on Signal Processing 
and Its Applications, 2014, p. 7-9. 

[27] Mohammed L. B., Hamdan M. A., Abdelhafez E. A., Shaheen W. Hourly solar radiation prediction 
based on nonlinear autoregressive exogenous (Narx) neural network. Jordan Journal of Mechanical 
and Industrial Engineering, Vol. 7, Issue 1, 2013, p. 11-18. 

[28] Basso M., Giarre L., Groppi S., Zappa G. NARX models of an industrial power plant gas turbine. 
IEEE Transaction on Control Systems Technology, Vol. 13, Issue 4, 2005, p. 599-604. 

[29] Antić D., Milovanović M., Nikolić S., Milojković M., Perić S. Simulation model of magnetic 
levitation based on Narx neural networks. International Journal Intelligent System and Applications, 
Vol. 5, Issue 1, 2013, p. 25-32. 

[30] Baowei W., Xiaodu G., Li Ma, Shuang S. Y. Temperature error correction based on BP neural network 
in meteorological WSN. International Journal of Sensor Networks, Vol. 23, Issue 4, 2017, p. 265-278. 

[31] Annisa J. J., Mat Darus I. Z., Al Khafaji A.-A.-M., Tokhi M. O. Non-parametric modeling of 
double link flexible robot manipulator. Proceeding of the 19th International Conference on Climbing 
and Walking Robots and Support Technologies for Mobile Machines, 2016, p. 559-566. 



[32] Billings S. A., Zhu O. M. Non-linear model validation correlation tests. International Journal of 
Control, Vol. 60, Issue 6, 1994, p. 1107-1120. 

 

Annisa Jamali received her B.E. (2006) and M.E. (2011) degrees in mechatronics 
engineering from International Islamic University Malaysia. Currently, she is a Ph.D. 
student at Faculty of Mechanical Engineering, Malaysia University of Technology under 
supervision of Assoc. Prof. Dr. Intan Z. Mat Darus. Her current research interests include 
robotics and automation, modelling and simulation of dynamic systems and artificial 
intelligent techniques for system identification and control. 

 

Intan Z. M. Darus was born in Melaka, Malaysia, in September 16th, 1976. She received 
her First Class B.E. (Hons.) degree in mechanical engineering from the University of 
Wales College Cardiff, Wales, United Kingdom in 1998 and later her Ph.D. in Automatic 
Control and Systems Engineering from the University of Sheffield, United Kingdom in 
2004. Currently, she is an Associate Professor and the head of Department of Applied 
Mechanics and Design, Faculty of Mechanical Engineering, Malaysia University of 
Technology. Her current research interests are active vibration control, modelling and 
simulation of dynamic systems, soft computing and artificial intelligent techniques for 
system identification and control. She has served as editor-in-chief and member of editorial 
board of several national journals. She is currently an editor of Journal of Low Frequency 
Noise, Vibration and Active Control. 

 

Pakharuddin Mohd Samin received both his B.Sc. and M.Sc. degrees from the 
Department of Mechanical Engineering, Texas A&M University, USA; and received his 
Ph.D. in mechanical engineering from the Malaysia University of Technology. During 
1995-1997, he worked at Bath University of UK on the design of an active roll control 
suspension system for passenger vehicle. He is currently an Associate Professor and head 
of department in the Department of Aeronautics, Automotive and Ocean Engineering, 
Faculty of Mechanical Engineering, Malaysia University of Technology. His research 
interests include continuously variable damper, ride and handling of vehicle and vehicle 
dynamics control. 

 

M. Osman Tokhi obtained his B.Sc. in electrical engineering from Kabul University, 
Afghanistan, in 1978 and a Ph.D. from Heriot-Watt University, United Kingdom, in 1988. 
He has worked as an Academic at various higher education institutions including Kabul 
University, Glasgow College of Technology (UK) and the University of Sheffield (UK) 
and as a sound engineer in industry. He is currently with the School of Engineering, 
London South Bank University (UK). His current research interests include active control 
of noise and vibration, adaptive/intelligent and computational intelligence techniques for 
modeling and control of dynamic systems, high-performance computing for real-time 
signal processing and control, and assistive robotics. He has over 700 publications in these 
areas. He is a founding member of IIAV and has helped the institute in various capacities, 
including congresses and publications. He acted as member of board of directors of IIAV 
during 2004-2008, and served as associate scientific editor of the International Journal of 
Acoustics and Vibration (IJAV) during 1996-2009. He has served as editor-in-chief and 
member of editorial board of several international journals. He is currently editor-in-chief 
of Journal of Low Frequency Noise, Vibration and Active Control. 

 




