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ABSTRACT 

Conversion of carbon-di-oxide into selective hydrocarbon using stable catalyst remains a 

holy-grail in catalysis community. The high overpotential, stability, and selectivity in use of a 

single metal-based catalyst still remain a challenge. In current work, instead of using pure 

noble metals (Ag, Au, and Pt) as the catalyst, a nanocrystalline high entropy alloy (HEA: 

AuAgPtPdCu) has been used for conversion of CO2 into gaseous hydrocarbons. Utilizing an 

approach of multi-metallic HEA, a Faradaic efficiency of about 100% towards gaseous 

products is obtained at the lowest applied potential (-0.3 V vs. reversible hydrogen 

electrode). The reason behind the superior catalytic activity and selectivity of high entropy 

alloy (HEA) towards CO2 electroreduction was established through first-principles based 

density functional theory (DFT) by comparing it with pristine Cu (111) surface.  This is 

attributed to the reversal in adsorption trends for two out of the total eight intermediates - 

*OCH3 and *O on Cu(111) and HEA surfaces. 
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Proficient conversion of CO2 into carbon fuels via electrocatalytic reduction of carbon 

dioxide (CO2) can play a key role in sustaining global energy demands1-3. However, this 

practical applications of the CO2 reduction reaction (CO2RR) are currently challenged by the 

low activity and selectivity due to the high kinetic barriers and competition with the hydrogen 

evolution reactions in aqueous media4-5. There are several efforts to develop advanced 

catalysts with specific electronic structures, which could facilitate the CO2 activation process 

with high selectivity6-8. Conceptually, tuning the surface area and morphology of the catalysts 

is extremely important9. The nanoparticles demonstrate improved catalytic activities with 

decent chemical transformation as compared to its bulk counterpart9. 

The noble-metal catalysts such as Au, Ag, Pt, Pd, have been demonstrated to convert CO2 to 

carbon monoxide with high selectivity10-14. Platinum (Pt), generally considered as the active 

electrocatalyst for all the electrochemical reactions, generates H2 exclusively instead of CO2  

reduction in the aqueous medium. Additionally, it is easily poisoned by CO5. Recently, 

copper (Cu) has gained more attention and focus because of its ability to convert CO2 into 

higher hydrocarbon fuels15-18. However, copper-based materials show limited selectivity due 

to significant hydrogen generation. Interestingly, the bimetallic alloys of this element show 

an improvement in catalytic activity and selectivity however, CO and H2 forms in most of the 

cases with high faradaic efficiency.19-22. The nanomaterials catalysts with substitution of few 

atoms shows selective conversion of CO2 to carbon fuel23. Recently, high entropy alloys 

(HEAs), a simple solid solution phase, have been studied as multifunctional materials by 

tuning their thermal, electrical, magnetic and catalytic properties.24-27 Their potential 

applications in electrocatalysis of oxygen reduction reaction25, methanol26, and hydrogen 

evolution reaction27 have been reported.  These multicomponent “cocktails” with simple 

crystal structure (FCC, BCC or HCP) can effectively be utilized for various functional 

applications, notably catalytic applications as their composition and constituents can be tuned 
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for specific applications. This can be done by preparing HEA containing catalytically active 

metals. Such kind of approach opens new area of single atom catalysts9, 28. These HEAs are 

in general highly active and used without any support but it is possible to disperse them on a 

support to increase the activity further utilizing the phenomenon of metal support 

interaction.29-30 

Here, a unique catalyst based on combination of five active metals (Au, Ag, Pt, Pd and Cu) 

high entropy alloy has been developed as a ‘single atom catalyst’ in which the Cu atoms are 

stabilized by other metals in a ‘FCC-facet’ crystalline structures (Figure 1a). A theoretical 

approach to finding the optimum composition using machine learning is described in detail in 

Part I: Theoretical Discovery of the present publication. The synergistic impact on Cu with 

all other metals plays a key role in enhancing stability. HEA also acts as ‘single atom 

electrocatalysis’ for CO2RR in an aqueous electrolyte. HEA is utilized as the working 

electrode, Pt wire as the counter electrode and CO2 saturated K2SO4 as an electrolyte. 

Gaseous products generated during the electrochemical investigations are analyzed using gas 

chromatograph. To rationalize the high activity of HEAs from atomistic level, ab-initio 

density functional theory (DFT) calculations have been performed. It establishes the superior 

catalytic activity of HEAs, compared to the pristine Cu, based on the thermodynamics study.  

The HEA alloy has been synthesized using an easily scalable and precise composition control 

route of melting and cryogrinding31. The XRD pattern of synthesized HEA nanoparticles 

reveals formation of a single-phase with face-centered cubic structure (FCC) having lattice 

parameter 0.3936 nm as shown in Figure 1b. Similarly, the nanocrystalline FCC structure was 

proven by electron diffraction ring pattern. These nanoparticles show average size of 16±10 

nm as shown in Figure 1c. The HR-STEM image shown in Figure 1d reveals 001 lattice 

arrangements with different intensity of individual lattice, which can be assigned to different 

atoms. All elements (Au, Ag, Pd, Pt, and Cu) were homogeneously distributed or alloyed in 
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single phase FCC matrix, which is proven by atom probe tomography (APT) as shown in 

Figure 1e, indicating homogeneous distribution of elements at atomic level. The HEA 

contains five elements. Therefore, interatomic effects (atoms surrounding) as well as surface 

oxidation of nanoparticles were revealed using X-ray photoelectron spectroscopy. The 

elemental peak binding energy has been corrected with adventitious carbon C1s 284.6 eV32. 

The XPS spectra of the HEAs are shown in Figure 1f. The Pt(4f) core level shows two peaks 

at 71.1 (Pt4f7/2) and 74.4 (Pt4f5/2) eV similar to bulk Pt 33.  Au(4f) core level spectra show 

two peaks at 84.0 eV and 88.0 eV related to Au(4f7/2) and Au(4f5/2) respectively. This is again 

similar to bulk Au. Similarly, the binding energy (B.E.) of Pd and Cu confirms the pure 

metallic characteristic with binding energies similar to their bulk counterpart. Small amount 

of Cu2+ is also observed in the XPS. B.E. for Ag3d5/2 which appears at 367.8 eV, 0.4 eV 

lower than metallic Ag. Clearly, there is some intrinsic charge transfer between Ag and Cu. 

This phenomenon is consistent with the XPS of bimetallic Au-Ag alloy as well34. The XPS is 

surface sensitive technique which gives information from few atomic layers (in depth) and 

Figure 1f confirmed that the AuAgPtPdCu is chemically homogeneous high entropy alloy at 

the surfaces of nanoparticles, which is the key for catalytic activities of NPs. Similarly, XRD 

and APT also proved crystal structure and overall composition respectively.  
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Figure 1: (a) Schematic of the catalysis reaction demonstarted in current work, (b) X-ray 

diffaraction pattern of HEA alloy NPs (AuAgPtPdCu nanoparticles), (c) TEM bright field 

image of HEA nanoparticles, inset shows high magnification image of single artice. (d) HR-

STEM image revelaing lattice with color showing different relative intensity marked with 

color. (e) chemical homogenity of Au, Ag, Pt, Pd and Cu (mapping of an atom probe 

microscope) (f) binding energy spectra of HEA nanoparticles (X-ray photoelectron 

spectroscopy). 

 

 

Cyclic voltammetry (CV) behavior of HEA coated glassy carbon at 40 mV s -1 in 0.5 M 

K2SO4 is shown in Figure 2. The observed CV showed a prominent redox peak (A1/C1) at -

0.13 and -0.32 V (Figure 2a) corresponding to Cu2+/Cu0 redox reaction20. Apart from the 

redox peak (A1/C1), the oxidation and reduction peaks at 0.42 (A2) and 0.25V (C2) also 

appear, typical of Pt and Au metal behavior35-36. Once the potential range is restricted to the 

negative side (0.0 to -1.0 V), the peak A1 becomes broad and appear with a shoulder. 

Corresponding reduction peak (C1) does not appear in this potential range confirming the 

incomplete surface oxidation. Presence of the redox peak related to Cu2+/Cu0 proves that this 
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species can play a critical role in the catalytic activity. Therefore, the electro-reduction of 

CO2 is selected as copper is the most active catalyst for this reaction4, 15, 19-20. 

Figure 2b represents linear sweep voltammetric (LSV) responses of HEA coated glassy 

carbon electrode containing N2 (as blank) or CO2 saturated (purging for 30 min) K2SO4 

electrolyte. The considerable activity of HEA in CO2 saturated solution is apparent. 

Experiments are carried out at 20 mV s-1 in the potential range of 0.0 to -1.0 V vs. Ag/AgCl. 

The CO2 reduction starts above -0.5 V, where current density raises rapidly up to -0.8 V and 

then decreases forming a peak at -0.8V. At -0.8V, the cathodic current density is 10.15 

mAcm-2, ~5 times higher than the N2 saturated solution (2.2 mAcm-2). These observations 

confirm the significant activity of HEA for CO2 electroreduction. The corresponding current 

efficiency (CE %) for electroreduction of CO2 at different potentials are calculated using 

equation S1. The highest current efficiency (81.8%) is achieved at −0.8 V (inset of Figure 

2b). It is interesting to note that the electrochemical reduction CO2 is usually carried out in a 

basic electrolyte such as NaHCO3. However, in the case of HEA, CO2 saturated NaHCO3 (0.5 

M) did not yield any activity (Supporting Figure S1(a)). Presently, the reason is unknown, but 

one can speculate the pH-dependent activity of HEA. 
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Figure 2: Cyclic voltammetric responses of high entropy alloy catalyst deposited on glassy 

carbon electrode in blank 0.5 M K2SO4 at a scan rate of 40 mV s-1 (a), Linear sweep 

voltammetric response for CO2RR (saturated for 30 mins) at a scan rate of 20 mV s-1 with N2  

purged electrolyte and inset is the plot of current efficiency (CE%) vs. potential (b), 

Comparative chronoamperometric responses in CO2 saturated electrolyte at different 

potentials (-0.7, -0.8 and -0.9 V) for 1000 seconds with respective current density as inset (c). 

Bar diagram (with errors) for the faradaic efficiencies of their respective carbonaceous 

species and hydrogen gaseous products (d). 

 

Steady-state current responses of HEA in CO2 saturated electrolyte at a various potential (-

0.7, -0.8 and -0.9V) is also shown in Figure 2c.  Obtained steady state current densities are -

6.83 mAcm-2 (at -0.7V), -10.31 mAcm-2 (at -0.8V) and -13.81 mAcm-2 (at -0.9 V), 

respectively. A bar diagram indicating the impressive CO2 electroreduction activity of HEA 

at -0.9 V, is shown in the inset of Figure 2c. The major gaseous products on HEA are CO, 
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CH4, C2H4 and H2, similar to the copper-based electrocatalysts37. It is worth noticing that in 

spite of many elements present in the catalyst, the catalytic effect is depicted only by the 

copper confirming that other elements are only providing the synergistic effect. Faradaic 

efficiencies (FE %), calculated as per the equation (S2), are shown in Figure 2d. FE % of CO 

was ~7 %, at-0.7 V which deceased to 4.0% at -0.9 V. Comparatively, the formation of CH4 

and C2H4 was predominantly occurred with FE % up to 49.4% and 19.9 % (at -0.7V), 42.9 % 

and 26.6 % (at -0.8 V) and 38.0% and 29.5% (at -0.9 V), respectively. The FE % for 

hydrogen on HEA catalyst is about 26.4% which does not change significantly at other 

potentials. Importantly, the total faradaic efficiency is 100 % for the gaseous products 

combined at the lowest applied potential, i.e., -0.9 V vs. Ag/AgCl (-0.3 V vs. reversible 

hydrogen electrode). This confirms that there is zero or negligible liquid product formation 

highlighting the unique capability of HEA catalyst. A detailed catalytic activity comparison 

of HEA with other reported catalysts is given in Table S1 (in supporting information). One 

can notice that HEA performs the best in terms of low applied voltage and striking 

hydrocarbon efficiency. Long term stability of HEA is studied using chronoamperometry for 

5 hours in K2SO4 solution (Figure S1(b)). Electrolyte is continuously bubbled with CO2 

during the experiment. Initially, current decreases reaching a steady state, which remains 

constant for 5 hours. This highlights the stability of HEA.  

To gain an insight into the reaction, we have performed DFT calculations. We compared the 

catalytic activity of the multicomponent HEA with Cu to bring about the salient features of 

the HEA as catalysts for CO2RR. The aim is to provide the mechanisms for excellent 

catalytic activity of HEA. The optimized lattice parameters of Cu are found to be, a = b = c = 

3.63 Å (Figure S2a), which is in excellent agreement with the previous reports38. The (111) 

facet was chosen for calculations, as it is the most stable facet of the FCC metals. The 

supercell size of the Cu (111) surface was selected as 5x3x1 to get all the possible adsorbing 



10 

 

sites, which are also present in the HEAs (Figure S2 and S3(a)). The unit cell of HEAs 

contained 120 atoms, with the constituent elements - Pt, Pd, Ag, Au and Cu, being equal in 

proportion (20 % each). The method for generation of the structure of HEA utilized in the 

present study is described in detail in the supporting information file. Based on experimental 

composition, the Au:Ag:Pt:Pd:Cu=1:1:1:1:1composition was chosen for simulations. Then 

quantification of the catalytic activity of pristine Cu was performed using the scheme 

provided by Norskov et al.39-40 For this purpose, the adsorption energies of all the 

intermediates involved in the eight-step CO2RR (equations S1-S8) was calculated from DFT 

using the expressions given in supplementary information (equations S9-S15). Subsequently, 

these intermediate adsorption energies were converted into Gibb’s free energies of 

adsorption39, 41 using: 

 ∆𝐺𝑖𝑛𝑡𝑒𝑟
𝑎𝑑𝑠 = ∆𝐸𝑖𝑛𝑡𝑒𝑟

𝑎𝑑𝑠 +∆𝑍𝑃𝐸 − 𝑇∆𝑆 − ∆𝐺𝑈   (1) 

where ∆𝑍𝑃𝐸 is the difference in zero-point energies, ∆𝑆 is the change in entropy due to 

vibrational contributions, and ∆𝐺𝑈 = −𝑒𝑈, where U is the applied electrode potential. The 

values of zero-point energies and entropies for the intermediates and reference molecules 

have been taken from the reported literature39. The complete free-energy reaction profile for 

CO2RR is given in Figure S5. The reaction profile at 0 V is shown by black curves, where 

three elementary steps are endoergic, i.e., *CO to *CHO, *OCH3 to *O, and the final step 

involves the release of a water molecule from *OH intermediate. Out of these three, the 

elementary step for the conversion of OCH3 into O intermediate has the highest barrier of 

1.91 eV and is, therefore, the rate-determining step (RDS) for CO2RR on Cu (111) surface. 

This barrier is also the theoretical limiting potential for the reduction reaction on pristine Cu 

surface, as at U = -1.91 V, all the elementary steps become exoergic. We then extended this 

thermodynamic study to the HEA system. In this case, there is a possibility of a large number 

of catalytic centers due to the five elements being present randomly on the surface. In order 
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to mitigate this problem, we chose only one catalytic center from electronic principles of 

designing catalyst, i.e., based on position of d-band center (EdBC). In general, the activity of 

any catalytic reaction is related to the d-band center of the metal under consideration42. 

Therefore, d-band centers of all the atoms present on the topmost layer of the HEA slab 

(Figure S3(a)) have been plotted in both the up and down spin configurations in Figure S6. 

From this plot, we notice that Pd11 atom has the value of EdBC closest to the Fermi level (EF) 

in both spin configurations. Hence it was chosen as the catalytic center for CO2RR study. 

Pd11 is also adjacent to a Cu atom on the surface (Cu7; Figure S3(a)), which would enhance 

the catalytic activity of Pd11 center. The free-energy profile for the HEA system is shown in 

Figure 3. The two endoergic reactions, which are same as in the case of pristine Cu (111) 

surface are *CO to *CHO, and *OCH3 to *O conversions.  

 

 

Figure 3: Free energy diagram of CO2RR on AuAgPtPdCu HEA surface. Optimized 

structures of all the intermediates on HEA surface are shown in the inset. Grey, green, pink, 
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yellow, blue, brown, red and orange spheres represent Pt, Pd, Ag, Au, Cu, C, O, and H atoms, 

respectively. 

 

 

However, the barriers in this system are reduced significantly, e.g., 0.73 eV for the 3rd 

elementary step and 1.35 eV for the 6th elementary step. Hence, at a potential of -1.35 V, the 

reaction profile becomes downhill in energy. The free energy profile of Cu (111) surface is 

also plotted at the same potential in Figure 3, which is depicted by green lines. It is clear that 

at this potential, the step of *OCH3 to *O conversion is still uphill, requiring more external 

potential to overcome this barrier. Therefore, the theoretical limiting potential for HEA 

system is lower than that of pristine Cu metal, implying the thermodynamic favoring of 

CO2RR on the HEA surface over the Cu (111) surface. This is in agreement with the 

experimental observations. The reduced theoretical limiting potential for HEA system can be 

attributed to the destabilization of *OCH3 intermediate and stabilization of the *O 

intermediate on the HEA surface, compared to the Cu (111) surface. The extra stabilization of 

*O intermediate on the HEA surface may be because both Pd11 and Cu7 atoms are bonded to 

the O atom. This behavior can be explained from the partial density of states (PDOS) plotted 

in Figures S7 and S8 for *OCH3 and *O intermediates, respectively. While in the case of 

*OCH3 intermediate on Cu (111) surface, the hybridized states of O and Cu96 atom are filled 

and more broadened while all hybridized states of O and Pd11 are sharply peaked. Moreover, 

one state in down spin configuration is unfilled on HEA surface. This would lead to stronger 

binding of OCH3 on the Cu (111) surface. Cu96 and Pd11 are the sites through which OCH3 

intermediate gets adsorbed on the two surfaces under consideration. Similarly, the states of O 

intermediate on Cu (111) are sharply peaked, while those on the HEA surface are broader, 

resulting in better adsorption of O intermediate on HEA than on the Cu (111) surface. In this 
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case, O adsorbs through 3 atoms (hcp type of adsorption site) – Cu88, Cu96, and Cu108 atoms 

on pristine Cu slab, and Cu7, Cu12, and Pd11 atoms on the HEA slab. 

To confirm whether the CO2RR activity on HEA follows the trend in d-band center, we 

carried out same free energy calculations on the Cu7 active site also (Figure S9). In this case, 

two steps have almost similar barriers (*COOH to *CO and *OCH3 to *O), however, the 

*OCH3 to *O step has slightly higher barrier (1.54 eV), leading to a limiting potential of -

1.54 V. Therefore, Cu7 is less active than Pd11 site on account of its lower limiting 

potential(limiting potential of Pd11 = -1.35 V).This trend is, therefore, in agreement with the 

trend intheir respective d-band centers42.Further, to understand the selectivity of different 

products observed in the experiments (Table S1), we calculated free energy diagrams for CO 

(Figure S10) and H2 (Figure S11) evolution reactions on Pd11 site of HEA. Although, limiting 

potential for CO evolution is higher than that of CH4 formation, however, free energy 

adsorption of CO is -1.01 eV, which is highly exothermic. This makes CO difficult to be 

desorbed from the surface of HEA, and hence experimental Faradaic efficiency for CO is 

very low (4.9%).Moreover, free energy adsorption of H2 is -0.45 eV, while for efficient HER 

catalysts, this value is usually thermoneutral, i.e., |ΔGads(H)|≈041. Hence, Au-Ag-Pt-Pd-Cu 

HEA is selective for hydrocarbon products rather than hydrogen in agreement with the trend 

in experimental Faradaic efficiency, which is lowerfor H2than that of CH4 and C2H4 (Table 

S1). 

In conclusion, we demonstrated that the unprecedented catalytic activity of cryomilled 

prepared nanocrystalline equiatomic Au-Ag-Pt-Pd-Cu high entropy alloy for efficient 

electrochemical reduction of CO2RR. The optimum composition may be found using the 

approach described in Part I of the manuscript. Collective characterizations such as XRD, 

HRTEM, and XPS reveal the atomic distribution in the HEA. In spite of many elements 

present in the catalyst, the electrocatalytic activity is predominantly described by the presence 
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of redox active Cu metal (Cu2+/Cu0), and other metals only provide a synergistic effect. 

Complete 100% conversion of CO2 to gaseous products at lower potential (-0.3 V RHE) 

highlights the uniqueness HEA and making it different from Cu metal alone. The density 

functional theory (DFT) studies establish the HEAs as a superior catalyst, compared to the 

pristine Cu metal, based on the free energy calculations of intermediates. 
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