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Abstract—Growing perception of diverse generation resources
and demand response operation of power system with high
uncertainty has increased the attention to a more dynamic and
accurate day-ahead load prediction. In this paper, we develop
an stochastic model for short term load forecasting based on
the Gaussian process, in which the non parametric estimator
of the regression functions are obtained by using Bernstein
polynomials. One of the major features of this model is its ability
to predict a continuous load at any time of the day with a
regression function. We use the historical data for training and
the constrained marginal likelihood problem is optimized for
finding the hyperparameters of the model. Real data sets from
California ISO were used for training and testing the model.
The results are compared to the day ahead piecewise constant
load and the real time load. The common error measures are
employed to infer the deviation of the load forecast from the real
data.

Index Terms—Bernstein polynomials, Load Profile, Regression
Model, Non-parametric

I. INTRODUCTION

In power system operation, the electricity demand must be
well matched with the supply. This fact requires an accurate
dynamic load forecasting that the generation must fulfill.
Beside automatic generation control, other factors such as unit
commitment and economic dispatch are also dependent on
the load forecast. However, uncertainty in the load demand
and power generation availability leads to uncertainty in the
day-ahead scheduling. This characteristic encourages the use
of stochastic process to define the probability of supply and
demand for unit commitment which needs to be done several
hours in advance. The current unit commitment provides
hourly schedules for the generations and assumes the load
demand to be constant at each hour. However, in reality
neither generation nor demand has the stepwise profile at
each hour. Several load forecasting approaches for short term
(hour to week ahead) time scales are proposed. They can be
categorized as artificial intelligence methods and statistical
techniques. Artificial Neural Network (ANN) [1] and neuro-
fuzzy network [2] are between those artificial intelligence
methods that has been used for load forecasting. There are
several works that have been done on hourly load forecasting
in day-ahead scheduling with stochastic models [3]. Among
statistical techniques, regression models and time series are
more popular. Time series methods assume internal structures
for data, such as autocorrelations and trends, which they

try to detect and explore. ARMA (Autoregressive Moving
Average) for stationary processes and ARIMA (Autoregressive
Integrated Moving Average) for nonstationary processes are
most common used time series method [4], [5]. Regression
models [6] uses several features for the linearization of the
function to interpret the relation of different factors in an
easy way. Multivariate polynomial and exponential regression
[7] has been proposed for both short term and medium term
load forecasting. Support vector machine, based on statistical
learning theory is another method that has been used for
load forecasting [8]. none of the methods that has been
applied for the short term load forecasting offers a continuous
time load profile estimation. There are several factors which
can affect the load forecasting including the time, weather
and customer classes [9]. However, in this work, we mostly
focus on continuous time modeling of hourly loads without
specifically involving other parameters. This paper describes
a stochastic model based on the Gaussian process with Bern-
stein polynomial for the continuous time load estimation. We
develop a stochastic model which estimate a continuous time
function for each hour in the load profile.

II. GAUSSIAN PROCESS

In a Gaussian process, every input as x is associated with
a normally distributed random variable. It is often shown as a
vector x as it can include several variables. The output or
target y may either be continues or discrete. For the first
case, the process is known as a regression and for the latter
one as a classification. Sets of samples with n observation
D = (xi, yi)|i = 1, , n is using as a training data to define
a function f that predicts the output for any possible input
variable. Therefore, the characteristics of this function needs
to be defined. Estimation of this function is based on the
prior information and a finite set of observations. Wide range
of functions can be assumed which Gaussian process can
help in choosing between infinite set of possible functions.
A Gaussian stochastic process governs the properties of the
function. Prior is considered as our belief about the function
in absence of knowledge about the data. Gaussian process
specifies that the prior variance doesnt depend on the x
variable and also it can be assumed that the mean of f(x) for
any x is zero independent of its value. Then the combination
of the prior and data leads to the posterior distribution of
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the function. Gaussian process is not a parametric model and
doesnt intend to fit the data but its uncertainty reduces close
to the observations. The specification of prior is important for
inference of the function property. Smoothness and stationary
properties can be specified by the covariance of the Gaussian
process. Therefore finding a suitable covariance function is a
challenge. In time series, the key aspect is how observations
are related to each other in time. This concept is formalized
through the covariance between elements which measures the
degree of second order variation between two elements at two
different times. If the statistical properties doesnt change over
time, e.g. expectations, variances and other properties remain
the same, the process is considered as stationary. If the mean or
the variance of the time series changes over time, the process
is non-stationary. The aim is to inference about the relationship
between the inputs and the targets. Standard linear regression
model with Gaussian noise can be defined as:

y = f(x) + ε (1)

x is the input vector, f is the function value and y is the
observed target data. The observed value differs from the
function values by additive Gaussian noise with zero mean
and variance σ2

n, ε ∼ N (0,σ2
n). The vector of the noise or

error is distributed normally and is independent of the random
function f . A Gaussian process is completely specified by its
mean m(x) and covariance k(x, x′) function.

f(x) ∼ GP (m(x), k(x, x′)) (2)
y ∼ GP (m(x), k(x, x′) + σ2

nδii′) (3)

where δii′ is the Kronecker’s delta and δii′ = 1 if i = i′,
otherwise it is zero. If there wouldn’t be any noise in the
observations, the terms related to the Gaussian noise can be
neglected. Mean function m(x) and covariance function of
f(x), k(x, x′) are defined as:

m(x) = E[f(x)]
k(x, x′) = E[(f(x)−m(x))(f(x′)−m(x′))] (4)

E stands for the expected value. To define f(x) in the form
of Gaussian distribution, it will be:

f ∼ N (µ,Σ) (5)

where µ and Σ are vectors of the mean and the covariance.
For multivariate normal distribution with positive definite
covariance matrix, the Gaussian probability density function
is expressed by:

p(y|µ,Σ) = 1√
(2π)n|Σ|

exp(− 1

2
(y − µ)TΣ−1(y − µ))

(6)

The regression function f(x) is supposed to satisfy certain
shape restriction with nonparametric form for all x values and
with realization of the observation points. In our problem,
Gaussian process is defined over the time, where the index
of set of variables is time. For a fixed time, our aim is to
estimate:

f̂(xt) = E[f(xt)|y(t1), ..., y(tn)] (7)

where f̂(xt) is the solution of the prediction problem which
can be obtained by the maximum likelihood estimation.
Maximum-likelihood estimation (MLE) is a method for es-
timating the parameters of a statistical model with available
observation data. It is an interesting approach which can be
used also for continuous time processes [9]. As our data
assumed to have Gaussian distribution, logarithmic marginal
likelihood function is defined as:

log(L) = − 1

2
log|Σ|− 1

2
(y − µ)TΣ−1(y − µ)− n

2
log(2π)

(8)

We use the term marginal to emphasize that we are dealing
with a non-parametric model. Assume Bayesian linear regres-
sion model for f(x):

f(x) = ϕ(x)Tβ (9)

where β is a vector of weights and considered to be a prior
parameter. ϕ(x) is a function that maps the D dimensional
input vector x to N dimensional feature space using a sets
of basis function (e.g. Bernstein polynomials). As long as
the projections are fixed functions, the model is linear in the
parameters [10]. We need to define the prior parameters before
look at the observation. Prior is not dependent on the training
data but it has some properties of the function. We take prior
on β to be Gaussian:

β ∼ N (b,Σb) (10)

without loss of generality we assume for now that the mean
is zero, b = 0. Then the covariance function of the f(x) will
be:

k(x, x′) = ϕ(x)TΣbϕ(x) (11)

As the Gaussian process uses priors, the smoothness of the
prior is defined by the covariance function. Choosing a proper
covariance matrix for our model is important. For example,
if we expect that for close-by input variables, the output
will be close (continuity assumption), the covariance function
must satisfy this characteristic. The covariance between the
outputs is written as a function of the inputs. There are
a number of common covariance functions available. The
squared exponential covariance is used in our model which
corresponds to a Bayessian linear regression model with an
infinite number of basic functions:

cov(f(xp), f(xq)) = k(xp, xq) = exp(− 1

2
|xp − xq|2)

(12)

This function is infinitely differentiable. If the covariance wont
be zero, we say that the errors of xp and xq are correlated. The
covariance can be normalized to form a correlation coefficient:

r =
k(xp, xq)√

k(xp, xp)k(xq, xq)
(13)

Usually the covariance functions have some free parameters
called hyperparameters. In case of vague prior information,
we use a hierarchical prior, where the mean and covariance
functions are parameterized in terms of hyperparameters. The
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squared exponential covariance function with hyperparameters
in one dimension has the following form:

ky(xp, xq) = σ2
fexp(−

1

2l2
(xp − xq)

2) + σ2
nδpq (14)

l is called the length scale of the process which practically
shows how close two points have to be to notably influence
each other. σ2

f is the signal variance and δpq is a Kronecker
delta which is one when p = q and zero otherwise. We can
now find the values of the hyperparameters which optimizes
the marginal likelihood based on its partial derivatives which
are easily evaluated.

∂L

∂θm
= −(y − µ)TΣ−1 ∂m

∂θm
(15)

∂L

∂θk
=

1

2
trace(Σ−1 ∂Σ

∂θk
)

− 1

2
(y − µ)T

∂Σ

∂θk
Σ−1 ∂Σ

∂θk
(y − µ) (16)

θm includes the hyperparameters of mean function µ = m(x)
(which can be the coefficient of polynomial function) and θk
the hyperparameters of the covariance function, Σ = k(x, x′).

III. PREDICTIVE GAUSSIAN PROCESS

By combining the likelihood and the prior, the posterior
gather everything we know about the parameters.The major
goal of the posterior is to be used for the prediction of the
future cases. [

f
f∗

]
∼ N (

[
µ
µ∗

]
,

[
Σ Σ∗
ΣT

∗ Σ∗∗

]
) (17)

IV. BERNSTEIN POLYNOMIAL ESTIMATOR

Polynomials are among popular mathematical tools for
approximating and forming spline curves of any function
with any desired accuracy. They have a variety of basis
functions which can fit different applications. They can be
easily differentiated and integrated and they have other useful
properties. Bernstein basis is a commonly used base for the
space of polynomial which can suitably be used for load profile
modeling. The Bernstein polynomial estimator can be used for
nonparametric curve estimations. It has many useful properties
in preserving the different shapes of the regression functions.
Using Bernstein as an estimator is computationally efficient
as its coefficients can be computed easily as a solution of
quadratic programming problem [11].

The Bernstein basis polynomial functions of order N are
defined as:

bk(x,N) =

(
N

k

)
xk(1− x)N−k

(
N

k

)
=

N !

k!(N − k)!

for k = 0, 1, ..., N and x ∈ [0 1] (18)

And the Bernstein polynomial of degree N can be expressed
by:

BN (x, ) =
N∑

k=0

βk.bk(x,N) (19)

Where βk is a coefficient of Bernstein polynomial. Load
profile at each hour (segment) can be addressed in the interval
of [01] which can have several data points (e.g. the load
value every 5 minutes) and each segment can be modeled by
one Bernstein polynomial. However, if each segment will be
defined in the closed interval of [a, b], then the corresponding
polynomial is written as:

BN (x,β) =
1

(b− a)N

N∑

k=0

βk.

(
N

k

)
(x− a)k(b− x)N−k

(20)

Assume to have a set of observations (Xi, Yi) ∈
{(X1, Y1), ..., (Xn, Yn)}, to obtain the spline approximation
of the load curve from the observations, the Bernstein coeffi-
cients must be calculated. Least Squares method is a standard
approach to approximate the solution by minimizing the sum
of the squares of the errors made in the results.

min ||bk(Xi)
TβN − Yi||2 (21)

where bk(x) = (b0(x,N), ..., bN (x,N))′ and βN =
(β0,N , ...,βN,N )′

V. CONTINUITY AT THE JOINTS

As the goal is the piecewise approximation of the load
profile, series interconnection of hourly curves linked together
at joints must be considered. This requires the continuity
conditions at the joints or control points. Different level of
continuity can be defined. Parametric continuity of C0 refers
to the continuity of two consecutive segments at the joint point:

Bs
N (xj ,β) = Bs+1

N (xj ,β) (22)

Where s is the number of segment and j is the index of a joint
point of the segments. To consider the continuity condition in
the Bernstein modeling problem, the constrained least square
problem must be solved. The C0 continuity condition is added
as an equality constrained to the optimization problem and
least square formula will be minimized subjected to that.
However, we might require other orders of continuity to satisfy
the smoothness and accuracy of the approximation. The curve
segments should have the same slopes when they join together.
Therefore, C1 continuity refers to the slope matches where the
curves join.

B′
N

s(xj ,β) = B′
N

s+1(xj ,β) (23)

Derivative of Bernstein polynomials of degree N are polyno-
mials of degree N − 1 and this derivative can be written as a
linear combination of Bernstein polynomials:

d

dx
bk(x,N) = N(bk−1(x,N − 1)− bk(x,N − 1)) (24)

The C1 continuity condition adds more equality constraints to
the optimization problem.
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VI. CONSTRAINED LEAST SQUARE PROBLEM

Our optimization problem is maximizing the marginal like-
lihood with respect to the hyper parameters. In addition to that
the optimization must also satisfy continuity criteria. The load
profile estimation must have the C0 continuity at joints, and
that the slope of the curve at joints, must have C1 continuity.
This is a linearly-constrained quadratic minimization, an ideal
problem for Lagrange multipliers. If the covariance considered
to be constant, the marginal likelihood must be optimized with
respect to the Bernstein coefficients and satisfies the continuity
conditions. By substituting the mean function m(x) = µ
with Bernstein polynomial function bk(t)TβN, the augmented
objective function (the Lagrangian) is then:

L(βN,λ) =yTΣ−1y − yTΣ−1bT
NβN − βN

TβNΣ−1y+

βN
TβNΣ−1bT

NβN + λT (CβN − d) (25)

∂L
∂βN

= − yTΣ−1bT
N − (bNΣ−1y)T+

(bNΣ−1bT
NβN)T + βN

TbNΣ−1bT
N + λTC = 0

(26)

C and d are the matrices with continuity parameters. Minimiz-
ing L with respect to βN and λ results in a system of linear
equations for the optimum coefficients βN

∗ and Lagrange
multipliers λ∗.

[
βN

∗

λ∗

]
=

[
2bNΣ−1bT

N CT

C 0

] [
2bNΣ−1y

d

]
(27)

If C has independent rows and
[
βN

C

]
has independent column,

the KKT matrix is invertible.

VII. MODEL ACCURACY EVALUATION

To evaluate our model, two error types have been considered
and employed. The Root Mean Squared Error (RMSE) and
the Mean Absolute Error (MAE) are common types of error
estimations. While the MAE gives the same weight to all
errors, the RMSE gives errors with larger absolute values more
weight than errors with smaller absolute values. Mean Average
Percentage Error (MAPE) also has been commonly used to
measure the forecasting performance. Root mean squared
residual error at each point provides the squared difference
between the observation values y and the predicted function
m(x). For an unbiased estimator, the RMSD is the square root
of the variance, known as the standard error.

RMSE =

√√√√1

n

n∑

i=1

(m(xi)− yi)2 (28)

Mean absolute error is used to know how close predictions
are to the actual observations.

MAE =
1

n

n∑

i=1

|m(xi)− yi| (29)

MAPE = 100.
1

n

n∑

i=1

|m(xi)− yi
yi

| (30)

The root mean squared prediction error is computed on out-
of-sample data:

RMSPE =

√√√√1

n

n∑

i=1

(m(x∗
i )− y∗i )

2 (31)

m(x∗
i ) is the estimated function at test values and y∗i is the

true values for the test data points.

VIII. RESULT AND DISCUSSION

To analyze our proposed model, 26 sets of five-minute
net-load data from California Independent System Operator
CAISO, is used for training the process. CAISO is the largest
Independent System Operator ISOs in the world managing
about 80 percent of California’s electric flow. These data are
selected for a specific day of a week from six consecutive
months (May-Oct), Fig. 1. The load has been normalized with
respect to its maximum. The results are compared to the piece
wise constant loads to show the effectiveness of continuous
load forecasting for each hour. As the load for each hour
interval can be modeled with a continuous Bernstein function,
it will provide a more realistic load profile which can be used
for the real-time economic dispatch. Bernstein polynomial of
any degree can be used for the modeling but there is an optimal
degree which can be a better fit to the load profile. In order to
choose a proper order of Bernstein polynomials, the prediction
error is estimated for different orders from N=1,...,10.

TABLE I
ERRORS FOR DIFFERENT BERNSTEIN POLYNOMIAL ORDERS

N RMSE MAE

1 4.1254 28.4927
2 1.5036 15.6126
3 1.5036 15.6128
4 1.5036 15.6142
5 1.5036 15.6128
6 33.0849 37.3396
7 392.2946 90.8602
8 6.1328e+03 414.6701
9 6.4669e+12 1.0410e+07
10 6.0388e+13 2.6205e+07

As it can be seen in the table I, Bernstein order from 2 to
5 can fit the load profile with reasonable accuracy but with
orders above 5, it cannot follow the shape well anymore and
will show large oscillations for certain parts.

As we haven’t considered the weather variables such as
temperature in the model, the collected historical data needs
to be in the same weather condition to cover the close load
profiles with the least diversity. Forecasting a day-ahead load
profile also requires the use of the trained model with the same
seasonal condition. Load profile of each hour of the day get
modeled by continuous Bernstein polynomials. Scheduling of
the generation with their real ramping will benefit from the
continuous load forecasting and leads to economical benefits.
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Fig. 1. Load forecasting with Bernstein model of order 5

IX. CONCLUSION

In this paper, a stochastic model based on the Gaussian
process was presented for a short-term load forecasting. In
this model, the non-parametric estimator of the regression
functions is obtained by using Bernstein polynomials. Real
data sets from California ISO were used as the historical data
for training and the constrained marginal likelihood problem
was optimized for finding the hyperparameters of the model.
The common error measures were employed to infer the
deviation of the load forecast from the real data. Bernstein
polynomial of any degree could be used for the modeling but

there are optimal degrees which can be a better fit to the load
profile. As the load for each hour interval can be modeled with
a continuous Bernstein function, it will provide a more realistic
load profile which can be used for the real-time economic
dispatch.
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