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Abstract 

Longitudinal deep sequencing of viruses can provide detailed information about intra-host evolutionary dynamics including how 
viruses interact with and transmit between hosts. Many analyses require haplotype reconstruction, identifying which variants are 
co-located on the same genomic element. Most current methods to perform this reconstruction are based on a high density of variants 
and cannot perform this reconstruction for slowly evolving viruses. We present a new approach, HaROLD (HAplotype Reconstruction 
Of Longitudinal Deep sequencing data), which performs this reconstruction based on identifying co-varying variant frequencies using 
a probabilistic framework. We illustrate HaROLD on both RNA and DNA viruses with synthetic Illumina paired read data created from 
mixed human cytomegalovirus (HCMV) and norovirus genomes, and clinical datasets of HCMV and norovirus samples, demonstrating 
high accuracy, especially when longitudinal samples are available.
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Introduction
Next-generation sequencing (NGS) of virus populations derived 
from medical and biological samples can deepen our understand-
ing of virus biology, pathogen evolution, host–pathogen inter-
actions, transmission dynamics, and the development of drug 
resistance (Houldcroft, Beale, and Breuer 2017; Leung et al. 2017; 
Moncla et al. 2017). Virus genomes are smaller than bacterial 
and eukaryotic genomes, but are still larger than Illumina NGS 
reads. Detailed analyses often require determining which vari-
ants are found together in the same genome or genomic segment, 
a process known as haplotype reconstruction. This is commonly 
performed by identifying variants at sites that are close enough 
to be found on the same reads. If these variants are sufficiently 
dense, co-occurring variants across the genome can be ‘stitched 
together’, resulting in the determination of whole-genome haplo-
types (Posada-Cespedes, Seifert, and Beerenwinkel 2017). Several 
computer programs have been developed over the last decade 
using this approach to reconstruct haplotypes from NGS data, 
including PredictHaplo (Prabhakaran et al. 2014) and CliqueSNV 
(Knyazev et al. 2021). A recent work by Eliseev and colleagues 

(Eliseev et al. 2020) benchmarked several of these tools and found 
that PredictHaplo and CliqueSNV outperformed the others. How-
ever, all these tools have been created and tested with small- 
and fast-evolving viruses such human immunodeficiency virus 1 
(HIV-1) and hepatitits C virus (HCV). Unfortunately, viruses such 
as human cytomegalovirus (HCMV; species Human betaherpesvirus 
5) can have long regions with few segregating sites, making it 
impossible to connect variants that span these regions.

There is increased focus on monitoring intra-host evolution-
ary dynamics using longitudinal sequencing, where samples are 
obtained from a single patient at multiple time points. Selec-
tion and drift result in changes in the relative frequencies of the 
haplotypes and thus in the frequencies of the variants that they 
contain. In such cases, we can use covariation of variant frequen-
cies to provide an additional source of information for haplotype 
reconstruction, even when these variants are far apart in the 
genome. To take advantage of data from longitudinal sampling 
and include bigger recombining viruses, such as herpesviruses, we 
created a new method for reconstructing whole-genome haplo-
types from longitudinal sequence data (HAplotype Reconstruction 
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2 Virus Evolution

Of Longitudinal Deep sequencing data, HaROLD). Few other tools 
have been developed that use frequency data to reconstruct hap-
lotypes, such as EVORhA (Pulido-Tamayo et al. 2015), which was 
specifically developed for bacteria. CliqueSNV, which has simi-
larities to the first stage described here, showed good accuracy 
for haplotype frequencies in simulated data, but lower accuracy 
for haplotype reconstruction in comparison to HaROLD (Pelizzola 
et al. 2021).

Here, we describe HaROLD and compare its performance with 
CliqueSNV, PredictHaplo, and EVORhA. These comparisons were 
performed using synthetic NGS data obtained by simulating lon-
gitudinal sampling for two different types of viruses studied in 
our laboratory (lab): norovirus (species Norovirus), a highly diverse 
RNA virus, and HCMV, a large (235k bp), slowly evolving DNA virus. 
We also illustrate how HaROLD works compared to other meth-
ods with real data from two immunocompromised patients; one 
infected with HCMV and one with Norovirus. Application of this 
approach to real data from mixed-infected HCMV patients has 
been presented previously (Cudini et al. 2019; Pang et al. 2020).

Results
We consider that we have sets of reads from a number of samples 
analysed using NGS, where all of the samples share a common set 
of related haplotypes. These may, for instance, represent a series 
of virus samples that have been extracted from a single patient at 
various time points (longitudinal samples). Note that the number 
of samples can be as small as one, and each sample does not nec-
essarily contain every haplotype (the frequency of a haplotype in 
some samples may be zero). We are interested in determining the 
sequences of the haplotypes and their frequencies in each of the 
samples based on the observed reads.

HaROLD performs the following steps:

(1) Initial estimation of haplotype sequences and frequencies 
taking advantage of covariation of variant frequencies.

(2) Refinement of haplotypes through analysis of observed 
reads, incorporating information from co-occurring variants.

These steps are described briefly here and in more detail in the 
Methods and Supplementary Materials.

Initial estimation
In this initial step, we assume that the samples contain a common 
set of identical haplotypes but in differing proportions. In order to 
make an initial estimation of the haplotypes, we employ a statisti-
cal model that describes the observed sequence data consisting of 
(1) a set of haplotype frequencies, representing the frequency of 
each of the haplotypes in each sample, and (2) a distribution
of sequencing error rates, represented by a Dirichlet distribution. 
The statistical model does not include the sequences of the hap-
lotypes. Instead, we consider these sequences, as well as the 
rates for specific sequencing errors at specific sites, to represent 
unknown ‘nuisance parameters’. In this initial stage, we consider 
each site in the genome separately. Although we lose informa-
tion about the co-occurrence of variants at different sites along 
the reads, this simplification allows us to avoid a complicated and 
costly exploration of the space of possible haplotype sequences in 
favour of a simple sum over the 4𝐻 ways of assigning bases to each 
site in the 𝐻haplotypes.

We optimise the haplotype frequencies and error rate param-
eters to maximise the likelihood of the data, where the cal-
culation of the likelihood involves an explicit summation over 

the sequences of the haplotypes and an integration over the 
error rates. (This is similar to other hybrid maximum likeli-
hood/Bayesian approaches, such as in phylogenetics where the 
phylogenetic tree is optimised based on a likelihood calculation 
that sums over all possible combinations of substitutions.)

Once we have derived the optimal haplotype frequencies and 
the error rate parameters, we can calculate the posterior prob-
ability that each possible base occurs at each site in each of 
the haplotypes. This provides a probabilistic reconstruction of 
the haplotypes, indicating the appropriate degree of confidence 
one should have about the haplotype reconstruction of each site. 
Whenever this probability is sufficiently high, we can assign a 
specific base to that haplotype.

Although we use standard quality controls to distinguish spuri-
ous reads, we do not attempt to distinguish reliable and erroneous 
bases based on, for instance, number or frequency of observa-
tion. Rather, we explicitly model the probability that a specific 
base is observed, either correctly or erroneously. The estimation 
of this probability depends on a characterisation of the error rate, 
which may depend on the true base, the observed base, the loca-
tion in the alignment, the direction of the read, and the sample in 
which this read was present. Rather than assuming a fixed error 
rate, we model true-base-, observed-base-, location-, direction-, 
sample-specific error rates as independent draws from a Dirichlet 
distribution with parameters 𝛼0 and 𝛼𝜖, which are optimised dur-
ing this initial step. The representation of the distribution of error 
rates as a Dirichlet distribution allows a closed-form integration 
over error rates.

This procedure is repeated for a range of different numbers 
of haplotypes. Increasing the number of haplotypes increases 
the number of ways of assigning bases to haplotypes, decreas-
ing the prior probability of any given assignment. As is common 
in Bayesian methods, this results in the log likelihood decreas-
ing as the number of haplotypes increases beyond that necessary 
to represent the data. We choose the number of haplotypes that 
maximises the log likelihood of the read data.

Refinement process
The initial estimation step previously assumes that the set of hap-
lotype sequences are identical for the various samples, neglecting 
mutations that might occur between samples. It also ignores the 
information that forms the basis of most haplotype reconstruc-
tion methods, the presence of multiple variants on the same 
read. The next step is to relax these assumptions and use variant 
co-localisation to refine the haplotypes.

In this refinement step (Fig. 1), each sample is analysed indi-
vidually. We start with the estimated frequencies of each hap-
lotype in this sample and the a posteriori probability of each 
base at each site in each haplotype, as estimated in the ini-
tial step described previously. Based on these parameters, each 
read is assigned probabilistically to each of the various haplo-
types. The number of reads assigned to each haplotype is used 
to adjust the frequencies of that haplotype. The reads are then 
reassigned until the haplotype frequencies have converged. The 
resulting assigned reads are then used to update the probabil-
ity of the bases found in each site in all the reads assigned to 
each haplotype. The reads are then reassigned based on these 
adjusted probabilities, and this procedure repeated until conver-
gence. These two steps—estimation of haplotype frequencies and 
estimation of base probabilities—are then alternated until con-
vergence. We also calculate the log likelihood of the read data 
given these parameter values, as well as a penalised log likeli-
hood from which the number of adjustable parameters has been
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C. Venturini et al.  3

Figure 1. Flowchart of refinement process. (A) Overall process. (B) Subprocess for haplotype optimisation. (C) Subprocess for considering 
recombination, merging, and splitting; merging decreases the number of haplotypes by one, while splitting increases this number by one. Support for 
these three operations is evaluated by considering a penalised log likelihood equal to −0.5 times the Akaike Information Criterion.

subtracted, equivalent to −0.5 times the Akaike information crite-
rion (Akaike 1998).

If requested by the users, a number of structural modifications 
of the haplotypes are considered. These include (1) recombination 
of two haplotypes, where corresponding regions of the haplotype 
sequences are swapped, (2) gene conversion, where a region of one 
haplotype sequence is overwritten by the corresponding region 
of a different haplotype sequence, (3) merging of two haplotypes 
into a single new haplotype, reducing the total number of hap-
lotypes by one, and (4) dividing a single haplotype into two new 
haplotypes, increasing the total number of haplotypes by one. 
After each of these modifications, the haplotype frequencies and 
base probabilities are readjusted as described previously, and the 
modification rejected or accepted based on whether it results in a 
decrease or increase in the penalised log likelihood. These modifi-
cations result in a final set of haplotypes whose size represents the 
number of haplotypes that can be justified, based on information 
theory, by the sequence data.

The output of the program includes, for each sample, the fre-
quencies of the haplotypes as well as the probabilities of each of 
the bases at each of the sites in the haplotypes. When this prob-
ability is over a user-defined value, the site can be assigned to a 
specific base.

Simulation results
To evaluate the ability of HaROLD to reconstruct haplotypes 
and estimate the relative haplotype frequencies, we created 
eight synthetic sequence datasets (four for norovirus and four 

for HCMV), each consisting of a set of sequential longitudi-
nal samples drawn from differing mixtures of whole-genome 
sequences from GenBank, as summarised in Tables 1 and 2. 
The norovirus dataset (Table 1) each consisted of five lon-
gitudinal samples of between two and four haplotypes with 
varying degrees of similarity (total number of norovirus sam-
ples = 20). The HCMV datasets (Table 2) were constructed in 
a similar manner, each with three longitudinal samples (total 
number of HCMV samples = 12) constructed from two or three
haplotypes. 

Reconstruction of haplotype sequences and frequency
The performance of HaROLD on the synthetic data is represented 
in Figs 2 and 3 (in sky blue). Performance was calculated as (1) the 
proportion of sites that are identical between GenBank sequences 
and the reconstructed haplotypes and (2) the difference between 
the real haplotypes frequencies and frequencies calculated by 
HaROLD. With the norovirus data, the reconstructed haplotypes 
were identical to the GenBank sequences (accuracy 100 per cent in 
all four datasets) (Fig. 2A). The haplotype frequencies estimated by 
HaROLD were also highly accurate, with differences between the 
actual and estimated frequencies less than 0.002 (Fig. 2B). Excel-
lent results were also obtained with the synthetic data derived 
from HCMV; the reconstructed haplotypes were highly similar to 
the original sequences (similarity > 0.997) (Fig. 3A) with differences 
between the actual and computed haplotype frequencies less than 
0.06 (Fig. 3B). HaROLD computational time (in an high perfor-
mance computing (HPC) node with a maximum of 50 GB memory) 
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4 Virus Evolution

Table 1. Summary of the longitudinal norovirus synthetic datasets used to test the accuracy of the haplotype reconstruction methods. 
Four synthetic datasets with five samples each were created for norovirus by mixing GenBank sequences for a total of twenty samples.

Norovirus

Set Sample composition
Similarity between haplotypes 
(percentage identity)

Two haplotypes
Low similarity
Five time points

Two haplotypes
High similarity
Five time points

Three haplotypes
Five time points

Four haplotypes
Five time points

was dependent on the number of haplotypes, average read depth, 
and genome length and varied from 40 to 226 s for norovirus and 
35 to 39 min for HCMV (Table 3). This can be longer in some cases, 

generally dominated by the estimation of the error rate parame-
ters. The calculations can, correspondingly, be greatly sped up if 

these parameters are estimated and fixed.

Utility of longitudinal sampling
In contrast to most methods for haplotype reconstruction, 
HaROLD is formulated to take advantage of the availability of 
multiple longitudinal samples. To evaluate the importance of 
these longitudinal samples, we used HaROLD to reconstruct the 
haplotypes in our synthetic datasets without using this additional 
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C. Venturini et al.  5

Table 2. Summary of the longitudinal human cytomegalovirus synthetic datasets used to test the accuracy of the haplotype recon-
struction methods. Four synthetic datasets with three samples each were created for HCMV by mixing GenBank sequences for a total 
of twelve samples.

HCMV

Set Sample composition
Similarity between haplotypes 
(Percentage identity)

Two haplotypes
Low similarity
Three time points

Two haplotypes
High similarity
Three time points

Three haplotypes
Low similarity
Three time points

Three haplotypes
High similarity
Three time points

information. We compared performance of HaROLD using (1) 
single samples run independently (HaROLD-Single) and (2) longi-
tudinal samples pooled together in one sample (HaROLD-Pooled). 
In both norovirus and HCMV, the performance of HaROLD-Single 
and HaROLD-Pooled was high, varying from 0.99 to 1 similarity to 
the GenBank sequences, decreasing with the increase of number 
of haplotypes (Figs 2A and 3A in blue and in turquoise, respec-
tively). For HaROLD-Single, estimated frequencies were 93–100 per 
cent similar to actual frequencies in norovirus and 78–99 per cent 
for HCMV, not as accurate as when HaROLD was run as designed 
with longitudinal samples (Figs 2B and 3B). In general, the per-
formance of HaROLD on HaROLD-Single and HaROLD-Pooled was 
not as accurate as when longitudinal data were used, highlighting 
the advantage of using serial sampling. Even so, the accuracies 
of the haplotype reconstructions were generally quite high, espe-
cially for the shorter norovirus sequences and when there were 
relatively few haplotypes.

Refinement step
As described previously and in more detail in Methods, HaROLD 

uses two different steps to reconstruct the final haplotypes and 

frequency. We evaluated the performance and utility of the 

additional refinement step by comparing results from HaROLD 

and HaROLD without this additional refinement step (HaROLD-

Step 1). In both Norovirus and HCMV, the reconstructed haplo-

types for HaROLD-Step 1 were accurate, varying from 0.996 to 1 

(Norovirus) and 0.99 to 0.999 (HCMV), decreasing as number of 

haplotypes increase (Figs 2A and 3A in green). Estimated frequen-

cies were accurate (Norovirus 93–100 per cent; HCMV 79–99 per 

cent) (Figs 2B and 3B in green). However, both datasets achieved a 

lower accuracy in HaROLD-Step 1 as compared to results obtained 

with HaROLD (both steps). The difference is larger in the HCMV 

dataset, especially in the dataset with three haplotypes with low 

similarity.
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6 Virus Evolution

Figure 2. Violin plots showing the accuracy of haplotype reconstruction in the norovirus test datasets. (A) The accuracy of reconstructed sequences 
(pairwise identity between the actual sequences and reconstructed sequences). (B) The accuracy of estimated frequencies. Colours indicate different 
haplotype reconstruction methods. Each dot represents a sequence from each sample.

Comparison with other methods
We compared the performance of HaROLD with two haplo-

type reconstruction techniques reviewed by Eliseev et al. (2020), 

namely CliqueSNV and PredictHaplo; these two methods per-
formed well in terms of accuracy in their HIV validation. 

CliqueSNV is a reference-based method to reconstruct haplotypes 
from NGS short reads data, which constructs an allele graph based 

on linkage between variants and identifies true viral variants 
by merging cliques of that graph via combinatorial optimization 

techniques (Knyazev et al. 2021). PredictHaplo implements a fully 
probabilistic approach to quasispecies reconstruction. Given a set 

of aligned reads, it uses a Bayesian mixture model with a Dirich-
let process prior to estimate the unknown number of underlying 
haplotypes (Prabhakaran et al. 2014). We also added a compar-
ison with a third method, EVORhA (Pulido-Tamayo et al. 2015), 
that was developed for bacterial haplotype reconstruction and 
combined phasing information in regions of overlapping reads 
with the estimated frequencies of inferred local haplotypes. This 
method was chosen because it is one of the few other haplotype 
reconstruction methods which also considers variant frequen-
cies. We ran these three methods using default parameters unless 
otherwise stated. All analyses were run on an HPC node with a 
maximum of 48 h and 50 GB of memory. In both the HCMV and 
norovirus datasets, EVORhA generally estimated a larger number 

of haplotypes than present in the sample (ranging from 1 to 5 addi-
tional haplotypes) and consistently yielded haplotypes that most 
resembled the input reference sequence used for mapping. The 
sequence accuracy ranged from 0.972 to 0.999 for HCMV (Fig. 3A 
in yellow) and from 0.983 to 0.999 for Norovirus (Fig. 2A in 
yellow), consistently lower than HaROLD. The performance of 
EVORhA in estimating the relative haplotype frequencies was 
uneven and overall worse compared to HaROLD (Figs 2B and 3B). 
On the norovirus datasets, CliqueSNV yielded more accurate hap-
lotype sequences than EVORhA; frequency accuracy was, however, 
uneven (Fig. 2A and B in red). PredictHaplo performed similarly to 
CliqueSNV (sequence accuracy from 0.988 to 1, Fig. 2A in purple) 
and again frequency accuracy was uneven, especially with four 
haplotypes (Fig. 2B). HaROLD consistently outperformed these 
other techniques in both sequence and frequency accuracy, even 
when single samples were run independently (as explained in 
the previous section Utility of longitudinal sampling) (Fig. 2). We 
were not able to analyse the HCMV datasets using CliqueSNV 
and PredictHaplo due to memory constraints; both programs were 
developed for smaller RNA viruses such as HIV and were not able 
to analyse a genome as large as ∼250k bp with available compu-
tational resources. HaROLD was generally faster than the other 
methods for the norovirus datasets, although EVORhA was faster 
for the HCMV datasets where the average read depth was low
(Table 3).

D
ow

nloaded from
 https://academ

ic.oup.com
/ve/article/8/2/veac093/6750005 by London South Bank U

niversity user on 17 M
ay 2023



C. Venturini et al.  7

Figure 3. Violin plots showing the accuracy of haplotype reconstruction in the HCMV test set. (A) The accuracy of reconstructed sequence (pairwise 
identity between the actual sequences and reconstructed sequences). (B) The accuracy of estimated frequencies. Colours indicate different haplotype 
reconstruction methods. Each dot represents a sequence from each sample.

Diversity calculation
As an example of the consequences of the different reconstruction 
accuracies on downstream analyses, we estimated the average 
heterozygosity of the various samples based on the reconstructed 
haplotypes, as shown in Fig. 4. The haplotypes generated by 
HaROLD produced accurate estimates of the average heterozygos-
ity, especially in the longitudinal dataset. PredictHaplo generally 
produced accurate heterozygosity in norovirus, albeit the accu-
racy decreased when four haplotypes were present. CliqueSNV 
underestimated heterozygosity in almost all conditions, except 
for when we had two norovirus haplotypes that were very simi-
lar. Finally, EVORhA underestimated heterozygosity in both HCMV 
and norovirus in almost all datasets, except in norovirus with two 
haplotypes. 

Application to real data
We applied our approach to two datasets: an unpublished dataset 
of HCMV samples from kidney/liver recipients where there was 
contamination from a laboratory strain and a dataset including 
longitudinal samples of norovirus from an immunocompromised 
patient as described by Ruis et al. (2018).

HCMV contamination dataset
During analysis of a set of five longitudinal samples taken from a 
42-year-old patient following a liver transplant (PatientA, T1–T5), 
we observed a high degree of within-host diversity in two of the 
samples. HaROLD was used to look for the presence of distinct 
haplotypes, yielding two haplotypes for samples T1 and T3 and 
only a single haplotype for the other three samples. The second 
haplotype in T1 and T3 was nearly identical to the Merlin lab-
oratory strain (NC.006273.2), a strain present in the sequencing 
lab. This was subsequently identified as a sample contaminant. 
Following discovery of the contamination, these two samples 
were re-sequenced without the contaminant, providing a real-
world scenario for validation of HaROLD with typical Illumina 
sequencing errors and uneven read depth and coverage. We built 
a maximum likelihood phylogenetic tree including the haplotypes 
reconstructed by HaROLD (indicated as H0 and H1) and the con-
sensus sequences obtained from re-sequenced samples T1 and 
T3 (Fig. 5). The two haplotypes (H0 and H1) for each of the contam-
inated samples clearly clustered separately in the phylogenetic 
tree: H0 clustered together with the consensus sequences of T1 
and T3 (blue cluster) whereas H1 clustered with Merlin Gen-
Bank sequence (pink cluster); the two clusters were approximately 
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8 Virus Evolution

Table 3. Computational time for HaROLD and other software for analysing norovirus and HCMV datasets.

Norovirus

Two haplotypes
Low similarity
Five time points

Two haplotypes
High similarity
Five time points

Three haplotypes
Five time points

Four haplotypes
Five time points

Harold 40 s 1 min 4 s 48 s 3 min 46 s
CliqueSNV 13 min 27 s 20 min 24 s 7 min 7 s 13 min 43 s
PredictHaplo 5 h 17 min 6 h 27 min 4 h 40 min 5 h 4 min
EVORhA 18 min 19 min 16 min 20 min

HCMV

Two haplotypes
Low similarity
Three time points

Two haplotypes
High similarity
Three time points

Three haplotypes
Low similarity
Three time points

Three haplotypes
High similarity
Three time points

Harold 39 min 36 min 28 s 25 min 26 min
EVORhA 6 min 5 min 8 min 6 min

Figure 4. Accuracy of sample diversity (measured as average heterozygosity) estimations based on reconstructed haplotypes for norovirus dataset (A) 
and HCMV dataset (B). Average heterozygosity was estimated for one sample for each set for both norovirus (Set1—Sample4, Set2—Sample3, 
Set3—Sample1, Set4—Sample4) and HCMV (Set1—sample2, Set2—Sample3, Set3—Sample2, Set4—Sample2) True sequence heterozygosity is shown 
with black diamonds.

98.5 per cent similar, with the 4,000+ differences largely in the 
‘hypervariable genes’ (Suárez et al. 2019). We directly compared 
the HaROLD haplotypes and the consensus sequence for both 
samples. Sample T1 resulted in only seven differences between 

patientA_T1_H0 and the consensus sequence patientA_T1; these 
nucleotide differences clustered in IRS1 gene which is a region 
full of repeats in HCMV. Sample T3 showed 312 SNP differences 
between patientA_T3_H0 and patientA_T,3 and again, these were 
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C. Venturini et al.  9

Figure 5. Maximum likelihood phylogenetic tree of reconstructed 
haplotypes and consensus sequences for the patient infected with 
HCMV. Samples of HCMV were taken from PatientA at five time points 
(T1–T5); reconstructed haplotypes are indicated with H0 and H1. The two 
haplotypes from the original sample and the consensus sequence from 
the re-sequenced sample for time point T1 are indicated with a triangle 
and the corresponding sequences for T3 with a circle. The two viral 
populations/strains present in the tree are coloured in blue and pink.

in IRS1 and TRS1 genes, which contained repeats and are difficult 
to assemble and align.

Norovirus dataset
We used HaROLD to analyse norovirus deep sequencing samples 
from an immunocompromised 48-year-old patient with chronic 
norovirus infection previously published (Ruis et al. 2018) (Pang J 
et al., manuscript in preparation). We collected twelve longitu-
dinal samples over almost a year during which time the patient 
was treated with antiviral drug Favipiravir. The patient showed 
symptomatic response to Favipiravir treatment, and the phylo-
genetic analysis showed evidence for selective pressure in the 
infecting norovirus population. To better understand whether 
and how different viral populations evolved overtime and in 
response to treatment, we reconstructed haplotypes from all sam-
ples using HaROLD. Each sample yielded 2–5 haplotypes which 
we used to build a multiple sequences alignment together with 
the closest GenBank reference sequence (FJ537136). Analysis of 
pairwise genetic distances showed a clear bimodal distribution 
(Supplementary Fig. S1) with two main clusters observed with 
multidimensional scaling (Fig. 6). The two clades were also present 
in the maximum likelihood phylogenetic tree (Fig. 7). The first 
viral cluster (orange) was present since the first time point and 
was dominant in almost all samples (Fig. 8). When the patient 

Figure 6. Multidimensional scaling (MDS) of HaROLD reconstructed 
haplotypes for patient infected with norovirus. Pairwise differences 
between haplotypes were calculated and used for MDS clustering. The 
plot shows the first two components. Reference GenBank strain is 
coloured in grey.

received extensive treatment with Favipiravir, a second viral pop-
ulation (grey) appeared and became the dominant viral strain at 
time points 6 and 7.

We then compared these results with those obtained using 
other haplotype reconstruction methods. PredictHaplo generally 
gave similar results compared to HaROLD: it generated 3–8 hap-
lotypes for each sample which generally clustered in two main 
viral populations which, however, were not as clearly distinct 
as for HaROLD, with each cluster divided into two sub-clusters 
(Supplementary Figs S2–S4). Even though PredictHaplo did per-
form similarly to HaROLD, we encountered computational issues 
due to time and memory limits; it did not finish on five out of 
twelve samples (HPC node with 50 GB and 14-day time limit). Both 
CliqueSNV and EVORhA yielded many low-frequency haplotypes 
(EVORhA 2–10, CliqueSNV 4–8) that tended to form diffuse clusters 
or were similar to the reference sequence (Supplementary Figs S2, 
S3, S5, and S6), which did not give information about the evolu-
tion of viral populations over time. In addition, when sequences 
from all methods were compared together, EVORhA haplotypes 
were genetically dissimilar from haplotypes obtained with other 
methods (Supplementary Fig. S3).

Discussion
Majority of methods for reconstructing haplotypes rely on reads 
that contain multiple polymorphic sites and thus require a suffi-
ciently density of polymorphic sites so that the distances between 
such sites are closer together than the read length (Prabhakaran 
et al. 2014; Knyazev et al. 2021). This approach can be used, 
for example, with HIV-1 and HCV, two small- and fast-evolving 
viruses, frequently used in testing haplotype reconstruction’s 
methods. However, this is not always the case, especially for 
viruses such as HCMV where much of the observed sequence 
diversity is confined to short intervals. Even when there is copi-
ous variation, there may be closely related haplotypes where the 
haplotype-defining variants are separated by distances greater 
than the read length, making it difficult to assign these vari-
ants correctly to the otherwise similar haplotypes. HaROLD was 
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10 Virus Evolution

Figure 7. Maximum likelihood phylogenetic tree of HaROLD reconstructed haplotypes for patient infected with norovirus. Twelve samples were 
available for this patient (S1–S12) and were coloured differently using a continuous scale representing time (from blue S1 to red S12). The tips’ size 
indicates the frequency of the haplotype. The black sequence is the GenBank strain used for mapping (tip size set as 50 per cent frequency). Grey 
transparent circles represent the bootstrap values (1,000 bootstraps). Two viral populations were identified represented in orange and grey transparent 
circles.

motivated by the increasing availability of multiple samples that 
are likely to share closely related haplotypes, such as longitu-
dinal studies of within-host evolution or samples from an out-
break cluster. Under such conditions, variant frequencies can 
provide an important additional source of information for mak-
ing accurate haplotype reconstructions (Pelizzola et al. 2021). 
Notably, HaROLD generates haplotypes as accurate or more accu-
rate than other tested methods even when multiple samples 
were not available. This greater accuracy was achieved with sig-
nificantly less computing power and memory than the other 
methods we used for comparison, allowing rapid analysis of 
sequence data. It is important to note that both PredictHaplo 
and CliqueSNV were not able to produce results for HCMV at all, 
due to the size of the virus, showing that these programs would 
be impractical for bigger microbes such as herpes viruses and
bacteria.

Even in a small virus such as norovirus, PredictHaplo encoun-
tered computational issues for 5/12 samples due to time and 
memory limits (HPC node with 50 GB and 14-day time limit).

Even if HaROLD was created to deal with big double-strand 
DNA viruses, it performed well with RNA viruses, such as 
norovirus. In such context, it is difficult to determine how many 

haplotypes there are in the sample, even with perfect information. 
One could consider every unique sequence in the sample as a dif-
ferent haplotype, but in this case, the number of haplotypes would 
generally be so large as to make any further analysis impracti-
cal. Alternatively, one could consider haplotypes as representing 
clusters of closely related sequences that do not need to be all 
identical. In this case, there is some flexibility in how one defines 
the term ‘closely related’. HaROLD is generally conservative about 
the number of haplotypes. In particular, the refinement method 
does not add an additional haplotype unless the improvement in 
the log likelihood is sufficient to justify the resulting increase in 
the number of parameters. The resulting haplotypes then include 
some amount of variation, which is provided as output to the user. 
In particular, the output reports the probability that a sequence 
belonging to a haplotype would have any of the four bases found 
in each site. When these probabilities are sufficiently defini-
tive, a base is assigned in the multiple sequence alignment. An 
ambiguous base is presented when a definitive assignment cannot
be made.

We described the performance of HaROLD in the analysis of 
synthetic datasets, as well as its use for two real-data exam-
ples, one for HCMV and one for Norovirus. In the HCMV example, 
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Figure 8. Bar plot of estimated abundances overtime of HaROLD 
reconstructed haplotypes for patient infected with norovirus. Two viral 
populations were present coloured in orange and grey, matching the 
colours on the maximum likelihood phylogenetic tree (Fig. 7).

HaROLD was able to reconstruct the patient’s sequence and the 
lab strain contaminated sequence with high accuracy. HaROLD 
was successfully used to detect and confirm the contamination in 
the first place and then reconstruct the ‘real’ sequence allowing 
us to use a sample which would have been discarded otherwise. 
This was a lab-created ‘mixed infection’ and no different from 
a real situation where a liver recipient may have a superinfec-
tion from reactivation of a HCMV strain already present and 
a new infection from a HCMV-positive donor following trans-
plant. In the second example, we showed longitudinal samples 
from an immunocompromised patient chronically infected with 
norovirus. In this patient, we were able to distinguish two main 
viral populations with one selected during the drug treatment. 
EVORhA (Pulido-Tamayo et al. 2015) and CliqueSNV (Knyazev et 
al. 2021) generated larger numbers of haplotypes that either clus-
tered by sample or very close to the reference used for mapping. 
PredictHaplo (Prabhakaran et al. 2014) performed similarly to 
HaROLD although it often did not converge within a reasonable 
timescale. In these examples, we illustrated how a precise hap-
lotype reconstruction can be useful in determining the likelihood 
of mixed infection and/or how the viral populations respond to 
treatment and evolve over time.

In a previous paper, we described another application on real 
clinical data for HCMV (Cudini et al. 2019; Pang et al. 2020), where 
HaROLD was able to reconstruct individual viral haplotypes within 
patients with mixed infections. By reconstructing the full-length 
genome, we were able to pinpoint the likely timing, origins, and 
natural history of HCMV superinfections and uncover within-host 
viral recombination.

By providing a tool for viral haplotype reconstruction which 
is also suitable for DNA viruses with large genomes, we aim to 
simplify the investigation of mixed infections and within-host evo-
lution for all viruses, both when longitudinal sequences are and 
are not available.

Material and methods
HaROLD involves an initial estimation step followed by a refine-
ment step. We describe the methods here. Further details are 
included in Supplementary Materials.

Initial estimation
We start with a set of sequence reads from related samples that 
have been analysed using NGS. We initially assume that these 
samples contain a common set of haplotypes, but in differing 
proportions, an assumption that will be relaxed at a later stage.

We start with an assumed total number of haplotypes for the 
set of samples. Following quality control and assembly of the 
reads, for each sample, we count the number of each type of base 
observed at each position in the resulting alignment. The observed 
number of each base depends on (1) the frequencies of the hap-
lotypes in that sample, (2) the base found at that position in each 
of the haplotypes, and (3) the probability of making an erroneous 
measurement at that site. As the error rate may be different at dif-
ferent sites and on different strands, we consider that this rate is 
drawn from a Dirichlet distribution. We first find the maximum 
likelihood estimate of the haplotype frequencies in each sam-
ple and the parameters defining the error rate distribution. We 
account for our initial ignorance of the haplotype sequences by 
summing this likelihood over all possible ways the different bases 
observed at that position can occur in the different haplotypes. We 
also integrate over the distribution of error rates.

Following estimation of the haplotype frequencies and error 
rate distribution parameters, we determine how much each 
assignment of bases to haplotypes contributes to the overall like-
lihood. This allows us to calculate the posterior probability of 
each assignment of bases to haplotypes. By summing over these 
posterior probabilities, we can compute the marginal posterior 
probability that a base is found at that site in each of the hap-
lotypes. If these probabilities are sufficiently definitive, an assign-
ment is made. The a posteriori marginal probability of each base 
is included in the output.

We perform this procedure for a range of different numbers 
of haplotypes. As increasing the number of haplotypes increases 
the number of ways of assigning bases to each of the hap-
lotypes, decreasing the prior probability of any given assign-
ment, the log likelihood typically decreases when the number 
of haplotypes increases beyond that necessary to represent the 
data. We select the number of haplotypes that maximise the log
likelihood.

Further refinement
The method described previously takes advantage of the presence 
of the same haplotype in multiple samples at various frequencies. 
It assumes that, although the haplotype sequences are described 
probabilistically, these probabilities are identical for all of the 
various samples, neglecting processes such as mutations. It also 
ignores the information that forms the basis of most haplotype 
reconstruction methods and the presence of multiple variants on 
the same read. The next step is to relax these assumptions and 
use variant co-localisation to refine the haplotypes.

In this refinement step (Fig. 1), each sample is analysed individ-
ually. We start with the estimated frequencies of each haplotype 
in this sample, and the a posteriori probability of each base at 
each site in each haplotype, as output from the previous pro-
gram. The haplotypes are then optimised by assigning the reads, 
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probabilistically, to the various haplotypes. The number of reads 
assigned to each haplotype is used to adjust the frequencies of 
each haplotype. The reads are then reassigned until the haplotype 
frequencies have converged. The resulting assigned reads are then 
used to update the probability of the bases found in each site in all 
of the reads assigned to each haplotype. This process is performed 
until convergence.

User-requested haplotype modifications are implemented. 
These include (1) recombination of two haplotypes, where corre-
sponding regions of the haplotype sequences are swapped, (2) gene 
conversion, where a region of one haplotype sequence is overwrit-
ten by the corresponding region of a different haplotype sequence, 
(3) merging of two haplotypes into a single new haplotype, reduc-
ing the total number of haplotypes by one, and (4) dividing a single 
haplotype into two new haplotypes, increasing the total number 
of haplotypes by one.

First, the program considers an adjustable number of possi-
ble recombination of the haplotypes. These recombination events 
involve (1) picking two haplotypes at random, (2) picking a region 
of the alignment, of length chosen from a normal distribution 
with standard deviation of ten sites, and then (3) either swap-
ping the values of the probabilities of the different bases in this 
region between the two haplotypes (50 per cent probability) or 
overwriting the values in one haplotype with the values from the 
other (25 per cent probability for each direction). Following such a 
step, the haplotype frequencies and base probabilities are then re-
optimised as described previously, and the recombination event 
is either accepted or rejected based on whether the penalised 
log likelihood, that is, the log likelihood minus the number of 
adjustable parameters defining the haplotypes, is increased or 
decreased.

The program then implements an iterative process of refine-
ment. At the start of each iteration, if requested, pairs of haplo-
types are chosen and merged, with the frequencies of the resulting 
haplotype equal to the sum of that of the parents, and the base fre-
quencies equal to the average of the two parents. This results in a 
reduction in the number of haplotypes by one. The haplotypes are 
then re-optimised. This process is repeated for every pair of haplo-
types. The merge that most increases the penalised log likelihood 
is recorded.

If requested, a haplotype is chosen and split into two hap-
lotypes, increasing the total number of haplotypes by one. The 
resulting set of haplotypes is then re-optimised. This is repeated 
for every original haplotype. The split that results in the largest 
increase in penalised log likelihood is recorded. Finally, the 
recombination process described previously is performed. Again, 
the recombination event that results in the largest increase in 
penalised log likelihood is recorded. Following these attempted 
modifications of the haplotypes, the modification—merge, split, or 
recombination—that most increases the penalised log likelihood 
is compared with the penalised log likelihood at the beginning of 
the iteration. If this results in a net increase in the penalised log 
likelihood, this modification is accepted and becomes the start-
ing position for the next iteration. This iterative process is then 
repeated until convergence.

Preparation of synthetic test datasets
The first four synthetic datasets consisted of mixtures of two 
to four norovirus sequences (approximately 7.5 kb in length) 
(Table 1); four additional datasets were assembled from two to 
three human cytomegalovirus (HCMV) sequences (approximately 
230 kb) (Table 2). SimSeqNBProject (Benidt and Nettleton 2015) 
(https://github.com/jstjohn/SimSeq) was used to create 1,000,000 

paired end reads of length 250 for each GenBank norovirus 
sequence listed in Table 1, and 100,000 paired end reads for each 
GenBank CMV sequence are listed in Table 2. SimSeq includes the 
getErrorProfile module which generates the error model for the 
sequence simulator. The output SAM files from SimSeq were then 
converted into Fastq files using Picard version 2.21.1 ‘SamToFastq’ 
(Broad Institute 2019). In order to construct the datasets, Seqtk 
1.3 (https://github.com/shenwei356/seqkit) (Shen et al. 2016) was 
used to mix the reads from each ensemble according to the 
relative fractions listed in Tables 1 and 2. Reads were then 
trimmed for adapters using Trim galore version 0.6.0 (Krueger 
et al. 2019). Duplicate reads were removed using Picard version 
2.21.1 ‘MarkDuplicates’. Reads were mapped to the GII.Pe-GII.4 
Sydney 2012 reference strain JX459907 for norovirus and the Mer-
lin reference strain NC_006273.2 for CMV using BWA version 0.7.17
(Li and Durbin 2009). The Makereadcount.jar (https://github.com/
ucl-pathgenomics/HaROLD/tree/master/jar) was used to obtain 
the strand specific nucleotide counts from BAM files. These strand 
count files were used as the input for HaROLD.

Evaluation of performance
We evaluated performance of haplotype reconstruction based 
on accuracy of reconstructed sequences and accuracy in report-
ing haplotype frequency or abundance in the sample. Accuracy 
of reconstructed sequences was calculated as SNPs differences 
between the GenBank sequences and the reconstructed haplo-
types using the ‘dist.dna’ function in R library ‘ape’ (5.4–1) (Paradis 
and Schliep 2019) which produces a matrix of pairwise distances 
from DNA sequences. The model used was ‘raw’, simply the 
proportion of sites that differ between each pair of sequences. Fre-
quency accuracy was calculated as a difference between the real 
haplotypes frequencies and frequencies calculated by the soft-
ware (as 1–abs(real haplotype frequency—estimated haplotypes 
frequency)).

We estimated average heterozygosity (with an in-house script) 
for each sample as a measure of genetic diversity based on the 
reconstructed haplotypes.

Comparison with other haplotype reconstruction 
programs
We compared HaROLD performance with the latest version of 
EVORhA, CliqueSNV, and PredictHaplo (v. 5). EVORhA was run with 
default parameters. We ran CliqueSNV with -tf option (minimum 
threshold for frequency relative to the read’s coverage) set to 0.01 
(default was 0.05, decreasing the parameters increase the sensi-
tivity of the program) and -cm option set as ‘fast’. PredictHaplo 
was run with default parameters as the HIV example included 
in the programs, except for entropy threshold, which was set to 
0.05, max gap fraction to 0.05, local window size factor to 0.9, and 
Markov chain Monte Carlo interaction to 100, and deletions were 
not included.

Validation with HCMV dataset (real data)
This patient was sequenced as part of the Wellcome Trust Collab-
orative Awards 204,870. The project includes HCMV sequencing 
from liver and kidney transplant recipients and donors. Seven 
samples were available for five time points for PatientA. All sam-
ples were mapped to Merlin GenBank sequence (NC_006273.2). 
The average read depth varied from 10x to 360x. Data were pre-
pared for HaROLD in the same way as for the synthetic datasets. 
HaROLD analysis was run in the five samples from the initial run. 
Data were then aligned with Mafft (Katoh et al. 2002) and trees 
were obtained with Iqtree 1.6.12 (Nguyen et al. 2015) with GTR 
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model and 500 bootstrap and plotted with Figtree (https://github.
com/rambaut/figtree/releases/tag/v1.4.4).

Validation on norovirus dataset (real data)
We have described this patient previously (Ruis et al. 2018). Fastq 
files were mapped to the closest GenBank reference (FJ537136) 
using the same pipeline used with the synthetic datasets. Haplo-
types from HaROLD, EVORhA, CliqueSNV, and PredictHaplo were 
obtained similarly to the synthetic datasets. Data were then 
aligned with Mafft (Katoh et al. 2002) and trees were obtained 
with RAXML version 8 with GTRGAMMA model and 1,000 boot-
straps (Stamatakis 2014). Pairwise distances were retrieved with 
‘ape’ package in R (Paradis and Schliep 2019). Trees were plotted 
using ggtree (version 2.4.1) (Yu et al. 2017).

R version and packages
Unless otherwise stated, all statistical analysis and plots were 
done in R 4.0.3, ggplot2 (3.3.5) (Wickham 2016), and ggpubr (0.4.0) 
(https://rpkgs.datanovia.com/ggpubr/index.html).

Data and software availability
The software HaROLD and other materials used are available 
in the GitHub repository https://github.com/ucl-pathgenomics/
HAROLD. Current release (v2.0) can be found in https://github.
com/ucl-pathgenomics/HaROLD/releases/tag/v2.0.0. HaROLD 
supports multiple threads.

Supplementary data
Supplementary data are available at Virus Evolution online.
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