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ABSTRACT  

Challenging optimization problems, which elude acceptable solutions via conventional 

methods, arise regularly in control systems engineering. Genetic algorithms are applied 

here to optimize the control gains for a controller of a pneumatic drive. We show that, 

by using minimum information specific to the system, near optimal values of the 

control gains can be obtained within 10 generations. Two main motivating factors are 

behind this kind of study; namely, the response of pneumatic drives is very slow, 

which leads to its inability to attain set points due to high hysteresis. Moreover, the 

dynamic model of the system is highly nonlinear, which greatly complicates controller 

design and development. To address these problem areas, two streams of research 

efforts have evolved—using conventional methods and adopting a strategy that does 

not require a mathematical model of the system.  
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1. INTRODUCTION 

This paper reports on investigations into the control of air motor speed using 

intelligent based methods. In recent years, much attention has been given to the 
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optimization of control parameters for fluid power systems, in order to improve their 

performance. When a PID or a state feedback controller is used to control pneumatic 

servo systems, it is very difficult in practice to determine the control gains 

theoretically because of the high nonlinearities of the system and the uncertainty in 

system modeling. Thus, in general control gains are tuned manually. Manual gain 

tuning of fluid systems is time consuming even for an experienced control 

technician, and even then it is often uncertain whether the values obtained are 

optimal or near optimal. Furthermore, the control gains for a pneumatic servo drive 

usually depend on both the magnitudes of the load mass and reference position. 

Gain tuning schemes based on fuzzy logic have in the past been developed to 

automate the tuning procedure for gain based fluid power system controllers. 

Practitioners of control systems engineering are increasingly addressing problems 

for which existing control theory and practice is unprepared. These problems 

typically require consideration of multiple performance criteria and non-

commensurable control variables. The system involved may be difficult to formalize 

mathematically and may be poorly understood.  

Many researchers have considered less conventional techniques in order to find 

a satisfactory solution. Evolutionary algorithms (EAs) have proven to be one such 

popular alternative. However, much experience regarding a particular system’s 

behavior is needed to construct a knowledge base for such schemes. The 

evolutionary algorithm is a robust search and optimization methodology that is able 

to cope with ill-behaved problem domains, exhibiting attributes such as multi-

modality, discontinuity, time-variance, randomness, and noise. It permits a remarkable 

level of flexibility with regard to performance assessment and design specification. 

GAs are general-purpose search procedures, optimization methods, or learning 

mechanisms based on Darwinian principles of biological evolution, that is, 

reproduction and ‘the survival of the fittest’, along with genetic recombination 

(Goldberg, 1989). When provided with suitable objective function the performance 

of the control system can rapidly be optimized by using GA (Varsek, Urbacic and 

Filipic, 1993). The paper is organized as follows: Section 2 presents the air motor 

system and identification, Section 3 provides an overview of GAs, Section 4 

describes intelligent optimization of air motor control parameters, and Section 5 

presents comparative assessment of conventional and intelligent based controllers. 

The paper is finally concluded in Section 6.  
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THE AIR MOTOR SYSTEM - IDENTIFICATION PROCEDURE 

The aim of this study is to optimize control gains using intelligent based 

methods, and GAs have proven to overcome the problem of shallow extrema in the 

solution space and are likely to achieve global solution. Hence, GA’s performance 

over fuzzy and neural networks justifies its choice for the optimization technique 

used in this study. Before controlling the system, the system must be identified. 

System identification is one of the most fundamental requirements for many 

engineering and scientific applications. The objective of system identification is to 

find exact or approximate models of dynamic systems based on observed input and 

output data. Well developed techniques exist for parameter estimation of linear 

models and linear-in-the-parameters nonlinear models. Techniques for selection of 

structure and for non-linear-in-the-parameters estimation are still the subject of 

ongoing research. Once a model of the physical system is obtained, it can be used 

for solving various problems such as, to control the physical system or to predict its 

behavior under different operating conditions. A number of techniques have been 

devised by many researchers to determine models that best describe input/output 

behavior of a system. In many cases when it is difficult to obtain a model structure 

for a system with traditional system identification techniques, intelligent techniques 

are desired that can describe the system in the best possible way (Elanayar and 

Yung, 1994). For ease of reference, the dynamic characteristics of the air motor 

system have been conveniently divided into three main regions called low speed 

(below 390 rev/min), medium speed (390 to 540 rev/min) and high speed (540 to 

680 rev/min). The system is highly non-linear in the low speed region and hence a 

controller with intelligence such as a GA-based controller is proposed. There exist 

many good public domain genetic algorithm packages and none of these provide an 

environment that is immediately compatible with existing tools in control domains.  

2.1 Model validation using correlation tests 

Once a model of the system is obtained, it is required to verify whether the 

model is good enough to represent the system. A number of tests are available in the 

literature. These include correlation tests, one-step-ahead (OSA) prediction, mean 

square error, and estimation and test data. In this paper, a system identification 

strategy is developed for the low speed range of an air motor using GA and OSA 
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prediction. Correlation tests are very convincing methods of model validation. If the 

model of a system is adequate, then the residuals or prediction errors ε(t)  should be 

unpredictable from all linear and nonlinear combinations of past inputs and outputs. 

The derivation of simple tests can detect these conditions, but it can be shown that 

the five conditions should hold (Billings and Voon, 1986). Therefore, the system is 

validated using the following correlation model validity tests: 

 () = E[(t–)(t)] = () (1) 

u () = E[u(t–)(t)] = 0    (2) 

u2 () = E[(u2(t–) – u2 (t))(t)] = 0    (3) 

u22 () = E[(u2 (t–) – u2 (t)) 2 (t))] = 0    (4) 

(u) () = E[((t)(t – 1 – ) – u(t – 1 – )] = 0     0 (5) 

  

Where u () indicates the cross-correlation function between u(t) and (t), u(t) = 

(t+1)u(t+1), and () is an impulse function. 

All five tests defined by equations (1) to (5) should be satisfied if the u()’s  and 

y()’s used as network input nodes. In practice, normalized correlations are 

computed. The sampled correlation functions between two sequences 1(t) and 2(t) 

are given by: 

 

 

 

 

(6) 
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a) Auto-correlation of residuals                       b) Cross-correlation of residuals and input 

 

       c) Cross-correlation of residuals and                           d) Cross-correlation of residuals input 
                                                                                 square     square and input square 

 

Fig. 1: Model validity correlation tests 
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including training and test validation and correlation tests were carried out to 

validate the models. It is noted in Figure 1 that all correlation function tests are 

within the 95% confidence interval, indicating a high level of accurate and unbiased 

performance of the model in approximating the dynamics of the air motor system 

3. OVERVIEW OF GAS 

The underlying principles of GAs were first published by (Holland, 1962) and 

constitute one of a few intelligent techniques commonly used for system 

identification and modeling of dynamical systems. The major advantage of GA for 

system identification is that it simultaneously evaluates many points in the 

parameter space and converges toward the global solution (Kargupta & Smith, 

1991). EAs are global, parallel search and optimization methods founded on the 

principles of natural selection (Darwin, 1859) and population genetics (Fisher, 

1930). The correctness of the EA framework as an abstraction of natural evolution 

has been challenged, for example by Channon and Damper (2000), but this should 

not be of undue concern to the engineer, who is using the algorithm for its robust 

search and optimization properties. In general, any iterative, population based 

approach that uses selection and random variation to generate new solutions can be 

regarded as an EA. The evolutionary computing (EC) field has its origins in four 

landmark evolutionary approaches: evolutionary programming (EP) (Fogel, Owen 

& Walsh 1966), evolutionary strategies (ES) (Schwefel, 1965; Rechenberg, 1973) 

genetic algorithm (GA) (Holland, 1975), and genetic programming (GP) (Koza, 

1992). The GA was popularized by (Goldberg, 1989) and probably as a result, the 

majority of control applications in the literature adopt this approach. It is important 

to recognize that boundaries between all four approaches are no longer distinct, with 

contemporary thinking progressing towards a more holistic EA framework 

(Michalewicz & Fogel, 2000). The key benefit of EC is flexibility and thus the 

designer should not feel constrained by requirement to conform to strict 

classification. EAs work with a population of potential solutions to a problem. Each 

individual within the population represents a particular solution to the problem, 

generally expressed in some form of genetic code. The population is evolved, over 

generations, to produce better solutions to the problem. The technique is efficient in 

modeling nonlinear systems or if the system has nonlinearities to a degree. A GA is 
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a population based global search procedure inspired by the laws of natural selection 

and genetics. The genetic algorithm evolves a collection of elements called a 

population of individuals. Each individual of the population represent a trial solution 

to the problem of maximizing a given fitness function. The procedure for identifying 

a dynamic system consists of four basic steps, as schematically shown in Figure 2.  

 

 

Fig. 2: Schematic of GA’s system identification procedure 

 

The standard simple genetic algorithm (SGA) works as follows:  

 

Step 1. Randomly generate an initial population 

Step 2. Compute the fitness of each individual of the current population 

Step 3. Generate the next population by applying three generic operators: 

reproduction, crossover, and mutation. 

Step 4. If an end condition is not satisfied, go to step 2. The three genetic 

operators for the SGA are as follows: 

a) Reproduction (selection). This operator produces an intermediate 

population, extracting individuals from the old population by means of 

roulette wheel selection, where the extraction probability of each 

individual is proportional to its fitness. 

b) Recombination (crossover), this is applied to two chromosomes with 

the probability of recombination, which creates two new chromosomes 
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by selecting a random position along the chromosomes and splicing the 

section that appears before the selection position in the first string with 

the section that appears after the selection position in the second string 

and vice versa. 

c) Mutation, this is a simple bit wise changing of genes with a small 

probability, called the probability of mutation. 

3.1 Alternative features of EA 

Many variations have been developed within the overall EA template, with the 

aim of improved performance and adaptation to particular problem domain. Thus, it 

may be more helpful or appropriate to regard EC as a general problem-solving 

methodology, rather than a specific parameter-less tool. However, many applications 

have their basis in the standard GA (SGA) presented by (Goldberg, 1989). The specify 

details of each EA will vary from application to application. The choice of 

representation, evaluation, and genetic operators must be made with the particular 

application in mind. A short summary of the key issues and developments made thus 

far is herein presented. Comprehensive discussion can be found in (Michalewicz & 

Fogel, 2000). 

3.1.2 Representation. The EA works on an encoding of decision variables. The 

classic GA is to encode each variable as a binary string and the concatenate each 

variable to form a single solution. However, any representation is permitted for 

which suitable variation operators can be devised. Direct floating-point represen-

tations are becoming increasingly popular (Michalewicz, 1966). 

3.1.3 Evaluation. The EA requires a scalar value representing the performance 

of each solution. This may be an absolute quantity or may be relative to other 

solutions. Techniques for the conversion of raw performance to EA fitness value 

have received much attention in the approach, especially for multi-objective 

problems. Individual fitness values may then be modified to encourage niching 

behavior through the use of fitness sharing (Goldberg & Richardson, 1987). 

3.1.4 Selection. Individual solutions must be selected for application of genetic 

operators and for subsequent reinsertion into the population if general gap is used. 

The standard roulette-wheel selection method is known to produce biased results, 

leading to a phenomenon known as genetic drift. Two central aims in the 

development of alternatives are to eliminate statistical bias and to achieve potential 

parallelism. Other selection methods have been proposed, such as tournaments 
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between two individuals and stochastic universal sampling (Baker, 1987). 

3.1.5 Variation. Genetic operators have been subject to intensive discussion, 

over both the composition and purpose of the various operators. Some researchers 

have abandoned recombination, whilst others regard the effect of mutation as 

minimal. Essentially, recombination tends to direct the search to superior areas of 

the search space, whilst mutation acts to explore new areas of search space and to 

ensure that genetic material cannot irretrievably lost. Choices of values of the 

parameters of the operators, such as mutation rate and mutation size, are critical to 

the success of the algorithm. Note that the parameters may vary adaptively over the 

course of a run in order to improve the search results and these parameters may 

themselves be subject to evolution (Rechenberg, 1973). 

3.1.6 Population. EAs evolve a population of solutions, usually comprising a 

static number between 20 and 100 individuals (Fleming & Purhouse, 2002), over a 

number of generations. The population is initialized with random values, possibly 

seeded with some known good solutions, At each subsequent generation, the 

population will comprise the results of genetic manipulation, some remnants of past 

population and possibly few randomly generated individuals. An EA is defined as 

elitist if it deliberately reintroduces past high-performance individuals. Researchers 

have also experimented with various population topologies. For example, sub-

populations can be implemented as islands, which evolve in parallel, with limited 

migration of individuals between islands. The island model provides one mechanism 

for the incorporation of explicit parallelism within an evolutionary algorithm. Single 

process running on a single processor may represent each subpopulation. The 

migrants could represent data flow between the processes. Chipperfield and Fleming 

(1995), provide boarder overview and comparison of parallel EAs. Population based 

nature of GA renders them well suited to multi-objective optimization problems and 

enables the evolution of a Pareto-optimal set of solutions (Schroder et al., 2001). 

MOGA, described by (Fonseca & Fleming, 1998a,b) was used in this work to 

evolve a set of Pareto-optimal solutions. 

3.1.7 Representation utility for control. Typical control problems contain 

various attributes that an EA must account for in some way or another. These 

include representation of design parameters, inclusion of constraints, and assessment 

of performance and methods for coping with likely properties of the fitness 

landscape. 

3.1.8 Numeric representation. Each solution to a problem consists of a number 
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of design parameters (decision variables). These are encoded as chromosome, which 

can then be manipulated by genetic operators. Thus, a mapping is required between 

the actual decision variables (phenotypes) and their genetic equivalent (genotypes). 

Choice of representation is very flexible, so long as suitable genetic operators can be 

developed to support the representation. The most popular approach is to encode the 

set of parameters in a concatenated binary string, as shown in Figure 3. 

 

Fig. 3: Mapping between chromosome and decision variables 

 

Both discrete and continuous variables can be catered for. A binary, or n-array 

coding can be used to represent variables to an arbitrary solution. It should be noted 

that, however, the size of the search space increases exponentially with chromosome 

length. 

3.1.9 Symbolic representation. The representation of decision variables can be 

symbolic rather than numeric. The EA known as GP facilitates the representation 

and manipulation of variable length structures (Koza, 1992). The structures are 

composed of functions and terminals (potential inputs) that are defined in a library. 

3.1.10 Constraints handling. Most engineering problems involve constraints, 

including the need to have a stable system and to observe actuator performance 

limits. Five main methods have been proposed to deal with constraints within EA 

solutions: 

1. Coding: The most efficient approach is to embed the constraints in the genetic 

code, making it impossible to generate infeasible solutions. 

2. Penalty functions: Unfortunately it may be impossible, or far from obvious, 

how to adopt the coding method. In this case, penalty functions can be 
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incorporated. These assign a very high cost (or correspondingly very low 

fitness) to infeasible solutions. The approach can be rather ungainly but has 

been sufficiently effective in many applications. 

3. Repair algorithm: As an alternative to simply penalising infeasible solutions, a 

repair algorithm can be used to attempt to convert them to neighbouring 

feasible solutions. The fitness of these new solution is typically reduced by an 

amount equivalent to the cost of the associated repair 

4. Indirect method of representation: Instead of repairing the feasible 

chromosomes, it is also possible to reinterpret the meaning of the existing 

chromosome. This idea forms the basis of the indirect methods of 

representation, in which genotypic information passes through an interpreter 

that builds solutions in the phenotypic domain. In this case, it can prove very 

difficult to analyse the effects of genetic operators due to the complicated 

mapping between genotype and phenotype. However, feasible solutions are 

guaranteed providing that the interpreter is carefully constructed. 

5. Multi-objective optimization (MO): The final technique, which may become 

more popula, is commonly known as MOEA. This expands the research of 

single objective and its other branch called multi-objective genetic algorithm 

(MOGA) is proving to yield convincingly promising results. These techniques 

recast the constraints as objectives to be met and consequently, solved as multi-

objective optimization problems. 

 

3.1.11 Cost functions. The method by which potential solutions are assessed is a 

critical component of EA. If the cost function is inappropriate then the EA search is 

unlikely to progress in an acceptable direction. Initially the raw performance measures 

(objectives) must be defined. This is very much application dependent process. The 

next consideration is the means by which the performance data will be obtained. This 

is often model based. The raw performance data must then be translated into a non-

negative scalar or fitness value. This fitness value represents the expected number of 

times that an individual will be selected for reproduction. Many engineering problems 

consists of multiple objectives and for the purpose of EA these must be combined to 

form a single value. The SGA routine adopted is based on De Jong’s first test function. 

The objective function is defined as described by equation (7). 
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(7) 

Where N is the number of control steps over which the problem is to be solved, and 

uk is the control input. Note that this is a maximization problem and the GA toolbox 

routines are implemented to minimize this objective function, i.e. J is multiplied by 

–1 to produce a minimization problem. 

Or 

 

 

(8) 

This optimization technique can be used as minimization problem or 

maximization problem as in equation (8), depending on the user’s choice. In this 

study, the approach used was to maximize the function: 

 

z = f(x,y) (9) 

 

Where z is the parameter to be maximized, x and y are the considered ranges; f is 

the fitness function and must always be positive. The system identification 

procedure has shown that the low frequency model lies within [–0.5 and 0.5] ranges. 

Therefore, the fitness function was chosen as positive 5, to ensure that the 

maximized parameter is always positive.  

4. OPTIMIZATION OF AIR MOTOR PARAMETERS 

Researchers have explored optimization techniques to solve various control 

engineering problems. Recognizing the difficulty in implementing unconstrained  

H-infinity controllers, in which the order of the controller is much higher than that 

of the plant. Chen and Cheng (1998) proposed a structure specified H-infinity 

controller. EA was used to search for good solutions within the admissible domain 

of the controller parameters (obtained via Routh-Hurwtz stability criterion). Fonseca 

and Fleming (1998) applied a MOGA to the optimization of the low-pressure spool 

N
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speed governor of a Rolls-Royce Pegasus gas turbine engine. The results 

highlighted the importance of progressive preference articulation and interaction 

with the designer, since only a small proportion on the non-dominated set was found 

to be of practical relevance. 

i. Actual and predicted output 

 
Fig. 4: Prediction using GA 

 

 

In the air motor study, investigations were carried out using GA based OSA 
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prediction with different initial values and operator rates. GA parameters used to 

find results in this study are population size = 20, maximum generation = 1000, 

generation gap = 0.8 crossover = 0.9 and mutation = 0.09. The termination of GA 

cannot be predefined, as it is a stochastic search process. It is, to a considerable 

extent, problematic and application dependant as well. Usually, GA search process 

is terminated after a pre-specified number of generations and quality of the best 

members is tested with respect to a desired result. If the result is not acceptable at 

this level, a fresh search may be initiated by changing the parameters and operators 

involved in GA. Besides the factors described above, some other important issues 

such as parallelism, computation time and multiple objectives have to be considered 

while solving a problem with GA-based search process. Though, GA is highly 

parallel in nature, yet it is sometimes painfully time consuming, which requires a 

great deal of attention in applications such as control and signal processing. A 

number of methods including GA-based parallel methods have been investigated to 

enhance the computational speed of GA. Another feature of the GA that has made it 

very attractive among scientists and engineers is its capability to solve multi-

objective problems. Although similar in concept, many variations exist in GA 

(Chipperfield, Fleming, Pohlheim & Fonseca, 1994). 

Figure 4 shows the convergence of the GA algorithm. It is shown that by using 

minimum information specific to the system, near optimal values of control gains 

can be obtained within ten generations. GA converges within the first ten 

generations and repeat again for the next ten. The GA achieved the best mean-

square error level of 0.00285. Fig.4 (i) shows the worst, average and best fitness and 

Fig.4 (ii) shows elitism where it is ensured that, the most fit individual in each 

generation will be carried to the next generation without being modified (survival of 

the fittest).  

4.1 Modeling with recursive least squares 

For comparison purposes, the air motor speed characterization with same 

input/output data was also modeled using a recursive least squares (RLS) algorithm. 

When a data containing input, u, and output, y from an unknown system is 

available, the original system can be estimated using recursive least squares. The 

objective is to look for the minimum value of the integral absolute errors, (iae or ). 

The loss function is the then defined as: 
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(10) 

where  is called the forgetting factor and 0 <   1.  

The update gain L(k) can be expressed as: 

 

 

(11) 

and the covariance matrix P(k) can be expressed as: 

 

 

(12) 

where I is the least square identity matrix. 

 can then be calculated recursively using as: 

 

 

(13) 

 

The RLS type used in this study is the forgetting factor type. The concept of 

forgetting is such that older information is gradually discarded in favour of the most 

recent information or giving less weight to older data and more weight to recent data 

(Chipperfield et al. 1994). Fig. 5 shows the RLS convergence. An integral average 

error (IAE) of 2.83 was achieved and comparison shows that a better air motor 

speed characterisation is achieved using GAs.  

 

4.2 Modeling and control with PID 

An early use of EAs was as an alternative means of tuning proportional-integral-

derivative (PID) controllers. Oliver et al. (1991) used a standard GA to determine 

initial estimates for the values of PID parameters. They applied their methodology to a 

variety of classes of linear time-invariant (LTI) system encompassing minimum phase, 

non-minimum phase and unstable systems. They improved the efficiency of their 

algorithm by identifying ancestral (already-assessed) chromosomes and avoiding re-

evaluation of these. Wang and Kwok (1992) tailored an EA using inversion and pre-
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selection micro-operators to PID controller tuning. They stressed the benefit of 

flexibility with regard to cost function (there be no requirement for mathematical 

tractability) and in particular, alluded to the concept of Pareto-optimality. In one such 

example, Dakev, Whidborne, Chipperfield and Fleming (1997) applied MOGA to 

indirect H-infinity design of an electromagnetic suspension (EMS) control system for a 

(i) Actual and predicted output 
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(ii) Error between actual and predicted output 

Fig. 5: Prediction using RLS 

Maglev vehicle. This is a critical, inherently unstable system that requires active 

control. The approach permitted good visualization of design trade-offs, such as that 

exists between the air gap and the passenger cabin acceleration, underpinned by a 

robust H-infinity controller for all alternative designs. In an independent enquiry, 

Porter and Jones (1992) proposed an EA-based technique as a simple generic 

method of tuning digital PID controllers. Vlachos et al. (1999) applied an EA to the 

tuning of decentralized proportional-integral (PI) controllers for multivariable 

processes. Controller performance was defined in terms of time domain bounds on 

the closed loop responses for both reference following loop interactions. This 

approach afforded good visualization of the performance of potential solutions. PID 

controller tuning is an art first proposed by (Vahidi, Stefano & Peng, 1942). It is 

possible to express controller as a PID in order to have better understanding of the 

meaning of coefficients.  

Characterization of an air motor speed using PID control techniques is shown in 

Fig. 6. Just like in GA and RLS optimization, the idea is to find the control sequence 

that minimizes the cost function. The equation of PID can be expressed as: 
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(14) 

where u(t), y(t) and r(t) represent the system’s input, output and the reference signal 

respectively. 

It can easily be noticed that, the motor has peculiar behavior at low speeds. PID’s 

do not fare well compared to GAs and RLS. It is however known that PID technique is 

a time consuming method, which needs experience, and even the most experience 

technician would take a considerable length of time to tune the plant. The PID 

parameters (Kp, KI and KT) used in this study are 0.001, 10, and 0.01 respectively. 

6.0 COMPARATIVE ASSESSMENT BETWEEN GA-BASED, RLS AND ZN PID 

CONTROLLERS 

A comparative assessment of the above techniques reveals that, PID is unable to 

handle the non-linear dynamics of the air motor system at low speeds. Likewise, 

recursive least squares without forgetting factor did not fair well when presented with
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(ii) Error between actual predicted output 

Fig. 6: Prediction using PID 

 

low speed data. Recursive least squares with forgetting factor between 0.95 to 1 

produced better results of an air motor model when presented with low speed data. 

A fixed forgetting of 0.95 was used in this study. GA-based models produced better 

results and outweighed its RLS counterpart. GA-based controller shows a close 

match (minimum mismatch) between the actual and the predicted output, indicating 

good tracking capability.  

7.0 CONCLUSION 

An optimization process based on GA has been implemented in a typical 

industrial environment characterizing an air motor system. Practical constraints 

influenced the way in which the tuning process was implemented. Nevertheless, 

significant controller performance improvements were realized using EA’s automated 

process, which could be implemented in a much shorter time. The system has been 

modeled with GA modeling technique. It has been shown that by using the minimum 

information specific to the system, which may be easily estimated using the system’s 

input/output together with certain trial and error experiments, optimal gains for good 

control performance gains can be achieved within 10 generations. Comparison of the 

results shows that GA based modeling technique has performed quite well in 

approximating the response of the system against its RLS counterpart. The approach 

adopted is the first step forward towards controller optimization of the air motor 

parameters using GA based techniques. In summary, significant future EA applications 
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are likely to focus on two main areas: off-line, multi-criterion, design-aid tools and 

robust control, on-line search and improvement algorithms. Research in both these 

areas is shaping up and the rate at which EA is applied to real world problems is 

increasing at fast pace. Further investigation into this technique, should be undertaken, 

where by a MOEA and MOGA neuro-fuzzy based controllers are proposed. 
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