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Abstract. Calibration is a vital part of ensuring the safety and smooth
operation of any industrial robot and this is particularly essential for
collaborative robots as any issue pertaining to safety can adversely im-
pact the human operator. Towards this aim, Prognostics and Health
Management (PHM) has been widely implemented in the context of col-
laborative robots to ensure safe and efficient working environments. In
this research, as a subset of PHM research, a novel positional health as-
sessment approach based on a Long Short-Term Memory auto-encoder
network (LSTMAE) is proposed. An experimental test setup is utilised,
wherein the collaborative robot is subject to variations of coordinate sys-
tem positional error. The operational 3-axis position time-series data of
the collaborative robot is collected with the aid of an industrial data ac-
quisition platform utilising influxDB. The experiments show that, with
the aid of this approach, manufacturers can assess the positional health
of their collaborative robot systems.

Keywords: Collaborative Robotics; Prognostics and Health Manage-
ment (PHM); Auto-encoder; Wavelength Scattering; LSTM; Machine
Learning; Manufacturing Assembly.

1 Introduction

The term ‘Collaborative Robot’ (Cobot) refers to a robot that can safely do
tasks in close proximity to humans [1]. They have a wide range of applications
across multiple sectors such as product assembly, product packaging, material
handling, welding, material removal, defect and quality inspections. In order to
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integrate them in advanced manufacturing systems to work alongside humans,
it is essential that they are regularly calibrated and serviced to prevent health
and safety issues [2]. Particularly, issues arising from positional encoders, defects
in the robot-base securing system, or propagation of abnormal vibrations could
manifest as functional failure of the cobot that might not only lead to a drop
in quality and production efficiency, but also compromise the safety of human
operators [3]. Therefore, it is critical to have a solid understanding of the posi-
tional degradations of a cobot such that anomalous trajectories can be flagged
before they have the chance to propagate into a serious fault.

To address the above-mentioned problem, Prognostics and Health Manage-
ment (PHM) can be applied in cobots to support maintenance decision-making.
They can help in reliable monitoring, detection of incipient defects, and fore-
casting of future faults. PHM can be implemented at two distinct levels: i) the
component level, in which it is typically used to monitor the health of specific
components (such as gears, engines, and electronic devices); and i) the system
level, in which it is employed to assess the health of the overall system (such
as robots, and workstations) by taking into consideration a variety of aspects,
including system responses and process-related metrics [4]. The following para-
graphs provide a brief review of the relevant literature and highlight the research
gap that this article aims to fulfill.

Wang et al., [5] proposed a deep learning (DL) architecture based on the
vibration signal of rolling elements, which is de-noised using the combined use of
self-attention (SA) mechanisms and a bidirectional long- and short-term memory
(BiLSTM) network. A similar approach was presented in [6] in which a CNN-
LSTM deep neural network called MC-LSTM architecture was used instead of
SA to detect collisions (collision points) from cobots relying on rotor channel
estimation statistics. Furthermore, Nabissi et al., [7] proposed a solution-based
Robot Operating System (ROS) for automatic failure detection and conditional
monitoring (CM) of cobots. Their architecture can detect joint anomalies us-
ing torque information to define standard health indicators (HIs), depending on
whether the condition is highly dynamic or not. Auto-encoders are also utilised
extensively in the PHM of industrial robots and cobots. Polenghi et al., [3] pro-
posed a hybrid DL-based architecture for fault detection of cobots following PHM
guidelines; a clustering algorithm was used on three different trajectories followed
by the use of an autoencoder to identify unhealthy trajectories. A final clustering
algorithm was used for functional failure trajectories. Similarly, in paper [4], by
Qiao et al., followed PHM guidelines to identify the positional health changes of
industrial robots. However, instead of the traditional DL mechanism, advanced
sensors, visualization tools, and algorithms were used. On the other hand, Yun
et al., [8] proposed an autoencoder-based architecture for inconsistency detec-
tion using the sound sensor in robot limbs. Sound sensors were implemented as
a solution to address the problem of a limited quantity of defect data. A method
that converts two-dimensional sound signals into one-dimensional sound signals
using the short-term Fourier transform (STFT). The STFT signals that were
considered as normal were sent to the training autoencoder; STFT signals that
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were both normal and anomalous were sent to the feed-forward part of the train-
ing encoder so that it could determine the difference between the reconstructed
features. In another experimental study, the use of an autoencoder for the pur-
pose of anomaly detection in cobots was conducted by Graabaek et al. [9]. They
compared various outlier detection methods for cobot pick-and-place operations,
including k-Nearest Neighbors (kNN), Local Outlier Factor (LOF), Randomized
Neural Network (RandNet), Long Short-Term Memory (LSTM), and Bilinear
(combination of CNN and LSTM).

The vast majority of the approaches that are currently available are utilised
for the purpose of managing component-level fault detection of cobots such as
drivers, controllers, sensors, etc., [3,4]; however, only a select few of these meth-
ods are capable of being integrated at the system level [3]. There is a lack of
research in the field of positional health assessment for cobots as the majority
of the published works in the literature do not concentrate on the concept of
predictive maintenance for cobot systems but instead focus on collision detec-
tion and trajectory planning [3]. As positional health anomalies are inherently
not classified as faults by the cobot, it is much more difficult to detect them
than other types of system anomalies. However, identifying them can assist in
avoiding collisions, errors in assembly tolerance, and product damage [4].

Therefore, this paper proposes a novel method for detecting anomalies from
end-effector position data of cobots using an LSTM-auto-encoder network. The
proposed method is illustrated through the use of a case study that features a
simple pick-and-place operation that incorporates two variations of a positional
fault. The findings demonstrated that the proposed method is capable of detect-
ing anomalies from the 3-axis positional trajectory such that associated safety
risks and production quality issues can be avoided. The remaining sections of
the paper are structured as follows: i) the proposed auto-encoder-based solution
is described in greater depth in Section 2, ii) the testing environment is outlined
in Section 3, iii) a discussion of the approach’s performance and experimental
results are presented in Section 4, and iv) the final section wraps up the paper
and lays out the plan for further research.

2 Research Methodology

2.1 Long Short-Term Memory (LSTM) Autoencoder

An autoencoder is a type of neural network that is trained to reconstruct its input
data. The idea is to train the network to encode the input data into a lower-
dimensional representation and then decode this representation back into the
original data. By doing so, the network can learn to capture the most important
features of the input data, which can be useful for tasks such as data compression
or anomaly detection. LSTM is a type of recurrent neural network (RNN) that
is designed to handle the vanishing gradient problem in traditional RNNs [10].
The vanishing gradient problem occurs when the gradients used to update the
weights in the network become very small, making it difficult for the network to
learn long-term dependencies [11]. LSTMs solve this problem by introducing a



4 Hasan et al.

set of memory cells that can store information over long periods of time, allowing
the network to learn long-term dependencies more effectively [12].

Combining LSTM and autoencoder results in an LSTM autoencoder (LST-
MAE), which can be used for tasks such as sequence-to-sequence prediction,
anomaly detection or feature extraction. The LSTM encoder takes in a sequence
of inputs and encodes them into a lower-dimensional representation using the
LSTM memory cells. The LSTM decoder then takes this representation and de-
codes it back into the original sequence. During training, the network is trained
to minimize the difference between the original sequence and the reconstructed
sequence.

2.2 The proposed architecture

Figure 1 shows the proposed LSTMAE architecture. The proposed network
involves a two-stage process that transforms data into a matrix of frames coupled
with LSTM autoencoder. The first stage involves organising the input data into
overlapping frames. The second stage involves feeding the organised data into
an LSTM autoencoder to reconstruct the original signal. Figure 2 shows the
flowchart of the proposed approach.
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Fig. 1: The proposed LSTMAE model.

In stage one, overlapping frames for the input signal as part of the data
transformation are first created. Following that, the dataset is split into training
and testing data, where the latter consists of both normal and abnormal signals.
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The z-score normalisation, as shown in Equation 1, was used on the training set
and provided as input to the LSTMAE.

2= (@—p)/o (1)

where z is the normalized signal, = is the input signal, 4 and o are the mean
and the standard deviation of the input signal, respectively.
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Fig. 2: The flow-chart of the proposed LSTMAE model.

In stage 2, an autoencoder that can learn to reconstruct the input data with
high accuracy while at the same time capturing complex patterns and dependen-
cies from the bottleneck is employed. The network’s encoding phase comprises
a series of interconnected layers, starting with an LSTM layer, followed by a
ReLU layer, a second LSTM layer, a dropout layer and a final ReLU layer. In
order to address the issue of diminishing gradients, the integration of ReLLU



6 Hasan et al.

layers has been implemented to facilitate non-linear transformations. Addition-
ally, a dropout layer has been utilised during training to prevent overfitting by
randomly discarding 20% of the input. To achieve the reconstruction of the in-
put sequence, a custom layer was incorporated into the decoding stage of the
network. This layer was specifically designed to emulate the output of the final
LSTM layer in the encoding stage. The architecture of the decoding stage is
composed of an initial Long Short-Term Memory (LSTM) layer, succeeded by
a dropout layer, a Rectified Linear Unit (ReLU) layer, a second LSTM layer,
and a final ReLU layer. In order to produce the predicted values, the regression
layer receives input from the ultimate decoder layer. It is noteworthy that the ar-
rangement of LSTM cell numbers in the decoder stage is reversed in comparison
to that of the encoder stage.

Once the autoencoder reconstructs the signal, the Root Mean Square Error
(RMSE) metrics for each axis is calculated. The average of the three RMSE
values is then calculated as the ‘average prediction error’. The RMSE calculation
is shown in Equation 2 as

N
1
- | = f_ )2
RMSE = N ;zl (€ — x;) (2)

where N is the total number of input signal, #; and x; are the predicted and
input signal, respectively. Hyperparameter tuning of the LSTMAE parameters
such as the optimiser and activation function using grid search was performed.

A moving average technique is applied on the ‘average prediction error’ for
timeseries smoothing. From this processed timeseries data, an anomaly can be
detected if the prediction error exceeds a threshold value. Once the anomaly is
detected, appropriate measures to deal with the positional fault such as alerting
the human operator and requesting calibration can be carried out.

3 Experiments

3.1 Experimental test setup

The experimental test setup consists of a small-scale cobot and a laptop PC that
collects the real-time position of the end-effector within the coordinate system.
The computer’s Intel(R) Core(TM) i7-11850H CPU @ 2.60 GHz and 32 GB
RAM were used for all operations in the MATLAB environment. The cobot
is equipped with a vision system and adaptive gripper to help pick objects of
different shapes and colours. Figure 3 shows the test setup where the robot
picks the workpieces and places them in a container.

3.2 Process Description

The considered pick and place operation comprises of the human operator first
placing workpieces within the cobot’s workspace. The cobot identifies and locates
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Fig. 3: Experimental test setup.

the workpieces by their shape, colour, and position in relation to the calibrated
workspace coordinates with the help of a vision system. The identified workpiece
is then picked and placed in a container. These steps are repeated for 20 cycles,
where the first 10 cycles are working within normal calibrated conditions. Two
variations of the fault are introduced at the 11th and 15th cycles, respectively,
to create an offset in the cobot’s workspace coordinates. Due to this reason, the
cobot’s end-effector position will have an offset but the cobot does not realise
this and still continues working according to its process plan.

3.3 Faults

The cobot picks and places the object depending on the coordinates of the
workspace. Hence, any offset in the cobot’s coordinate system make it difficult
or impossible in some cases for the gripper to pick the object. This can be
due to functional errors or hardware-related errors such as encoder faults. In
the experiment, two variations of coordinate positional error are introduced by
making changes to the cobot’s software to mimic encoder faults. It is important
to note that the actual position of the cobot, the container and the workspace
are not modified in any way. The first error is a Imm offset in the x,y and z
axes that was introduced at time unit 1970, and the second error is introduced
at time unit 2924 with 5 mm offset in the x,y and z axes.
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3.4 Data Acquisition

On the top right corner of Figure 3, the diagram displays the information flow
and acquisition technologies used by the cobot to create a time series database.
The robot can communicate with the OPC-UA (Open Platform Communica-
tions—Unified Architecture) server via Modbus, where the real-time positional
measurements can be read within the OPC-UA-Modbus-TCP client-server. This
allows OPC-UA to map each reading with unique identifiers within the same
namespace, further allowing protocol conversion and data access controls thus
providing a standardised and interoperable interface between the robot and time
series database. When storing the reading, the combination of Telegraf and In-
fluxDB was chosen. InfluxDB is an open-source, high-performance, and scalable
time-series database designed for handling large volumes of time-stamped data.
It is specifically optimised for storing, querying, and visualising time-series data,
which typically consists of data points associated with timestamps, such as sen-
sor readings, metrics, logs, events, and other time-stamped data generated by
various applications and systems. Telegraf is a data collection agent developed
by InfluxData that is designed to gather, process, and send data to InfluxDB.
It acts as a bridge between various data sources and InfluxDB, further enabling
seamless data ingestion into InfluxDB for storage, querying, and visualisation.
Therefore, within the experiment, positional measurements are identified as sep-
arate measurements and stored within the same database at a sampling rate of
50 ms.

3.5 Implementation of methodology

In the experiment, the end-effector position (i.e., gripper) of the cobot was col-
lected as a form of raw time series signal data for three axes (X, Y, and Z). A
training dataset was used that covered the period of time from time unit 0 to
1969 timeunits, and the remaining data was used to create a test dataset. Each
timeunit represents 100 milliseconds. For stage one of the methodology, in order
to perform data transformation, frame length of 5 timeunits is taken. Follow-
ing the data transformation, the timeseries is input to stage 2 where the LSTM
autoencoder is be used to reconstruct the signal. The L2WeightRegularization,
SparcityRegularization, and SparsityProportion were selected as 1.0e-10, 1.0e-
10, and 0.7, respectively. The model converged at 2000 epochs and the output
reconstructed signal is explained in more detail in the next section.

4 Results

Figure 4 shows a timeseries profile of the end-effector position on the X axis at
the top. The bottom profile in the figure, represents the calculated RMSE error
in the X-axis. The higher the error, the more the end-effector position deviates
from the normal. The variations in the X axis until 1900 are the result of the
minor deviations attributed to the presence of a human operator interacting
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with the cobot’s workspace. However, from approximately 1970 timeunits, the
variants are more prominent. Again at 2200 timeunits, there is an increase in the
variation. This can be attributed to the introduction of the functional error as
an offset in the cobot’s workspace. Similarly, from Figure 5, the increase in the
RMSE error can be seen from 1900 and then at 2200. From Figure 6, a similar
pattern emerges. Following this, the average of the three RMSE values is taken as
the ‘average prediction error’ which is shown in (Figure 7); it can be seen that
the ‘average prediction error’ increases after the introduction of the positional
faults at 1970. A threshold of 0,6 is set for the detection of anomaly and at 2222
timeunits, an alert will be generated to indicate that there is some issue with
the end-effector position. Although such faults might not normally be captured
by the cobot, the use of such a methodology can help continuous monitoring of
the cobots’s end-effector positions. Therefore, when very small deviations, such
as 1mm, is introduced into the workspace coordinates, the proposed approach is
capable of detecting such anomalies using timeseries data and generating alerts
before they can progress into more serious issues.
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Fig.4: Error Prediction in X-axis

4.1 Discussions and Limitations

This section presents a brief evaluation of the proposed methodology and it is
important to highlight that the key focus of the LSTMAE for positional health
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assessment is to identify faults before it manifests itself into more serious prob-
lems in the industrial system. From the above-mentioned results, it can be seen
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that sudden changes in the timeseries profile can be detected as anomalies using
the end-effector positional measurements. However, there is a small lag, approx-
imately 200ms, Although this needs to be researched further using different use
cases, it is a promising area to improve the quality and safety of human-robot
collaboration.

The authors would like to highlight a few limitations of the proposed work.
The time series data collection with the cobot depends on the process we set up
for it to perform. In our experiment, we used a simple pick and place operation
which generates a dataset with limited stochasticity. Therefore, the raw data
was used as input to the LSTMAE architecture. However, if the initial dataset
has a lot of variations, it might not be possible to use the dataset as such;
more complex techniques such as wavelet scattering might need to be employed
before that dataset can be input into the LSTMAE architecture. The proposed
methodology is limited in its scope to positional health assessment of cobots and
only sudden failures are considered. Propagating errors that can be interpreted
from timeseries are not considered in this work.

5 Conclusions

This research presents the novel application of an LSTMAE network in the
positional health assessment of cobots. The approach comprises of two stages
wherein the positional measurement values of the cobot end-effector are subject
to data transformation and used to train the LSTMAE network. During the
training process, RMSE is used as the performance measure to evaluate the net-
work. The trained network is then used to predict faults by detecting anomalies
which can then be used to alert and request calibration. The core contribution
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of the research is pertaining to positional anomalies which is a difficult failure to
detect. However, timely detection of such failures helps prevent health & safety
hazards and ensures product quality. Typically, cobots do not follow strict state
transitions/processes as they need to accommodate working with a human op-
erator. This means that they are subject to process deviations and hence the
research can be extended by using techniques such as process mining to repre-
sent the factual robotic process and state transitions. Another future work of
the research is the determination of the threshold at which the timeseries values
can be considered as an anomaly. Furthermore, the authors believe that the per-
formance of the LSTMAE network can be improved by fine-tuning the process
parameters using different hyperparameter tuning approaches.
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