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Abstract— Confocal Laser Endomicroscopy (CLE) is a tech-
nique permitting on-site microscopy of the gastrointestinal
mucosa after the application of a fluorescent agent, allowing
the evaluation of mucosa alterations. These are used as features
by skilled technicians to stage the severity of multiple diseases,
celiac disease or irritable bowel syndrome among the others. We
present an automatic method for villi detection from confocal
endoscopy images, whose appearance changes with mucosal
alterations. Superpixel segmentation, a well-known technique
originating from computer vision, is used to identify and cluster
together pixels belonging to uniform regions. Each image in
the dataset is analyzed in a multiscale fashion (scale 1, 0.5
and 0.25). From each superpixel, 37 features are extracted
at multiple image scales. Each superpixel is classified using
a random forest, and a post-processing step is performed to
refine the final output. Results in the test set (70 images, 30870
superpixels) show 85.87% accuracy, 92.88% sensitivity, 76.99%
specificity in the superpixel space, and 86.36% of accuracy and
87.44% Dice score in the pixel domain.

Index Terms— SLIC superpixel, confocal endomicroscopy,
automatic identification, segmentation, classification

I. INTRODUCTION

The mucosa of the gastrointestinal tract represents the

main barrier between the inner body and the external world.

A layer of cells runs from the esophagus to the rectum, play-

ing a key role in preventing access to environmental hostile

factors that could cause inflammation. In particular, the in-

testinal epithelium is the largest mucosal surface, regulating

the transit of macromolecules [1], [2]. This barrier is formed

by a double layer of lipid cells, offering strong resistance to

water soluble constituents. The junction between epithelial

cells is a region in which inter-cellular junctions (tight

junctions) are formed, to regulate the constituents’ flow.

This junction’s permeability is dynamic, according to dietary

state, humoral or neural signals and inflammatory medi-

ators, among others. If pathological conditions ensue, the

permeability is increased and a loss of epithelial integrity

is suffered. Impaired epithelial barrier function is present

in irritable bowel disease (IBD), irritable bowel syndrome

(IBS), Crohn’s disease and ulcerative colitis.

Features have been introduced in the literature to assess
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intestinal permeability [3], [4]. In particular, for IIP, three

features have been defined: Cell Drop-out (CDO), shedding

of an enterocyte into the luminal space; Cell Junction En-

hancement (CJE), a fluorescein build-up between two epithe-

lial cells representing impaired tight-junction proteins before

breakage of the final basal junction, and FL: a fluorescein

plume entering the lumen representing loss of apposition

between two adjacent cells.

Another important disease affecting the GI tract is celiac

disease (CD), an immune-mediated enteropathy affecting

genetically susceptible persons triggered by exposure to

gluten and similar proteins. It is one the most frequent

enteropathies and is a hidden epidemic, since most of the

celiac patients will remain undiagnosed during their life.

Exposure to gluten causes variable damage to small bowel

mucosa: mild damage include cases with increased number

of intraepithelial lymphocytes and the presence of Crypt

Hyperplasia (CH), while severe forms of the lesions involve

various degrees of endoscopically relevant lesions such as

villous Atrophy (VA) [5]. Overall sensitivity and positive

predictive values of VA and CH are poor even when zoom en-

doscopy is used [6], implying that these two alterations of the

mucosa are not easily recognized during endoscopy. Thus, in

everyday practice, the identification of CD is made on the

basis of a positive diagnostic intestinal biopsy and of the

concomitant presence of a positive celiac serology [7]. The

gold standard in the diagnosis of CD is the demonstration of

VA in duodenal biopsies, a feature extensively investigated in

the medical community [8], [9]. Image processing methods

as well as quantitative computational methods are highly

needed, required and recommended from the community

for the characterization of the small intestinal mucosa in

suspected and known CD patients [10].

Confocal Laser Endomicroscopy (CLE) is a technique per-

mitting on-site microscopy of the gastrointestinal mucosa

after the application of a fluorescent agent, allowing the

evaluation of mucosal alterations [11]. Images originating

from CLE, as Fig. 1 shows, are very informative about

the status of the mucosa: depending on the region under

analysis and each patient’s health status, all the previously

introduced features can possibly be discerned, but require

manual labeling, skilled technicians and lengthy times to be

quantified and scored. All these features rely on the evalua-

tion of shape and texture of mucosal villi. In CLE images,

though, villi can exhibit smooth and fuzzy borders among

(and between) villi and inter-villous space, and vessels can be

found in inter-villous space. In severe CD stages, a possible

collapse of all villi into a uniform mucosa that is depleted



Fig. 1. Two images from the dataset, showing very heterogeneous structures
and illumination.

of villi can be observed. With IBS/IBD, fluorescein leakage

can occur in the lumen. Other than this, crypts or impaired

junctions can prevent accurate generalization with standard

image processing methods.

We present an automatic method for villi detection from

confocal endoscopy images. An automatic way to identify

such villi in CLE images might accelerate the adoption

of quantitative processes to evaluate features and score the

severity of various diseases in a faster and more robust way.

This work is an improvement on our previous work [12],

which based its roots in morphological processing for achiev-

ing semi-automatic villi identification for feature extraction,

but suffering when tested on highly heterogeneous datasets.

Villi identification is not a trivial process, given that these

structures are highly textured and present high variability in

appearance, shape and dimension.

II. MATERIALS

In this study, 155 confocal images were obtained from

a previous clinical trial conducted at the Gastroenterology

and Liver Services of the Bankstown-Lidcombe Hospital

(Sydney, Australia) [3]. Each patient underwent a confocal

gastroscopy (Pentax EC-3870FK, Pentax, Tokyo, Japan) un-

der conscious sedation and with a intra-venous aliquots of

fluorescein sodium and topical acriflavine hydrocloride to

enhance images. Each image represent a mucosal region of

0.5 × 0.5 mm, with an in-plane resolution of 2 pixel/µm,

resulting in images of 1024× 1024 pixels. As Fig. 1 shows,

images conveying very heterogeneous information have been

selected for this study, for generalization purposes. Among

the three CLE features (fluorescein leakage, cell drop-out

and cell junction enhancement), each image of the dataset

exhibit only one feature. In total, we have 29 CDO images,

65 CJE and 61 FL images. A random selection of 70 images

has been used for training (training set). Another random

selection of 15 of the remaining images were used to tune

the post-processing analysis, a step that will be detailed in

the following section. The remaining 70 images were used

for testing the method’s performance. In order to provide a

ground truth, all images have been manually analyzed by

an expert, providing an outline of each visible villus in the

image.

III. METHODS

The first step in the proposed method aims at the construc-

tion of a rough segmentation identifying a candidate region

of the image with the highest possibility of being part of

a villous fold. This is performed by processing the image

with a computer vision technique called superpixel segmen-

tation, in particular using the SLIC implementation [13].

The purpose of this process is to create clusters of spatially

connected pixels exhibiting similar texture. Each of the su-

perpixels is then analyzed, and 37 features are extracted from

each of them, to be fed to a classifier. A multiscale analysis

is performed, by computing and analyzing three versions of

the original image (original size, plus two rescaled versions

by a factor of 1/2 and 1/4 respectively), bringing the total

size of the feature vector for each superpixel to 111. The

classification step is performed with an ensemble of 50

decision trees, trained on 70 random images from the dataset.

A post-processing refinement step of the computed prediction

is performed to improve the accuracy, tuned on a sub-sample

of the image dataset (15 images, referred to as ”tuning set”)

to maximize ground truth adherence and prediction accuracy.

The algorithm is then tested on the remaining 70 images.

A. Superpixel segmentation

As a pre-processing step for each image, all greyscale

values were normalized between 0 and 256, and a median

filter was then applied to reduce noise. Segmentation via

superpixel is then performed by grouping pixels into percep-

tually meaningful atomic regions, used to replace the rigid

structure of the pixel grid. Many computer vision algorithms

use superpixels as their building blocks [14], [15], given their

straightforwardness and the ease of their implementation.

A commonly used superpixel implementation is the Simple

Linear Iterative Clustering (SLIC) [13]: this implementation,

based on k-means clustering, is fast to compute, memory

efficient, simple to use, and outputs superpixels that adhere

well to image boundaries. SLIC implementation clusters

pixels of the image to efficiently generate compact and

nearly uniform superpixels, imposing a degree of spatial

regularization to extracted regions. Two typical images from

the dataset, with superpixels superimposed, are shown in

Fig. 2. This step has been implemented with MATLAB

R2015b, using an implementation of SLIC superpixels by

vlfeat [16]. This technique only requires two parameters to

set: the desired size of each superpixel N and a regularization

parameter λ, that tweaks the smoothness of their contours.

Once the superpixel segmentation is obtained, the manual

ground truth is transformed in superpixel space, as Fig. 3

illustrates. Each region of this image (corresponding to each

computed superpixel) is labeled as part of a villous fold if,

for that superpixel, the ratio among villous-labeled pixels

and background-labeled pixels is greater than a threshold R,

whose value is computed as explained in Sec. IV.

B. Feature Extraction

For each image in the dataset, three different scales are

analyzed for feature extraction: the image at the original



scale, and two rescaled versions of it by factor of 1/2 and 1/4,

respectively. In this way, a multiscale analysis of each image

is performed, to improve robustness of the classification and

to avoid possible errors due to texture similarities at the

original scale. A total of 111 features are extracted for the

multiscale analysis of each superpixel S, 37 for each image

scale:

• Mean intensity µS and standard deviation σS : greyscale

intensity variations can be useful features to differentiate

among villous folds (i.e., foreground) and mucus (i.e.,

background);

• Contrast CS , Energy ES and Homogeneity HS from

the Gray Level Co-Occurrence Matrix (GLCM): GLCM

is a statistical method of examining texture considering

the spatial relationship of pixels. It calculates how often

pairs of pixels with specified values and spatial locations

occur in an image, building a 8× 8 occurrence matrix.

Extracting statistical measures from this matrix provide

information about the specific texture. From this anal-

ysis, contrast (local variations in the GLCM), energy

(sum of squared elements in GLCM) and homogeneity

(how close the distribution of the elements in the GLCM

is to its diagonal values) measures have been included

in the feature set;

• Histogram of Local Binary Patterns [17] with 32 bins,

hLBPS . Local Binary Patterns (LBP) are one of the

most descriptive features in the field of texture clas-

sification, and are commonly used in computer vision.

They permit the creation of features able to identify dif-

ferent textures in an image. In this work, for each pixel

of the image, an 8-bit word is created by comparing its

value with the ones in its 8-neighborhood. Iteratively,

starting from a fixed direction, if the central pixel has a

grayscale value greater than its neighbor a 1 is encoded,

a 0 otherwise. A histogram (32 bins) is computed for

the LBP in each superpixel, expressing the spectrum of

the texture of the selected portion of the image, and the

result is added to the feature vector.

C. Classification with random forests

For each superpixel, the probability of it being part of a

villus fold is computed as the score of a binary random forest

Fig. 2. Two images extracted from the dataset, with SLIC Superpixels
superimposed.

Fig. 3. From manual ground truth (left) to superpixel-based ground truth
(right).

classifier using 50 classification trees. The training process

has been performed using 30870 superpixels belonging to

the 70 images from the training set.

D. Final refinement and results

After the classification step, binary prediction masks have

been created according to the score assigned to each su-

perpixel by the classifier. To discard isolated superpixels

selected as villi, all connected regions smaller than P pixels

have been excluded from the prediction masks, and holes in

the binary masks were filled, to compensate for obvious false

negatives in the classification step. The tuning of this final

refinement process was based on the tuning set, excluded

from both the training and the testing phase of the classifier.

Accuracy, sensitivity and specificity of the classification step

have been computed, both in superpixel and in pixel space,

along with the Dice scores between the prediction masks and

the superpixel based ground truth.

IV. RESULTS

Superpixel parameters were set as N = 50, λ = 0.05 to

obtain a number of around 440 superpixels per image, each

of them resulting well adherent to image borders. The value

of P = 15742 was tuned by selecting the maximum area

(smaller than Plim = 16900 pixels, as a hard-coded safety

value based on villi’s sizes from the tuning set, corresponding

to a patch of 130× 130 pixels) among all false positive villi

identified in the tuning set. The value of R = 0.5 was set by

maximizing Dice correlation among the labeled ground truth

in pixel space and the one in superpixel space in the images

of the training set (Dice score between pixel-space GT and

superpixel-space GT at R = 0.5 is 96.3%). To quantify the

performance of our method, the Dice coefficient for each

image is computed by comparing the prediction masks with

the respective ground truth both in superpixel space and

pixel space. Results are reported in Table I and Table II

for superpixel-wise and pixel-wise analysis respectively. The

proposed method has been tested on 70 images (a total

of 336 villi), and reached an average general accuracy of

85.9%. Sensitivity (True Positive Rate, TPR) is 92.9%, while

specificity (True Negative Rate, TNR) is 77.0%. Mean Dice

values between each prediction mask and its ground truth

in superpixel space is of 87.4%, and the pixel-wise total



Fig. 4. (a-c) ground truth labeling and (b-d) villi estimated area superimposed on two different images from the dataset.

classification accuracy in pixel space is 86.4%. Sensitivity

and specificity referring to the pixel domain are, respectively,

93.50% and 71.59%. Fig. 4 shows two images from the

dataset and the true (a-c) and detected (b-d) villi for visual

comparison, in superpixel space.

V. CONCLUSIONS

We have presented an automatic method to segment and

detect villi in the epithelium of the gastrointestinal tract,

using SLIC superpixel segmentation, local binary patterns

and a random forest classifier. Automatic villi detection

could lead to automatic quantitative analysis for staging and

grading diseases such as celiac disease and irritable bowel

disease. With the aid of the method presented in this work,

experts will be able to quantitatively analyze images and

compare patterns among pathological and non-pathological

patients. The tools developed for this work will be refined

and exploited in future studies for quantitative analysis and

measurements using CLE in patients suffering from celiac

disease or irritable bowel syndrome.

AccuracySP TPRSP TNRSP

85.9 92.9 77.0

TABLE I

TRUE POSITIVE RATE AND TRUE NEGATIVE RATE COMPUTED

SUPERPIXEL PER SUPERPIXEL, COMPARING CLASSIFICATION AND

GROUND TRUTH.

AccuracyP TPRP TNRP DiceP
86.4 93.5 71.6 87.4

TABLE II

TRUE POSITIVE RATE AND TRUE NEGATIVE RATE COMPUTED PIXEL

PER PIXEL, COMPARING PREDICTION MASKS AND GROUND TRUTH.
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