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Abstract: The recommendation services are critical for IoT since they provide interconnection be-
tween various devices and services. In order to make Internet searching convenient and useful,
algorithms must be developed that overcome the shortcomings of existing online recommendation
systems. Therefore, a novel Stein Variational Recommendation System algorithm (SVRS) is proposed,
developed, implemented and tested in this paper in order to address the long-standing recommen-
dation problem. With Stein’s identity, SVRS is able to calculate the feature vectors of users and
ratings it has generated, as well as infer the preference for users who have not rated certain items. It
has the advantages of low complexity, scalability, as well as providing insights into the formation
of ratings. A set of experimental results revealed that SVRS performed better than other types of
recommendation methods in root mean square error (RMSE) and mean absolute error (MAE).

Keywords: recommendation algorithm; Stein variational; variational inference; Internet of Things;
Stein’s identity

1. Introduction

The vast amount of online content will drown Internet users if online recommendation
systems are not in place, and IoT developers will be confused. Therefore, a huge challenge
exists in extracting useful information from vast amounts of data [1,2]. In order to help
users choose what they want or need, recommendation systems have been given plenty
of attention.

In order to facilitate content recommendation, researchers have developed several
mechanisms. They can be classified into four categories: collaborative filtering (CF)-based
(which includes latent factor models or matrix factorization), social network-based, deep
learning (DL)-based and variational inference (VI)-based [3,4] (see Table 1).

The first type of recommendation recommends by locating existing users with suitable
preferences and offers the content based on their content lists. Collaborative filtering has
become the widely-used recommendation approach in recent decades. The probabilistic
matrix factorization (PMF) was brought up by Salakhutdinov and Mnih in 2007, for exam-
ple, in order to predict Netflix user ratings. The Bayesian probabilistic matrix factorization
(BPMF) proposed by Salakhutdinov and Mnih [5] uses the Markov Chain Monte Carlo
(MCMC) sampling and can deal with large datasets. Based on item categories and an
interesting measure, Wei et al. developed a new item-based CF recommendation algorithm
in 2012 [6]. The algorithm can deal with sparsity and thus demonstrate high accuracy.
The Tag-Based Recommendation System that Yin et al. presented in 2016 can output a
customized recommendation list for TV users through a tag-based recommendation list [7].
A new integrated CF recommendation for social cyber physical system (CPS) was released
in 2017 by Xu et al. [8]. In addition to item ratings and user ratings, the proposed algorithm
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also uses social trust to improve choices. On 15 March 2019, Xu et al. proposed an algo-
rithm for determining the independent degree between different classification sets that
is based on Gaussian cores [9]. In 2020, Meng et al. proposed a security-driven hybrid
collaborative recommendation method for a cloud-based IoT service [10]. Even though a
CF-based recommendation is simple to apply, it has a few favorable features, such as high
computing costs for large user numbers and low accuracy in the existence of sparsity, as
well as difficulty in explaining [11].

Table 1. Advantages and disadvantages of different recommendation methods.

Classification Disadvantages Advantages

Collaborative filtering-based

High computing cost when
dealing with large data, low
accuracy in the existence of

sparsity, difficulty to explain

Direct and intuitive
to implement

Social network-based Unstable accuracy, lacks
individuality and freshness

Works well for most
social networks

Content-based Cold start and overfitting Works well for field require
professional knowledge

Deep learning-based

Require big data, only suitable
for situations involving visual
elements and only keyword

match is not sufficient

Powerful computing ability,
often more accurate

Variational inference-based

Accuracy or complexity
depend on the complexity of
assumptions of target density,

too specific

Reduce overfitting, efficient in
computing hyper-parameters

Since the preference of one user is influenced by the preference of another user, a social
network-based recommendation is easy to understand. Thus, social network-based recom-
mendations have both advantages and disadvantages. Generally, the recommendations are
correct but lack originality and freshness [12].

The content-based recommendation method creates a user preference file from the
user’s rating, viewing, and labeling behavior so that it can recommend the contents most
aligned with that preference. In their pioneering paper, Basu et al. developed a recommend-
ing algorithm capable of incorporating both user ratings and item knowledge [13]. Then,
Bhagavatula et al. developed the content-based academic paper recommending system [14],
Pablo et al. developed an artwork recommendation based on content [15], and Sun et al. de-
veloped a customized service recommendation system based on content [16]. An algorithm
based on content is obviously better for those with professional knowledge in that field.
However, content-based recommendations face the issue of cold starts and overfitting.

Deep learning systems offer superior accuracy to traditional recommendation algo-
rithms because of the computing power enabled by deep neural networks. As part of their
research on DL-based recommendation systems for various uses, Song et al. brought up
a method that utilizes long-term and short-term user history to boost recommendation
accuracy [17]. Using neural networks to model the client’s penchant for all kinds of online
content, Zheng et al. developed a neural autoregressive distribution estimator (NADE)
system the following year. An image recommendation system based on DL for large scale
online commerce was proposed by Shankar et al. in 2017 [18]. This process computes how
similar the visual characteristics of different items are to each other and makes recommen-
dations based on that information. An algorithm integrating DL and CF was proposed
by Deng et al. [19] in 2019. Then, Fang and colleagues exploited DNN’s sequentiality
to enhance recommending performance by capturing Internet users’ preferences in real
time [20]. A second DLTSR-based system was developed by Bai et al. [21] in 2020. Since,
in practical terms, deep neural network (DNN) models are only suitable for some sce-
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narios that contain visual elements and for which only word searching is not sufficient,
such as garment recommendation. Thus, we need other recommendation algorithms to
complement the DL-based method.

The VI-based approach has become popular among researchers because it helps reduce
overfitting and efficiently solves hyperparameters. A variational Bayesian matrix factorizations-
based movie recommendation algorithm developed by Koenigstein et al. in 2013 is one
example. Using variational Bayesian methods, Lim et al. developed a method for predicting
TV program feedback. A 2015 paper by Sedhain and his colleagues [22] described an ap-
proach that utilizes autoencoders (a VI approach) with CF-based recommendation systems.
In a study by Zhang et al. on deep optimization of sparse data using variational matrix
factorization, they propose an algorithm for making recommendations based on a large
scale sparse rating matrix [23]. Then, in 2019, Shen et al. [24] developed a recommendation
system that uses both deep learning, VI, and matrix factorization, called deep variational
matrix factorization (DVMF). However, the accuracy and complexity of VI depend in large
part on how complex the target density is, and without full knowledge, it is difficult to
construct general VI models. Thus, to use a VI model in different scenarios, we have to
construct VI algorithms that improve generality [25]. Recently, Stein’s method, another
class of VI method, is a general tool to obtain bounds on distances between distributions,
offering a powerful density approximation solution [26].

In this paper, inspired by the generalization and low-complexity of Stein’s method,
we offer a Stein Variational Recommendation System that reduces overfitting, incorporates
large volumes of data, and has lower MAE and RMSE. In this paper, we develop and
analyze an SVRS algorithm both theoretically and experimentally in terms of accuracy and
complexity. We also provide justifications and characteristics of our SVRS in the appendix.

We discuss the concept of SVRS in Section 2, and we provide a detailed explanation
of SVRS in Section 3. In Section 4, we simulate experimental comparisons of SVRS with
others. In the end, the paper is concluded in Section 6.

2. Preliminaries

First, we introduce Stein’s identity, the core of SVRS. We define p(ui) as the feature of
user i, p(vj) that of IoT service j, the density to be obtained, and φ(u) = [φ1(u), . . . , φd(u)]
and φ(v) = [φ1(v), . . . , φd(v)], the approximate distribution or functions of p(u) and p(v).
Stein’s discrepancy, a general measure of how different two distributions, is the basis of
Stein’s identity, which means that, for any regular φ, the following equality stands:

Eu∼p[Apφ(u)] = 0 where Apφ(u) = Oulogp(u)φ(u)T +Ouφ(u), (1)

in which Apφ(u) is the Stein operator, and O is the derivation operator. In this way, we can
solve u and v at the same time, since Ev∼p[Apφ(v)].

As noted before, Stein discrepancy D(q, p) is the divergence of one distribution from
another Gaussian distribution [25,27] (only Gaussian distribution can obtain a Stein’s
identity), which is

D(q, p) = maxφ∈F{Eu∼q[trace(Apφ(u))]}. (2)

of which φ : Rd −→ Rd is differentiable everywhere. Many ground truth inference
problems have been solved using Stein’s identity. As stated earlier, we intend to compute a
posterior density of p in our paper.

Stein’s identity is similar to but differs from the KL divergence in that it can be used to
describe the distance between different distributions in a more general sense. The Stein
discrepancy is equal to zero if and only if p = q. Therefore, we use q, the variational
distribution, to replace p, and then try to minimize the Stein discrepancy between p and q.
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However, another question arises when doing so, i.e., selecting the right kind of φ(u)
to simplify the computation process of minimizing Stein discrepancy. Therefore, we restrict
φ(u) to a unit hyperspace of reproducing kernel Hilbert space (RKHS) [25], which is

D(q, p) = maxφ∈Hd{Eu∼p[trace(Apφ(u))], s.t.||φ||Hd ≤ 1}. (3)

Furthermore, the kernel method is used to reduce the computational complexity due
to its simple and elegant features—of which the reproducing kernel is a promising type.
We use k(u, u′) : U × U → R to denote the positive kernel. Therefore, the optimum of (3)
is φ(u) = φ∗q,p(u)/||φ∗q,p||Hd [27], which can also be written as

φ∗q,p(u) = Eu∼p[trace(Apφ(u))], (4)

and therefore Apφ(u) can be reached using U-statistics [27]

φ∗q,p(u) = Eu,u′∼p[Apk(u, u′)], (5)

and also
D(q, p) = ||φ∗q,p||2Hd . (6)

3. SVRS

The standard procedure of the recommendation system can be seen in Figure 1. To
begin with, we pre-train a set of user-item scores. Define ui to be the feature vector of user i,
the value of which is in U ⊂ Rdu ; then, vj the feature vector of item j, the value of which is
in V ⊂ Rdv . The number of users is |U| = N, and the number of items is |V| = M. Denote
the rating matrix as L. Therefore, we reach the fundamental objective, i.e., to calculate
p(U, V|L). Note that the matrix factorization way decomposes L to obtain U, V. After this,
we use U and I, the ground truth of user and item feature, to further predict ratings that
users have not given. Specifically, the objective of SVRS is to obtain the U and V that can
maximize the likelihood, or minimize the Stein discrepancy. The user feature density is

p(u) := p̄(u)/Z, (7)

of which p̄(u) := p0(u)∏N
i=1 p(Li|u). Z =

∫
p̄(u)du is the normalization. Notice that

U and V are calculated alternatively, and that, in order to save space, we may skip the
derivation of V (see Figure 2 for the procedure of SVRS).

User Feature
Age
· · ·
Job

Item Feature
Class
· · ·

Time of Debut

Feature Extractor

User Feature Vector

Item Feature Vector

Recommendation
Algorithm

Recommendation List
Item1
Item2
· · ·

Figure 1. Procedure of the recommendation system.
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User Feature

Item Feature

Feature Density Latent Factors

Objective

Training Data

SVRS

Figure 2. Schematic of SVRS. (Training data is Douban Movie, left picture of Item Feature is block-
buster movie in China).

Traditionally, p(u) is maximized by maximizing the function that has the same mono-
tonicity with joint probability, a highly-demanding process to apply directly in VI. To
calculate the log joint density, we can instead compute the evidence lower bound (ELBO),
or the metrics that measure the difference (or distance) of p(L|u) with q(u)—of which q(u)
is the approximate variational distribution [28]:

log(p(L)) =
∫

q(u)log(p(L, u))dL−
∫

q(u)log(q(u))dL+

(−
∫

q(u)log(
p(L|u)
q(u)

)dL)

= L(u) + KL(q||p),

(8)

where KL(q||p) = −
∫

q(u)log( p(L|u)
q(u) )dL, q(u) = ∏N

i=q qi(ui).
Thus, two methods can be used to obtain the target distribution that can maximize the

log likelihood of L, maximizing ELBO or minimizing KL(q||p). We choose the second one.
In order to minimize the KL divergence, we need to differentiate it with respect to q(u).
This is not easy. Thus, we have to set q(u) to simple forms, or use MCMC sampling instead.
In this work, we choose the first popular way.

SVRS requires some assumptions before we can proceed. To begin with, we assume
the rating noise is Gaussian,

p(Lij|Ui, Vj) = N (UiVj, δ2)

= log
1√
2πδ

exp(−
Lij −UiVj

2δ2 ).
(9)

Since we use q(u) and q(v) to replace p(L|u, v), we need to first define which form of
q(u) / q(v) is best-suited. Clearly, the optimal q(u) and q(v) have the smallest divergence
with p(L|u, v). Thus, the best q(u) and q(v) have the following form:

q∗(u) = arg minq∈Qu
KL(q||p)

= Eq[logq(u)]−Eq[logp̄(u)] + const.,
(10)

q∗(v) = arg minq∈Qv
KL(q||p)

= Eq[logq(v)]−Eq[logp̄(v)] + const.,
(11)

of which Qu is q(u)’s space, and Qv is q(v)’s space. Intuitively, the best Q possesses the
feature of accuracy and tractability. Therefore, it is rational to choose linear Q that is
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continuous and differentiable (in another perspective described in other papers, this is the
trick of reparameterization) [29].

In this way, using
T(u) = u + ρφ(u), (12)

we can simplify the computing and differentiating process. ρ denotes the step-size, and
φ(u) is selected simple density. If we take Equation (12) as the updating function, then
φ(u) will be the updating direction. T can be viewed as a map that is invertible and
monotone [30]. It is our goal to output data points to model the posterior distribution.
Therefore, we initially produce some data points and then update φ(u) instead gradually
in order to obtain the final optimal data sets. Notice that there is always a measurable map
T if q and p are atom-less density.

Based on Liu et al.’s work [25], there is a close connection between KL divergence and
Stein’s identity, and we obtain the following conclusion:

Theorem 1. Letting T(u) = u + ρφ(u) and q[T] = q[T](T(u)), one can obtain

OρKL(q[T]||p)|ρ=0 = −Eu∼q[trace(Apφ(u))], (13)

where Apφ(r) = Orlogp(r)φ(r)T +Orφ(r) is the Stein operator.

Proof. Seen from Equation (13) with (2), one can obtain φ(u) that iteratively reduces the
KL-divergence.

Thus, we can obtain φ(u) by solving the maximum of Eu∼q[trace(Apφ(u))], which is
computed according to Theorem 1.

Theorem 2. The Stein’s variational direction is the steepest updating direction φ(r) in an RKHS
Hd with dimension d, which is:

φ∗(u) = ER∼q[Orlogp(r)φ(r)T +Orφ(r)], (14)

in which φ(u)T = k(u, ·).

This indicates that the negative gradient direction of Equation (12) is also the derivative
of the KL-divergence w.r.t. p(u), which is also equal to p(u)’s Stein discrepancy.

Thus, we obtain the updating equation

ql+1 = ql[T∗l ]
, (15)

where T∗l (u) = u + ρlφ
∗
ql ,p(u). In this way, we have converted the problem of calculating

the user density p(u) into a Stein VI optimization that calculates data points of p(u). Thus,
SVRS can be summed up in Algorithm 1.

A detailed analysis of the appendix shows that SVRS is unbiased and converging, and
that it is closely related to the popular PMF and CF models.

3.1. Convergence Proof

Defining the bounded Lipschitz metric as the maximum difference of their mean
values on a continuous text function,

BL(u, v) =sup f {Eu f −Ev f s.t.‖ f ‖BL ≤ 1}

where‖ f ‖BL = max{‖ f ‖∞, ‖ f ‖Lip},
(16)

where, according to Liu et al. [26], we have:
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Algorithm 1 SVRS.

Input {U0}M
0 , {V0}M

0 , φi, φj, ρ0, Zij
Output: U,V,rij

for each label Zij do

U(t+1)
i ← Ut

i + ρtφ̂
∗
i where

φ̂∗i = 1
n ∑i′=1[k(ut

i′ , u)Out
i′

logp(ut
i′) +Out

i′
k(ut

i′ , u)]

V(t+1)
j ← Vt

j + ρtφ̂
∗
j where

φ̂∗j = 1
n ∑j′=1[k(vt

j′ , v)Ovt
j′

logp(vt
j′) +Ovt

j′
k(vt

j′ , v)]

end for

until convergence

Output: Ui, Vj, rij = arg max rij
P(rij|Ui, Vj)

Compute: MAE, RMSE.

Theorem 3. Assuming Apk(u, u′) is bounded Lipschitz on (u, u′) with a limited norm, then, for
any two probability measures s, t, we have

BL(T(u), T(u′)) ≤ (1 + 2ρ)‖Apk(u, u′)‖BLBL(u, u′). (17)

In addition, furthermore, we have:

Theorem 4. Let p̂(u)t be the empirical measure of Ui
t at the tth iteration of SVRS, and assume

limM→∞BL( p̂(u)M
0 , p(u)∞

0 ); (18)

then, for p(u)∞
t = T(p(u)∞

t−1), we have

limM→∞BL( p̂(u)M
t , p(u)∞

t ). (19)

This suggests that, as long as the initial data points converge, the final result’s prob-
ability measure will surely converge, which means that SVRS will introduce no further
divergence during iteration. Furthermore, from the property of RKHS, and treating the
data points obtained from each iteration, the density represented by the data points can be
treated as a convergent sequence, which is unique for map T. Therefore, the theoretical
final measure reached by a sequence of T is a fixed point. We therefore can show that SVRS
has good convergence property.

Unbiasedness and Variance

Assuming that the final variational distribution we obtained is q∗θ , then the gradient of
q∗θ with respect to θ is φ∗. Since the SVRS algorithm produces a sequence of particles {Ui}
that construct the objective distribution p(u) (and p(v)). We can say that f ({Ui}) = p(u).
If f is continuous at the value space of θ, and {Ui} is the unbiased samples of q∗θ , we can
see that f ({Ui}) is also the unbiased estimation of p(u).

In addition, the Fisher information [31] of θ is Eθ [
∂logqθ(u)

∂θ ]2. Since the updating
direction of θ is also connected to the updating direction of φ, we can see that the Stein
discrepancy is closely related to the Fisher divergence, which is F(q, p) = Ex∼q[‖sp(x)−
sq(x)‖2

2]. According to the Cramer–Rao bound, we have

Varθ(δ) ≥
(T′θ)

2

Eθ [
∂logqθ(u)

∂θ ]2
. (20)
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Therefore, we have the lower variance bound for SVRS. The reason is that the second
part of Equation (14) acts as a repulsive force to drive the particles away from the sink value,
i.e., the mean value of the target distribution, causing the variance to increase. Interested
readers can refer to Oates et al. [32] for variance reduction methods.

3.2. Connection with CF-Based Recommendation

SVRS can be treated as a kind of model-based CF algorithm. A typical model-based
CF algorithm first develops a model of user ratings, and then uses the probability approach
to compute the expected prediction of user ratings on other items. From the perspective of
Equation (10), computing the expected prediction is an intermediate step in SVRS, and, in
a general sense, SVRS can be called a CF-based recommendation algorithm. However, a
traditional CF-based algorithm computes the similarity between users or items, and then
recommends a list of items according to the similarities, and in this sense, CF is just a kind
of classification or cluster algorithm that produces the feature distance between users and
items, and cannot scale or deal with sparsity.

3.3. Connection with PMF Models

PMF is a popular recommendation algorithm that has slightly better performance than
others. However, PMF is only a very primitive form of loss optimization framework. Its
main computing technique is the same as VI, or SVRS, formulating the user/item feature
parameter into a posterior inference problem, and then solving the optimum by setting the
derivatives with respect to the target parameter to 0. The differences are that the PMF is
not general, which requires a specific assumption of the prediction distribution, and it does
not treat the recommendation problem as a general variational optimization framework.

4. Experiment

In this paper, we evaluate SVRS in terms of the most important measure for recom-
mendations, MAE and RMSE. The data sets used are Movielen-1M, Movielens-10M and
Douban datasets. In addition, the results are averaged. To compare more subjectively, we
compare SVRS with MV, PMF, BPMF, AutoRec, NADE, DLTSR, DVMF and SVRS.

4.1. Configurations

Then, we introduce the experimental setting (Some of the settings can be seen in Table 2).
The training data are a matrix with rating scores ranging from [1, 5]. Before comparing
with DL-based recommendation algorithms, we first train those DNNs. When training
with the MovieLens-100K as well as MovieLens-1M, use minipatches of 10,000 to speed
up convergence. The regularization coefficient of PMF is λ = 0.001, and the user feature
dimension is 10. The regularization coefficient of BPMF is λ = 0.002, and the user feature
dimension is 30. With respect to AutoRec, we use a three layers neural network, and set
λ = 1. The number of neurons is 250 for MovieLens-100K and MovieLens-1M, 500 for
Douban datasets. NADE has the same settings as Autorec, with 0.05 the learning rate. As
another DL-based recommendation algorithm, DLTSR takes much training time, and needs
to be accelerated. The reason is partly high at 0.01, and the regularization parameter is
λ = 0.02. For DVMF, we use five layers and set λ = 0.001. The number of neurons is 750
for MovieLens-100K, 2400 for MovieLens-1M, 1600 for Douban datasets. As for SVRS, the
user density and item density prior are assumed to be Gamma distribution. In addition,
we repeat multiple times to obtain MAE and RMSE.
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Table 2. Parameter setting.

Parameter Commentary Value

p(ui) feature of user i
p(vj) feature of IoT service j or item j
φ(u) smooth vector functions used to approximate p(u)
φ(v) the smooth vector functions used to approximate p(v)
Lij initial ratings

Apφ(u) the Stein operator,
D(q, p) Stein discrepancy

λ regularization parameter 0.001, 0.002, 1

4.2. Convergence

We demonstrate the influence of sample number and step-size ρ on SVRS in terms of
testing accuracy and running time. It is easy to see from Figure 3a that a smaller step-size,
i.e., [0.01, 0.05] leads to higher accuracy while a larger step-size contributes to fluctuating
accuracy. However, due to the feature of scalability, SVRS maintains higher accuracy
despite step-size changes. In addition, the change of step-size only affects SVRS running
time. Of course, smaller step-size often leads to slower convergence, which is shown in
Figure 3b. Furthermore, sample numbers (the number of data points produced by SVRS to
approximate the posterior density) can also impact convergence rate. Therefore, in order to
find the most efficient parameters, we have to select carefully to reach the optimal result.
Therefore, we set ρ = 0.05 and M = 100.
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Figure 3. Testing accuracy and running time under different M. (a) testing accuracy under different
M; (b) running time under different M.

4.3. Analysis

Figure 4a shows the results using datasets MovieLens-100K and MovieLens-1M in
terms of RMSE. It is easy to see that SVRS improves by 0.19% compared with the DVMF.
Note that DLTSR reaches the same result as SVRS because it adapts to different training data
and is computationally efficient. In summary, SVRS performs better than other algorithms.

Figure 4b shows the results using MovieLens-100K and MovieLens-1M in terms of
MAE. It is easy to see that SVRS improves by 2.3% compared with the DVMF. Figure 4c
shows the results using Douban data in terms of RMSE. It is easy to observe that SVRS
improves by 0.15% compared with the DVMF. Figure 4d shows the results using Douban
data in terms of MAE. It is easy to see that SVRS improves by 2.15% compared with
the DVMF.
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Figure 4. RMSE and MAE Comparison. (a) comparison under MovieLens data; (b) comparison under
Douban data; (c) comparison under MovieLens data; (d) comparison under Douban data.

5. Discussion

We evaluate the performance in terms of convergence and accuracy using MovieLen
and Douban datasets of the algorithm and the results reported in Section 4. In summary,
(Stein Variational Recommendation) SVRS has the quality of good convergence, accuracy,
and low complexity. As long as the initial data points converge, SVRS will not introduce
further divergence Specifically, the convergence rate of SVRS is satisfactory. It depends on
parameters such as step size, sample numbers, etc. The accuracy of SVRS is slightly higher
than its existing counterparts.

SVRS also possesses unbiasedness and convergent variance, essential for convergence
behavior and accuracy when the dataset scales. SVRS is also closely related to popular
CF-based recommendations and PMF models in terms of the design process. This gives
SVRS a promising future to be generalized. SVRS offers a powerful way to infer ground
truth about users and items. However, the development of SVRS is still at its early age,
and most existing works focus on theoretical analysis. We believe that, in the future, the
true benefits of Stein Variational recommendation will be found in more applications by
providing services for the Internet of Things.

6. Conclusions

Providing convenient and useful IoT services requires solving the problems facing
the online recommendation systems. The target of this paper is to propose and verify a
novel Stein variational inference based recommendation algorithm—SVRS that infers the
ground truth density of latent variables and predicts the ratings of items they might give.
Users who have not viewed a particular piece of content can also be predicted via this
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algorithm. We offer insights into how user ratings are formed in our SVRS, and we can
extend its capabilities to incorporate more dimensions. SVRS performs better than existing
algorithms by simulations.

In the future, we will try to apply SVRS to more applications to solve the most
prominent problems in the industry and continue to study the most accurate and practical
ground truth analysis methods. Specifically, there are four promising areas that can be
explored. The first is how to identify the factors or parameters that can influence the
performances of SVRS. In the current literature, most authors compare their models’ best
performance with others to verify them. However, any model’s performance is not fixed, all
subject to the change of settings, data quality, model dimension and model complexity. It is
urgent to build a unified platform that can show readers and researchers the advantages
and disadvantages of SVRS for their information. The second is how to build SVRS
based recommendation models that can adapt to complex network structures. In the
existing literature, most Stein variational recommendation-based models use a different
simplification method to deal with networks with complex structures. Therefore, it is
necessary to develop recommendation models that require less simplification and adapt to
complex models. The third is how to unify SVRS with different kinds of recommendation
models. As we have seen in the above discussions, SVRS has a close relationship with other
recommendation models, such as CF and PMF. There is no doubt that all those methods
share some common methodology inherently. However, how to unify them together, or if
they have differences that cannot be reconciled, the exact differences between them remain
unexplored in the literature. The last is how to apply SVRS in the fields where there is no
satisfying solution for recommendation or prediction. Since SVRS is a rather new tool in
the literature, many fields lack the application of the Stein Variational-based method to
solve the most prominent problems. Therefore, the wide application of the Stein variational
recommendation-based method can not only promote the theoretical understanding of
itself but also contribute to the research of other fields.
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