Anisotropic plasticity mechanisms in a newly synthesised High Entropy Alloy investigated using atomic simulations and nanoindentation experiments

Pengfei Fan¹, Nirmal Kumar Katiyar², Muhammad Arshad³, Mingwen Bai⁴, Hui Mao⁵ and Saurav Goel²,⁶*

¹Centre for Precision Manufacturing, DMEM, University of Strathclyde, Glasgow, G1 1XQ, UK
²London South Bank University, 103 Borough Road, London, SE1 0AA, UK
³Centre for Manufacturing and Materials, Coventry University, Coventry, CV1 5FB, UK
⁴School of Mechanical Engineering, University of Leeds, Leeds, LS2 9JT, UK
⁵Department of Chemical Engineering, Imperial College London, London, SW7 2AZ, UK
⁶University of Petroleum and Energy Studies, Dehradun, 248007, India

*Corresponding author: GoeLs@Lsbu.ac.uk

Abstract

This work used atomic simulations and nanoindentation experiments to investigate hardness, modulus alongside sub-surface crystal defects and dislocation mediated plasticity mechanisms leading to anisotropic pile up and local entropy variation in high entropy alloys. The experimental campaign began from Thermo-Calc phase prediction of Ni₂₅Cu₁₈.₇₅Fe₂₅Co₂₅Al₆.₂₅ HEA which followed experimental synthesis of the material using arc melting method and experimental nanoindentation using a Berkovich indenter under load-controlled conditions. Through MD simulations, the value of h_f/h_max in monocrystalline HEA was consistently found to be larger than 0.7 which suggested pile-up behaviour to dominate and sink-in behaviour to be unlikely. In the case of (110) and polycrystalline HEA substrates, the elastic work in the indentation hysteresis loop was seen to be larger than the (100) and the (111) orientations which explains that the (110) orientation substrate showed least elastic modulus and hardness while the (111) monocrystalline HEA showed the highest elastic modulus and hardness. From the simulations, a “lasso” type loop on the (110) orientation and cross-over of shear loops on the other orientations accompanied by dislocations of type 1/6<112> (Shockley), 1/2<110> (perfect), 1/3<001> (Hirth), 1/6<110> (Stair rod) and 1/3<111> (Frank partials) were seen to manifest an early avalanche of competing plasticity events. The defects
accompanying these dislocations in the sub-surface were identified to be FCC intrinsic stacking faults (ISF), adjacent intrinsic stacking faults (quad faults), coherent \(\Sigma 3 \) twin boundary and a coherent twin boundary next to an intrinsic stacking fault (triple fault). The EBSD analysis applied to the MD data showed that the (210) orientation and the \(<110>\) family of directions were seemed to be preferable to plastically deform the FCC phased \(\text{Ni}_{25}\text{Cu}_{18.75}\text{Fe}_{25}\text{Co}_{25}\text{Al}_{6.25} \) HEA.

Keywords: High entropy alloy; Deformation behaviour; Grain boundaries; Nanoindentation; MD simulations.

1 Introduction

High-entropy alloys (HEAs) have attracted remarkable attention due to their excellent mechanical properties such as high strength and ductility [1][2][3], excellent fracture toughness [4][5] and stability at both cryo-temperature and at high temperatures [6], corrosion resistance [7], radiation resistance and wear resistance [8][9][10][11]. These properties makes HEA an ideal engineering material for a wide range of applications in sectors ranging from nuclear [12], photothermal conversion [13], integrated circuits [14], aerospace high-pressure gas turbine engine [15] and many more.

To further enhance the gas and steam turbine efficiency in comparison with traditional Ni-based superalloys, recently, a new HEA \(\text{Ni}_{25}\text{Cu}_{18.75}\text{Fe}_{25}\text{Co}_{25}\text{Al}_{6.25} \) has been reported through the machine learning method which was experimental synthesised using vacuum arc melting under inert gas environment [16]. Similar to other engineering materials, HEA also possess strong anisotropy, however, these aspects of anisotropic deformation behaviour of HEA have just begun to be investigated. This is important for instance, if HEA is being promoted for its use as a potential bond coating material for gas turbine engines, then deploying HEA with preferable orientation can improve coating lifetime. Also, it is unknown at this stage whether FCC phased HEAs and BCC phased HEAs follow same extent of anisotropy as monoatomic elemental metals such as copper (FCC) and
Tantalum (BCC) or the presence of different type of atoms makes HEA behave differently during its plastic deformation?

Computation calculations offer new possibilities to obtain faster predictions about the material behaviour. On this front, the use of machine learning and data driven models, offer new avenues and much work in this area is being undertaken at present [16]. On the contrary, atomistic computational tools such as molecular dynamics (MD) simulation use physics-based rationale to provide theoretically accurate predictions. Researchers can now use MD to probe crystal defects, dislocation mediated plasticity and preferential directions of deformation with a greater level of certainty [17][18]. On course to such an investigation, a recent study investigated the influence of alloy composition and grain size on the mechanical behaviour of AlCoCrFeNi HEA [19]. However, this study did not focus on investigating anisotropy in HEA. Similarly, another MD simulation was employed to investigate FeNiCrCoCu HEA and it reported about the complementary roles of dislocation activity and twinning in controlling plasticity during nanoindentation response [20].

These studies provides a good basis to build on the initial work and in that process, it is the first investigation which provides a comparison of the MD simulation with the nanoindentation experiments on Ni$_{25}$Cu$_{18.75}$Fe$_{25}$Co$_{25}$Al$_{6.25}$ high entropy alloy to better understand the anisotropic behaviour during nanoindentation.

2.0. Experimental and simulation setup

2.1. Experimental synthesis and nanoindentation of Ni$_{25}$Cu$_{18.75}$Fe$_{25}$Co$_{25}$Al$_{6.25}$ alloy

2.1.1. Theoretical phase prediction of HEA

The CALPHAD methodology was utilised to minimise the global Gibbs free energy of a multicomponent system as a function of temperature and composition, thereby enabling the prediction of phase equilibria for Ni$_{25}$Cu$_{18.75}$Fe$_{25}$Co$_{25}$Al$_{6.25}$. To visually represent the phase equilibria of this alloy in terms of phase percent as a function of temperature, a one-dimensional step diagram was employed using Thermo-Calc software (2023a) with TCHEA6 database [21], as shown in Fig 1.
Figure 1: Phase composition of Ni$_{25}$Cu$_{18.75}$Fe$_{25}$Co$_{25}$Al$_{6.25}$ alloy as a function of temperature calculated by Thermo-Calc software with TCHEA6 database.

Fig 1 shows key characteristics of the phase equilibria, including the width of the single-phase face-centred cubic (FCC) region of the high-entropy alloy (HEA) spanning from the solvus to the solidus at 1380°C down to a lower temperature. Additionally, the diagram illustrates the appearance of a body-centred cubic (BCC) phase at intermediate temperatures. The as-cast alloys contain inhomogeneities that arise from the partitioning of slow-diffusing/high-melting point elements from fast-diffusing/low-melting point elements [22]. These inhomogeneities introduce variations not only in the composition but also in the solidus (incipient melting) temperature. The equilibrium diagram illustrates the phases that emerge when the alloy is annealed at a sufficiently high temperature for a long duration to allow for complete atomic diffusion and the attainment of the most thermodynamically stable configuration with the lowest possible Gibbs free energy. The CALPHAD approach plays a critical role in predicting the compositional evolution during solidification by coupling databases of thermodynamic parameters with diffusional kinetics parameters.
2.1.2. Experimental synthesis of HEA

To begin the experimental synthesis, the metal buttons were procured. Various metal buttons of Ni, Cu, Fe, Co and Al elements (purities > 99.99%) were purchased from Thermofisher Scientific®. All elemental metals were melted together by vacuum arc melting under inert gas (high purity Ar) environment. The ingot formed in the process was melted and solidified multiple times to ensure chemical homogeneity, and then the HEA button was vacuum sealed in a quartz tube, homogenised at 1000°C for 10 hours, and then quenched into water for stabilising high-temperature phase. The detailed description of this high-entropy alloy is provided in Table 1.

Table 1: Detailed description of newly synthesized High-entropy alloy [16]

<table>
<thead>
<tr>
<th>Novel high-entropy alloy (Ni_{25}Cu_{18.75}Fe_{25}Co_{25}Al_{6.25})</th>
<th>Ni</th>
<th>Cu</th>
<th>Fe</th>
<th>Co</th>
<th>Al</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calculated physical parameters</td>
<td>ΔH_{mix} (kJ/mol)</td>
<td>ΔS_{mix} (J/K.mol)</td>
<td>VEC</td>
<td>Δχ</td>
<td>δ</td>
</tr>
<tr>
<td></td>
<td>0.2656</td>
<td>12.689</td>
<td>9</td>
<td>0.07178</td>
<td>3.5973</td>
</tr>
</tbody>
</table>

The specimen obtained from the experiments was a polycrystalline HEA with its composition Ni_{25}Cu_{18.75}Fe_{25}Co_{25}Al_{6.25}. The XRD examination of Ni_{25}Cu_{18.75}Fe_{25}Co_{25}Al_{6.25} revealed face-centered cubic (FCC) structure as shown in Fig 2. The supercell lattice parameter (lattice constant) of this alloy was determined to be 0.3615 nm. The XRD of the simulated HEA alloy is also shown for comparison and both plots confirmed crystalline FCC structure with similar lattice parameter.
Figure 2: Experimental X-ray diffraction pattern along with the simulated X-ray diffraction pattern of the newly synthesised high entropy alloy Ni$_{25}$Cu$_{18.75}$Fe$_{25}$Co$_{25}$Al$_{6.25}$.

2.1.3. Nanoindentation experiments on HEA

Nanoindentation experiments were conducted under load controlled conditions on a NanoTest Vantage machine (V5) machine from Micromaterials, UK. A Berkovich indenter tip (radius ~140 nm) was used to indent the HEA substrate using a velocity of 0.5 μm/s. The Berkovich indenter tip was prescribed with a peak load of 10 N in 4 s and the load was held for 20 s followed by unloading in 10 s as per the load function shown in Fig 3.

Figure 3: (a) Schematic of the Berkovich indenter tip and (b) load function used for the nanoindentation.
2.2. MD simulation setup

The MD simulations were carried out using the “Large-scale Atomic/Molecular Massively Parallel Simulator” (LAMMPS) software [23]. A series of MD simulations consisted of nanoindentation on the (100), (110), (111) and polycrystalline Ni$_{25}$Cu$_{18.75}$Fe$_{25}$Co$_{25}$Al$_{6.25}$ substrates were performed. The crystal structure of the HEA substrate was built by employing special quasi-random structures (SQS) approach in the Atomsk software [24]. The schematic model of the monocrystalline and polycrystalline HEA built in this work are shown in Fig 4. The polycrystalline HEA specimen of size 36.1 nm × 36.1 nm × 35.9 nm containing 30 number of grains was modelled and visualised using Open Visualization Tool (OVITO) [25] as shown in Fig 4(b) and Fig 4(c). The post processing of LAMMPS data was performed with an automated “dislocation extraction algorithm” (DXA) algorithm [26] to identify crystal defects, origins of dislocations and their Burgers Vector. The MD simulations were performed using the NVE ensemble at an equilibrated temperature of 300 K by applying the Nose–Hoover method [27] for 30 ps. The boundary conditions were set to be p, s and p type in X, Y and Z directions respectively [28][29].

For robust description of the chemical atoms containing five types of atoms (Ni, Cu, Fe, Co and Al), an EAM potential developed by Zhou et al. [30] was used. Further details of the process parameters used to perform the MD simulation of Ni$_{25}$Cu$_{18.75}$Fe$_{25}$Co$_{25}$Al$_{6.25}$ in this work are provided in Table 2.
Figure 4: (a) Monocrystalline Ni$_{25}$Cu$_{18.75}$Fe$_{25}$Co$_{25}$Al$_{6.25}$ HEA model (b) polycrystalline Ni$_{25}$Cu$_{18.75}$Fe$_{25}$Co$_{25}$Al$_{6.25}$ HEA model (c) Identification of individual grains in the polycrystalline HEA sample

Table 2: Detailed parameters used to perform the MD simulation of nanoindentation of Ni$_{25}$Cu$_{18.75}$Fe$_{25}$Co$_{25}$Al$_{6.25}$ HEA

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dimensions of the HEA substrate</td>
<td>36.1 nm × 35.9 nm × 36.1 nm in X, Y and Z directions, respectively</td>
</tr>
<tr>
<td>Number of atoms in the HEA workpiece</td>
<td>~ 4,000,000</td>
</tr>
<tr>
<td>Free travelling initial distance between the indenter and the HEA surface</td>
<td>0.3 nm</td>
</tr>
<tr>
<td>Depth of indentation</td>
<td>1.5 nm</td>
</tr>
<tr>
<td>Indentation velocity</td>
<td>10 m/s</td>
</tr>
<tr>
<td>Indenter diameter</td>
<td>8 nm</td>
</tr>
<tr>
<td>Substrate setup for indent simulations</td>
<td>Case 1: (100) oriented on the Y axis.</td>
</tr>
<tr>
<td></td>
<td>Case 2: (110) oriented on the Y axis</td>
</tr>
<tr>
<td></td>
<td>Case 3: (111) oriented on the Y axis</td>
</tr>
<tr>
<td></td>
<td>Case 4: Polycrystalline sample with 30 number of grains (each grain nearly ~14.4 nm diameter)</td>
</tr>
<tr>
<td>Ensemble used in the simulation</td>
<td>NVE at 300 K</td>
</tr>
<tr>
<td>Boundary conditions</td>
<td>p s p in X, Y and Z directions respectively</td>
</tr>
</tbody>
</table>
An imaginary spherical shaped rigid indenter of radius \(R=4 \) nm described by a repulsive force constant \(F(r) = K(r-R)^2 \) where \(K \) is the force constant (1 KeV/Å³), \(R \) is the radius of the spherical indenter and \(r \) is the distance of atom of the work piece from the centre of the spherical indenter. This implies that \(F(r) \) remains repulsive if \(R > r \) or becomes zero otherwise.

| Timestep used for the calculation | 1 fs |

3.0. Results and Discussions

3.1. P-h (Load-displacement) plots of nanoindentation

3.1.1. P-h plots obtained from the MD simulation

The \(P-h \) curves obtained from the MD simulation for the (100), (110), (111) and polycrystalline HEA obtained from the simulated nanoindentation are shown in Fig 5. A total displacement of 1.8 nm can be seen which include 0.3 nm of free travel before the indenter touches the substrate and then advances into the substrate by 1.5 nm depth. From Fig 5, the loading and unloading processes were accompanied by several pop-in and pop-out events. Fig 5 also revealed that the peak loading forces at 1.5 nm indent depth were 1241.8 nN, 511.5 nN, 1286.1 nN and 466 nN for the (100), (110) (111) monocrystalline and polycrystalline HEA substrate respectively. The lowest peak load of 466 nN observed in poly HEA can be attributed to the easy slippage and deformation of the grain boundaries (GBs). The observation of GBs was extensively examined and is discussed in the next sections. The residual depth of indentation \(h_f \) indicated the extent of permanent plastic deformation of the HEA substrate during the timescale of the simulation.

The \(h_{\text{max}} \) signifies the maximum depth of indentation. The value \((h_f/h_{\text{max}}) \) was calculated for each case. It can be seen that the polycrystalline HEA showed the minimum \(h_f/h_{\text{max}} \) of 0.398 while the
(100), (110) and (111) monocrystalline HEA substrate showed this ratio to be 0.733, 0.493 and 0.721, respectively.

![Figure 5: P-h curves obtained from the MD simulation for the HEA (a) (100) orientation (b) (110) orientation (c) (111) orientation and (d) polycrystalline HEA. Violet arrows and orange arrows refer to the Pop-in and Pop-out events respectively.](image)

To quantify the reduced modulus of the HEA substrate (E_z), Oliver and Pharr (O&P) method was used [31]:

$$E_r = \frac{1}{\beta} \frac{S}{2 \sqrt{A}}$$ (1)

$$\frac{1 - \nu_{\text{specimen}}}{E_{\text{specimen}}} = \frac{1}{E_r} \left(1 - \frac{1 - \nu_{\text{indenter}}}{E_{\text{indenter}}} \right)^2$$ (2)
where E_r is the reduced elastic modulus, S is the slope of the top 1/3rd part of the unloading curve, $\beta=1$ a constant for spherical indenter, A is the projected area (m2) which varies with the depth of indentation. For this work, since a purely repulsive indenter was used, the value of E_{indenter} is infinite; the equation to obtain E_{specimen} then simplifies to:

$$E_{\text{specimen}} = E_r \times (1 - \nu_{\text{specimen}}^2)$$ \hspace{1cm} (3)$$

where the value of ν_{specimen} (Poisson’s ratio) was taken as 0.26 for the Ni$_{25}$Cu$_{18.75}$Fe$_{25}$Co$_{25}$Al$_{6.25}$ substrate [32]. The estimated projected contact area was computed by employing geometry-based area function approach [33], as shown in Eq. (4).

$$A = \pi[h(2R - h)]$$ \hspace{1cm} (4)$$

where R is the radius of the indenter and h is the instantaneous displacement of the indenter.

Additionally, hardness is a measure of a material’s resistance to plastic deformation which can be obtained as

$$H = \frac{P_h}{A}$$ \hspace{1cm} (5)$$

where P_h represents the loading force during loading process.

The MD results obtained from the simulations revealing the length scale dependent elastic modulus and nanoindentation hardness are shown in Fig 6. Fig 6(a) indicated that the polycrystalline HEA substrate showed the lowest magnitude of elastic modulus while the (111) monocrystalline HEA showed the highest elastic modulus. In Fig 6(b), following the same order, the lower nanoindentation hardness was shown by the polycrystalline substrate whilst the (111) orientation showed the highest hardness with (110) orientation being the softer orientations across the three major crystallographic orientations.

It may be noted that in the MD simulations performed here, a purely repulsive indenter was used so the values of indentation hardness and modulus extracted from the simulations are not comparable to the experimental values. This is because as opposed to a diamond indenter, an imaginary repulsive
indenter had infinite modulus and a frictionless repulsive surface. This aspect was already reviewed by the authors in their previous work [33] so the value of elastic modulus and hardness obtained from a pure repulsive indenter is only indicative but the approximation about the dislocation and plasticity mechanisms obtained from MD are still valuable to understand the origins of the plasticity mechanisms.

![Figure 6](image)

Figure 6: (a) Variation in the elastic modulus and (b) nanoindentation hardness of Ni$_{25}$Cu$_{18.75}$Fe$_{25}$Co$_{25}$Al$_{6.25}$ HEA obtained from the MD simulations.

3.1.2. P-h plot and the anisotropic pile up seen from the nanoindentation experiments

The P-h plot from the nanoindentation experiments performed on the indigenously synthesised polycrystalline HEA composition Ni$_{25}$Cu$_{18.75}$Fe$_{25}$Co$_{25}$Al$_{6.25}$ HEA [34] is been shown in Fig 7. An array of 36 indents was made in the HEA sample as shown in Fig 7(a). At a peak load of 10 N, the maximum indentation depth was about ~18 microns. No sink in behaviour was noticed but anisotropic pileup only along one edge of the nanoindentation edge in the SEM imaging of the nanoindentation topography can be seen from Fig 7(a). The departure of the blue line to the yellow line (Fig 7(a)) only on one of the three indented edges suggest strong anisotropy in the pile-up behaviour of HEA. The HEA revealed a reduced elastic modulus of 155 GPa and nanoindentation hardness of 1.32 GPa. h_f/h_{max} is a useful parameter to predict pile-up or sink-in behaviour, where a ratio above 0.7 indicates pile-up behaviour and a ratio below 0.7 suggests sink-in behaviour [35][36][37]. In case of the newly synthesised Ni$_{25}$Cu$_{18.75}$Fe$_{25}$Co$_{25}$Al$_{6.25}$, the experimental h_f/h_{max} was 0.922, as indicated
in Fig 7(b). This value confirms pile up behaviour during nanoindentation. A Hertzian curve was fitted to identify the elastic-plastic transition point. This point coincides at an indentation depth of \(~8\ \mu\text{m}\) which is demonstrated in Fig 7(b). The area of plastic deformation zone was significantly higher than the area under the elastic deformation zone which is a clear indication that the newly synthesised Ni$_{25}$Cu$_{18.75}$Fe$_{25}$Co$_{25}$Al$_{6.25}$ HEA deformed predominantly in the plastic mode with minimum elastic recovery. It should be noted that the experimental sample indented was a polycrystalline HEA.
Figure 7: (a) SEM of indentation array performed on the polycrystalline HEA (b) Experimental $P-h$ plot and Hertzian fit on the Ni$_{25}$Cu$_{18.75}$Fe$_{25}$Co$_{25}$Al$_{6.25}$ polycrystalline substrate highlighting elastic and plastic work involved in the HEA indentation

3.2. Anisotropy in HEA deformation obtained from the MD simulations

The residual indentation showed strong anisotropy on the (100), (110), (111) orientations as well as on the polycrystalline HEA shown in Fig 8. The (100) HEA showed clear 4-fold symmetry atomic pileup (see Fig 8(a)) along the $\langle 011 \rangle$, $\langle 0 \bar{1} 1 \rangle$, $\langle 0 \bar{1} 1 \rangle$ and $\langle 01 \bar{1} \rangle$ directions, which is consistent with the previous report for the Fe-Ni-Cr-Co-Cu high-entropy alloy [20]. The (110) monocrystalline setup showed evenly distributed deformation shown in Fig 8(b) with somewhat a 4-fold symmetry. In the case of (111) orientation, material flow and pileup shown in Fig 8(c) did not indicate any clear preferential direction of deformation. Interestingly, for the polycrystalline HEA model, the 4-fold or 3-fold symmetry atomic pileup was less clearer due to the interaction of several grains which can be seen from Fig 8(d). To further study this, the polycrystalline dump file was post-processed by removing the top lattice layers using the polyhedral template matching algorithm within OVITO which leaves a clear visibility of the individual grains as shown in Fig 9.
For ease of understanding, the polycrystalline configuration has been compared pre and post indentation deformation by bringing an EBSD equivalent colour scheme. It can be seen from Fig 9 that the indenter made contact in the region which is at the intersection of several grains with orientations (310), (111), (101) and (210). As opposed to a perfect spherical symmetry, the lines of plastic deformation can be seen to be traversing through these grains carrying different propensity of deformation. Of those grains, the (210) orientation can be seen to be affected the most showing that the extent of dislocation propagation has affected a good half part of the grain, thus confirming that
this orientation is most amenable compared to the other three grains in the ease of its plastic deformation.

![Diagram of grains before and after indentation](image)

(a) Before indentation
(b) After indentation

Figure 9: The state of various grains (a) before indentation and (b) after indentation on the polycrystalline HEA.

3.3. Mechanism of plastic deformation in Ni$_{25}$Cu$_{18.75}$Fe$_{25}$Co$_{25}$Al$_{6.25}$ HEA

The entropy based fingerprint calculation within OVITO is highlighted in Fig 10 which distinguishes ordered and disordered structure. When the value of location entropy is more negative, then it is better ordered [38]. In the case of HEA indentation, the degree of disordering can be seen to grow in the areas affected by the stress exerted by the indenter as well as in the grain boundaries. Also, the growth of the dislocation loops deeper on the (110) orientation can be seen to change the measure of local entropy which in other words indicates the local disordering in the crystalline structure of FCC HEA. An extended analysis of these disordered structures was made using the CAT algorithm which is discussed further.
Figure 10: The measurement of local entropy for nanoindentation on (100) monocrystalline, (110) monocrystalline, (111) monocrystalline and polycrystalline HEA.
Figure 11: The evolution of dislocation nucleation and movement at the 0.5 nm depths, 1.5 nm depths and the unloading stage for (100) monocrystalline, (110) monocrystalline, (111) monocrystalline and polycrystalline structure.
Figure 12: Analytical models of dislocation evolution (a) Emission of shear loop (b-d) Cross-over of screw components (e-f) Formation of octahedron “lasso” type dislocation loop.
(a) Dislocation and defect atom types after indentation on (100) monocrystalline HEA showing several nested “shear loops”

(b) Dislocation and defect atom types after indentation on (110) monocrystalline HEA showing “lasso-like” dislocation loop
Figure 13: The demonstration of dislocation nucleation and defect atom types after indentation for (a) (100) monocrystalline, (b) (110) monocrystalline, (c) (111) monocrystalline and (d) Dislocation length.
Figure 14: The evolution of microstructure at depths of 0.5 nm, 1.5 nm and after unloading.

The evolution of microstructure of HEA during nanoindentation process is shown by Fig 11, 12, 13 and 14 revealing various atomic movements indicating mechanisms of reversible and inelastic behaviour of HEA at indentation depths of 0.5 nm, 1.5 nm and after unloading. During the nanoindentation process several types of dislocations such as the $\frac{1}{2}<110>$ perfect dislocation, $\frac{1}{6}<112>$ Shockley dislocation, $\frac{1}{6}<110>$ Stair-rod dislocation, $\frac{1}{3}<100>$ Hirth dislocation and $\frac{1}{3}<111>$ Frank dislocation were seen to emerge which are shown in Fig 11 and Fig 13. These were
accompanied by multiple shear dislocation loops leading to a forest of dislocations after unloading the indentation load as also reported experimentally through TEM observations [39].

On indentation of the (110) orientation, a “lasso” type dislocation loop can be seen to emerge, which was not evidenced in any other case of indentation [40][41]. The (110) orientation showed multiple shear loops which were seen to advance under the stress caused by the indenter into the HEA material by the advancement of their edge components. The formation process of “lasso” type dislocation loop is explained further using the analytical model of dislocation evolution through Fig 12, where a octahedron dislocation loop is used to indicate the formation process of “lasso” type dislocation loop.

Fig 12(a) shows the shear loop formed on the (1̅01̅0) orientation that propagates along with [111] slip direction. The continuous cross-over of screw components along the [111] direction in two families of slip planes {110} and {111} ends up forming the octahedron “lasso” type dislocation loop, also called “lasso action”, which can be seen in more details from Fig 12(b-f).

The dislocations for the (111) orientation was mostly 1/6<112> Shockley, 1/6<110> Stair-rod and 1/3<100> Hirth. Note that the Hirth dislocation can result from reactions between Shockley dislocations as 1/6[1̅21]+1/6[1̅21̅]=1/3[1̅00] and Frank dislocation can result from reactions of Stair-rod and Shockley, e.g., 1/6[011]+1/6[211]=1/3[111]. Hirth dislocations are also known as Hirth locks [42] and Frank dislocations are known as Lomer–Cottrell (LC) locks [43].

A typical FCC structure has 12 non-equivalent partial dislocation slip systems (110)/2-{111}. However, not all these slip systems are operative during contact loading experiment such as nanoindentation. Based on tensor rotation, we can convert the applied shear stress (~5 to 6 GPa) to each of the slip systems. The slip systems with the maximum conversion factors (analogous to Schmid factor) are operative. We found that the (010) orientation would have eight most likely operative slip systems [101]/2-(1̅1̅1), [0̅11]/2-(1̅1̅1), [101]/2-(11̅1̅), [011]/2-(11̅1̅), [011]/2-(1̅1̅1̅), [101]/2-(1̅1̅1̅), [011]/2-(11̅1̅), [101]/2-(1̅1̅1̅) with a conversion factor of 0.41, the (110) orientation has four most likely operative slip systems [110]/2-(11̅1̅), [1̅10]/2-(11̅1̅), [110]/2-(1̅1̅1̅), [1̅10]/2-
with a conversion factor of 0.82, and the (111) orientation has one most likely operative slip systems \([1\bar{1}0]/2-(111)\) with a conversion factor of 1.00, two second likely operative slip systems \([110]/2-(\bar{1}11)\), \([110]/2-(\bar{1}11)\) with a conversion factor of 0.87, and four most likely operative slip systems \([101]/2-(\bar{1}1\bar{1})\), \([011]/2-(\bar{1}1\bar{1})\), \([0\bar{1}1]/2-(111)\), \([\bar{1}01]/2-(111)\) with a conversion factor of 0.50. Note that during the (010) indentation, every slip vector is activated on two slip planes, for instance, the \([101]/2\) vector is activated on the \((\bar{1}11)\) and \((1\bar{1}\bar{1})\) planes in the \([101]/2-(\bar{1}11)\) and \([101]/2-(1\bar{1}1)\) slip systems. This feature is not present in the other orientations.

In terms of the crystal defects, Fig 13 identifies these defects. They consist of FCC intrinsic stacking faults (ISF) resembling two atomic layers of hcp coordination, adjacent intrinsic stacking faults (quad faults and resembles as four atomic layers of hcp coordination), coherent \(\Sigma 3\) twin boundary and a coherent twin boundary next to an intrinsic stacking fault (triple fault) resembling three atomic layers of hcp coordination. The evolution of microstructure of monocrystalline HEA and polycrystalline HEA is demonstrated in Fig.14 during nanoindentation process, where the green color atoms refer to the FCC microstructure, white color atoms mean disordered atoms and the red colour atoms highlights stacking faults. At indentation depth of 0.5 nm, FCC microstructure becomes disordered and stacking faults appeared in the deformation zone. At a deeper depth of 1.5 nm, more stacking faults were observed. The stacking faults were formed on both sides of deformed area for the (100) HEA substrate while a number of stacking faults extend deeply along the parallel to direction of the tool for the (110) and (111) HEA substrate. During the unloading process, as the material recover occurs, some of the stacking faults reverses back and disappears. Furthermore, Fig 14 highlights that the presence of grain boundary obstructs the growth and propagation of shear loops leading to form a complex and concentrated junction of stacking faults in the indented area. Thus, in the case of (110) and polycrystalline HEA substrates, the elastic work in the indentation hysteresis loop was seen to be larger than the (100) and the (111) orientations.
4.0. Conclusions

The paper reports novel insights into the anisotropic plastic deformation mechanisms of a high entropy alloy (HEA) with composition Ni$_{25}$Cu$_{18.75}$Fe$_{25}$Co$_{25}$Al$_{6.25}$. In line with the Thermo-Calc prediction, the XRD experiments revealed that this HEA composition stabilises in FCC phase. Nanoindentation experiments using a Berkovich indenter under load-controlled conditions showed its hardness and reduced modulus to be about 1.32 GPa and 155 GPa respectively. A broad list of conclusions from this study can be summarised as below:

1. The (100) orientation monocrystalline showed atomic pileup with a clear 4-fold symmetry. The value of h_f/h_{max} from the MD simulations on monocrystalline HEA was consistently found to be larger than 0.7 which suggested pile-up behaviour to dominate during indentation of HEA and sink-in behaviour to be unlikely. In the case of (110) and polycrystalline HEA substrates, the elastic work in the indentation hysteresis loop was seen to be larger than the (100) and the (111) orientations. It was learned that the (110) orientation was softer while the (111) monocrystalline HEA showed the highest elastic modulus and hardness.

2. A “lasso” type dislocation loop forms due to the interaction of two shear loops on the (110) orientation whereas the other orientations were seen to deform by the cross-over of shear loops. The dislocations nucleated and propagated were mostly 1/6<112> Shockley, 1/6<110> Stair-rod and 1/3<100> Hirth Locks. The Hirth dislocation was seen to be resulting from the reactions between Shockley dislocations as $1/6[\bar{1}2\bar{1}]+1/6[\bar{1}2\bar{1}]=1/3[\bar{1}00]$ and Frank dislocation (as Lomer–Cottrell (LC) locks) was the result of reaction between Stair-rod and Shockley, e.g., $1/6[011]+1/6[211]=1/3[111]$.

3. The defects accompanying these dislocations in the sub-surface were identified to be FCC intrinsic stacking faults (ISF), adjacent intrinsic stacking faults (quad faults), coherent $\Sigma3$ twin boundary and a coherent twin boundary next to an intrinsic stacking fault (triple fault). From EBSD analysis applied to the MD data, an acute information learned was that the (210) orientation
and the <110> family of directions were seemed to be preferable for the plastic deformation in FCC phased HEAs.

Acknowledgement

PF acknowledge the financial support from the EPSRC Grant: EP/V055208/1. SG would like to acknowledge the financial support provided by the UKRI via Grants No. EP/S036180/1 and EP/T024607/1, a feasibility study award to LSBU from the UKRI National Interdisciplinary Circular Economy Hub (EP/V029746/1), Hubert Curien Partnership Programme from the British Council and the International exchange Cost Share award by the Royal Society (IEC\NSFC\223536). This work also accessed the Isambard Bristol, UK supercomputing service via Resource Allocation Panel (RAP), Kittrick HPC at LSBU and Param Kamrupa HPC based at Guwahati, India.

Research Data statement

All data underpinning this publication are openly available from the University of Strathclyde Knowledge Base.

Conflict of Interest: The authors declare that they have no conflict of interest.

References

