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Abstract

In this article we derive the deflection equation of a
simple beam using screw theory. The effects of ten-
sion, torsion and bending of the beam can be unified
into a single equation.
We begin by looking at the compliance matrix for

small elements of the beam. This is loosely based on
work by von Mises in the 1920s. We reproduce von
Mises results for the compliance matrix of the entire
beam by integrating along the beam. This allows us
to make some general comments concerning the use
of beams as compliant design element.
Then we derive the equation for the deflection of

the beam considering the deflection as a rigid body
motion.

1 Introduction

The idea behind this work is to recast the usual the-
ory of slender beams into a formalism consistent with
the theory of the group of rigid-body motions SE(3).
We can do this because we make the assumption that
the cross-section of the beam doesn’t change shape
when bent. This is a usual assumption and, like all
the assumptions we make, is reasonable if the bend-
ing is small and the material is stiff.
Ultimately we want to be able to model the links

of a robot as simple beams. Most approaches to
the modelling of compliant manipulators only study
bending in 2-dimensions. Experience suggests that
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a full three dimensional model will be facilitated by
the use of ‘Screw theory’, it will allows us to take ac-
count of arbitrary torques and reaction wrenches at
the ends of the link. We use the term screw theory
loosely to mean the theory of the group of rigid-body
motions and its Lie algebra.

Von Mises [4] derived the theory of beams using
motors or what we would call screws. However, this
theory was essentially an infinitesimal theory mod-
elling deformations of the beam as screws. We desire
a theory that can cope with larger deformations and
eventually with the dynamics of beams. So we will
use the von Mises’ theory for small elements along
the bar and then put the elements together to form
bars of finite length. In this article we only look at
the static case, the deformation of the bar produced
by a static load.

We begin by describing the notation and assump-
tions we will be making.

2 Notation

The un-bent bar will be assumed to lie along the x-
axis, we assume that it is slender, that is its width will
be small compared to any bending radius we impose
on the beam. As mentioned above, we assume that
the stress on the beam is small so that cross-sections
of the beam will be undistorted. This is necessary
so that we can assume that small elements undergo
rigid transformations.

The von Mises’ theory for the bar is referred to
a coordinate system in the middle of the bar. For
our purposes we need to refer the equations for each
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element to a common coordinate system. We will
take this common coordinate system to be at the foot
of the beam.
In general we need to know how things transform

under rigid motions and rigid changes of coordinates.
Let sT = (ωT , vT ) be a screw, that is an element of
the Lie algebra of SE(3). Now an active transforma-
tion will move the screw according to the relation,

s
′ = Hs =

(

R 0
TR R

)(

ω

v

)

where R is the rotation matrix of the transformation
and T is the anti-symmetric matrix representing the
translation, (Tx = t×x). The transformation matrix
H here is an element of the adjoint representation of
the group SE(3).
The corresponding change of coordinates by the

same rotation and translation is given by the inverse
of the active transformation matrix H ,

s = H−1
s =

(

RT 0
−RTT RT

)(

ω

v

)

A coordinate transformation like this is sometimes
refered to as a passive transformation.
A wrench is an element of the dual to the Lie al-

gebra, a general wrench can be written as WT =
(τ T , FT ). To keep the scalar WT

s coordinate in-
variant, wrenches must transform under the inverse
transpose representation of H for an active trans-
formation and the transpose of H for a coordinate
change,

W
′ = H−T

W =

(

R TR
0 R

)(

τ

F

)

,

W = HT
W =

(

RT −RTT
0 RT

)(

τ

F

)

Finally here we look at the transformation of a
compliance matrix under a passive change of coor-
dinates. The compliance matrix transforms a wrench
into a screw so under a rigid coordinate change a
compliance matrix C will transform according to the
relation,

C = H−1CH−T

For example if, the new coordinate system is a trans-
lation by µ units along the x-axis of the old one, the

corresponding change of coordinate will be given by
the above with,

H−1 =















1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 µ 0 1 0
0 −µ 0 0 0 1















and so forth.

3 von Mises’ Elements

In this section we will review von Mises’ theory which
we will use for small elements of the bar.
The element is in equilibrium so when the only

load is a wrench at the tip of the beam, we assume
it is subject to a pair of wrenches W and −W . Here
W is the wrench imposed by the next element and
ultimately by the tip wrench. While −W is imposed
by the previous element from Newton’s 3-rd law.

The effect of this stress on the bar is to cause small
deflections of the ends of the elements. These small
deflections will be measured by screws s1 and s2. The
wrench W , which produces this small deformation
will be given by the relation,

CW = (s2 − s1)

Where C is the compliance matrix of the element.
To find the elements of the compliance matrix for
the element we look at particular loads.

We begin with the simple case of tension or com-
pression along the beam. So assume a force Fx along
the x-axis. If the length of the element is ∆µ and the
magnitude of the deflection is ∆x, then from elemen-
tary mechanics we have,

Fx

1

EA
=

∆x

∆µ

where E is Young’s modulus and A is the cross-
sectional area of the beam.

The next case is a simple torsion about the length
of the beam. If the torque about the x-axis is τx and
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Figure 1: A Small Element in the Beam

the corresponding angular deflection of the beam is
∆φx then,

τx
1

GJ
=

∆φx

∆µ

where G is the shear modulus and J is a quantity
relating to the cross-section of the beam.

Our third case concerns pure bending, we apply a
bending moment τy about the y-axis, the result is an
angular deflection φy. We get,

τy
1

EIz
=

∆φy

∆µ

where Iz is the second moment of area for the beam,
see fig.1. Clearly a similar result applies to bending
about the z-axis.

The final case to consider is the result of forces
in the y and z directions. these forces pass through
the centre of the bar and it is easy to see that they
produce negligible deflection at the ends of the bar.

Putting all this together we get the equation,

c















τx
τy
τz
Fx

Fy

Fz















=
1

∆µ















∆φx

∆φy

∆φz

∆x
∆y
∆z















Where the matrix c is,

c =

















1
GJ

0 0 0 0 0
0 1

EIz
0 0 0 0

0 0 1
EIy

0 0 0

0 0 0 1
EA

0 0
0 0 0 0 0 0
0 0 0 0 0 0

















This is a sort of compliance density for the element.
That is the compliance matrix for the element is C =
c∆µ.

4 Compliance Matrix of a

Beam

An immediate application of the above is to compute
the compliance matrix for a long slender beam. It
is well known that for serial devices the total com-
pliance matrix is the sum of the compliance matrices
for individual elements. Hence we can find the total
compliance matrix for a beam by integrating along
the bar. We must ensure that all the compliance ma-
trices for the elements are expressed in a common co-
ordinate frame. Here we choose the coordinate frame
in the middle of the bar.
Assume the bar has length l, an element a dis-

tance µ from the end of the bar will have compliance
matrix, C(µ) = c(µ)∆µ = H−1CH−T , where H is
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the active transformation to the standard coordinate
frame. When the standard frame is in the middle
of the bar, this transformation is a pure translation,
(l/2− µ) in the x-direction. Substituting this in the
relation for the coordinate transformation gives,

c(µ) =





















1
GJ

0 0 0 0 0

0 1
EIz

0 0 0 2µ−l
2EIz

0 0 1
EIy

0 l−2µ
2EIy

0

0 0 0 1
EA

0 0

0 0 2µ−l
2EIy

0 (2µ−l)2

4EIy
0

0 l−2µ
2EIz

0 0 0 (2µ−l)2

4EIz





















Now we can integrate with respect to µ from 0 to
l we get the result,

Ctot =





















l
GJ

0 0 0 0 0

0 l
EIz

0 0 0 0

0 0 l
EIy

0 0 0

0 0 0 l
EA

0 0

0 0 0 0 l3

12EIy
0

0 0 0 0 0 l3

12EIz





















This result agrees with the result given in von
Mises [4], which was derived by slightly different
methods. It was also given in [1]
This prompts an intriguing design question: Given

a diagonal compliance (or stiffness) matrix, can one
always find a beam with the same matrix? There
appear to be seven parameters specifying the compli-
ance matrix of the beam, l the length of the beam, E
and G the Young’s and shear modulus and the cross-
sectional area quantities A, Iz, Iy and J . However,
there is an obvious consistency condition. Suppose
that the target compliance matrix has diagonal en-
tries x1, x2, x3, u1, u2, u3, we can find the length of
the bar in two ways, l2 = 12(u3/x2) = 12(u2/x3).
So for the compliance matrix to be representable by
a beam it must satisfy x2u2 − x3u3 = 0 and thus
not all diagonal compliance matrices come from sin-
gle beams.
To make further progress with the above question,

notice that all beams of the type we have been look-
ing at can be represented by beams with rectangular
cross-sections. Suppose the rectangle has sides a and

b then the area quantities are, A = ab, Iz = a3b/12,
Iy = ab3/12 and J = ab(a2 + b2)/12. So that,

a =
√

12u1/x2 and b =
√

12u1/x3. The value of

Young’s modulus is given by E = u2
1

√

12/x2u2 =

u2
1

√

12/x3u3. Finally, since E/G = 2(1 − σ) we can
find Poisson’s ratio σ from the quotient x1/u1. Af-
ter simplification we get that, σ = (2x2x3 − x1x2 −

x1x3)/2x2x3.

This gives a physical constraint, since the Poisson’s
ratio must be positive and less than 1/2. Of course
it is unlikely that there will be a material with the
particular properties found in this way.

A more practical approach might be to use more
than one beam to achieve a given stiffness matrix.
Can any stiffness matrix be designed by using sev-
eral of these beams in parallel? The answer to this
is clearly no. Consider the quantity b1 = Tr(Q0K),

where K is a stiffness matrix and Q0 =

(

0 I3
I3 0

)

in partitioned form. It is possible to show that this
quantity is invariant with respect to rigid coordinate
changes, see [6]. Clearly, for our simple beams we
have that b1 = 0, moreover since the trace opera-
tor is additive and sum of stiffness matrices result-
ing from putting beams in parallel will also have
b1 = 0. Notice that the straightforward eigenvalues
of the stiffness matrix don’t have much significance
because they are not invariant with respect to coor-
dinate changes and hence will have different valuse in
different coordinate frames.

Huang and Schimmels [3] showed that any stiff-
ness matrix could be achieved using simple springs
connected in parallel provided b1 = 0 for the stiff-
ness matrix. Hence the of any system of beams can
be simulated with simple springs. But we cannot
achieve any more with beams than we could with sim-
ple springs. It is not clear at present whether or not
there is an equivalence between beams and springs
as design elements. That is, can design systems of
beams with exactly the same stiffness matrix as any
system of simple springs? However, in many cases
it may be advantageous to use beams rather than
springs since probably fewer of them would required.
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5 Deflection Equation

The deflection of the bar will be represented by an el-
ement from the group of rigid-body transformations.
As we move along the bar we imagine a small element
of the bar is subject to a rigid transformation. Hence
the shape of the bar will be given by a function g(µ)
where µ is a parameter which measures the distance
along the bar in its un-stressed state and g ∈ SE(3).
This can be thought of as a path in the group space,
see fig. 2.
Since the rigid-body motions form a Lie group, we

can use the exponential map to write the deflection
as a function on the Lie algebra,

g(µ) = es(µ)

the Lie algebra element s here will be referred to as
the deflection screw. Clearly if we find the deflection
screw for the beam as a function of the parameter µ
then it is a simple matter to compute the deflection
of the bar described by the path in the group space,
g(µ). The ability to use the logarithm function to
‘pull-back’ the path in the group to a path in the Lie
algebra relys on the assumption that the deflection is
‘small’.
Now from section 3 we have that for an element

in the bar CW = (s2 − s1). The screws here repre-
sent small changes in the deflection of the ends of the
beam measured in a coordinate frame in the middle of
the element. If the deflection is small then the group
element representing the deflection can be written as
g(µ) ≈ I + s(µ), so the deflection at the ends of the
bar can be written as,

s1 = s(µ−∆µ/2), s2 = s(µ+∆µ/2)

Hence the quantity, (s2 − s1)/∆µ becomes ds/dµ as
the elements get shorter. Notice that the derivative
of the deflection screw, ds/dµ is also a screw that
is an element of the Lie algebra. If we divide the
original equation CW = (s2 − s1), by ∆µ and take
the limit as ∆µ → 0 we get the differential equation,
ds/dµ = cW .
This equation is expressed in a coordinate system

in the middle of the element, to express it in a coordi-
nate system at the foot of the beam only the compli-
ance matrix for the element needs to be transferred to

this frame. The active transformation from this local
frame to the frame at the foot of the beam is given
by, e−µte−s(µ), where t is a unit translation along the
bar in the x-direction.
Using the results given in sections 2 and 3 we find

the deflection equation for the beam is,

ds(µ)

dµ
= es(µ)eµtceµt

T

es
T (µ)

W

It is not too difficult to see how this can be ex-
tended to more general systems of wrenches acting on
the beam and also to systems of distributed wrenches
such as the weight of the beam.

6 An example — The Planar

Beam

To validate our work we look at a standard example,
the deflection of a cantilever beam with a concen-
trated load at its tip. Because the case is planar we
use a 3 × 3 formalism, we can use the 3rd, 4th and
5th components of the representation of the spatial
motions group used above.
A point (x, y) in the plane is represented by the

3-vector, (x, y, 1)T but a Lie algebra element is rep-
resented by a 3-vector s = (θ, tx, ty)

T . For the con-
centrated load F the wrench is W = (lF, 0, F )T . The
exponential of a screw s, can be written as a 3 × 3
transformation matrix,

es =





1 0 0
cy cos θ − sin θ
−cx sin θ cos θ





where, cx = tx
θ
sin θ −

ty
θ
(1 − cos θ), and cy = tx

θ
(1−

cos θ) +
ty
θ
sin θ.

The compliance density of an element is given by
the matrix,

c(µ) = eµtceµt
T

=





1
EI

0 −µ
EI

0 1
EA

0
−µ
EI

0 µ2

EI





where, I = Iy is the second moment of area, for pla-
nar problems only one is relevant.
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Substituting this into the deflection equation gives
3 non-linear coupled differential equations,

θ′ =
F

EI
(l − µ cos θ − cx)

t′x =
F

EI

(

lcy − cxcy − µcy cos θ − µ2 cos θ sin θ +

µl sin θ − µcx sin θ
)

+
F

EA
cos θ sin θ

t′y =
F

EI

(

µ2 cos2 θ − µl cos θ + 2µcx cos θ −

lcx + c2x
)

+
F

EA
sin2 θ

In line with the classical theory we introduce some
additional assumptions here. We suppose that the
rotation angle θ is small, so cos θ ≈ 1, sin θ ≈ θ and
sin2 θ ≈ 0. Also assume cx ≈ 0 this means that
the motion of each element is only in the y-direction.
With these assumptions the first and last equations
become,

θ′ =
F

EI
(l − µ) t′y =

F

EI
(µ2

− µl)

Using the initial conditions ty(0) = 0 and θ(0) = 0
the solutions to these equations are simply,

θ =
F

EI

(

lµ−
µ2

2

)

, ty =
F

EI

(

µ3

3
−

µ2l

2

)

To compare this with the classical case we need to
know the curve described by the neutral axis of the
beam. With no load this is simply the x-axis, but
when the beam is loaded we need to use the displace-
ment screw to find the curve,





x
y
1



 =





cos θ − sin θ cx
sin θ cos θ cy
0 0 1









µ
0
1





With the same approximations as above we get that
y = ty + µθ since cy ≈ ty. Hence,

y =
F

EI

(

µ2l

2
−

µ3

6

)

in agreement with the classical texts, see [2] for ex-
ample.

7 Conclusions

In the above we have derived an equation for the de-
flection of a slender beam. The equation includes
the effects due to any applied wrench. Compar-
isons with existing approximate solutions are not
completly straightforward but are possible. Analytic
solutions to the equation appear to be difficult to
find however, numerical solutions seem to be quite
tractable.

When an equation such as the deflection equation
is solved numerically it is always difficult to know
how accurate the solution is. This is because there is
no Riemannian metric defined in the group or rather
there are many metrics to choose from and no partic-
ular reason to choose any one of them. For the elas-
tic beam there is an obvious natural choice of metric
which we can use to compare our solutions, it is given
by the elastic energy of the beam.

In future work we hope to explore this and the
question of the dynamics of such beams. It is the
dynamics of these beams that we hope will provide a
simple model for the flexible links of robots.

There are also indirect applications to robotics.
The deflection equation represents an equation for
a path in the Lie algebra or, by exponentiation, the
group itself. Lately there has been much interest in
curves in the group for motion interpolation. Origi-
nally spline curves were derived from elastic beams,
hence it is not unreasonable to propose that a natural
generalisation of spline curves to the group is given
by solutions to the deflection equation with suitable
boundary conditions.
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