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Abstract 
This paper describes the use of Fiber Bragg Grating (FBG) sensors to investigate 
the thermo-mechanical properties of saline ice. FBG sensors allowed laboratory 
measurements of thermal expansion of ice samples with a range of different 
sizes and geometries. The high sampling frequency, accuracy and resolution of 
the FBG sensors provide good quality data across a temperature range from 0°C 
to -20°C. Negative values of the effective coefficient of thermal expansion were 
observed in ice samples with salinity 6ppt, 8ppt and 9.4ppt. A model is 
formulated under which structural transformations in the ice, caused by 
temperature changes, can lead to brine transfer from closed pockets to 
permeable channels, and vice versa. This model is compared to experimental 
data. Further, in experiments with confined floating ice, heating and thermal 
expansion due to vertical migration of liquid brine, caused by under-ice water 
pressure, was observed. 
 
Introduction 
Saline ice is a composite material – a solid ice matrix containing liquid and gas 
inclusions – with a structure which changes under the influence of thermal and 
mechanical loads. Saline ice consists of pure ice grains, grouped in columns or 
platelets, and brine pockets and channels. It has been thought that sea ice is 
impermeable to brine transport when the liquid brine content is less than 5% 
and is permeable when the brine content is greater than 5% (Weeks and Ackley, 
1986). In fact, sea ice always contains porous channels, and liquid brine can 
migrate through these under the influence of pressure gradients (Golden et al., 
2007). Thermal changes influence the permeability of sea ice significantly, as 
brine freezes into ice on cooling, and ice melts into water on heating. Thus the 
final state of a saline ice sample subjected to thermal changes is determined not 
only by initial and final conditions but also by the history of temporal variations 
and salt fluxes at the boundaries. This means that the thermo-mechanical 
properties of saline ice samples depend on their size and geometry.  
 
Fresh ice and brine both exhibit typical thermal behavior: they expand when 
heated and contract when cooled. Saline ice, however, can behave atypically 
because of phase changes. When brine freezes, this leads to a mean density 
reduction (since ice is less dense than water), and so cooling can lead to 
expansion.  Similarly, and by the inverse process, heating can lead to contraction. 
This unusual behavior of saline ice was studied in laboratory experiments and 



described by Pettersson (1883) and Malmgren (1927). Their experiments were 
conducted by immersing a sea ice sample in fluid and measuring the changes in 
fluid volume as the sample temperature changed. Fluid volume changes were 
then used to calculate thermal volume expansion coefficients. Johnson and 
Metzner (1990) note that this procedure assumes no additional fluid is added to 
the volume of the immersion fluid. This assumption has been found to be invalid, 
since brine can leak out of the sample and be expelled into the immersion fluid. 
 
Theoretical models for the calculation of the coefficient of thermal expansion of 
saline ice have been developed by Malmgren (1927) and Cox (1983). Malmgren 
and Cox made opposing assumptions when formulating the basic equations. 
Malmgren assumed that brine is never expelled from the sample, and that all 
salts are trapped in brine pockets inside the sample. Temperature changes 
therefore cause internal ice melt or brine refreezing. Cox, contrastingly, assumed 
that the behavior of saline ice is analogous to a pure ice cup filled with liquid 
brine: both are free to expand and contract independently, and hence phase 
changes have no effect on the thermal expansion of the ice.  
 
Johnson and Metzner (1990) used a Michelson Interferometer type Laser 
Dilatometer to measure linear thermal expansion of cylindrical ice samples taken 
from a sheet of first year congelation sea ice in Harrison Bay, Alaska. Their 
apparatus included the interferometer along with a sample holder, temperature 
control unit and computer-controlled data acquisition unit. The diameter of their 
samples was 38mm and the length was 71.25mm for 2ppt ice, and 69.33mm for 
4ppt ice. Optically flat target mirrors were frozen to the front surface of the 
samples, trimmed parallel with a microtome, and used to control the sample 
length with the interferometer. They were able to achieve a displacement 
resolution of 316.4nm, corresponding to a strain resolution of the order of 5×10-

6.   
 
Mean and instantaneous values of the thermal expansion coefficient were found 
to be similar to the fresh ice thermal expansion coefficient of 5×10-5 / °C. Their 
4ppt ice showed hysteresis when cooled and rewarmed after the initial warming 
test. Similar effects were observed in the experiments of Butkovich (1959) with 
fresh water ice, where the coefficient of linear thermal expansion decreased with 
succeeding runs. Their conclusion was that their results agreed with the analysis 
of Cox (1983).  
 
Systematic investigations of the thermo-mechanical behavior of saline ice 
samples were performed, using fiber optic strain and temperature sensors based 
on Fiber Bragg Gratings, in the cold laboratories of the University Centre in 
Svalbard, Norway, and University College London, UK, from 2012-2015 
(Marchenko et al, 2012, 2013, 2015; Lishman and Marchenko, 2014; Wrangborg 
et al., 2015). The FBG system used was designed by Advance Optic Solutions 
GmbH (Germany). The flexibility of the FBG system allowed experiments to be 
conducted with many different sizes and geometries of ice sample, and with 
floating ice.  
 



The present paper describes the instrumentation and experimental setups and 
summarizes experimental results on the measurement of thermal expansion of 
saline ice. We formulate a new model of the thermal expansion of saline ice, 
assuming the possibility of structural changes in the ice associated with gradual 
transformation of closed brine pockets into permeable brine channels, under the 
influence of temperature changes. Mass changes in the ice with closed brine 
pockets are estimated using the experimental data. Thermal expansion of saline 
ice caused by the migration of liquid brine through the ice is also discussed in the 
paper.    
 
Instrumentation 
The fiber type used for this kind of optical sensing are typically standard telecom 
single-mode fibers (SMF) that are widely used in communications, with an 
overall diameter of 0.25 mm, and a core diameter of only about 0.01 mm. A Fiber 
Bragg grating is a periodical index change in the refractive index n along this 
optical silica fiber’s core, formed by an interference pattern of two UV laser 
beams that the fiber is exposed to. There are various techniques (Othonos 1999) 
to generate the two coherent beams (Fig. 1a). The index change results from a 
certain photo-sensitivity of the fiber’s core which is due to the presence of some 
chemical dopants inside the silica’s structure, typically Germanium oxide. The 
interference pattern being generated by two coherent laser beams consists of a 
periodic UV power modulation along the fiber determined by the incident angle 
of the two beams. This UV pattern migrates to the fiber core’s index change 
pattern, by the said photo sensitive mechanism.  
 
With a period of less than 10-6mm, areas of higher n alternate with areas of lower 
n while ∆n is relatively small (∆n < 0.001 at n = 1.45). Due to the index change, 
each “grating line” reflects a very small portion of the light wave propagating 
along the fiber, back to the light source. Although a single reflected portion is 
negligible compared to the transmitted power, the effect becomes noticeable 
because the amount of “grating lines” in a conventional FBG is about 4000/mm, 
and a typical FBG with 10 mm length consists of 40 thousands reflections. If the 
light’s wavelength matches the condition 
 

λBragg = 2·neff·L,                                                                                                         (1) 
 
where neff is the fiber’s effective index, λBragg is the light’s wavelength, and L  is 
the index change’s period, then all reflected light wave portions are propagating 
“in-phase” and interfere constructively. Depending on the actual ∆n, this results 
in a typical narrow-band power peak in the reflection spectrum at λBragg, and vice 
versa in a loss in transmission (Fig. 1b). According to equation (1), the reflected 
wavelength changes with either modifying neff or L .  
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Figure 1. Interference pattern of laser beams in the fiber core during FBG 
generation (a). Reflected and transmitted signals after the passing of broad band 
light travelling along the fiber with an FBG inside (b) and a simplified illustration 
of the strain detection mechanism with a broad band light source containing a 
continuous spectrum of wavelengths (i.e. colours).  
 
It is easy to see that λBragg will change when the fiber is strained or compressed 
(Fig 1(c)), whereas the effective refractive index is a material property and thus 
neff is sensitive to changes in temperature. This sensitivity of the peak 
wavelength with respect to thermal and mechanical loads allows the usage of 
FBG as strain and temperature sensors (Rao, 1997; Othonos, 1999). This is now a 
common field of optical sensing. Several features make the FBG system highly 
appropriate for geophysical measurements (Ferraro 2002; Mueller, 2006). These 
features include: 

• long term zero-point stability due to the inscribed physical structure; 
• transmission of the sensor’s signal over distances up to tens of miles; 
• a form factor which allows FBG to be embedded into structures; 



• good immunity against electromagnetic radiation, and 
• ability to cascade and multiplex large numbers of sensors in a network, 

with a lower complexity than with electrical equivalents. 
 
In our experiment, FBG sensors are practical for measuring the thermal 
expansion of large samples because, in contrast to standard dilatometers, the 
fiber can be embedded directly inside the ice sample. An FBG thermistor string 
and strain sensor are shown in Fig 2. Typical strain resolution for FBG systems is 
10-6 (1 mstrain) or better, and the accuracy is typically 6105 −⋅ (5 mstrain). These 
characteristics are comparable to Michelson Interferometer Laser Dilatometers 
as used by Johnson and Metzner (1990) and discussed above.  
 

 
 

Figure 2. An FBG thermistor string and strain sensor. 
 
The variation (∆λBragg) of the peak wavelength caused by the extension (∆L/L) 
and the change of the temperature (∆T) of the sensor is described by the 
equation 
 

 TTK
L
LGF ∆⋅+

∆
⋅=

∆
λ
λ ,                                                                                 (2) 

 
where the gauge factor GF=0.719 and a linear temperature coefficient  
TK=5.5∙10-6 are the constants obtained from a calibration cycle for our FBG 
sensors in standard SMF fiber, within a temperature range from -20o C to 0o C.  
 
The variation of the peak wavelength ∆λ is measured with a spectrometer that 
receives the reflected signal from the FBG sensor. For the calculation of the strain 
((∆L/L) according to formula (2) it is necessary to measure the temperature 
change (∆T) at the strain sensor’s position in order to compensate TK. The 
temperature measurements can easily be performed with another FBG sensor 
protected from mechanical deformation, or alternatively with a thermometer. In 
our experiments, we used FBG strain sensors with a reference peak wavelength 
in the vicinity of around 1534 nm, and FBG temperature sensors with a reference 
peak wavelength in the vicinity of around 1565 nm. The strain and temperature 
sensors were cascaded in one optical fiber. The FBG measurement system’s 
nominal resolution and accuracy in our experiment was 0.08o C and 0.4o C, 
respectively.  



 
Experiments 
Thermal expansion of unconfined ice 
Experiments were performed in the cold laboratory of the University Centre in 
Svalbard (UNIS). Ice was formed in the UNIS ice tank from a mixture of sea 
water, pumped from a nearby fjord, and fresh water. The salinity of the ice 
samples varied from 0 to 10 ppt, and the ice had columnar structure. The ice 
samples had a rectangular shape, with the long dimension around 20cm and the 
shorter dimensions 5-10cm. The optical fibers with FBG strain sensors had an 
integrative working length of 20cm that was defined by two brass anchor bolts 
with nuts and washers. The optical fibers were placed into 2mm-wide cuts that 
were sawn in the ice samples, and were fastened at the edges of the ice samples 
with nuts and washers (Fig.3a). The ice block’s thermal expansion or shrinkage 
is therefore transferred to the optical fiber with the FBG inside (this fiber is 
prestrained to around 0.3% by adjusting the nuts accordingly). The FBG fiber 
was not frozen into place, since this would allow localized shear around the FBG 
itself to distort the measurements. The FBG temperature sensor (thermistor 
string) was encapsulated in a 1mm stainless steel capillary tube and inserted 
into a drilled hole in the ice sample, next to the FBG strain sensor.  

 

         
 

Figure 3. Installation of FBG strain sensor and thermistor string in ice sample (a). 
Ice sample inside plastic housing (b).  
 
The equipment used in our measurement setup includes a broadband SLED light 
source with a central wavelength of 1550nm and a bandwidth (FWHM) or 
~90nm (AOS GmbH, Germany), a NIR spectrometer ‘I-MON 512E-USB 2.0 
interrogation monitor’ with a detectable spectral width of 1510-1595nm (Ibsen 
Photonics S/A, Denmark), a PC, and two FBG sensors, one for strain 
measurement and one for temperature measurement (both AOS GmbH, 
Germany). The Ibsen monitor is distributed with operating software, including a 
LabView source code. The experimental schematic is shown in Fig. 4. All 
electronic devices – the LED source, the spectrometer, and the PC – were 
installed outside the cold laboratory. Regular optical single-mode cables were 
used to connect the equipment to the FBG sensors embedded into the ice sample 
in the cold laboratory. 
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Figure 4. Schematic of experiment for measuring of thermal expansion. 
 
The ice sample was covered by a plastic housing to avoid evaporation (Fig. 3b). 
The temperature in the cold laboratory (2.5x2.5x1.8m) was changed in 
increments of 2oC from -20o C to a nominal 0o C, programmed and displayed on 
the laboratory’s control system. Temperature control is provided by a Frigobase 
Carel system with temperature precision better than 1oC and set point resolution 
of 0.1oC. Time intervals for the temperature increments were set to 3 hours or 
greater. Temperature and extension are measured at 1 sample/s. During the 
experiment, we realized that the actual air temperature close to the ice samples 
was lower than the displayed temperature by several degrees. We therefore 
switched off the cooling system to allow the room to warm, resulting in an 
environmental temperature of -3oC. 
 
Ice salinity was measured with a Mettler Toledo Seven Pro conductivity meter 
SG7, with resolution 0.01ppt. The salinity of the ice samples was measured 
before and after the experiments. In some experiments, multiple ‘dummy’ 
samples are kept under the same conditions as the strain-gauged sample: these 
samples can then be used to measure changes in salinity during the experiments. 
 
Thermal expansion of confined ice 
A series of experiments were undertaken in the cold rooms of University College 
London. The FBG strain sensor was used to measure the linear strain in ice 
samples of cylindrical shape under various conditions. The ice was formed 
between two steel pipes: an outer pipe with inside diameter 11cm, and an inner 
pipe with outside diameter 2cm. Fresh ice was made from London tap water; 
saline ice from the same, with 8ppt NaCl added. The samples were formed in 
layers, so that up to 1cm depth of water was added and allowed to freeze before 
the next layer was formed. No evidence was seen of supercooled water or large 
bubbles within these layers. The experiments are conducted in air. 
 
Ice samples were tested in three conditions: unconstrained, constrained within 
one pipe, and constrained between two pipes (in the first two cases, pipes were 
removed after forming by briefly warming). These conditions are illustrated in 
Fig. 5. The pipe has length 180mm, and the samples are milled 5mm from either 
end of the pipe, such that the initial ice sample has two flat parallel ends 190mm 



apart. On these flat ends we place an aluminium spacer of width 4mm which 
supports the FBG strain sensor, so that expansion in the ice in the along-pipe (z) 
direction stretches the sensor.  
 
Temperatures are measured using the FBG 12-thermistor string inserted 
through a drilled hole in the ice (or ice and pipe), such that temperatures are 
recorded through the sample in the x-direction. The temperature used for 
calibration of the strain sensor is that closest to the sensor: in this case, 
thermistor 7. For calculation of thermal expansion, we use the average of 
thermistors 1-5, which gives a mean value through the ice, but eliminates the 
thermistors in the air, which respond much faster to temperature changes in the 
room. Temperature and extension are measured at 1 sample/s. The entire 
apparatus is shown in a photograph in Fig. 6.  
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Figure 5. Schematic of experimental configurations: unconstrained ice sample 
(a); toroidal ice sample constrained by external steel pipe and free to expand 
into central cavity (b); toroidal ice sample constrained by external and internal 
steel pipes (c). 
 



 
Figure 6. Full experiment photo, schematic and exploded schematic. 

 
Thermal expansion of floating confined ice 
Laboratory experiments were conducted in the UNIS cold lab ice tank to 
investigate the possibility of ice expansion under the influence of under-ice 
water pressure, without external heating or cooling. This physical mechanism is 
not discussed in the scientific literature. It can occur when liquid brine migrates 
through the ice from a relatively warm region to a relatively cold region under 
the influence of a pressure gradient. Lateral confinement provides a vertically 
directed shear force at the ice edges. This shear force is in balance with the 
pressure force applied to the ice bottom (Fig. 7a).   
 
Saline ice of 8cm thickness was frozen on the surface of sea water of 1m depth 
with initial salinity 12ppt. The ice salinity was about 6ppt. The ice was not 
floating in hydrostatic equilibrium, because it cohered to the tank walls. 
Overpressure in the tank was created by gradually pumping air into a 
submerged car inner tube using an electrical pump. The pump was powered by a 
laboratory power supply with variable voltage so that the pumping speed could 
be regulated (Fig. 7a). The increase of water pressure in the tank caused ice 
creep in the vertical direction. However, our main interest was in measuring any 
extension or compression of the ice in the horizontal plane. 
 



This extension or compression in the horizontal plane was measured with one 
FBG fiber optic strain sensor mounted on steel angle brackets frozen into the ice 
(Fig. 7b and Fig. 8a).  Another FBG strain sensor was mounted on similar 
brackets fixed to the tank wall (Fig. 7b and Fig. 8a). This sensor recorded 
deformation of the tank wall under ice action. The FBG thermistor string was 
used to measure temperature in the air above the ice and the temperature 
profile in the ice. A temperature and pressure sensor SBE-39 was used to record 
water pressure below the ice during the experiment. The resolution of the 
pressure measurements was 4⋅10-4 dbar. All sensors were synchronized and 
provided measurements with sampling interval 1s.  
 

 
Figure 7. Scheme of the experiment on ice extension due to the water pressure 
increase in the ice tank (a). Locations of FBG strain sensors on the ice surface 
(FBGI) and on the tank wall (FBGW) (b). 
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a)                                                                          b) 
Figure 8. Laboratory experiment in the ice tank (a). Temperature profile in 
model ice measured with FBG thermistor string (b).  

 
 
Results of experimental studies 
Thermal expansion of unconfined ice 
Temperature variations in the cold laboratory cause the ice to expand and 
contract. The laboratory temperature is programmed into an external controller, 
and three programs are used.  

• In the first, the control temperature is changed by 2oC every 2-3 hours or 
rare, over a period of several days. These are referred to as long-term 
tests. 



• In the second, the control temperature is changed by 15-20oC up and 
down in each test twice. These tests take 4-6 hours, and are referred to as 
short-term tests.  

• In the third set, the room temperature began at -20 oC, and the cooling 
system was then switched off. This led to an increase in temperature 
which was more monotonic than the other tests (where the cooling 
system caused sinusoidal temperature fluctuations about a long-term 
trend). These tests take 8 hours, and are referred to as monotonic tests. 

 
The coefficient of volumetric thermal expansion of a material (CTE) is 
determined by the formula 
 

dT
Vd

V
d

d
κ 1

= ,                                                                                                                (3) 

 
where dV is the infinitesimal volume of the material, and ddV is a change of the 
volume caused by the temperature change from T to T+dT. If the sample mass 
dm=ρdV is conserved, definition (3) can be formulated as 
 

 
dT
dρ

ρ
κ 1

−= .                                                                                                                  (4) 

 
CTE of fresh ice (CTEFI) is calculated with formula (4) where the ice density is 
calculated by the formula  
 

14 )1058.11(8.916 −−⋅+= Tiρ  (kg/m3).                                                                    (5) 
 
CTEFI is around 1.58⋅10-5 K-1.   
 
In general, when saline ice includes permeable channels filled by liquid brine, the 
mass of a saline ice sample is not a constant, and formula (4) can’t be used for the 
calculation of CTE for saline ice. Here, we assume that saline ice consists of ice 
with closed brine pockets (ICP) and permeable brine channels. ICP is not 
permeable by brine, and the ICP salinity is constant. Therefore CTE for ICP is 
calculated according to formula (4) as follows  
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ICP density is calculated by the formula (Schwerdtfeger, 1963) 
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where ρw= 999 kg/m3 is the fresh water density, σicp is the ICP ice salinity, and S 
is the fractional salt content of the brine. For sea water brine the fractional salt 
content is calculated with the formulas 



 
TS α= , -1K 0182.0-=α , )C2.8,C0(  −∈T ,                                                       (8) 

')2.8(149.0 α++= TS , -1C 01.0' -=α , C)23,C2.8(  −−∈T . 
 
The ICP salinity is equal to the mass of salt in the liquid brine included in closed 
brine pockets in a unit mass of ICP. CTE calculated with formula (6) and (7) 
coincides with CTE introduced by Malmgren (1927), who assumed that 
permeable channels are absent in sea ice.  
 
Since saline ice includes ICP and permeable channels filled by liquid brine the 
total salinity is equal to a sum σsi=σicp+σpc, where σpc is a mass of salt in 
permeable brine channels inside a unit volume of saline ice. Liquid brine located 
in the permeable channels doesn’t influence the thermal expansion of saline ice 
(Cox, 1983). The salinity of the ICP is constant, but the ICP mass is changing since 
some closed brine pockets can transform into permeable channels due to the 
temperature changes. Thermal expansion of saline ice is determined by 
volumetric changes of the ICP which depend on both the thermal and mass 
changes.  
 
Let us assume that the mass of an infinitesimal ICP sample is dmicp=ρicpdVicp when 
the ICP temperature is T. The ratio of the ICP masses related to different 
temperatures is equal to 
 

0,0,0, icp

icp

icp

icp

icp

icp

V
V

m
m

δ
δ

ρ
ρ

δ
δ

= ,                                                                                                 (9) 

 
where the subscript “0” is related to the values of the mass, density and volume 
at T=T0.  Assuming ice isotropy and small deformations we can rewrite formula 
(11) in the form 
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where the relative change of the ICP mass εdM and the linear deformation εdL are 
determined by the formulas 
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The experiments were performed with ice samples of finite sizes. FBG sensors 
registered the temperature T and linear deformation εL of the samples 
depending on the time. The linear deformation of a sample is determined by the 
formula 
 

0
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where L is the linear dimension of the sample, L0 is the initial sample length, and 
t is the time.   
 
The effective coefficient of linear thermal expansion (ECTE) of an ice sample is 
determined by the formula 
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where the temperature T(t) is registered in a point inside the sample. 
Temperature gradients within the sample can make it difficult to analyse 
equation 13. Therefore in our experiments we changed the air temperature 
slowly and measured the temperature with FBG thermistor-string at several 
points within an ice sample to control the temperature gradient over the sample. 
 
A representative time of temperature equilibration over a sample is given by the 
formula 
 

2
∗∗ = L

k
ct
si

sisiρ ,                                                                                                              (14) 

 
where ρsi=920 kg/m3 is typical value of sea ice density, ksi= 2 W/(m∙K) is a typical 
value of the thermal conductivity of sea ice, L∗=0.1 m is representative length of 
the sample, and csi is the specific heat capacity of saline ice. The specific heat 
capacity of fresh ice is equal to 2 kJ/(kg∙K). Formula 14 then gives a time of 
temperature equilibration in fresh ice samples of 2.5 hours.  
  
The specific heat capacity of saline ice increases with temperature according to 
the formula derived by Schwerdtfeger (1963). This is because there is a greater 
degree of phase change, and thus a greater latent heat expenditure, at higher 
temperatures. For example, the specific heat capacities of saline ice with 
salinities 4 ppt and 8 ppt reach respectively 10.4 kJ/(kg∙K) and 18.7 kJ/(kg∙K) 
when the temperature is -3 oC. With these salinities, the times of temperature 
levelling should reach respectively 13 hours and 23.4 hours.   
 
The relative change of the ICP mass εm in a sample is estimated with a formula 
similar to (10)  
 

 ( ) 131
0,

−+= L
icp

icp
m ε

ρ
ρ

ε .                                                                                             (15) 

 
Results of the long-term tests with fresh ice samples are shown in Fig. 9. The 
temperature change interval was 4-5 hours. Figure 9a shows temperature 
variations in the ice samples as measured with the FBG thermistor string. The 
insert graph on Fig. 9a shows temporal variations induced by the cooling cycle of 
the fans. The data are averaged over 15 min intervals to minimize the influence 



of the fan cycle. Calculated values for ECTE for fresh ice are shown in Fig. 9b, and 
these are close to the CTEFI shown by the dashed line, with deviation less than 
10%. 
 

 
Figure 9. Temperature (a) and the coefficient of thermal expansion versus the 
time (b), for fresh ice sample in long-term test. 
 
Two mixtures of sea water and fresh water were made, with respective salinities 
9.4ppt and 2.3ppt. These two mixtures were frozen and prepared as ice samples: 
results for these samples are shown in Fig. 10-12. The experiments lasted for 
190h and 415h respectively. The temperature and strain are shown as a function 
of time in Fig. 10. Strain is initially defined as zero. In Fig. 10a the strain and 
temperature gradients have opposite signs between 50 and 100h. In Fig. 10b the 
gradients have the same sign throughout. The opposite gradients of strain in Fig. 
10a show the temperature range in which saline ice exhibits abnormal thermal 
expansion. 
 
The dependency of strain on temperature is shown in Fig. 11a,b. The circles 
indicate the beginning of the experiments. Abnormal thermal expansion (the ice 
contracts with increasing temperature) is seen above around -10oC in Fig. 11a 
(which shows the test conducted on ice made with water of 9.4ppt salinity). The 
less saline sample also shows a slightly nonlinear, but still positive, ECTE (Fig. 
11b). In both of the experiments hysteresis was observed in the strain-
temperature curves at the points where the cycle switches from heating to 
cooling: similar effects were observed by Butkovich (1959) and Johnson and 
Metzner (1990). Figures 11c,d show the relative changes of the ICP masses εm in 
the ice samples calculated with formula (15). One can see that the ICP mass 
decreases with the temperature increase in the sample with salinity 9.4 ppt. The 
ICP mass of the sample with salinity 2.3 ppt changes in the opposite direction. 
Repeating thermal loading leads to the loss of the ICP mass in the both cases. 
This suggests that thermal cycling tends to promote open channels in the ice in 
favour of closed brine pockets.  
 
Dependencies εL(T) calculated from the experimental data were approximated by 
polynomial fit on different time intervals, to allow the calculation of the ECTE by 
formula (13). Examples of polynomial approximations are shown in Fig. 12a, and 
Fig. 12b shows the ECTE versus the temperature. The black squares show the 
ECTE calculated by Johnson and Metzner (1990) with an ice salinity of 2 ppt.  



 

 
Figure 10. Temperature (T) and Strain (S) versus the time in ice samples with 
salinity 9.4 ppt (a)  and 2.3 ppt (b). Long-term tests. 
 

 
Figure 11. Strains versus temperature in ice samples with salinity 9.4 ppt (a)  
and 2.3 ppt (b), and the relative changes of the ICP masses of the samples with 
salinity 9.4 ppt (c)  and 2.3 ppt (d) versus temperature. Long-term tests. 

 

 



Figure 12. Polynomial approximations of the strain-temperature dependencies 
of ice samples (a) and ECTE versus the temperature calculated for the same 
samples (b). The curves are constructed with initial ice salinity 9.4 ppt and 2.3 
ppt. Long-term tests. 

 
ECTE calculated with using of the data of the long-term (the temperature change 
interval is 2-3 hours), short-term and monotonic tests with saline ice samples 
are compared in Fig. 13a. In all these tests ice samples were made from a mixture 
of sea and fresh water of 6 ppt salinity. Averaging of the strain-temperature 
curves over 15 min, and polynomial interpolation of these averages, was used to 
calculate ECTE on specific time intervals. Their duration was 11 hours in the 
long-term test, 1 hour in the short-term test and 8 hours in the monotonic test. 
Absolute values of the ECTE are lower than CTEFI when the temperature is 
lower than -4oC. The long-term test shows abnormal thermal expansion, with a 
negative ECTE, when the ice temperature is higher than -6oC. Short-term and 
monotonic tests show normal thermal expansion, with a positive ECTE. Figure 
13b shows the increase of the ICP mass of the samples with the temperature 
increase.  
 

 
 

Figure 13. ECTE (a) and the ICP masses (b) versus the temperature in long-term 
(1), short-term (2) and monotonic (3) tests with saline ice samples. The ice 
salinity is 6 ppt.  

 
 
 
Thermal expansion of confined ice 
In total, 27 tests were conducted on confined ice, across the three geometries 
shown in Fig. 15, and for both fresh and saline ice (i.e. 6 different experimental 
configurations). These experiments took place in the cold rooms of University 
College London. Due to the complications of sharing working spaces, and 
running long experiments (often >24h), tests were not conducted according to a 
rigorous schedule but rather on an ad-hoc basis which allowed for both warming 
and cooling to be investigated in all configurations.  



 
Figure 15. Results from a typical thermal expansion experiment. Strain (a) and 
temperature (b) measurements are shown versus the time. Calculated ECTE are 
shown as a function of time (c) and temperature (d). The results shown are for 
unconstrained fresh ice. 
 
Figure 15 shows the results of a typical experiment. The measured strain and 
temperature are calculated directly from the fiber-Bragg wavelengths, using 
known calibration coefficients and measured wavelengths for the thermistors 
submersed in 0°C iced water. These measurements are shown in Fig. 15a,b. In 
the temperature plot we can see two minor sources of error; variations in the air 
temperature due to the cold room fan cycle (duration 5 minutes), and a sudden 
cooling (just after 12.00) when the door to an adjoining cold room was opened. 
Neither of these processes has a strong effect on the observed in-ice 
temperatures (the lowest six lines on the top right plot) but both will have some 
effect on overall results.  
 
Calculated ECTEs are shown in Fig. 15c,d. For these, ice temperature and strain 
are averaged over 600s periods. If the temperature difference in this window is 
less than 0.1°C then the measurement is ignored, since slight residual strains at 
constant temperatures can lead to high anomalous expansion coefficients. The 
results shown are therefore those for which the temperature difference across 
the measurement window was sufficiently high. These are then shown as a 
function of time and temperature. 
 
Figure 16 shows results combined across all experiments. For fresh ice (Fig. 16a) 
there is a range of positive values of ECTE, with a few negative outliers. We see 
no clear trend with temperature. Average ECTE are 46.9x10-6K-1 for 
unconstrained fresh ice, 26.9x10-6K-1 for ice constrained by an external pipe, and 
64.3x10-6K-1 for ice constrained by both internal and external pipes. The average 
for the unconstrained pipe is within 10% of the literature value. For saline ice 
with no pipe (average value 52.4x10-6K-1) and with 1 pipe (average 50.6x10-6K-1) 



we see similar behavior. For saline ice (Fig. 16b) with two pipes the values over 
the first eight hours of the test are similar (average 54.2 x10-6K-1, but then we see 
a clear trend towards negative ECTE with rising temperature (above around -
10°C). It may be that the dual pipes prevent brine drainage, and the phase 
changes associated with trapped brine drive the negative thermal expansion 
coefficient. The conditions at the surface of the ice can affect thermal expansion 
by constraining the ice as well as by constraining the brine. We believe that the 
high scatter seen in our results may be due to residual stresses which build up 
and relax in the ice over time, particularly as it sticks against the pipes. These 
residual stresses may be released later than they build up, which would mean 
that the correlation between observed ice strain and instantaneous temperature 
is less clear than if all strains are realized immediately. 
 

 
Figure 16. Experimentally measured ECTE, plotted as a function of temperature 
for fresh ice  (a), and for saline ice (b). I - unconstrained sample; II –sample with 
one pipe; and III – sample with two pipes. 
 
Thermal expansion of floating confined ice 
The effects of under-ice pressure on a confined ice sheet are shown in Fig. 17. As 
the pressure was gradually increased in the water the strain in the ice also 
increased (Fig. 17a). At the same time the strain measured on the inside face of 
the wall decreased, indicating that the wall bent outwards slightly. The 
temperature at 1cm depth and deeper increased as a result of water migrating 
through the ice sheet (Fig. 17b). This water migration was also visually observed. 
The decrease in the surface temperature is related to the overall temperature 
changes in the cold lab. This effect is also picked up by the thermistor at a depth 
of 1cm, after around 500s. 
 

 



Figure 17. Strains in ice and tank walls induced by the increase of the water 
pressure below the ice (a). Temporal variations of the ice temperature induced 
by brine migration through the ice (b). 
 
Figure 17a shows positive thermal expansion of ice caused by the vertical 
migration of liquid brine through the ice (which has a vertical temperature 
gradient.) Under-ice pressure drives the brine upwards. The brine temperature 
is initially equal to the temperature of its surrounding ice, since the brine is in 
local thermodynamic equilibrium with ice. Therefore, as brine migrates upward, 
warmer brine from the bottom of the ice (where the ice is warmest) heats up the 
top layers of the ice. From Fig. 17, ice deformation reaches about 2⋅10-4 when the 
temperature increases by about 0.1oC. This deformation is caused by thermal 
expansion of ice and ice compression between the tank walls. The conclusion 
here is that if brine is forced vertically upwards through the ice, this is likely to 
warm the ice (since the sea water and lower brine are warm compared to the 
brine near the upper surface), leading to an expansion.     
 
Conclusions 
FBG sensors are a productive tool for laboratory measurements of the thermo-
mechanical properties of saline ice. It was possible to perform experiments with 
samples of different sizes and geometries. The high sampling frequency, 
accuracy and resolution of the FBG sensors provided good quality data across a 
temperature range from 0oC to -20oC. The sensors, and their associated 
hardware and software, were stable and robust. The main complication in these 
experiments was in developing techniques to mount the FBG sensors onto the ice 
samples.  
 
In this paper we have compared values of the coefficients of linear thermal 
expansion calculated from laboratory experiments (ECTE) to predictions based 
on a model of ice as an impermeable medium (to liquid brine) and on a fresh ice 
model. Negative values of ECTE were found when the ice samples had salinities 
of 6ppt, 8ppt and 9.4ppt. Abnormal thermal expansion – contraction with 
increasing temperature - was observed at temperatures higher than -8oC (6ppt 
and 8ppt experiments) or -11oC (9.4ppt experiments). Hysteresis effects, similar 
to those described in earlier work, were observed. Surface area to volume ratio, 
and confinement of the ice, appear to affect the ECTE. In experiments with 
confined floating ice we observed heating and thermal expansion of ice due to 
the vertical migration of liquid brine through the ice under the action of water 
pressure beneath the ice.  
 
We formulated a new model of saline ice consisting of the ice with closed brine 
pockets (ICP) and permeable brine channels, and assumed that closed brine 
pockets can transform into permeable channels under temperature changes. 
This process may influence the fraction of the mass contained in closed pockets 
(the ICP mass). Using experimental data we estimated changes of the ICP mass of 
the ice samples with different salinity. It was discovered that the ICP mass 
decreases with increasing temperature in ice samples of high salinity (9.4 ppt), 
and the ICP mass increases with increasing temperature in ice samples with 



salinity 6 ppt and 2,3 ppt. Repeated or cycling temperature changes influence the 
decrease in ICP mass with time in all samples. 
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