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Abstract

This thesis examines two problems involving the equilibrium configurations of

intrinsically straight and intrinsically curved, long elastic rods. In both cases the

rod is in a planar configuration and is clamped at one end and has a load applied

at its free end. The first problem concerns intrinsically curved rods, which un-

dergo very large deformations such that they may be pulled nearly straight, or

may form a loop, or are bent in such a way that their curvature is of the opposite

sign to their intrinsic curvature. Using a combination of experiments, numerical

simulations and analysis, the aforementioned configurations are considered from

a global qualitative perspective. The thesis gives the critical conditions for loop

formation and critical points at which a rod may jump from one configuration

to another. The second problem examines the equilibrium configurations of an

intrinsically straight rod that is pressed against an inclined wall. The critical

point at which tip contact changes to line contact is given, where we again find

excellent correlation between experiments, numerics and analysis. Overall, the

thesis contributes to our understanding of the mechanics of rods with applica-

tions in a variety of real world scenarios - from structural design, to cable laying

problems, and the mechanics of animal vibrissae.
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Nomenclature

symbol definition units nondimensional

symbol

α Angle of inclined force radians

B Flexural rigidity Nm2

Bp Length of contact region m b

D End displacement of rod m d

E Complete elliptic integral of the second

kind

i, j, k Basis for Coordinate system

Γ Curvature m−1 κ

K Complete elliptic integral of the first kind.

L Length of rod m l

M Bending moment Nm m

N Normal force N n

p Elliptic modulus

F Resultant force N f

S Arc length m s

T Axial load N t

φ Slope of deformed rod radians
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Chapter 1

Introduction

The problem of an intrinsically straight rod whose ends are clamped and free

(clamp-free) with a compressive load applied at the latter end, has a long history.

It was solved by Leonhard Euler in the eighteenth-century, see [1], [2], [3] and [4].

The solution i.e., the equations denoting the force and coordinates are well-known

and readily available, see for example the books [5] and [6]. In his paper Euler [7]

solved the problem using a power series.

A plethora of research is available on large planar deformation of rods. Some of

this is purely theoretical and some is applied. However, there is a marked absence

of experimental research. This thesis examines the large deflections of clamped-

free rods that either have large intrinsic constant curvature or straight in their

unstressed state. Our work encompasses experiments, numerics and analysis.

The two main platforms for comparing results of these are equilibrium loading

diagrams and deformed shapes.

In the first part of this thesis, we report on the large deflections of clamped-

free rods that have intrinsic constant curvature in their unstressed state. The
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rods are deformed by displacing the tip of the free end or applying load at the

free end. Those types of loading procedures are known as rigid and dead loading

respectively [8]. Theoretical studies on rods that have small values of intrinsic

constant curvature have been examined before in [6], [9], [10], [11], [12] and [13].

The second problem in this thesis reports on the large deflections of an initially

straight rod that has a flat, rigid plate pressed against its tip. This problem was

inspired by whiskers/vibrissae and can be applied in the field of robotics. Robots

and autonomous vehicles that operate in harsh and/or opaque conditions require

sensor input to make decisions. In such environmental conditions, traditional

sensors may not be useful. To provide an alternative, researchers are inspired

by the animal world to develop contact sensors. Researchers have developed

mathematical models to try and simulate the forces and bending moments acting

at the base of whiskers. Generally, two kinds of mathematical models are used

to analyse the mechanical response of whiskers. Those models are rigid body

models and continuum models. In rigid body models, the whisker is represented

as a series of rigid bodies that are connected to one another by springs [14], [15]

and [16]. In continuum models the whisker is represented as one flexible element

[17], [18] and [19]. The elastica (a nonlinear model) and beam theory (a linear

model) are examples of the latter.

1.1 Contribution to knowledge

In chapter 3 of this thesis we report on the large deflections of intrinsically,

constantly curved rods that are either deformed in a rigid or dead loading manner.

The contributions of this work in the area are given below.
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1. We found that upon loading an intrinsically, uniformly curved clamped-free

rod (in a rigid loading manner), loop formation can occur. Loop forma-

tion occurs at critical values of intrinsic curvature. Those values are found

experimentally, and then verified numerically and analytically. We use the

planar theory and find a good match with the experiments. This work is

also reported in our paper, see [20].

2. In addition to verifying the previous [6] and [10] we found that there are

solutions that are always inflectional. The experimental loading paths (ob-

tained under dead loading) are compared with the numerical and analytical

results. Furthermore, we report on critical (instability) points that occur

during those experiments. The critical points that we find mathematically

are in good agreement with the numerics and experiments. The work we

have described, i.e., inflectional solutions and the critical unstable points,

are previously unreported and a journal publication is in preparation.

In chapter 4 the loading paths and deformed shapes of an initially straight rod

that has a plate pressed at the tip are computed. This work has applications

in biomimetics and robotics. Previously published work have focused on linear

theory and have not considered point and line contact, i.e., situations whereby the

rods tip is in contact and a section of the rods length is in contact, respectively.

This work has also been published in our paper, see [21].
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1.2 Overview of the thesis

The structure of this thesis is outlined below:

1. In chapter 2 we formulate the mathematical model. The model reflects

the experimental set-up and procedure as closely as possible. First, we

give a derivation of the model and this is broken down into three parts,

namely: the geometry of deformation, the fundamental mechanical laws

and the constitutive equation. We then describe the loading procedure and

the boundary condition at one end of the rod from an experimental point of

view. In the penultimate section we describe the numerical technique that

is adopted in the computer software AUTO, and in the last section we give

the equations along with the boundary conditions in non-dimensional form.

We also describe the experimental set-up, experimental procedure and the

numerical technique that is used by the software AUTO.

2. In chapter 3 we report on the large deflections of uniformly curved rods.

This chapter is split into the following two sections:

• In §3.3 we report on uniformly curved rods that are deformed under

rigid loading. Upon loading, the curvature in the rod is always the

same sign as the intrinsic curvature. These configurations can be in-

flectional and noninflectional. In §3.3.1 we examine the conditions for

loop formation.

• In §3.4 we examine rods that have an interior inflectional point, i.e.,

inflectional type rods. We present the experimental, numerical and

analytical solutions, and then in §3.4.1 we compute the points that
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are associated with instability.

3. In chapter 4 we give solutions to a rod that has a rigid, frictionless plate

pressed at the free end.

4. In chapter 5 we give a conclusion on our findings and discuss future research.

Note, we conduct a literature survey in the introduction sections of chapters 2, 3

and 4.
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Chapter 2

Mathematical model &

methodologies

2.1 Introduction

The purpose of this chapter is to present the mathematical model that governs

the planar deformation of slender, inextensible and unshearable rods. We apply

the model, a boundary value problem (BVP) to physical rods of circular and rect-

angular cross sections. The model encompasses the planar deformation of nitinol

rods which are either uniformly curved or straight in their reference configura-

tion. The model consists of a system of first order ordinary differential equations

(ODEs) and boundary conditions. These are then solved using either numerical

computation (computer software: AUTO) or analysis and then compared to data

obtained from experiments.

A plethora of literature has appeared over the last thirty years with respect

to the large deflection in rods. Some of the earliest work has been purely analyt-
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ical [6], [11], [22] while some of the more recent work has relied upon numerical

computation [13], [23], [24]. Experimental studies on the other hand have not

received the same magnitude of attention.

One of the earliest experimental studies on large deflection rod theory was

conducted in [25]. Although the equations were known as early as the eighteenth-

century, the deformed shapes had not been experimentally determined until the

author presented their PhD thesis [25]. The author performed experiments on

rods of rectangular cross-sections (strips) and considered the clamped-clamped,

clamped-pinned and clamped-free boundary conditions. The author discovered

that a rod that was clamped at both ends was always stable when no inflection

points exist (non-inflectional), where in contrast a rod with the same boundary

conditions that has inflection points (inflectional), tends to buckle out of the

plane. The author used rods of rectangular dimensions in the experiments (of

dimensions: 0.5mm and 0.25mm). The author remarked that “these strips clearly

behave as planar rods”.

The author of [4] obtained experimental data and compared the data with

analysis and numerical computation. In the experiments the author used rods

that have both rectangular and circular cross-sections. The author used the

three-dimensional rod model and determined an analytical expression for the out

of plane bifurcation that develops in the clamped-clamped rod [26]. The author

also, in [4] conducted experiments whereby twist was varied, and this led to

writhing and loop formation in rods.

The experimental work by the authors in [25] and [4] was accomplished by

varying the end load and end displacement respectively. We should also add that
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neither [4] nor [25] consider naturally curved rods or any external constraints.

In our work, we perform experiments on rods that are deformed in a rigid and

dead loading manner. Note, that for our experiments we follow the experimental

procedure in [4]. Deforming a rod and obtaining solutions in an experiment may

not always give the full account to the solution. For example the paper by the

author of [27] presented the loading path of a clamped-pinned rod. The author

reports that solutions that are obtained under a dead load become unstable. The

loading diagram that is obtained under this type of loading (dead loading) has a

different loading diagram to the case where the same rod is deformed under rigid

load. If one is concerned with the stability of such structures, then the loading

procedure of the rod becomes important, see [8].

Experiments are a major theme in this work and one of the challenges in

performing useful experiments is to find a material which is “rod-like” (elastic)

over a sufficiently large range of (measurable) loads. Real physical rods can

kink i.e., they have a finite ‘elastic domain’ and when that domain is exceeded

they undergo plastic deformation. However, successful experiments have been

undertaken using nickel titanium alloy rods in [4], which, as discussed in Section

2.4.1, is the material selected for our experiments.

2.2 The geometry of deformation

A rod is a slender elastic structure that has the distinctive property whereby one

dimension i.e., the length L, is much greater than the other two. We make use

of this property and parameterise the rod by a single variable: the arc length

S, where S ∈ [0, L]. The experimental rig, along with an unstressed (straight)
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Figure 2.1: (i)The experimental rig with a rod of length L deflected under input of end dis-

placement D. In its unstressed reference state the rod lies along the X axis. (ii) A free body

diagram of an element ∆S of deformed rod.

and deformed nitinol rod is presented in Figure 2.1(i). We define a right-handed

orthonormal cartesian co-ordinate system X, Y, Z with basis {i, j,k} and place

it at S = 0. The unstressed rod lies in XY plane and upon deformation the

rod remains in that plane. The deformed rod is described by φ(S), the angle

between the horizontal X-axis and the tangent to the deformed rod at S. The
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angle φ(S) is measured anti-clockwise from that axis and this is defined to be

positive. The Cartesian coordinates X, Y at a point S are recovered from the

following differential equations:

dX

dS
= cos(φ), (2.1)

dY

dS
= sin(φ). (2.2)

In the case of the unstressed straight rod (zero intrinsic curvature), the rod lies

along the X axis such that S(L) = X(L).

The curvature of the rod Γ, is defined as:

dφ

dS
= Γ. (2.3)

2.3 Equilibrium of forces and moments

A force F is exerted on the rod at the tip (or S = L) and is applied at an angle α.

The angle, α is measured from the X axis in the anti-clockwise direction and this

is defined to be positive, see Figure 2.1(i). Note, that we neglect the self-weight

of the the rod. The force F acts in the XY plane, and the bending moment M

acts about an axis normal to that plane, i.e., the Z-axis. The force is represented

in terms of its components T i and N j, an axial and normal force respectively. We

refer to [1] and take the summation of moments about the point ‘C’ as follows:

∑
Mc = 0, (2.4)

M + ∆M + ∆R× (F + ∆F)−M = 0, (2.5)

where“×” denotes a vector (cross) product and where,

∆R = ∆Xi + ∆Y j, (2.6)
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and

F = T i +N j, ∆F = ∆T i + ∆N j. (2.7)

Internal moments M, act in the anti-clockwise direction and are defined to be

positive. We substitute Eqs. 2.7 and 2.6 into Eq. 2.5, and ignore terms of O(∆2),

∆M + (∆Xi + ∆Y j)× (T i +N j) = 0, (2.8)

∆Mk− T∆Y k +N∆Xk = 0k. (2.9)

For any static equilibrium configuration the forces and moments acting on an

element ∆S must be zero. Dividing Eq. 2.9 through by ∆S gives,

∆M

∆S
− T ∆Y

∆S
+N

∆X

∆S
= 0, (2.10)

and taking the limit ∆S → 0,

dM

dS
− T dY

dS
+N

dX

dS
= 0. (2.11)

Substituting Eqs. 2.1 and 2.2 into Eq. 2.11 gives,

dM

dS
− T sin(φ) +N cos(φ) = 0. (2.12)

Applying the condition of force equilibrium along the rod, i.e.,

∑
F = 0,

F + ∆F− F = 0. (2.13)

Dividing Eq. 2.13 by ∆S gives:

∆F

∆S
= 0, (2.14)

and taking the limit ∆S → 0,

dF

dS
= 0. (2.15)
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Substituting the first expression of Eq. 2.7 into Eq. 2.15 gives:

d

dS
(T i +N j) = 0, (2.16)

from which it follows:

dT

dS
= 0, (2.17)

dN

dS
= 0. (2.18)

The forces T and N are given as follows:

T = F cos (α) , (2.19)

N = F sin (α) . (2.20)

Accordingly, T (S) and N(S) are conserved quantities.

2.4 The constitutive relation

We seek a linear constitutive relation between the bending moment and curvature

that is applicable over the range of loads used in the experiments. That constant

of proportionality is the flexural rigidity B, and in the case of a linear relationship

this is expressed as follows:

M = B

(
dφ

dS
− Γi

)
, (2.21)

where Γi is the initial curvature. For initially straight and uniformly curved rods,

Γi = 0 and Γi 6= 0 respectively, see Figure 2.5. The constitutive relation, Eq. 2.21

links Eq. 2.12 with Eq. 2.3. We take the derivative of Eq. 2.21 with respect to

S and combine it with Eq. 2.12. This leads to the governing nonlinear elastica
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equation:

B
d2φ

dS2
− F cos(α) sin(φ) + F sin(α) cos(φ) = 0, (2.22)

B
d2φ

dS2
− F sin (φ− α) = 0. (2.23)

2.4.1 Flexural rigidity

We perform the experiments using nickel-titanium (nitinol) rods of circular and

rectangular cross-sections of length L. Nitinol, an alloy made up from nickel and

titanium (55% Ni and 45% Ti) exhibits unique material properties, namely su-

perelasticity and shape memory effects [28]. That unique superelastic property

has made it a preferred choice in biomedical applications [29]. Nitinol with shape

memory properties, has the ability to undergo deformation at one temperature,

and then return to the undeformed shape when heated. Nitinol with superelastic

properties has the ability to deform and return to their natural state providing

the elastic limit is not reached. The elasitc limit is reported as 1650MPa, see [30].

With this in mind, superelastic nitinol rods of circular (radius = 0.5mm) and rect-

angular cross-sections (length × width = 3mm×0.25mm) are chosen. We select

rods of lengths in the range 250 − 400mm and assume, with good justification

(as discussed below), the samples chosen are isotropic and homogeneous. We also

assume that the unstressed state is straight and that during experiments the rods

suffer no appreciable extension or transverse shear. Since suppliers advise that

these properties may vary (due to manufacturing), we establish them directly

by conducting simple cantilever experiments. From cantilever experiments we

determine the value of B using the the following formula [31]:
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δn =
NL3

3B
(2.24)

where δn is the deflection at the free end due to the applied normal load N at the

tip. This experiment gives the same result in any lateral direction, i.e., isotropy.

The value of B is determined for both circular and rectangular cross sectional

rods, see Figure 2.2(a) and (b) respectively.

Figure 2.2: Line of best fit to experimental data for the determination of flexural rigidity B,

for (a) 1mm diameter nitinol circular rod and (b) 3mm × 1mm nitinol strip.

2.4.2 Initial curvature

Rods with circular cross sections have disadvantages for experimental investiga-

tions into the effects of initial curvature because they tend to undergo out-of-plane

deformations under loading, see for example [4] and [25]. Furthermore, since rods

are generally supplied as intrinsically straight, initial curvature has to be induced

and that is difficult with circular rods, for similar reasons. We induce constant

curvature by wrapping and clamping the nitinol tightly around circular steel bars

of diameters 8,12,15 and 30mm, see Figure 2.3. During that deformation the
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Figure 2.3: Experimental procedure for inducing intrinsic curvature

rod exceeds its elastic limit, such that when the rod is released from its clamps

it adopts the form of a circle (of larger radius than the circular steel bar about

which it was clamped). That new circular form becomes the natural unstressed

state of the rod. In this state, there is residual stress [32] however, we assume

that in any subsequent loading or unloading processes that the rod undergoes

during experiments, the rod is completely elastic. We remark here that the rod

has not been subjected to any heat treatment.

2.5 Experimental procedure and boundary con-

ditions

The rig consists of a chuck, force transducer, machined casting and a poten-

tiometer. The potentiometer and force transducer record the end displacement

and force respectively and are attached to the machined casting on the rig (see

the left hand side of Figure 2.1). In this section the boundary conditions, with

reference to the experimental apparatus are specified.
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2.5.1 Clamped-end

The boundary conditions at the clamped end are given as follows:

X(0) = 0, (2.25)

Y (0) = 0, (2.26)

φ(0) = 0. (2.27)

The chuck pictured in Figure 2.4 clamps the rod such that the conditions in

Eqs. 2.25− 2.27 are satisfied.

Figure 2.4: The experimental set-up at the clamped end of the rod (S = 0) satisfying the

boundary conditions Eqs. 2.25− 2.27. Here the rod is gripped in the in exactly the same way

a drill bit is gripped.

2.5.2 Free-end

In all the problems investigated in this work, the following boundary condition

holds at the tip:

dφ

dS
(L) = Γi. (2.28)
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Figure 2.5: The reference states for a straight rod and a uniformly curved rod. Note the

definitions of Di; for the straight rod Di = 0 and for the intrinsically curved rod Di 6= 0

Experiments may proceed under two different procedures:

1. Loading the free end by a weight i.e.,

F (L) = ±Λ. (2.29)

In this case, the rod is inserted in the chuck (S = 0) and the weights (of

weight Λ) are applied at the free end (S = L). The weights are loaded on to

the hanger (of mass 10g) and attached to the rod at S = L via a wire clamp.

After each incremental load is applied, we record the corresponding position

X(L) and determine D (from Eq. 2.30). The weights were designed and

constructed from polymethyl methacrylate (acrylic) by the author and each
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free weight is ≈ 012N (1.3g), see Figure 2.6.

2. Displacement of the free end in a straight line parallel with the X axis, by

amount D either away from or towards the clamped end X(0). In this case

we specify the following boundary condition:

X(L) = L−Di ±D. (2.30)

The position of the tip of the unstressed straight and uniformly curved rod,

Di (see Figure 2.5) is defined respectively, as follows:

Di = 0 (2.31)

Di = L

(
1− 1

γi
sin (γi)

)
. (2.32)

The experiment is set-up such that the transducer records values of F every

D = 0.1mm. The force transducer facilitates the recording of both negative

and positive values, i.e., a compressive and tensile force respectively. For the

case of the two problems analysed in this research project, an experiment

under rigid loading conditions involves attaching a clamp-slider and using

a plate against the tip of the rod, see Figures 3.1 and 4.3 respectively.

Those two procedures are referred to as ‘dead’ and ‘rigid’ loading, see [8].
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Figure 2.6: Experimental procedure for dead loading. The rod is loaded at the tip with free

weights (mass of each is 1.3g).

2.6 Numerical methods

The system of ODEs Eqs. 2.1− 2.3, Eq. 2.17, Eq 2.18 and Eq. 2.22 (or Eq. 2.23)

and the corresponding boundary conditions Eqs. 2.25 − 2.29, constitute a well

posed BVP. In this work our main forum for studying solutions is through equi-

librium loading paths and XY deformed shapes. The equilibrium diagrams are

used to compare the theory with experimental data. Experiments proceed un-

der continuation of either F or D, as ‘continuation parameters’. The solution

to our BVP can be obtained by direct integration and expressed in terms of el-

liptic functions, see [6], [4]. However, in the case of initial curvature, there are

complications that make the solutions difficult to interpret, which are discussed

in §2.8.2.1. Consequently, we integrate the BVP system of ODEs directly under

parameter continuation of F (dead loading) and D (rigid loading).

There are various numerical methods for achieving this. For example, the

finite element (FEM) (see [33] and [34]), the shooting method (see [35]) and

MATLAB’s bvp4c (see [4]). FEMs employing Riks arclength continuation can
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also produce equilibrium paths where no bifurcation exists [36]. However MAT-

LAB’s bvp4c can struggle as it does not use the previous solutions to find new

solutions and due to the nonlinearlity of the ODEs, they can struggle to compute

an equilibrium loading path.

The software package AUTO [37] is based on numerical continuation. The ba-

sic aim of a continuation method is to find solutions corresponding to particular

values of a defined continuation parameter, i.e., D or F for rigid or dead loading

respectively. Given an initial solution, a continuation method computes the so-

lution path by first changing the value of the parameter and then using a root

finder to locate the point on the solution curve. The computation of solutions

when the parameter is varied is a procedure known as numerical continuation,

or path following. The most popular continuation techniques are those based on

predictor-corrector schemes and AUTO-07p is an example of this. The general

idea of such schemes is to follow (according to the user defined step size) follow

the solution curve incrementally. Each incremental update is achieved in two

steps:

• The first step generates an approximation to the solution using previous

information (predictor step) and

• the second step uses this prediction as an initial guess for an iterative non-

linear solver i.e., Newton’s method (the corrector step).

At turning points and bifurcation points, Newton’s method fails during parameter

continuation [38]. The solution to this problem is to introduce a pseudoarclength.

In pseudoarclength continuation, the “ideal” parameterisation of the solution

curve is its arclength. Pseudoarclength is an approximation of the arclength in
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the tangent space of the curve, see Figure 2.7 (a) and (b) for pseudoarclength and

parameter continuation respectively. The resulting continuation, takes a step in

pseudo-arclength (rather than the natural step in the parameter space). Newton’s

method is then used to locate the solution at that given pseudo-arclength, which

requires adjoining an additional constraint (the pseudoarclength constraint), see

[39].

Figure 2.7: Graphical interpretation of (a) pseudo-arclength and (b) parameter continuation.

In parameter continuation the solution at a particular value of the continuation parameter F or

D, is used as the initial guess for the solution. If the step size is sufficiently small the iteration

will converge. On the other hand, pseudo-arclength involves the step size along the arclength

of the solution curve, rather than the continuation parameter.

AUTO does not rely on guess or interpolation functions and deals directly

with the differential equations and boundary conditions. It computes solutions

as the continuation parameter changes whereas some other numerical methods,

for instance FEM rely on interpolation functions [34]. We choose to use AUTO

for the following reasons:

1. AUTO explicitly identifies maximum and minimum points on the solution

curve (limit points)
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2. AUTO detects bifurcations i.e., the nth buckling mode, where n = 1, 2, 3, ...,∞.

3. AUTO computes solutions based on a continuation parameter. Addition-

ally, it also allows the user to define further free parameters.

4. AUTO uses the solution of the previous step to find the solution of the

next step. This is advantageous because it forces the program to stay on

the solution curve.

We write the BVP in a text file using the computer language FORTRAN. AUTO

requires the program file and a constants file. In the former, we define the equa-

tions and the boundary conditions only, and in the latter, we define, for example

the number of iteration steps, parameter step size and number of free parameters.

When the programme has computed the solutions to the BVP, the user can plot

the deformed shape i.e., x(s) and y(s) and equilibrium loading diagrams.

2.7 Nondimensional system of equations

For the purpose of both experimental and numerical computation, it is convenient

to re-write the equations in non-dimensional form. For this the following re-

scalings are introduced:

s =
S

L
, x =

X

L
, y =

Y

L
, d =

D

L
, q =

Q

L
, κ = ΓL, (2.33)

t =
TL2

EI
, λ =

ΛL2

EI
, n =

NL2

EI
, f =

FL2

EI
, m =

ML

EI
. (2.34)
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2.7.1 Nondimensional system of first order ordinary dif-

ferential equations & boundary conditions

The mathematical model consists of five first order ODEs. These are Eqs. 2.1−2.3

for the deformation of the geometry, Eqs. 2.17 and 2.18 for the force, along with

Eq. 2.22 (or 2.23) for the curvature. In nondimensional form those are as follows:

dx

ds
= cos (φ) , (2.35)

dy

ds
= sin (φ) , (2.36)

dφ

ds
= κ, (2.37)

dκ

ds
= f sin (φ− α) , (2.38)

df

ds
= 0. (2.39)

The boundary conditions for this BVP are given in Eq. 2.25−2.27 at the clamped

end, and Eq. 2.28 along with either Eq. 2.29 or Eq. 2.30 for dead and rigid loading

respectively. The nondimensional boundary conditions are summarised in Table

2.1.
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Boundary Conditions

Clamped end:

(1) x(0) = 0,

(2) y(0) = 0,

(3) φ(0) = 0.

Free end:

(4) dφ/ds(1) = γi.

(5a) f(1) = ±λ

(5b) x(1) = 1− di ± d,

Table 2.1: The nondimensional boundary conditions.

2.8 Analytical methods: some remarks

In this section we present the analytical solution for a straight rod that is deformed

with a compressive axial force, i.e., f = −t and α = 0, [6]. We also present some

preliminary analytical results for the case of an intrinsically, uniformly curved

rod that is deformed with an axial force i.e., f = ±t and α = 0. We then define

the elliptic parameter for those cases (intrinsically straight and uniformly curved

rod). The elliptic parameter plays a key role in distinguishing noninflectional and

inflectional configurations.
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2.8.1 Straight rod

An initially straight rod that is clamped at s = 0 and free at s = 1 is deformed

with an axial compressive load (applied at the free end), see Figure 2.8. We refer

back to Eqs. 2.37− 2.38 and consider sin(φ) ≈ φ, f = −t and α = 0.

d2φ

ds
+ tφ = 0. (2.40)

The general solution to Eq. 2.40 is of the form:

φ(s) = A sin
(

(t)1/2 s
)

+B cos
(

(t)1/2 s
)
. (2.41)

From boundary conditions (3) and (5), see Table 2.1, we find B = 0 and

dφ

ds
(1) = At1/2 cos

(
(t)1/2

)
= γi. (2.42)

For the initially straight rod γi = 0 and it follows that Eq. 2.42 is satisfied at the

following values of t:

(t)1/2 = (1 + n)
π

2
, n = 0, 1, 2, 3, ...,∞, (2.43)

where n = 0 corresponds to the Euler buckling load and n = 1, 2, 3, ...,∞ corre-

spond to the existence of multiple buckling loads, see [4]. The general solution

to Eq. 2.40 is of the form:

φ(s) = A sin
(

(t)1/2 s
)
. (2.44)

We denote the Euler buckling load tE as follows:

tE =
π2

4
. (2.45)

Eq. 2.45 describes a change of state whereby the straight rod buckles and this was

given by Euler (1707-1783), see [7]. This result is the first example of a formula
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depicting a bifurcation in a structural system. The term bifurcation comes from

the Latin furca, to fork, and describes the loss of stability of one state and the

emergence of two new stable states. The existence of two solutions illustrates

the fact that at the critical load the rod can buckle to either side, see Figure

2.8 where the rod can either buckle into what we call the upper or the lower

half-plane, UHP and LHP respectively. In the case of an initally straight rod,

the UHP and LHP correspond to φ(s) > 0 and φ(s) < 0 respectively, and it

follows that such solutions can be obtained by taking the positive or negative

sign in Eq. 2.48 (or Eq. 2.48). Experimentally, the plane that the rod chooses to

deflect in cannot be determined but will depend in practise on the presence of an

imperfection of which initial curvature is an example.

The solution of a rod that is deformed under an axial load only, i.e., α = 0

under large deflections is presented. Note that the equations we present are for

a rod that is straight in its unstressed state i.e., di = 0, see [5]. We re-write

Eqs. 2.37 and 2.38 in the form of a second order ODE,

d2φ

ds2
= t sin(φ). (2.46)

We multiply Eq. 2.46 by dφ
ds

and integrate as follows:

1

2

(
dφ

ds

)2

= −t cos(φ) + C. (2.47)

The constant of integration C is determined from condition 4 in Table 2.1. In

the case of a straight rod the curvature is expressed as follows:

dφ

ds
= ± (2 (−t) (cos (φ)− cos (γ)))1/2 ,

= ±2 (−t)1/2
(

sin2
(γ

2

)
− sin2

(
φ

2

))1/2

, (2.48)
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Figure 2.8: The configuration of a deformed rod in nondimensional coordinates, where the angles

φ(s) and γ are measured anticlockwise from the horizontal axis at s and s = 1 respectively.

An intrinsically straight rod will buckle at f = tE in either the UHP or LHP. In each case the

configurations are symmetric about the x axis. Note that this symmetry does not apply to the

initially curved rod, which we assume lies in the UHP in its unstressed state.

where cos(φ) ≡ 1 − 2 sin2(φ
2
) and −t refers to the magnitude of the force along

the negative i direction. We drop the negative sign from Eq. 2.48 and split the

equation as follows:

∫ s

0

du =
1

2 (−t)1/2

∫ φ

0

dψ(
sin2

(
γ
2

)
− sin2

(
ψ
2

))1/2 . (2.49)

The integral is simplified by introducing a new integration variable θ, given by

θ = arcsin

(
sin
(
ψ
2

)
p

)
. (2.50)
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The elliptic modulus p is defined as follows:

p = sin
(γ

2

)
. (2.51)

It follows that the elliptic parameter, p2 is defined in the range 0 ≤ p2 ≤ 1.

We differentiate Eq. 2.50 and obtain:

dψ = dθ
2p cos(θ)

(1− p2 sin2(θ))1/2
. (2.52)

We express Eq. 2.49 as follows:

s =
1

(−t)1/2

∫ θφ

0

dθ

(1− p2 sin2 θ)1/2
, (2.53)

The elliptic argument θφ is given by,

θφ = arc sin

(
sin
(
φ
2

)
p

)
. (2.54)

At the tip of the rod (s = 1), the angle is φ = γ and it follows that θφ = π/2.

Therefore, we express Eq. 2.53 as follows:

1 =
1

(−t)1/2
K (p) , (2.55)

where K is the complete elliptic integral of the first kind and is a function of p

only. We determine values of t as follows:

t = − (K (p))2 , (2.56)

The equations for x(s) and y(s) are obtained by substituting Eq. 2.49 into

Eqs. 2.35 and 2.36. We make use of the trigonometric identities, cos (φ) ≡

1 − 2 sin2
(
φ
2

)
and sin (φ) ≡ 2 sin

(
φ
2

)
cos
(
φ
2

)
and express the coordinates of the
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deformed rod as follows:

x(s) =
1

(−t)1/2

∫ θφ

0

dθ(
1− p2 sin2(θ)

)1/2 (2 (1− p2 sin2(θ)
)
− 1
)
, (2.57)

x(1) =
1

(−t)1/2
(2E(p)−K(p)) , (2.58)

y(s) =
1

(−t)1/2

∫ θφ

0

2p sin(θ) dθ =
2p

(−t)1/2
(1− cos (θφ) , ) (2.59)

y(1) =
2p

(−t)1/2
. (2.60)

Where E(p) is the complete elliptic integral of the second kind. Eqs. 2.58 and

2.56 are used to compute td equilibrium diagrams, and Eqs. 2.57 and 2.59 are

needed to compute the deformed shapes.

2.8.2 Intrinsically curved rod

The deformed shapes that correspond to large deflections in the UHP and LHP

are depicted in Figure 2.9. We refer back to Eqs. 2.37 − 2.38, along with α = 0

and it follows:

d2φ

ds2
= t sin(φ). (2.61)

The force f = t and corresponds to a compressive and tensile force, that is t < 0

and t > 0 respectively. We multiply Eq. 2.61 by dφ
ds

and integrate as follows:

1

2

(
dφ

ds

)2

= −t cos(φ) + C. (2.62)

The constant of integration C is determined by substituting condition 5 from

Table 2.1,

C =
1

2
γ2i + t cos(γ), (2.63)
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Figure 2.9: An unstressed, uniformly curved rod (shown in black) along with a rod that is held

with a tensile (t > 0, deformed red shapes) and compressive (t < 0, deformed blue shapes) force

in the UHP. The shapes in the LHP are shown in green and have at least one inflection point.

Note that d is measured from the point x = 1 and for uniformly curved rods the position of the

unstressed rod di is always > 0.

where γi and γ are the end angles of the unstressed and deformed rod respectively,

see Figure 2.10. We substitute Eq. 2.63 into Eq. 2.62, and find:

dφ

ds
= ±

(
γ2i − 2t (cos (φ)− cos (γ))

)1/2
,

= ±
(
γ2i − 4t

(
sin2

(γ
2

)
− sin2

(
φ

2

)))1/2

. (2.64)

The deformed shapes in the LHP have interior inflection points, see shapes shown

in green in Figure 2.9, where the curvature along s changes sign. The deformed

shapes in the UHP do not have any interior inflection points, see shapes shown in
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blue (for a rod deformed under a compressive force) and red (for a rod deformed

under a tensile force) in Figure 2.9.

Deformed shapes in the UHP involve positive φ and it follows that dφ
ds

is also

positive in that plane for all the types of loading considered here viz., end dis-

placement by d and dead loading with t. Consequently, we take the +ve sign in

Eq. 2.64 (or Eq. 2.64) for solutions in the UHP. However, solutions in the LHP

can only be obtained by applying a clockwise moment. As that clockwise mo-

ment increases in magnitude, at some point the moment will cancel the intrinsic

curvature, in which case the rod is aligned with the x axis. Upon further bending

the rod deforms into the LHP such that the curvature changes sign i.e., there is

an interior inflection point. Consequently, for solutions in the LHP we need to

consider both +ve and −ve signs in Eqs 2.64 (or Eq. 2.64). In the case where

γi = 0, i.e., the straight rod, the +ve and −ve signs yield solutions that are

symmetric, see Figure 2.8. Similarly, in the case of uniformly curved rods there

exist solutions that lie in both the UHP and LHP, however the deformed shapes

in those planes are not symmetric.

We have noted that in the case of the straight rod solutions are symmetric

about the x axis and whether we take the +ve or−ve sign in Eq. 2.64 (or Eq. 2.64)

is irrelevant i.e. we just define curvature as +ve or −ve respectively. However, in

the case of an initially curved rod, as mentioned above, that symmetry is lost and

the differences are manifest in the sign of Eq. 2.64 (or Eq. 2.64). In this section we

consider both cases and determine expressions for the elliptic parameter, which

is a key parameter for defining solutions [6].
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2.8.2.1 Case I: UHP

A nondimensional, unstressed, uniformly curved rod that is defined in the UHP

is presented in black in Figure 2.10. The deformed rods, shown in blue and red

correspond to t < 0 and t > 0 respectively. The curvature along the length of the

rod does not change sign. Thus, we refer back to Eq. 2.64 and take the positive

root:

dφ

ds
=

(
γ2i + 4t sin2

(
φ

2

)
− 4tk2

)1/2
, (2.65)

where:

k2 = sin2
(γ

2

)
. (2.66)

We refer back to Eq. 2.65 and define the elliptic parameter p2 as:

p2 = k2 − γ2i
4t
. (2.67)

Eq. 2.67 consists of two terms: k2, which depends on the end angle and a term

that depends on the ratio of the initial curvature, γi and applied force, t.

For inflectional deformed shapes, dφ
ds

= 0. Applying this condition in Eq. 2.65 we

find that:

sin2

(
φ

2

)
= p2. (2.68)

In order to satisfy Eq. 2.68, the elliptic parameter must take values in the fol-

lowing domain:

0 ≤ p2 ≤ 1. (2.69)
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Figure 2.10: Nondimensional plot of an initially curved rod showing two configurations from its

unstressed state (black curve) with initial x deflection di. The compressed configuration (blue)

is obtained by inputting d towards the clamped end and the configuration under tension (red)

is obtained by inputting d away from the clamped end.

Values of p2 that satisfy Eq. 2.69 correspond to deformed shapes that have in-

flection points. Deformed shapes with no inflection points, i.e., dφ
ds
6= 0, have

either:

p2 > 1,

p2 < 0. (2.70)

Eq. 2.67 depends on the values of k2 and γi
4t

. In the case of an initially straight

rod where γi = 0, the elliptic parameter is defined as p2 = k2 = sin2
(
γ
2

)
(see Eq.

2.67). In that case, the elliptic parameter depends on the end angle only and
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consequently yields values between 0 and 1. For the uniformly curved rod in the

UHP where γi > 0 the elliptic parameter outputs values in the ranges specified

in Eqns. 2.69 and 2.70. The value of the modulus of the force |t|, appearing

in the denominator of the latter term in Eq. 2.67 is problematic because for an

infinitesimal force, p2 = ±∞. Also, certain values of k2 and γi could cause the

value of p2 to fluctuate between the ranges stated in Eqns. 2.69 and 2.70. We

conclude that the solutions in terms of elliptic integrals for deformed rods in

this plane are not efficient. However, we should state that the solutions are not

difficult to attain and the reader is referred to the appendix of our paper, [20]

where we give those. If elliptic integrals were used to solve this problem, we would

have to solve Eq. 2.65 for the cases when:

• p2 > 1: such solutions are associated with the non-inflectional solutions and

• p2 ≤ 1: such solutions are associated with the inflectional solutions.

When t > 0, as can be seen from Figure 2.11,

p2 < 0. (2.71)

We consider imaginary values of the the elliptic modulus p, i.e.,

p = ±|p| i, (2.72)

where i =
√
−1. In the context of the condition for inflectional solutions given

by Eq 2.68, that means:

sin2

(
φ

2

)
= −|p|2. (2.73)
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Using the identity i sin (φ) ≡ sinh (iφ), we find

sinh2

(
iφ

2

)
= |p|2 (2.74)

which gives:

sinh

(
iφ

2

)
= ±|p| (2.75)

The above tells us that φ must be imaginary. From a physical point of view

φ must be real since Eq 2.68 does not admit real solutions for p2 < 0. To

summarise, we observe that no real inflectional solutions exist. All solutions for

p2 < 0 (imaginary elliptic parameter p) must be non-inflectional.

The behaviour of p2 for different values of γi and |t| is shown in Figure 2.11.

The plots appearing on the left and right hand side of that Figure correspond

to a compressive and a tensile force for a rod that has certain values of intrinsic

curvature respectively. The shaded and non-shaded areas in those graphs refer

to values of p2 which yield inflectional and non-inflectional solutions respectively.

A rod that is deformed under a compressive force, i.e., t < 0, is shown in Figure

(2.11) a(i), b(i) and c(i) for values of γi = π
4
, π and 3π

2
respectively.

1. For γi = π
4
, an infinitesimal force, |t| causes the value of p2 � 1. The value

of p2 drops below 1 for increased values of |t| and then rises crossing p2 = 1.

In the limit, p2 does not cross but stays asymptotic to 1.

2. For γi = π, p2 � 1 for an infinitesimal |t| and becomes asymptotic to 1 as

|t| → ∞. We should note that p2 does not cross 1.

3. For γi = 3π
2

, p2 � 1 for an infinitesimal |t|. As the value of |t| is increased,

p2 crosses 1 and then becomes asymptotic to 1 for |t| → ∞.
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Figure 2.11: Plots of p2 versus the magnitude of the force |t|, for (a) γi = π/4, (b) π and (c)

3π/2. In each case (i) and (ii) correspond to compression and tension respectively. The shaded

areas denote 0 < p < 1, corresponding to inflectional solutions. Note that for solutions in

compression (i) p2 may take values greater or less than unity as t varies and according to the

value of γi. However under tension (ii) p2 is always less than than zero and the rod is always

noninflectional.
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2.8.2.2 Case II: LHP

An unstressed uniformly curved (with γi = π/4) and deformed rod is presented in

Figure 2.12, see the black and green deformed shape respectively. The red filled

circle located along the non-dimensional arc-length of the deformed rod and the

parameters with an asterisk indicate the existence of an inflection point. For

example the angle of the tangent at the inflection point γ∗ = φ(s∗). We refer the

reader back to Eq. 2.64 and the discussion following that. In the LHP the rod

has negative curvature from the origin up to the inflection point s∗ and positive

curvature for the remainder.

Figure 2.12: An unstressed uniformly curved rod (shown in black, where γi = π/4) along with

a deformed rod (bent from the unstressed state and held with an applied compressive force) in

the LHP. The deformed shapes in the LHP have an at least one inflection point
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It follows that the curvature along the rod in the LHP is given by the following

two first order, ordinary differential equations:

dφ

ds
= −

(
γ2i − 4t

(
sin2

(γ
2

)
− sin2

(
φ

2

)))1/2

0 ≤ s < s∗, (2.76)

dφ

ds
=

(
γ2i − 4t

(
sin2

(γ
2

)
− sin2

(
φ

2

)))1/2

s∗ < s ≤ 1. (2.77)

At the inflection point dφ
ds

(s∗) = 0,

dφ

ds
(s∗) = ±

(
γ2i − 4t

(
sin2

(γ
2

)
− sin2

(
γ∗

2

)))1/2

= 0. (2.78)

We find γ2i from Eq. 2.78 and substitute into Eqs. 2.76 and 2.77 to obtain:

dφ

ds
= −2 (−t)1/2

(
sin2

(
γ∗

2

)
− sin2

(
φ

2

))1/2

0 ≤ s < s∗. (2.79)

dφ

ds
= 2 (−t)1/2

(
sin2

(
γ∗

2

)
− sin2

(
φ

2

))1/2

s∗ < s ≤ 1. (2.80)

The equation for the arc length up to the inflection point is is given below:

∫ s

0

du = − 1

2 (−t)1/2

∫ φ

0

dψ(
sin2

(
γ∗

2

)
− sin2

(
ψ
2

))1/2 . (2.81)

To express this integral in standard form we introduce a new integration variable

θ, which is defined as follows:

θ = arcsin

(
sin
(
ψ
2

)
p∗

)
, (2.82)

where p∗ is the elliptic modulus defined at the inflection point,

p∗ = sin

(
γ∗

2

)
. (2.83)

It follows that elliptic parameter p∗2 ∈ [0, 1] and the solutions are thus inflectional.

We derive the solutions for the deformed rod in the LHP in §3.4.1.
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2.9 Discussion

The system of first order ordinary differential Eqs. 2.35-2.39, along with the

boundary conditions given in Table 2.1 constitute a well posed system. It is

solved by a single-parameter continuation of either d or f using the software

AUTO. We should remark that the system of ODEs given by Eqs. 2.35 − 2.39

and the boundary conditions stipulated in Table 2.1 reflects more directly the

experimental set-up and by setting the equations under continuation of d or t, we

mimic the actual experimental procedure.

For the study of the behaviour of real rods as observed through experiments,

we need to pay special attention to the experimental set-up. As much as it is

practically possible, we seek to identify and eliminate physical imperfections that

may cause the experimental data to depart away from the mathematical model.

For instance, we require rods with linear elasticity at large deformations, and

avoid heavy rods. We pause here to remark that we can take our experiments

beyond the scope of our mathematical model, i.e., in our experiments we can

encompass self contact, extension of the rod, shear and very large deformations

in which the linearity assumptions of our constitutive relation is no longer valid.

In section 2.8.2.1 we formulate the solutions to deformed rods in the UHP

and we show that the elliptic parameter can yield values in the ranges specified

in Eqs. 2.69−2.70. Rods that are deformed with a force t < 0 correspond to values

where p2 ≤ 1 and p2 > 1, and are defined as inflectional and non-inflectional re-

spectively; those corroborate with [10] and what they called “first” and “second”

type respectively. Solutions that arise for values of t < 0 correspond to p2 < 0.

Those correlate with [10] and the solutions that they called the “third” type. In
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Figure 2.11 we present plots of p2 vs. |t|, where (a), (b) and (c) correspond to

γi = π
4
, π and 3π

2
respectively. In the case of t < 0, i.e., (a(i)), (b(i)) and (c(i)), the

value of p2 is not well-behaved. For the case where t > 0 the elliptic parameter

p2 < 0 and the solutions are noninflectional. The inconsistency of p2 makes the

use of elliptic integrals unwieldy and we therefore solve this BVP using AUTO.

In §2.8.2.2 we formulate the solution (using elliptic integrals) to rods that are

located in the LHP. As a result of the interior inflection point the solution to the

rod is governed by two first order ODEs, see Eqs. 2.76 and 2.77. Additionally,

we present the equation for the curvature at the inflection point and it follows

that we reduce equations (Eqs. 2.76 and 2.77) to standard elliptic form. Thus,

we define the elliptic modulus p∗ in terms of the angle γ∗ and it follows that the

elliptic parameter 0 < p∗2 ≤ 1.

Solutions are either inflectional or noninflectional and such solutions are clas-

sified in terms of the value of the elliptic parameter [9]. The value of the elliptic

parameter to solutions in the UHP is muddled and the shapes correspond to

either inflectional or noninflectional shapes. The interior inflection point in de-

formed rods that are located in the LHP means that the deformed shapes are of

one type, i.e., inflectional.

The remaining chapters of this thesis reports on the experimental, numerical

and some analytical results on the large deflections of both uniformly curved and

straight rods.
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Chapter 3

Loop formation and jumps in

curved rods

3.1 Introduction

In this chapter we compute the equilibrium diagrams and deformed shapes of a

rod that has uniform intrinsic curvature. As we have discussed in the previous

chapter, there are two qualitatively different equilibrium shapes. There are those

that do not have interior inflection points (red and blue deformed shapes shown

in Figure 2.9) and those that do have interior inflection points (green deformed

shapes that are depicted in Figure 2.9). The deformed shapes in the UHP and

LHP are obtained experimentally and compared with theoretical results. The

experimental solutions are obtained under the continuation of d and t i.e., rigid

and dead loading respectively. Note, that in this chapter α = 0 and f = ±t.

We begin this chapter with a review on the previous work appertaining to

clamped-free rods that have some degree of uniform curvature in their unstressed
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state. The experimental set-up is given in §3.2 and then we give the results

(experiments and theory) for deformed rods in the UHP and LHP in §3.3 and

§3.4, respectively. Within those sections we give the conditions for loop formation

and critical unstable points.

Few naturally occurring rod-like structures are actually straight and, be it

trivial or not, nearly all contain some magnitude of intrinsic curvature. An ex-

ample of intrinsically curved rod like structures are human hair (see [40] for a

survey) and mammalian whiskers (see [41] for a review on whisker modelling).

In the case of a straight rod, the equation representing the curvature, i.e.,

Eqs. 2.37−2.38 can be expressed in standard elliptic integral form, (see [4], [5]

and [6]), and then solved for certain values of the elliptic parameter. The value

of the elliptic parameter can be expressed in terms of the of the tip angle (of the

rod), and thus the elliptic argument varies from 0 to π
2
. Owing to the boundary

conditions it follows that the solutions are always inflectional. In contrast, the

corresponding solutions for intrinsically curved rods are muddled.

Studies on intrinsic curvature are usually approached from various perspec-

tives. Some studies define the problem and then obtain results using numerical

software, and others define the problem and obtain closed form solutions [6]

and [10]. Examples of the former include the studies [12], [11] and [24]. The au-

thor of [11] considers the uniformly curved rod and compares the loading paths

that obtained using linear theory to those obtained using nonlinear theory. The

author computes the solutions using a numerical solver. A uniformly curved rod

that is subjected to a follower load is considered in [24], where a Runge-Kutta

method with a shooting technique is used to compute the loading paths and de-
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formed shapes. The author of the paper [12] considers a uniformly curved rod

that is deformed by an eccentric load applied at the tip. Equations for the arc-

length and the end displacement are presented in integral form and then solved

simultaneously for pairs of values of applied force and end displacement. The

authors plot loading diagrams for small values of initial curvature along with the

loading path for the straight rod. They also present some deformed shapes. Note

that the studies that we have discussed above are useful for comparing results,

however the authors do not discuss any analysis.

A few pertinent studies that discuss the closed form solutions and the com-

plications involved are in [6] and [10]. In chapter 4 of the book [6], the author

examines the uniformly curved clamped-free rod that is loaded with an axial force

(a force that acts in the direction along negative i in our model). The author

expresses the solution in terms of elliptic integrals and reports on an issue that

crops up with respect to the elliptic parameter. The author reports that a small

change in the value of end force can cause a large change in the value of the

elliptic parameter. This effect is that the distinction between two qualitatively

different types of configurations, namely those with inflection points and those

without (inflectional and non-inflectional respectively), which is clear in the case

of intrinsically straight rods, becomes muddled. The author gives the different

types of solutions that arise, however does not attempt to classify the solutions.

The same problem is also analysed by [10]. The author categorises the deformed

shapes into three ‘types’ (which arise due to values of the elliptic parameter), and

shows that rods that are deformed under a compressive force may correspond to

inflectional or non-inflectional shapes, whereas rods that are deformed under a
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tensile force always correspond to non-inflectional. The authors of the papers [6]

and [10] are useful in providing an insight into the complications that arise with

respect to the analysis. They show the different types of solutions that can arise

depending on the value of the elliptic parameter. However, they do not give a

global overview on the relationship between the elliptic parameter and the force,

nor do they study the effect of large curvature.

The author in [42] performed experiments on uniformly curved elastomeric

rods which are clamped at both ends. The author observed that the configurations

of the deformed rod were quantitatively and qualitatively different for each case,

and that the effect of weight “delayed” the effect of curvature. The author did

not induce high values of curvature and similarly to [4] considered deformations

whereby both twist and end displacement were varied.

Experimentally we find that loop formation arises at critical values of initial

curvature. We find that loop formation is directly linked to the effect of cur-

vature and the applied force. We compare those critical values with the planar

theory and a semi-analytical approach. Note, that in the experiments the rod

cannot self-intersect and during loop formation there is a small amount of out of

plane deformation. That out of plane deformation, is only the thickness of the

rod. Loop formation is a three-dimensional phenomena, however, we use rods

that have rectangular cross-sections and out of plane deformations are negligible.

Nevertheless, we find a very good match between the experiments and the planar

theory.

The formation of loops can lead to kinks in cables and this may lead to

permanent damage. Cables that are stored in spools can develop permanent
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curvature, and upon application of end forces a loop could form. If tightened, the

loop could develop into a kink and permanently damage the cable [43]. Nitinol

can be bent around radii of less than 3cm without kinking, see [29, 44]. Nitinol

is renowned for its kink resistance [29].

Only a few experimental studies on loop formation in rods exist in the litera-

ture, see [45] and [46]. The experimental study by [46] investigates hockling and

pop-out. They derive formulae for both the formation of a loop and the point

at which it buckles out of the plane. They compare the results with experimen-

tal data. The thesis by [4] shows experimental and analytical results whereby

loop formation occurs and then pops out. The author uses the three-dimensional

theory and determines an analytical expression for pop-out. The paper by [47]

uses the three dimensional theory and determines the condition for pop-out in

the noninflectional rod. Other pertinent studies on loop formation that have

employed rod theory include [43], [45] and [48].

3.2 Experimental set-up

Experiments on rods that are identified with the UHP and LHP are conducted

under rigid and dead loading respectively. The experimental rig pictured in Figure

3.1 is used in both cases. In this section we describe the experimental apparatus

and procedure for a rod that is deformed under those loading procedures.

3.2.1 Case I: UHP

The experimental set-up is depicted in Figure 3.1. One end of the uniformly

curved rod (S = 0) is fixed in the chuck (see Figure 2.4) and the other (S = L)
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is inserted into a bespoke pin-joint-slider device, see Figure 3.2. The device was

Figure 3.1: The experimental set-up for experiments on initially curved rods under rigid dis-

placement, D. An experiment starts with the rod clamped in its unstressed state at distance

Di.

designed and constructed to model the boundary condition specified at S = L

(Eqs. 4 and 5b in Table 2.1), see Figure 3.2. This consists of a slider, rail and

a specially designed one-degree of freedom pinned joint that permits rotations

0 > γ ' 2π.
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Figure 3.2: Details of the pinned joint at S = L. (a) The pinned joint is attached to the slider

and free to move along the rail (Y -axis). (b) The nitinol rod is held in the slot by means of a

grub screw. The pinned joint is allowed to rotate about the cross piece.

Once the rod is fixed in the rig, it is situated at an initial distance Di from the

clamped end (S = 0). An experiment proceeds by displacing the clamped end in

a straight line by amount D either towards or away from the pinned end. During

that displacement, the pinned end is free to slide up and down along the rail (Y

axis). A transducer records the force in the rod. Note that for D → 0, T > 0 and

for D → 2, T < 0. The value of D includes the initial distance Di and is always

positive.

For numerical simulations we solve Eqs. 2.35−2.39 along with the boundary

conditions (1)− (4), and 5(b), (see Table 2.1) under the continuation of d.

3.2.2 Case II: LHP

For these experiments we position the rig such that theX-axis acts in the direction

opposite to acceleration due to gravity, see Figure 3.3. In its unstressed state

the configuration of the rod is identified with the UHP. By applying a bending

moment (by hand) that is opposite to the rods intrinsic curvature, the rod is

bent into a configuration that is identified with the LHP, see Figure 3.3. Upon
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application of the bending moment an inflection point arises at S = S∗. Note, to

hold the rod in equilibrium such that it can be described in terms of the LHP, an

end load is required to stop the rod flicking back to its unstressed state (which is

in the UHP). We remark here that the aforementioned applied bending moment

is not accounted for in our mathematical model. Furthermore, we think it is

impossible for a rod to be bent into the LHP from its natural state under the

loading specified in our model.

Figure 3.3: The experimental rig along with an unstressed and deformed nitinol rod in the UHP

and LHP respectively. A bending moment opposite to the rods intrinsic curvature is applied at

the tip of the rod, and the rod transitions from the UHP to the LHP. Once in that plane the

rod is held in equilibrium with a weight.
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Figure 3.4: (a) A uniformly curved rod with γi ≈ 3π/2. In this state the rod is described in

the UHP. (b) The rod undergoing a bending moment of opposite sign to its intrinsic curvature,

such that the rod is described in the LHP. Note that during this process an inflection point is

introduced at S∗. (c) The rod is held in the LHP by a weight attached at S = L. An experiment

proceeds by either attaching or detaching weight.

An experiment begins by either adding or removing load. Experimental data is

obtained by recording the load and the position of the tip of the rod X(L). The

experimental data is nondimensionalised and plotted with the (nondimensional)

theory.

For numerical simulations we solve Eqs. 2.35−2.39 along with the boundary

conditions (1)− (4), and 5a, (see Table 2.1) under the continuation of t. Note, in

order to obtain the numerical data we have to adjust the step-size.

3.3 Results: Case I UHP

The theoretical equilibrium paths and experimental data points that correspond

to a rod with different values of intrinsic curvature are presented. The theoretical

loading paths are depicted in Figures 3.5 and 3.6 and the experimental data are

shown in Figures 3.7 and 3.8. The formation of a loop(s) occurs at critical values

of curvature and the loading paths depicted in Figures 3.5, 3.7 and Figures 3.8, 3.6

correspond to deformed shapes that have no loop and one loop respectively. The
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positions of the tip of the unstressed rod di is represented with white filled circles.

Note that all values of t (both experimental and theoretical) are normalised by

tE, see Eq. 2.45.

The theoretical loading path for an initially straight rod (γi = 0) is shown in

black in Figures 3.5 and 3.6. In the case where a force corresponding to t
tE
> −1,

the rod does not deform and remains in its initial straight state. If a force is

applied such that t
tE

< −1 the rod deflects, bifurcating at t
tE

= −1 (primary

bifurcation). The rod can buckle into either the UHP or LHP, see Figure 2.8.

Note that if the primary bifurcation is stabilised the rod can buckle into an infinite

number of equilibrium states, i.e., mode shapes, as shown in [4].

The loading paths shown in blue in Figure 3.5 correspond to values of initial

curvature in the range 0 < γi ≤ 133π
90

. There is no bifurcation and upon input

of a force of any magnitude and direction, the rod deforms from its reference

state (refer to the blue loading paths). The loading paths in the region where

t
tE
> 0 correspond to deformed shapes where d→ 0. Note that rods with initial

curvature cannot be pulled straight, i.e., d 6= 0. In the region where t
tE

< 0

the loading paths (blue paths), cross such that in the limit they approach the

loading path of the straight rod (black path). For values of intrinsic curvature

that approach a critical value for loop formation, there is a sharp gradient as

t > 0 is applied to the unstressed rod, see the loading path that corresponds to

γi = 133π
90

. The sudden change in gradient for γi = 133π
90

signifies that the rods

curvature is close to the critical value of curvature where loop formation occurs.
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Figure 3.5: The td loading diagram for a rod with uniform curvature along with the loading

path of the straight rod. The open circles in those paths denote the position of the unstressed

rod di.

The theoretical loading paths shown in Figure 3.6 correspond to a uniformly

curved rod that has initial curvature in the range 3π
2
≤ γi ≤ 3π∀. The red

loading paths correspond to deformed shapes where one loop forms and exists

for t < 0. The green loading paths correspond to deformed shapes where one

loop forms and exists for both t < 0 and t > 0. Loading paths that correspond

to greater values of the critical curvature (where loop forms) are qualitatively

different. Loop formation involves high change in forces and this is reflected in

the steep gradient in the corresponding loading diagrams. In the t > 0 region the

loading paths do not approach zero in the limit and this is because the rod has a

loop. The loading paths when t < 0 is applied are of two types: those that have
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one loop (refer to the green loading paths in Figure 3.6) and those that have no

loop (refer to the red loading paths in Figure 3.6). We investigate the conditions

for loop formation in §3.3.1.

Figure 3.6: The td loading diagram for a rod with uniform curvature along with the loading

path of the straight rod. The open circles in those paths denote the position of the unstressed

rod di.
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Figure 3.7: Experimental data points (blue crosses) along with data obtained from AUTO

(continuous black line) for a rod with uniform curvature where (a) γi ≈ π and (b) γi ≈ 4π
3 . The

open circles denote the position of the unstressed rod Di and in both cases no loop formation

is observed. The experimental data is in close agreement with the theory, however during

loop formation the rod slides past itself causing unwanted friction. Also, exact alignment of

the ends and satisfaction of the boundary conditions could contribute to the deviation of the

experimental data points from the theory.
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Figure 3.8: Experimental data points (blue crosses) along with data obtained from AUTO

(continuous black line) for a rod with uniform curvature, where (a) γi ≈ 3π
2 and (b) γi ≈ 49π

18 .

The open circles denote the position of the unstressed rod Di and in the case of γi ≈ 3π/2

one loop forms and remains under further loading of t > 0. For γi ≈ π/18 one loop forms and

is still present for both t > 0 and t < 0. The experimental data is in close agreement with

the theory, however during loop formation the rod slides past itself causing unwanted friction.

Also, exact alignment of the ends and satisfaction of the boundary conditions could contribute

to the deviation of the experimental data points from the theory.
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The theoretical and the experimental data is depicted in Figures 3.7-3.8. The

continuous line and the blue crosses denote the loading paths that are obtained

from the theory and the experiments respectively. In the case where γi = π and

γi = 4π
3

(see (a) and (b) in Figure 3.7 respectively), there is no loop formation

for both t < 0 and t > 0. For values of intrinsic curvature γi = 3π
2

(see Figure 3.8

(a)), one loop forms for values of t > 0 only. In the case for γi = 49π
18

, (see Figure

3.7 (b)), one loop forms for t < 0 and t > 0.

The experimental data correlate reasonably well with the theory. We identi-

fied two sources where friction was a problem. Firstly, the slider does not move

in a continuous motion and there are irregular jerks of motion as D is input, and

secondly, during the formation of a loop the rod makes contact with itself and

again causes irregular jerks of motion. The experimental data that is presented in

Figures 3.7 and 3.8 correspond to the mean of at least five separate experiments.

In general, the experimental data is in close agreement with the theory. However,

deviation of experimental data from the theory may be explained by a number

of factors. First, whilst every attempt has been made to ensure the rods a have

uniform intrinsic curvature along their entire length this was difficult to obtain.

Second, exact replication of the boundary conditions, including alignment and

ensuring the assumptions of planarity are prone to error. Also, during loop for-

mation the configuration of the rod is clearly not planar (in the elastica theory a

rod can self intersect). Furthermore, a normal force and friction act at the point

of self contact.
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3.3.1 Conditions for loop formation

Observation of our experiments along with the numerical computation indicate

that deformed shapes can either have no loop or n loop(s), where n = 1, 2, 3, ...,∞.

The loop is dependent on both the loading procedure and the magnitude of initial

intrinsic curvature. We compute and plot the deformed shapes for rods with

curvature of γi ≈ 133π
90
, 3π

2
and 5π

2
in Figures 3.9, 3.10 and 3.11 respectively. In

those figures, (a) and (c) are deformed shapes that are obtained in AUTO and

correspond to t > 0 and t < 0 respectively, and (b) depicts a nitinol rod that has

the same value of intrinsic curvature. Note that the initial angle of the unstressed

rod is denoted γi and as the rod deforms the angle is γ.

The deformed shapes for a rod that has initial curvature corresponding to γi =

133π
90

are shown in Figure 3.9. As the end displacement di > d (t > 0) is input, the

curvature in the rod decreases and γ approaches zero. For the case where di < d

(t < 0) the rod deforms and the angle of the tip of the rod approaches π.

The deformed shapes of a uniformly curved rod for values of curvature that

correspond to γi = 3π
2

are shown in Figure 3.10. If end displacement is input,

such that d < di (t > 0), γ increases and self-intersects. Upon further inputs of

displacement, the rod forms a loop and γ → 2π. For a rod of the same curvature

that is deformed under the application of d > di (t < 0), there is no loop formation

and γ decreases and tends to π.

Deformed configurations of a rod with an initial uniform curvature of γi = 5π
2

are shown in Figure 3.11. A single loop forms and remains for both situations

where d < di (t > 0) and d > di (t < 0) are applied i.e., a compressive and tensile

force respectively. In the case where d < di (t > 0) is applied, the angle of the tip

64



of the rod decreases and approaches 2π. For values of d > di (t < 0) the angle of

the tip of the rod increases and approaches 3π.

Figure 3.9: A uniformly curved rod with γi = 133π
90 . The deformed shapes in (a) and (c)

correspond to the application of t > 0 and t < 0 respectively, and (b)(ii) shows an unstressed

nitinol strip of the same curvature. In (b)(i),(iii) we show a deformed nitinol strip that is

deformed under at > 0 and t < 0 respectively. No loop formation occurs for γi = 133π
90 .
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Figure 3.10: A uniformly curved rod with γi = 3π
2 . The deformed shapes shown in (a) and (c)

correspond to a rod under the application of t > 0 and t < 0 respectively, and (b)(ii) shows an

unstressed nitinol strip of the same curvature. In (b)(i),(iii) we show a deformed nitinol strip

that is deformed under t > 0 and t < 0 respectively. Loop formation occurs when a tensile

force t > 0 is applied, see (a) and (b)(i), however no loop forms or exists when a compressive

force is applied, see (b)(iii) and (c).
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Figure 3.11: A uniformly curved rod with 5π
2 . The deformed shapes shown in (a) and (b)

correspond to a rod under the application of t > 0 and t < 0 respectively, and (b) shows an

unstressed and deformed nitinol strip of the same curvature, see (b)(ii) and (b)(i),(iii) respec-

tively. One loop forms and exists when t > 0 (see (a) and (b)(i)) and t < 0 (see (b)(iii) and

(c)) are applied to the rod.
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Inspection of the deformed shapes show that the formation of loops in intrinsically

curved rods depend on the end angle γ, the amount of initial curvature γi and

the direction of D (or the applied force T ), see Figure 3.12. In that Figure, (a),

(b) and (c) correspond to γi ≈ 133π
90

, γi ≈ 3π
2

and γi ≈ 5π
2

respectively.

Figure 3.12: Photographs of experiments on nitinol rods with different values of intrinsic cur-

vature. In (a)(ii), (b)(ii) and (c)(ii) those values correspond to γi ≈ 133π
90 , γi ≈ 3π

2 and γi ≈ 5π
2

respectively. In some cases loops may (or may not) form under different loading sequences.

A three-dimensional loading diagram for a rod with different values of initial

intrinsic uniform curvature, γi, is presented in Figure 3.13. The x, y and z axes

denote the values of the force t, displacement d and end angle γ respectively. In

the case where γi = 0 only values of t < 0 correspond to deformed configurations,

see the black loading path in Figure 3.13. In this case the end angle varies from

zero to π for different values of d. The divergence in the loading paths arise

due to loop formation and are labelled ‘A’ and ‘B’. Those points correspond to

68



critical values of γ whereby loop formation occurs under applied t > 0 and t < 0

respectively. From Figure 3.13 it is observed that:

• for γi 6= 0 and t > 0 the value of γ either tends to 0 (no loop formation) or

2π (1 loop forms and exists),

• for γi 6= 0 and t < 0 the value of γ either tends to π (no loop formation) or

3π (1 loop forms and exists).

It is pertinent to define and plot the function γ(t). Note that we obtain γ(t)

from AUTO, see Figure 3.14 where we present different values of initial curvature

γi. We observe from that figure that the angle of the tip of the rod tends to the

following values:

γ(t) → 2nπ, for t > 0, n = 0, 1, 2, 3, ...,∞, (3.1)

γ(t) → (2n+ 1)π, for t < 0, n = 0, 1, 2, 3, ...,∞. (3.2)

If n = 0, there is no loop formation and the angle of the tip approaches 0 and

π for t > 0 and t < 0 respectively, see the blue paths shown in Figure 3.14.

For one loop to form, the angle of the tip of the rod approaches 2π and 3π for

t > 0 and t < 0, respectively (see the red and green paths shown in Figure 3.14

respectively). In general, loop formation only occurs at critical values of γi, see

points A and B in Figure 3.14 respectively). We denote those critical values as γcn

and γtn, the subscripts c and t denote compression and tension respectively, and

n is the number of loops that will subsequently form. Next, we show the method

for determining γcn and γtn.
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The function γ(t) can be approximated around an infinitesimal force (|t| � 1)

using a Taylor series expansion. We express γ(t) and note that γ(0) = γi,

γ(t) = γ(0) +
dγ(t)

dt

∣∣∣
t=0

t+
d2γ(t)

dt2

∣∣∣
t=0

t2

2
+O(t3). (3.3)

For convenience we define the following:

γ̇i :=
dγ(t)

dt

∣∣∣
t=0
, (3.4)

γ̈i :=
d2γ(t)

dt2

∣∣∣
t=0
. (3.5)

We observe from Figure 3.14 that generally for an applied tensile force, i.e.,

t > 0, the function γ(t) increases for the formation of one loop and decreases

for no loop formation. For an infinitesimal tensile force Eq. 3.3 indicates that if

γ̇i < 0 with t increasing, γ(t) decreases and the tip of the rod is pulled straight.

For a compressive force Eq. 3.3 indicates that if γ̇i > 0, with t decreasing, γ(t)

decreases and the rod is also pulled straight (since t � 0). To summarise, in

order for γ to increase and the rod form a loop, the following conditions must be

satisfied.

1. For loop formation of a rod under a compressive force, i.e., t < 0:

γ̇i < 0, (3.6)

γ̈i > 0. (3.7)

2. For loop formation of a rod under a tensile force, i.e., t > 0:

γ̇i > 0, (3.8)

γ̈i > 0. (3.9)
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Figure 3.13: A 3-Dimensional tdγ plot for different values of γi (red, blue and green loading

paths), along with the loading path for the straight rod (shown in black). The divergence in

the γt plane arises because of the formation and existence of loops. In the case of an initially

straight rod there is a bifurcation at t
tE

= −1 and γ varies from 0 to π.
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Figure 3.14: A plot showing the function γ(t) for a rod with different values of uniform intrinsic

curvature. The blue paths denote the deformed shapes that have no loop for both t > 0 and

t < 0. The red paths indicate the deformed shapes that have a loop for t > 0 only and the

green paths represent those shapes that have a loop under both t > 0 and t < 0. The yellow

and grey shaded regions correspond to deformed shapes where solutions with and without a

loop exist, respectively.
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We now derive expressions for γ̇i and γ̈i and apply those to Eq. 3.3. For this we

split and integrate Eq. 2.64 as follows:

1 =

∫ γ

0

dψ(
γ2i − 2t(cos(ψ)− cos(γ))

)1/2
. (3.10)

We differentiate Eq. 3.10 with respect to t and note that γ = γ(t). If there

is a function F (ψ, t) that is continuous and differentiable in both t and ψ then

according to Leibniz’s Integral rule:

d

dt

∫ γ(t)

0

F (ψ, t)dψ =

∫ γ(t)

0

∂F (ψ, t)

∂t
dψ + F (γ(t), t)

dγ(t)

dt
. (3.11)

Applying Eq. 3.11 to Eq. 3.10 we obtain:

dγ

dt
= −γi

∫ γ

0

dψ
(cos(ψ)− cos(γ) + t sin(γ)dγ

dt
)(

γ2i − 2t(cos(ψ)− cos(γ))
)3/2 . (3.12)

Additionally, we apply Eq. 3.11 to Eq. 3.12 and find:

d2γ

dt2
= −γi

∫ γ

0

dψ

[(
2 sin(γ)dγ

dt
+ t cos(γ)(dγ

dt
)2 + t sin(γ)d

2γ
dt

)
(
γ2i − 2t

(
cos(ψ)− cos(γ)

))3/2 +

+
3
(

cos(ψ)− cos(γ) + t sin(γ)dγ
dt

)2
(
γ2i − 2t

(
cos(ψ)− cos(γ)

))5/2
]
− t

γ2i
sin(γ)

(dγ

dt

)2
. (3.13)

In order to determine Eq. 3.4 and Eq. 3.5 we set t = 0 in Eqs. 3.12−3.13 and

integrate as follows (we should remark that in the case of γ̈i, we use the identity
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cos2 ψ ≡ 1
2

cos(2ψ) + 1
2
:

γ̇i = −γi
∫ γi

0

cos(ψ)− cos(γi)

γ3i
dψ

= − 1

γ2i

(
sin(γi)− γi cos(γi)

)
(3.14)

γ̈i = −γi
∫ γi

0

dψ

(
2 sin(γi)γ̇i

γ3i
+

3
(

cos2(ψ)− 2 cos(ψ) cos(γi) + cos2(γi)
)

γ5i

)

= −γi
∫ γi

0

dψ

[
2

γ3i
sin(γ)γ̇i +

3

γ5i

(
1 +

1

2
cos(2ψ)− 2 cos(ψ) cos(γi) +

1

2
+ cos(2γi)

)]

= −γi

[
2

γ3i
sin(γi)γ̇iγi +

3

γ5i

(
γi +

1

4
sin(2γi)− 2 sin(γi) cos(γi)

+
1

2
cos(2γi)γi

)]
. (3.15)

We substitute Eq. 3.14 into the last of Eq. 3.15, and use the identity sin(2γi) ≡

2 sin(γi) cos(γi) as follows:

γ̈i =
2

γ3i
sin2(γi)−

1

γ2i
sin(2γi)−

3

γ3i
− 3

4γ4i
sin(γi)−

3

2γ3i
cos(2γi). (3.16)

Where, sin2 γi = 1
2
(1− cos(2γi)) and Eq. 3.16 can be re-written as follows:

γ̈i =
1

γ2i
sin(2γi)

( 9

4γ2i
− 1

γ2i

)
− 2

γ3i
− 5

2γ3i
cos(2γi). (3.17)

We should remark that this work has been published in our paper [20]. A plot

of the derivatives γ̇ and γ̈, that is Eqns. 3.14 and 3.17, is depicted Figure 3.15

and the open and closed circles denote the formation of loops for a rod under a

tensile and compressive force respectively. The formation of loops under a tensile

force requires both γ̇ and γ̈ to be > 0, whereas the formation of loops for a rod

under a compressive force requires γ̇ < 0 and γ̈ > 0.
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Figure 3.15: An approximation of the first and second derivative of the function γ(t) around

an infinitesimal force |t| � 1. The open squares and the closed squares denote the formation

of loops under a tensile and compressive force respectively.

Table 3.1 shows the approximate values of γc and γt for loop formation that are

found as a result of the above analysis.

Number of loops n Tension γtn Compression γcn

1 266o 448o

2 628o 808o

3 989o 1169o

Table 3.1: An approximation of the value of initial uniform curvature where loop formation

subsequently occurs.

The approximate values for the formation of a single loop, see Table 3.1 are in

good agreement with the experiments, see Figures 3.7 and 3.8.
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3.4 Results: Case II LHP

The theoretical equilibrium paths and experimental data points that correspond

to a rod with different values of intrinsic curvature in the LHP are presented.

The theoretical loading paths are depicted in Figure 3.16 and the experimental

data are shown in Figures 3.18−3.21.

The theoretical loading paths presented in Figure 3.16 correspond to loading

paths for a straight and uniformly curved rod in both the UHP and LHP, see

the black, blue and orange equilibrium paths respectively. The positions of the

tip of the unstressed rod di is represented with white filled circles. Note that the

reference configuration of those rods lie in the UHP. The shapes in the UHP are

deformed from the unstressed configuration, i.e., t = 0, whereas the solutions in

the LHP have to be moved into the LHP and then loaded. Consequently those

paths do not cross the x−axis. The loading paths which correspond to deformed

shapes that lie in the LHP (orange paths) are qualitatively different to those that

lie in the UHP. We observe that one value of t
tE

can give two different values of d

and vice versa. Certain values of γi approach the limit d = 0 and as the curvature

in the rod is increased, the corresponding loading paths move away from the limit

d = 0.
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Figure 3.16: The loading diagram for an initially uniformly curved rod rod that is situated in

the UHP and LHP see blue and orange loading paths respectively. The paths that correspond

to rods that are deformed in the UHP cross the horizontal axis, i.e., t = 0, and are denoted

with white filled circles. The loading paths for rods that are situated in the LHP do not cross

t = 0.

The theoretical loading paths along with the experimental data for a rod with

uniform curvature is presented in Figures 3.18−3.21. The blue dashed and the

orange continuous lines in those Figures correspond to deformed shapes in the

UHP and LHP respectively. The red and blue crosses denote experimental data

that corresponds to deformed shapes in the UHP and LHP respectively.

The unstressed uniformly curved rod lies in the UHP (see white filled circle in

Figures 3.18−3.21). A rod is defined as being in the LHP if a bending moment
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that is opposite to the rods intrinsic curvature is applied. The rod is held in

equilibrium with a load (for example see point (a) in Figures 3.18−3.21). The

weights are incrementally removed (see point (b) and (c) in Figures 3.18−3.21).

A point is then reached whereby the rod becomes unstable, i.e., if an increment

of load is removed the rod loses the inflection point and “jumps”, such that it

takes an equilibrium form whereby it has no apparent inflection point. At this

point the rod is defined in the UHP. Note that the rod remains in the UHP (see

d,e,f in Figures 3.18−3.21). If from that state the rod is loaded or unloaded, the

loading path either approaches d = 2 or d = di respectively. A rod that lies in

the UHP does not have an inflection point along its length and cannot return

to the LHP under an axial load. For the case where γi ≈ π/9 (see Figure 3.18)

the loading path (orange path) approaches d = 0 in the limit. The loading path

where d → 0, corresponds to a “nearly” straight configuration and obtaining

those solutions using this experimental procedure is not possible. For higher

values of γi, see Figures 3.19−3.21, the gap between the limit (d = 0) and the

loading paths increases.

The experimental transition between the LHP and UHP is denoted by the

black arrows, and for increased values of γi the “gap” between the loading paths

of the UHP and LHP increases, see Figures 3.18−3.21. Experimentally the rod

undergoes a sudden large deformation across to the other half plane, i.e., UHP.

The description we have given on the transition between the LHP and UHP

holds for all the experimental data that we have presented. We found reporting

on experiments where the curvature was greater than 23π
18

challenging and this

is because the number of inflection points increase. We show plots of dφ
ds

vs. s
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in Figure 3.17. Rods with uniform curvature in the range 0 < γi ≤ π have one

inflection point, see Figure 3.17, (a)-(c), and rods where the curvature is γi ≈ 2π

have 4 inflection points, see Figure 3.17, (d). Experimentally, it is practical to

validate those solutions that have one inflection point.

Figure 3.17: Plots of dφ
ds vs. s for a uniformly curved rod that is located in the LHP. The

inflection points are denoted with red filled circles. Rods with values of curvature of γi = 2π

have four inflection points.
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Figure 3.18: Experimental data for a rod with γi = π
9 in the LHP and UHP, see blue and red

crosses respectively. The equilibrium loading paths that are obtained in AUTO are presented

with solid and dashed lines, see orange and blue loading paths for a rod that is located in

the LHP and UHP respectively. The rod is uniformly curved in its unstressed state (where

γi ≈ π/9) and the position of the unstressed rod is denoted by the white filled circle. For

deformed shapes in the LHP where d → 0, correspond to unstable shapes. Those cannot be

realised experimentally.
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Figure 3.19: Experimental data for a rod with γi = 2π
9 in the LHP and UHP, see blue and red

crosses respectively. The equilibrium loading paths that are obtained in AUTO are shown with

solid and dashed lines, see orange and blue loading paths for a rod that is located in the LHP

and UHP respectively. The rod is uniformly curved in its unstressed state and the position of

the unstressed rod is denoted by the white filled circle.
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Figure 3.20: Experimental data for a rod with γi = π
3 in the LHP and UHP, see blue and red

crosses respectively. The equilibrium loading paths that are obtained in AUTO are shown with

solid and dashed lines, see orange and blue loading paths for a rod that is located in the LHP

and UHP respectively. The rod is uniformly curved in its unstressed state and the position of

the unstressed rod is denoted by the white filled circle. The angle of the unstressed rod at the

tip is rad and the position of the unstressed rod is denoted by the white filled circle.
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Figure 3.21: Experimental data for a rod with γi = 10π
9 in the LHP and UHP, see blue and red

crosses respectively. The equilibrium loading paths that are obtained in AUTO are shown with

solid and dashed lines, see orange and blue loading paths for a rod that is located in the LHP

and UHP respectively. The rod is uniformly curved in its unstressed state and the position of

the unstressed rod is denoted by the white filled circle. The angle of the unstressed rod at the

tip is rad and the position of the unstressed rod is denoted by the white filled circle.

Inspection of the equilibrium diagrams (both numerical and experimental) indi-

cate that snap-through buckling phenomena will happen when dt
dd

= 0. AUTO

computes the loading path and explicitly identifies the snap-through buckling

phenomena (as LP−limit points). Experimentally the rod becomes unstable and

“jumps”. Experimental data corresponding to rods after the critical point cannot
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be obtained using our experimental procedure. We conclude that such solutions

are unstable.

Note, that we do not vary d in our experiments but for consistency we plot

the loading diagrams in terms of that parameter. For that reason it follows that

we must find the critical points with respect to that variable.

In §3.4.1 we follow the numerical approach set out by [49], and determine

those critical points, i.e., we find values of t and d at the instability point. Math-

ematically, those points correspond to values where dt
dd

= 0, and it follows that

we need to determine an expression for d. We need to know dt
dd

, and not knowing

the closed-form of t = t(d) is not an impediment for determining dt
dd

as we shall

show.

3.4.1 Critical points in uniformly curved rods

In this section we present the equations (in elliptic integral form) of the deformed

rod in the LHP, and as far we know such solutions have not been reported in

the literature. We then show the values of t and d that correspond to points of

instability (limit points), i.e., dt
dd

= 0

Deformed shapes that are located in the LHP have at least one inflection point

located along the length of the rod. The parameters that are situated at that

(inflection) point are denoted with an asterisk, see Figure 3.22. The equations

for the geometry up to the inflection point s = s∗ and the tip s = 1 are presented

in this section, i.e. x(s∗), y(s∗) and x(1), y(1) respectively. The expression for d

involves x(1) and is obtained from Eq. (5b) in Table 2.1.
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Figure 3.22: An unstressed uniformly curved rod (shown in black, where γi = π/4) along with

a deformed rod (bent from the unstressed state and held with an applied compressive force)

in the LHP. Deformed configurations in the LHP have atleast one inflection point and this is

illustrated by presenting the associated parameters with an asterisk.

The equation for the arc length, up to the inflection point is given below:

∫ s

0

du = − 1

2 (−t)1/2

∫ φ

0

dψ(
p∗2 − sin2

(
ψ
2

))1/2 . (3.18)

We convert Eq. 3.18 in to standard form. We refer back to Eq. 2.82 and find:

dψ = dθ
2p∗ cos (θ)(

1− p2∗ sin2 (θ)
)1/2 . (3.19)

Eq. 3.18 is expressed as:

s =
1

(−t)1/2

∫ θφ

0

dθ(
1− p∗2 sin2 θ

)1/2 ,
=

1

(−t)1/2
F (θφ, p

∗), (3.20)
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where:

θφ = arc sin

(
sin
(
φ
2

)
p∗

)
. (3.21)

The equation for the x coordinate is given as follows:

x(s) =

∫ s

0

du cos(φ(u)),

= − 1

2(−t)1/2

∫ φ

0

dψ cos(ψ)(
p∗2 − sin2(ψ/2)

)1/2 . (3.22)

We make use of the following identity:

cos(ψ) = 2 cos2
(
ψ

2

)
− 1 = 2

(
1− sin2

(
ψ

2

))
− 1 = 2

(
1− p∗2 sin2(θ)

)
− 1,

(3.23)

and express Eq. 3.22 as follows:

x(s) =
1

(−t)1/2

(∫ θφ

0

dθ 2
(
1− p∗2 sin2 (θ)

)1/2 −
∫ θφ

0

dθ

(1− p∗2 sin (θ))

)
.

(3.24)

The equation for the y coordinate is presented as follows:

y(s) =

∫ s

0

du sin (φ (u)) ,

= − 1

2 (−t)1/2

∫ φ

0

dψ sin (ψ)(
p∗2 − sin2

(
ψ
2

))1/2 . (3.25)

We use the following trigonometric identity,

sin (ψ) = 2 sin

(
ψ

2

)
cos

(
ψ

2

)
= 2 sin

(
ψ

2

)(
1− sin2

(
ψ

2

))1/2

= 2p∗ sin (θ)
(
1− p∗2 sin2 (θ)

)1/2
and determine the coordinate y(s) as follows:

y(s) =
2

(−t)1/2

∫ θφ

0

p∗ sin (θ) dθ =
2p∗

(−t)1/2
(1− cos(θφ)) (3.26)
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To determine x∗ = x(s∗), y∗ = y(s∗) we set φ = γ∗. It follows that θφ = π
2

and

Eqs. 3.20, 3.24 and 3.25 become:

s∗ =
1

(−t)1/2
K (p∗) , (3.27)

x∗ =
1

(−t)1/2
(2E (p∗)−K (p∗)) , (3.28)

y∗ =
2p∗

(−t)1/2
. (3.29)

We now present the equations for s ∈ [s∗, 1]:

∫ s

s∗
du =

1

2 (−t)1/2

∫ φ

γ∗

dψ(
p∗ − sin2

(
ψ
2

)) . (3.30)

We re-write Eq. 3.30 as follows:

s− s∗ = − 1

(−t)1/2

∫ θφ

π/2

dθ

(1− p∗2 sin2(θ))1/2
. (3.31)

Similarly the equations for the coordinates x and y in the aforementioned region

are presented as follows:

x(s) =

∫ s∗

0

du cos(φ(u)) +

∫ s

s∗
du cos(φ(u)),

=
1

(−t)1/2
(4E (p∗)− 2K (p∗)− 2E (θφ, p

∗) + F (θφ, p
∗)) , (3.32)

y(s) =

∫ s∗

0

du sin (φ (u)) +

∫ s

s∗
du sin (φ (u)) ,

=
2p∗

(−t)1/2
(cos (θφ) + 1) . (3.33)

We set s = 1 in Eqs. 3.31 3.33 and 3.32 and obtain x = x(1) and y = y(1),

1 =
1

(−t)1/2
(2K (p∗)− F (θγ, p

∗)) , (3.34)

x(1) =
1

(−t)1/2
(4E (p∗)− 2K (p∗)− 2E (θγ, p

∗) + F (θγ, p
∗)) , (3.35)

y(1) =
2p∗

(−t)1/2
(1 + cos (θγ)) . (3.36)

Where from Eq. 3.21 at s = 1, φ(1) = γ and
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θγ = θφ(1) = arcsin

(
sin γ

2

p∗

)
(3.37)

Accordingly, we solve the following system of equations using FSOLVE in MAT-

LAB:

γ2i + 4tp∗ cos2 (θγ) = 0, (3.38)

1

(−t)1/2
K (p∗)− s∗ = 0, (3.39)

1

(−t)1/2
(2K (p∗)− F (θγ, p

∗))− 1 = 0, (3.40)

We solve Eqs. 3.38−3.40 for θγ, s
∗ and p∗, and where γi and t are input, i.e.,

uniform curvature and force. We should note that we could reduce the system

and solve Eqs. 3.38 and 3.40 simultaneously for p∗ and θγ, and then solve for s∗

from Eq. 3.39.

We now proceed to obtain values where dt
dd

= 0. We refer back to Eqs. 3.38−3.40

and set up the following system of equations:

U (t, p∗, θγ) = γ2i + 4tp∗ cos2 (θγ) = 0, (3.41)

V (t, p∗, θγ) =
1

(−t)1/2
(2K(p∗)− F (θγ, p

∗))− 1 = 0, (3.42)

W (d, t, p∗, θγ) = 1− d− 1

(−t)1/2
(

4E(p∗)

− 2K(p∗)− 2E(θγ, p
∗) + F (θγ, p

∗)
)

= 0. (3.43)

Eqs. 3.41 and 3.42 refer to the curvature at the inflection point and the total

length of the rod respectively, and Eq. 3.43 is derived from Eq. 3.35 and condition

(5b) in Table 2.1.
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The derivatives of Eqs. 3.41−3.43 are,

dU

dd
=

∂U

∂d
+
∂U

∂t

dt

dd
+
∂U

∂θγ

dθγ
dd

+
∂U

∂p∗
dp∗

dd
= 0, (3.44)

dV

dd
=

∂V

∂d
+
∂V

∂t

dt

dd
+
∂V

∂θγ

dθγ
dd

+
∂V

∂p∗
dp∗

dd
= 0, (3.45)

dW

dd
=

∂W

∂d
+
∂W

∂t

dt

dd
+
∂W

∂θγ

dθγ
dd

+
∂W

∂p∗
dp∗

dd
= 0. (3.46)

From Eqs. 3.44−3.46 we can show that:

J


dt
dd

dθγ
dd

dp∗

dd

 = −


0

0

∂W
∂d

 (3.47)

where ∂U
∂d

and ∂V
∂d

are zero since U(t, p∗, θγ) = 0 and V (t, p∗, θγ) = 0, and the 3×3

matrix J is given by:

J =


∂U
∂t

∂U
∂θγ

∂U
∂p∗

∂V
∂t

∂V
∂θγ

∂V
∂p∗

∂W
∂t

∂W
∂θγ

∂W
∂p∗

 . (3.48)

For convenience we denote the partial derivatives shown in Eq. 3.48 with a letter

and a subscript. For example, we denote ∂U
∂t

= Ut,
∂U
∂θγ

= Uθγ and so on. Then

provided det (J) 6= 0, where:

det (J) = Ut(VθγWp∗ − Vp∗Wθγ )− Uθγ (VtWp∗ − Vp∗Wt)

+ Up∗(VtWθγ − VθγWt), (3.49)

we find J−1. It then follows that:

dt

dd
=
−Wd(VθγUp∗ − UθγVp∗)

det (J)
(3.50)

dp∗

dd
=

Wd(UtVθγ − UθγVt)
det (J)

(3.51)

dθγ
dd

=
−Wd(UtVp∗ − Up∗Vt)

det (J)
. (3.52)
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The partial derivatives of U , V and W that are required to give the quantities in

Eqs. 3.49−3.52 for d ∈ [0, 1] are presented. We should note that we make use of

the book [50].

Ut = 4p∗2 cos2(θγ), (3.53)

Up∗ = 8tp∗ cos2(θγ), (3.54)

Uθγ = −8tp∗2 cos(θγ) sin(θγ), (3.55)

Vt =
1

2(−t)3/2
(2K(p∗)− F (θγ, p

∗)) , (3.56)

Vp∗ =
1

(−t)1/2

{
1

p∗p∗2′

(
2E(p∗)− E(θγ, p

∗) + p∗2′F (θγ, p
∗)− 2p∗2′K(p∗)

+
p∗2 sin(θγ) cos(θγ)

(1− p∗2 sin2(θγ))1/2

}
, (3.57)

Vθγ =
−1(

−t
(
1− p∗2 sin2(θγ)

))1/2 , (3.58)

Wt =
−1

2(−t)3/2
(4E(p∗)− 2K(p∗)− 2E(θγ, p

∗) + F (θγ, p
∗)) , (3.59)

Wp∗ =
−1

(−t)1/2

{
1

p∗
(4E(p∗)− 2K(p∗)− 2E(θγ, p

∗) + F (θγ, p
∗)) ,

+
1

p∗p∗2′

(
E(θγ, p

∗)− 2E(p∗)− p∗2 sin(θγ) cos(θγ)

(1− p∗2 sin2(θγ))1/2

)}
, (3.60)

Wθγ =
−1

(−t)1/2

(
1

(1− p∗2 sin2(θγ))1/2
− 2

(
1− p∗2 sin2(θγ))

1/2
))

, (3.61)

where,

p∗2′ = 1− p∗2. (3.62)

The values of p∗ and θγ are solved for different values of d ∈ [0, 1] , i.e., the

system of Eqs. 3.41−3.43. Once those values are known, we can determine the

derivatives that are shown in Eqs. 3.50−3.52, provided det(J) 6= 0. Those values

involve solving Eq. 3.47.
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Initial curvature, γi d t d (experimental) t (experimental)

π/9 0.22 −1.450 0.40 −1.55

2π/9 0.32 −1.75 0.41 −1.83

π/3 0.40 −2.02 0.51 −2.02

10π/9 0.58 −3.81 0.75 −4.11

Table 3.2: An approximation of the displacement d and force t where the rod in the LHP loses

stability. The rod “jumps” and an inflection point is lost. The rod is then defined in the UHP.

The critical points dt
dd

= 0 are depicted, along with data from experiments, in

Table 3.2. We should note that the discrepancy between the analysis and the

experimental data is due to not having smaller increments of weights. The ana-

lytical procedure for determining the snap-through buckling points will work for

a rod with other values of curvature.

3.5 Conclusions

An intrinsically straight rod will buckle at the critical Euler Buckling Load

(Eq. 2.45) from its reference state (where it lies along the x axis). The deformed

shape immediately after buckling will have curvature that is assigned positive

or negative depending on whether we take the appropriate sign in Eq. 2.64 (or

Eq. 2.64). For the purpose of the analysis, we have defined intrinsic curvature as

+ve and in its unstressed state, it lies in the UHP.

In general, for the case of an intrinsically straight rod, whether one considers

the rod with +ve or −ve curvature is inconsequential because the configurations

are symmetric about the x-axis. However, in the case of an intrinsically curved
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rod, the sign of curvature is important because the symmetry with respect to

the x axis is broken. Also a rod with initial curvature can be loaded from its

unstressed state such that its bent form has curvature of the same sign as its

initial curvature, in this case the rod is in the UHP. Alternatively, it can be

loaded with a −ve moment such that the deformed rod has curvature of the

opposite sign to its initial curvature (and the rod is in the LHP), and in this case

it has an inflection point, s∗ ∈ [0, 1].

Whereas all configurations discussed in this work that lie in the LHP are

inflectional elastica, configurations in the UHP may be either inflectional or non-

inflectional. Unfortunately, one cannot distinguish from inspection of the shape

of a bent rod in the UHP, either within an experimental or numerical context,

whether it is part of a noninflectional or inflectional solution. This confusion is

manifest in the value of the elliptic parameter p, see Eq. 2.67 and Figure 2.11,

where it is apparent that the value of p can change such that p > 1 (noninflec-

tional) or p ≤ 1 (inflectional) through small changes in the term involving the

ratio of intrinsic curvature γi with the force t. That added term does not appear

in the elliptic modulus for solutions in the LHP. Unlike in the UHP where the

inflection points are muddled, in the LHP the inflection points are interior to the

rod, i.e., s∗ ∈ [0, 1].

In its unstressed state the uniformly curved rod lies in the UHP. Experimen-

tally, we apply a bending moment which which acts opposite to the rod’s initial

curvature. Upon application of the bending moment, we give rise to an interior

inflection point and the rod is located in what we call the LHP. To ensure that

the rod remains in the LHP, we apply a weight at the tip of the rod. We then
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apply a force, T and measure the position of the tip rod X(L). Observation of

our experimental data show that at certain values of T , there is a large change

in d, i.e., the rod “jumps” from the LHP and into the UHP. Experimentally,

we observe unstable equilibrium points. We approximated the location of those

critical points and this required that we derived closed-form solutions.

We have shown that for certain values of intrinsic curvature, γi, loops can

form. From our experimental and numerical observations we find that the first

case of loop formation arises for γi ≈ 267o under increasing t > 0. We also

observed that a loop formed for γi ≈ 448o under increasing t < 0. Generally,

for loop formation to occur we identified that the angle of the tip of the rod

γ increases under applied |t|, see Figure 3.14. Consequently, we observe the

importance of the function γ(t) and approximate it around an infinitesimal force

0 � t using a Taylor series expansion. In order for the function γ(t) to increase

under applied −t, dγ
dt

and d2γ
dt2

must be negative and positive respectively. For

loop formation under applied +t, the function γ(t) increases when both dγ
dt

and

d2γ
dt2

are positive. We find expressions for dγ
dt

and d2γ
dt2

from the governing equation

(see Eq. 3.10) and plot those along with values of γi in Figure 3.15. The values of

γi where the aforementioned conditions are satisfied correspond to critical values

of uniformly curved rods. The points where dγ
dt

become negative, and d2γ
dt2

become

positive are denoted with open squares and correspond to the value of γi where

loop formation occurs under applied −t. The points where dγ
dt

and d2γ
dt2

become

positive are denoted with open white squares and correspond to the value of

γi where loop formation occurs under applied +t. We should remark that our

approximation can be misleading for values of γi near the critical values, because
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we find that the conditions on dγ
dt

and d2γ
dt2

can be satisfied and loops do not form.

Our approximation can be improved if we were to derive and include higher order

terms. In conclusion we find that the values of γi that we found in Figure 3.15

are in close agreement with our experiments.
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Chapter 4

Initially straight rods in contact

4.1 Introduction

In this chapter we compute the deformed shapes of an initially straight rod with

ends that are clamped and free, respectively. The free end of the rod makes

contact with a smooth, rigid plate as it is displaced towards the clamped end

in a straight line, see Figure 4.1. The rigid plate, which is inclined at π
2
− α

radians from the x-axis, exerts a force f on the tip of the rod. The unstressed

configuration of the rod is straight and the boundary conditions are given in

(1) − (4) along with (5b) (see Table 2.1), note that γi = 0 . We plot td loading

paths, embracing the planar equilibrium configurations for stages whereby both

the tip and a section of the rods length are in contact with the wall. We denote

those as point and line contact respectively.

Problems of this type give rise to equilibrium shapes whereby either the tip

of the rod is in contact or a section of the rod’s length is in contact with the rigid

plate. In this section we review the literature on rods that are in point and line

95



Figure 4.1: A nondimensional, clamped-free rod that is constrained by a flat plate. The surface

exerts a force f on the tip of the rod. That force is exerted at an angle α.

contact, and this includes reviewing the work on rods that are deformed by loads

which are applied at 0 ≤ α ≤ π/2.

The analytical solutions of an initially straight rod that is deformed by a load

that is applied at α = 0 i.e., an axial load, is one of the oldest problems [7], see [2]

and [4] for a historical perspective. The book in [5], and the papers in [22] and [51]

examine the cases for a rod that is loaded at an inclination of α = π/2, α = 0

and 0 < α < π/2, i.e., a normal, axial and inclined load respectively. The

paper by the author of [22] shows the loading diagrams as a function of the end

displacement and gives the analytical expression for the vertical displacement in

terms of elliptic integrals. In chapter 2 of the book [5], the equations for the force

and coordinates are given in terms of elliptic integrals. The authors tabulate the

nondimensional values of t, x(1) and y(1) for the case where α = 0. However,

they do not give any loading plots nor do they give any deformed shapes. The

problem of determining the configuration of a rod under the action of an inclined

load, i.e., 0 < α < π/2, can be traced back to the work of [52], who published
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a treatise that was entirely devoted to the determination of deflection curves

of clamped-free rods using elliptic integrals of the first and second types. A

plethora of research on rods that are deformed by inclined loads have appeared

since, see [53, 54]. The book in [6] examines the problem of a rod that is loaded

at its free end by an inclined load. They give the equations for the load and the

coordinates but do not give any numerical values. The authors of [51] address

the same problem and published a method for obtaining all possible equilibrium

configurations. They observe that there are multiple equilibrium configurations

but provide no general conclusion, other than the number of possible equilibrium

configurations depend on the value of the load. In fact, according to [53] an

infinite number of equilibrium shapes exist, however [51] enumerate only seven.

A study published in 2010 by the authors of [55] examine the same problem from

which it is shown that for a specific load only one tip angle exists whereas for a

specified tip angle several solutions exist, thus verifying the work of [51].

The problem of a rod that is in contact has previously been examined, for

instance the authors of [23] examine the case of a clamped-clamped rod that is

pressed against a flat, rigid plate. The authors compute the deformed shapes

of the rod as it encounters point and line contact. They also show that if the

displacement is input further a bifurcation occurs within the line contact region.

They solve the problem using a shooting technique and they present the loading

diagrams and deformed shapes. They do not conduct any experiments nor do

they change the orientation of the plate. The paper by the authors of [56] carried

out experiments on strips that were constrained by two rigid side walls. The

side walls were placed parallel, either side of the unstressed rod. The rod was
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deformed under rigid loading, and upon input of end displacement the rod makes

point and line contact with the one of the plates. The authors also find stable and

unstable loading paths. They compare the loading diagrams that were obtained

from experiments to those that were found using numerical methods. We should

remark that although the author varied the height they did not alter the orienta-

tion of the side walls. The paper by the authors of [57] shows the deformed shapes

and loading diagrams of a rod that is constrained by concave, convex and flat

plates. Whilst the studies that we have mentioned above are useful for informing

this research, they involve a different BVP i.e., the clamped-clamped rod.

The modelling of a rod in line contact with a rigid surface has practical appli-

cations to the off-shore engineering industry. Pipeline engineers are interested in

the configuration of a pipeline whilst it comes into contact with the seabed. Their

main concern is to avoid excessive curvatures and/or twisting of the pipeline,

which could lead to permanent, expensive damage. The theory of rods has been

applied to the laying [58] and the buckling of pipelines [59]. The authors of [60]

published the first paper on pipeline buckling in 1974. They conducted exper-

iments using stainless steel rods that were clamped at the ends. They induced

internal oil pressure and showed the buckling of the pipe. [61] considers the buck-

ling modes of pipelines using linear theory. The paper by [62] considers a pipeline

that is lifted from the seabed with a mid-span force. The authors present nu-

merical data for maximum deflection, bending moment at the lift off point and

the reaction forces at the ends. However, they do not obtain the length of the

contact region. Pertinent work on pipelines as BVPs can be found in [59,63].

As we have pointed out from our review, the solutions to the rod that is
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deformed under an axial, normal and inclined load i.e., a rod that is in point

contact, is not new and the equations are readily available. However there are

no experimental investigations on clamped free rods that are deformed under a

load that acts at an angle, i.e., in the range between 0 < α < π/2 nor is there

any experimental work where both the transition between point and line contact

occur.

An applicable scenario of the work we present in this chapter is that of whisker

object interaction. The clamped end represents the whisker base (follicle) and

the free end encounters contact with a rigid plate. Certain animals gather infor-

mation, such as size and distance, by constantly tapping their whiskers against

objects, see [64] and [65]. In the case of certain mammals, for example rats, a

load-deflection relationship provides information about the surroundings, i.e., the

whisker is a sensory device, connected to its neurological system. That form of

tactile sensing has attracted considerable interest from researchers in robotics and

neuroscience, see [66] and [67]. When a whisker makes contact with its surround-

ings, it bends, and this bending generates force and moments at the base of the

whisker. Quantifying those mechanical variables when surfaces are of different

orientation and location is of interest.

The study by the authors of [68] conduct experiments on whiskers whereby a

normal force is applied along different locations along the length of the whisker.

They plotted the load diagram and found that the slope of the loading paths

are much steeper for loads that are applied near to the whisker base. If pressed

further against a plate, a section of the whisker tends to establish line contact,

providing further information on the shapes and textures of objects, see [69]. In
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order to quantify the mechanics and shed some light on the information elicited

by the mechanoreceptors, researchers have applied both the linear and nonlin-

ear model to the whisker. The paper by the author of [17] is one of the first

published numerical models of the whisker. The authors investigate the dynam-

ical behaviour of the whisker as it comes into contact with objects of different

roughness. They apply the linear theory and analyse the frequency of the beam

under the following events (boundary conditions): (a) the contact-free whisker

(i.e., a clamped-free rod), (b) the whisker, as it is pushed against the object but

not held rigidly, (i.e., a clamped-pinned rod) and (c) the whisker as it is pushed

against the object and held rigidly, such that the slope at that end is fixed (i.e.,

a clamped-clamped rod). The authors conclude that texture identification could

be facilitated by the whisker resonance properties. Similarly, [19] analysed the

contact between the whisker tip and the object using linear theory. The model,

formulated as a BVP, examined different surface roughnesses by inputting values

for the coefficient of friction.

4.2 Experimental and numerical procedure

In this section we give details on the experimental and numerical procedure. Two

qualitatively different solutions are determined. There are solutions whereby the

only the tip of rod is in contact, and there are solutions whereby a section of the

rod’s length is in contact. The length of the contact region along the rod’s length

is assigned the parameter Bp. The nondimensional length is given by:

b =
Bp

L
. (4.1)
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As the plate is displaced along the X-axis, the tip of the rod ascends and the

angle of the tip of the rod is in the range 0 < γ <
(
π
2
− α

)
, see Figure 4.2(a).

Upon further input of displacement, the rod reaches a situation whereby the

angle of the tip of the rod is equal to the orientation of the plate, i.e., γ =(
π
2
− α

)
, see Figure 4.2(b). This is a critical point whereby further input of

displacement will result in a contact region that develops along the rods length. If

the displacement is increased past this critical point, the parameter Bp increases,

see Figure 4.2(c). Note that the position of the unstressed rod Di = 0 and this

holds for all experiments conducted in this chapter.
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Figure 4.2: Photograph of a 1mm diameter nickel-titanium rod of length 300mm in point and

line contact with the plate. (a) Upon input of displacement (of the surface) the rod is in point

contact. If displaced further, the tangent of the deformed rod becomes parallel with the surface

and this denoted a critical point (b) (transition between point and line contact). Upon further

input of end displacement a section Bp, of the rods length lies flat on the surface i.e., line

contact. We should note that in this photograph the surface is placed perpendicular to the

X-axis, i.e., α = 0.

4.2.1 Experimental procedure

The experimental set-up is depicted in Figure 4.3 and consists of a chuck, force

transducer, potentiometer and a rigid surface. One end of the nitinol rod is

clamped in the chuck and the other is free. The surface is fixed on to the ma-

chined casting, which is then attached on to the moveable base, at X = L. The

potentiometer is attached to the rigid plate and the displacement is recorded as

102



the plate is displaced along the X-axis towards the clamped end in a straight

line.

Figure 4.3: A clamped-free nitinol rod constrained by a flat, rigid, frictionless plate. The plate

moves in a straight line parallel to the X-axis and first makes point and then line contact with

the plate. We should remark that in these experiments we adopt initially straight rods and

Di = 0 for all cases.

The rigid plate is placed at the tip of the unstressed, straight rod, i.e., X(L) = L.

The orientation of the plate is governed by the parameter, α and we define the

perpendicular set-up as α = 0. To begin with, we position the plate such that

it is perpendicular to the X-axis i.e., α = 0. We then input end displacement D

and record values of F using the force transducer. We repeat for the case where

α = π
6
. We then increase the angle α in increments of π/12 until α = 5π

12
.

Experimentally it is practical to measure the displacement of the rigid plate

and the parameters D and ∆ refer to the displacement of the rod at the point of

first contact and the rigid plate respectively, see Figure 4.4. The length ∆ = δL,

and note that for the case when the rigid plate is positioned perpendicular to the
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x axis i.e., α = 0, the displacement of both the surface and the tip of the rod are

equal, i.e., ∆ = D. Note that naturally we obtain values corresponding to ∆ from

our experiments, and that the following equations are applied to data obtained

from non-experimental methods. The values of ∆ are obtained as follows:

∆ = L−X(L) + Y (L) tan(α) for point contact, (4.2)

∆ = L−X(L−Bp) + Y (L−Bp) tan(α) for line contact. (4.3)

The first two terms in Eqns. 4.2 and 4.3 correspond to D (see Table 2.1) and the

latter expression represents the length opposite to the angle α, shown in blue in

Figure 4.4.

4.2.2 Numerical procedure

For numerical computation we follow [23] and introduce a re-scaling of the arc

length. This is defined as:

z =
s

λ
, λ = 1− b (4.4)

The length of the rod in contact is b and z is the re-scaled arclength. Where

z ∈ [0, 1] ∀ b, and the governing Eqns., 2.35−2.39 are re-written as follows:

dx

dz
= λ cos(φ), (4.5)

dy

dz
= λ sin(φ), (4.6)

dφ

dz
= λκ, (4.7)

dκ

dz
= λ

(
r cos(α) sin(φ)− r sin(α) cos(φ)

)
, (4.8)

dr

dz
= 0. (4.9)

In Figure 4.5 we show the steps of computation for this problem in AUTO. The

BVP is set up in FORTRAN and the solutions are computed by varying the
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Figure 4.4: An unstressed nondimensional rod, plus two nondimensional rods in point and line

contact with the plate. Distinction between the displacement of the surface δ and the tip of the

rod d. In the experiments we displace the surface and record the corresponding displacement.

In AUTO the rod is displaced from its initial, unstressed, straight state and we compute values

of δ.

continuation parameter d. At dcrit, the angle of the tip of the deformed rod is

equal to the inclination of the plate and AUTO is instructed to stop. We then

enforce the condition φ(1) = α and introduce the free parameter b, where b > 0

and λ < 1. We then proceed and compute the solutions that correspond to line

contact.
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Figure 4.5: A flow chart showing the steps to compute the solutions in AUTO. Note, where

z ∈ [0, 1]∀ b and z = 1 corresponds to the point of first contact. Note that we use Eqs. 4.2 and

4.3 to obtain values of δ.
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4.3 Results

In this section we present the loading diagrams for a rod in point and line contact

with the plate at different values of α. The loading paths presented in Figure 4.6

are obtained using the procedure outlined in Figure 4.5. For the case where the

plate is positioned at α = 0, a bifurcation occurs. For values of α near α = 0,

there is a rounding of the bifurcation, see for example the loading path for α = π
180

in Figure 4.6. The loading paths for δ < δc and δ > δc are qualitatively different

Figure 4.6: Theoretical loading paths for particular values of α. The solid black curve shows the

path for α = 0, a pure axial load, and the blue dashed curves correspond to a component of the

inclined resultant force, f . The red filled circles denote the transition point i.e., δc. Generally

as the angle α increases, the magnitude of the axial load approaches zero.
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and are split at the critical point, red filled circles in Figure 4.6. In Figure 4.7 we

present a plot of δc vs. α∀. For α = 0, δc = 0.543, and for α = 89π
180

, δc = 0.0.667.

Generally the values of δc increase with increasing values of α.

Figure 4.7: A plot of δc vs. α∀. The values of δc increase with increasing values of α.

We now present the deformed shapes for α = 0 and α = π
6
, α = π

4
, α = π

3
and

α = 5π
12

in Figures 4.8−4.9 respectively.
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Figure 4.8: Three nondimensional bent configurations (plus the straight rod) where the plate

is positioned at α = 0. Those configurations correspond to δ < δc, δ = δc and δ > δc. In the

latter case, a section of the rod’s of length b = 0.4004 is in line contact with the surface. Note

for α = 0, δ = d.
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Figure 4.9: Nondimensional configurations of the rod. The surface is positioned at α, where

(a) α = π
6 , (b) α = π

4 , (c) α = π
3 and (d) α = 5π

12 . Note that the values of δc increase with

increasing values of α∀.
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The experimental data (blue crosses) along with the theoretical loading paths

(continuous line) in are depicted in Figures s 4.10−4.12. The results correspond

to five different orientations of the plate. Note that the model does not account

for friction and we do our best to eliminate this. For example, the surface is

covered in lubricant oil before each experiment as this will lower the coefficients

of static and kinetic friction. The values of both experimental and numerical

f are re-scaled using Euler’s critical load formula of a clamped free rod that is

axially loaded, see Eq. 2.45. The red filled circle in our equilibrium paths denote

δcrit.

112



Figure 4.10: Experimental data (blue crosses) for a rod in contact with a plate that is positioned

at α = 0, i.e., an axially applied load. The theory predicts a non-dimensional primary bifurca-

tion at t
tE

= −1, whereas the experimental loading path ‘rounds’ it off. The experimental data

follows the theory closely for both δ < δc and δ > δc. Note, that we force the rod to deflect

into the UHP by giving the rod a slight nudge into that plane.
113



Figure 4.11: Experimental data (blue crosses) for a rod in contact with a plate that is positioned

at (a) α = π
6 and (b) α = π

4 . The experimental data follows the theoretical path closely, however

there are regions where the experimental data displays “stick-slip” and this is generally more

visible in pre-line contact experimental data. The appearance of “stick-slip” oscillations have

been associated with grazing bifurcations, see [70,71]
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Figure 4.12: Experimental data (blue crosses) for a rod in contact with a plate that is positioned

at (a) α = π
3 and (b) α = 5π

12 . Generally the experimental data is in good agreement with the

theory.
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4.4 Solutions for the deformed rod in contact

with a rigid plate

In this section we obtain the solutions in terms of elliptic integrals. We follow

the analysis published by the author of [6] and introduce the angles:

β(z) = φ(z) + α, (4.10)

β1 = γ + α. (4.11)

We introduce the angles β and β1 which are the summation of the tangent of the

rod and the inclination of the force α, at z and z = 1 respectively. For a graphical

representation, see Figure 4.13. We now proceed in deriving explicit equations

Figure 4.13: A nondimensional clamped free rod that is subjected to an inclined force, which is

exerted from the plate. The point z = 1 represents the lift-off point and b refers to the length of

rod in contact with the surface. The bold grey line corresponds to the frictionless plate, which

in this case, is inclined at α radians. For values where α = 0, the resultant force lies along the

x axis and f = −t.
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for the displacement δ and the force f . The axial and normal forces at z = 1 are

given as follows:

t = −f cos (α) , (4.12)

n = f sin (α) . (4.13)

From Eqs. 4.7, 4.8 and 4.11 we express the following second order ODE:

d2β

dz2
= −λ2f sin β. (4.14)

We integrate Eq. 4.14 and obtain:

1

2

(
dβ

dz

)2

= λ2f cos (β) + C. (4.15)

The boundary conditions in terms of the newly defined dependent variable β are

as follows:

β(0) = α, (4.16)

dβ

dz
(1) = 0, (4.17)

Eq. 4.15 is written as follows:

dβ

dz
=

(
2λ2f (cos (β)− cos (β1))

)1/2
,

=

(
4λ2f

(
sin2

(
β1
2

)
− sin2

(
β

2

)))1/2

. (4.18)

Eq. 4.18 is integrated,

∫ z

0

du =
1

2 (f)1/2 λ

∫ β

α

dψ(
sin2

(
β1
2

)
− sin2

(
ψ
2

))1/2 . (4.19)

We introduce p and θ which are defined as:

p = sin

(
β1
2

)
, sin

(
ψ

2

)
= p sin (θ) , θA ≤ θ ≤ θB. (4.20)
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We differentiate the second expression of Eq. 4.20 and re-write Eq. 4.19 as follows:

z =
1

(f)1/2λ

∫ θB

θA

dθ(
1− p2 sin2 (θ)

)1/2 , (4.21)

where θA and θB are defined as follows:

θA = arcsin

(
sin
(
α
2

)
p

)
, (4.22)

θB = arcsin

(
sin
(
β
2

)
p

)
. (4.23)

Eq. 4.21 is split:

z =
1

f 1/2λ

∫ θB

0

dθ(
1− p2 sin2 (θ)

)1/2 − 1

f 1/2λ

∫ θA

0

dθ(
1− p2 sin2 (θ)

)1/2
=

1

f 1/2λ

(
F
(
θB, p

2
)
− F

(
θA, p

2
))

(4.24)

The total length of the rod is be obtained by setting z = 1, β = β1. It follows

that θB = π/2, and consequently, Eq. 4.24 becomes:

1 =
1

f 1/2λ

(
K
(
p2
)
− F

(
θA, p

2 )) , (4.25)

where K and F are complete and incomplete elliptic integrals of the first kind

and second kind respectively. The forces t and n, axial and normal respectively,

are recovered from the following equations:

t = −f cosα,

= − 1

λ2
(
K
(
p2
)
− F

(
θA, p

2
))2

sin (α) , (4.26)

n = f sinα,

=
1

λ2
(
K
(
p2
)
− F

(
θA, p

2
))2

sin (α) . (4.27)

For given values of α, p and b, Eq. 4.26 is used to determine the force t.
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The shape of the deformed rod is obtained from Eqns. 4.5 and 4.6,

x(z) = λ

∫ z

0

du cos (β − α) , (4.28)

y(z) = λ

∫ z

0

du sin (β − α) , (4.29)

where,

cos(φ) = cos(β − α) = cos(β) cos(α) + sin(α) sin(β), (4.30)

sin(φ) = sin(β − α) = sin(β) cos(α)– cos(β) sin(α), (4.31)

and the coordinates x(z) and y(z) can be determined as follows:

x(z) =
cos(α)

f 1/2

∫ θB

θA

(
2
(
1− p2 sin2 (θ)

)1/2 − 1(
1− p2 sin2 (θ)

)) dθ

+
2p sin((α)

f 1/2

∫ θB

θA

sin (θ) . (4.32)

x(z) =
cos(α)

(f)1/2

(
2E(θB, p)− 2E(θA, p)− F (θB, p) + F (θA, p)

)
+

2p sin (α)

f 1/2
(cos (θA)− cos (θB)) . (4.33)

y (z) =
2p cos (α)

f 1/2

∫ θB

θA

sin (θ) dθ − sin (α)

f 1/2

∫ θB

θA

2
(
1− p2 sin2 (θ)

)1/2
dθ

+
2p sin (α)

f 1/2

∫ θB

θA

dθ(
1− p2 sin2 (θ)

)1/2 , (4.34)

y(z) =
2p cos (α)

f 1/2
(cos (θA)− cos (θB))− sin (α)

f 1/2

(
2E (θB, p)− 2E (θA, p)− F (θB, p) +

+ F (θA, p)
)
. (4.35)

The coordinates at z = 1 are attained by setting θB = π/2, as follows:

x(1) =
cos(α)

f 1/2

(
2E(p)− 2E(θA, p)−K(p) + F (θA, p)

)
+

2p sin(α) cos(θA)

f 1/2

(4.36)

y(1) =
2p cos(α) cos(θA)

f 1/2
− sin(α)

f 1/2

(
2E(p)− 2E(θA, p)−K(p) + F (θA, p).

)
(4.37)
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The computation of δ involves y(1) and x(1) (see Eqs. 4.2 and 4.3). The force, t

and displacement δc are computed using elliptic integrals and compared with the

numerics, see Table 4.1.

AUTO Elliptic integral

α δc tc δc tc

89π/180 0.666650 −0.0024702 0.666650 −0.0024702

5π/12 0.664038 −0.055049 0.664038 −0.055049

π/3 0.655937 −0.214173 0.655937 −0.214173

π/4 0.641672 −0.459711 0.641672 −0.459711

π/6 0.619918 −0.763555 0.619918 −0.763555

0 0.543053 −1.393204 0.543053 −1.393204

Table 4.1: Values of t and δ at the transition point. The resultant load acts at s = 1 and

s = 1 − b for pre and post line contact solutions respectively. As α → π/2, the location of δc

increases and the magnitude of the axial load approaches zero. We present both the analytical

(elliptic integral) and the numerical results (AUTO) and it can be seen that the error is zero.

4.5 Discussion and conclusion

We have shown both the experimental and the theoretical equilibrium shapes

and loading diagrams of rod which is deformed as a flat, frictionless, rigid plate is

pressed onto the free end. The experimental data points, represented by the blue

crosses in Figures 4.10-4.12, follow the theoretical loading paths, represented by

the continuous black line in Figures 4.10-4.12 closely. One of the challenges in

conducting such experiments is to eliminate the experimental error and achieve
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closer agreement between the experimental and theoretical results. Inevitably,

the experiments (the procedure and instruments), carry unavoidable imperfec-

tions. One significant problem which is not reflected in the mathematical model,

is the presence of friction. Whilst measures were taken to reduce friction, close

inspection of the experimental data reveals stick-slip phenomena. This is more

evident for δ < δc, i.e., when the tip of the rod is in point contact with the

plate. For δ > δc, when line contact is inaugurated, the rod slides up the surface

and the coefficient of friction between the surfaces is kinetic, rather than static.

Studies by [72] suggest that friction assists rats in gathering information on sur-

face textures. The steep gradient displayed in the td plots for δ > δc suggests

that the distinction between point and line contact may play a significant role in

how animals use whiskers to gather information about their surroundings. Owing

to unavailability of rats and appropriate facilities for conducting experiments on

whiskers, the experimentation in this study is restricted to nickel-titanium rods.

However, reports of experiments on whiskers are given in [15] and [73]. Overall,

the good qualitative and quantitative correlation between the data obtained from

our experiments with that predicted by the theory shows that the elastica pro-

vides a close description of the mechanics of a bent nickel-titanium rod. Of course

these engineered rods, unlike biological rods, are manufactured under controlled

specifications and closely approximate the assumptions of isotropy, homogeneity

and zero initial curvature. However, in the case of real-world biological rods, such

as whiskers, those assumptions are no longer valid. Whiskers are generically not

only anisotropic, they also have weight, and many whiskers have initial curvature.

For example, inspection of the experimental data in Figure 4.10 suggests that no
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bifurcation occurs for the case α = 0. That mismatch can be attributed to both

the sagging effect of the rod’s weight, which is not included in the mathematical

model, and the fact that even a tiny misalignment of the end load causes a cor-

respondingly small deflection. Those can be considered small imperfections and

consequently the experimental loading path shows a generic rounding off of the

primary bifurcation predicted by the theory. We determine the Eqs. of t, n, f

and δ in §4.4 and compare those with results obtained from AUTO, see Table 4.1

where we give the critical values for different values of α.

The work presented here unifies the mechanics of point contact with line con-

tact and additionally covers a wide range of inclinations of the applied load, from

the vertical to the horizontal. We also quantify the mechanics in the hope that we

shed some light on what information is transduced down to the mechanoreceptors.
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Chapter 5

Concluding remarks

This thesis examines loop formation, jump phenomena and contact problems in

clamped-free rods that are deformed under rigid and dead loading. The platform

for our studies has been td (force versus end displacement) loading diagrams

and deformed shapes. We have approached the problem from three perspectives:

experimental, numerical and analytical.

The mathematical model set out in Chapter 2 is written to reflect the ex-

perimental set up as closely as possible. We identified weight and friction as

the main source of discrepancy between experimental data and the theory. The

mathematical model could have been written to incorporate rods self-weight, see

for example [4]. The equations for the heavy rod (a rod with weight) are non-

integrable, see [74], and in our work we focus on integrable cases. The effect of

friction was difficult to eliminate. In chapter 3 we conduct experiments on uni-

formly curved rods that are deformed under rigid loading. We identify friction

between the slider and the rail, and at the pinned-joint. Also, in our experiments

on clamped-free rods that are deformed as a rigid plate is pressed at the tip there
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is unavoidable friction during contact between the rod and the plate. Although

measures were taken to reduce this − for example the surface was fully lubricated

before any experiments, we found that it could not be completely eliminated.

In the same way that there exist two solutions (symmetric solutions) in the

case of an initially straight rod, there exist two solutions for the uniformly curved

rod. In the case of a straight rod those two solutions are symmetric i.e., taking

either the positive or negative sign of the curvature equation, yields solutions that

lie in the UHP and LHP respectively. In the case of uniformly curved rods that

symmetry is lost. We find interior inflection points for rods that are located in

the LHP, however there are no interior inflection points for deformed rods that

lie in the UHP.

Investigations of large deflections led us to focus on how loops form, both

under tension and compression. It is evident from our experiments that loops can

form from minimal out-of-plane deformation i.e, a deformation of the thickness

of the rod itself. To date, most research appertaining to loop formation in rods

are from a 3-d perspective, [4]. This thesis demonstrates very good agreement

between the experimental data for loop formation and the 2-d planar elastica. The

2-d model has the advantage of being relatively simpler than its 3-d counterpart

and facilitates analytical results that are reasonably straightforward.

Experimental and numerical results indicate that deformed shapes situated in

the LHP always have interior inflection points. Experimentally we were not able

to follow the loading path (td) as predicted by the theory. Under the dead loading

procedure, the rod became unstable at certain critical loads, which correspond

to local maxima in td. Those critical points are identified by solving pertinent
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equations (see §3.4.1). To our knowledge, those results have not been published

elsewhere. We propose, for future study, the effect of changing the loading pro-

cedure for the study of uniformly curved rods that are located in the LHP, i.e.,

conduct experiments on rods in the LHP that are deformed under rigid loading.

In that way we should be able to obtain experimental data that corresponds to

a wider domain of the td path, as set out by the theory. We also propose the

study of uniformly curved rods in the LHP for higher values of uniform curva-

ture. Owing to stability, the experiments we conducted examined certain values

of curvature. Owing to instability issues, the experiments we report on here were

restricted to certain values of curvature.

In chapter 5 we present the experimental results of a rod whose ends are

clamped-free, with a rigid plate pressed at the free end. The numerics and anal-

ysis indicate that a bifurcation occurs for the case when the plate is positioned

perpendicular to the length of the rod, i.e., α = 0. Experimentally, the effect of

weight and friction show a “rounding” of the primary bifurcation for this set-up.

With respect to the equilibrium loading diagrams, we provide a comprehensive

description of point and line contact for large deformations. This work opens up

new avenues for investigation. For example, uniformly (or non-uniformly) curved

rods in contact with a flat, rigid surface. This is important in the study of whisker

modelling [19], [75].

Every effort has been made to try and ensure that the experimental spec-

ifications and procedures are as close to the boundary conditions and loading

sequences as possible. The analytical solutions provide a benchmark for the

numerical (which is approximate) and the experimental data. However, the an-
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alytical solutions are not directly expressed in terms of t(d) or y(x), which are

our main forums for displaying and studying results, though we can plot xy and

td using the solutions for x(s), y(s), t(s), φ(s) etc. Also, neither the analytical

solutions nor the numerics predict the instabilities that are observed during an

experiment. Nevertheless, the critical points at which those instabilities occur can

be detected by analysis (they are local maxima on td curve). Whilst, in general,

analysis leads to classifications of inflectional and non-inflectional elastica, in the

case of intrinsic curvature a difficultly arises in clearly demarcating those types, a

difficulty which is reflected in the sensitivity of the elliptic modulus, as depicted

in Figure 2.11. Indeed, it is difficult to tell from inspection of the shape of the

rod (in the UHP) whether or not it is part of an inflectional or non-inflectional

solution. In the case of the LHP, all solutions include an interior inflection point.

The combination of the three methodologies that we have adopted has helped in

identifying and gaining a better insight intrinsically, uniformly curved rods.
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chanical events during active tactile exploration,” Frontiers in Behavioral

Neuroscience, vol. 6, p. 74, 2012.

[20] V. Goss, P. Singh, and R. Chaouki, “Large deflections of a clamped-slider-

pinned rod with uniform intrinsic curvature,” International Journal of Solids

and Structures, vol. 129, pp. 135–145, 2017.

[21] V. Goss and R. Chaouki, “Loading paths for an elastic rod in contact with a

flat inclined surface,” International Journal of Solids and Structures, vol. 88,

pp. 274–282, 2016.

[22] K. Bisshopp and D. Drucker, “Large deflection of cantilever beams,” Quar-

terly of Applied Mathematics, vol. 3, no. 3, pp. 272–275, 1945.

[23] R. H. Plaut, S. Suherman, D. A. Dillard, B. E. Williams, and L. T. Watson,

“Deflections and buckling of a bent elastica in contact with a flat surface,”

129



International Journal of Solids and Structures, vol. 36, no. 8, pp. 1209–1229,

1999.

[24] A. K. Nallathambi, C. L. Rao, and S. M. Srinivasan, “Large deflection of con-

stant curvature cantilever beam under follower load,” International Journal

of Mechanical Sciences, vol. 52, no. 3, pp. 440–445, 2010.

[25] M. Born, “Stabilitat der elastischen linie in ebene und raum,” Ph.D. disser-

tation, 1906.

[26] G. Van der Heijden, S. Neukirch, V. Goss, and J. Thompson, “Instability

and self-contact phenomena in the writhing of clamped rods,” International

Journal of Mechanical Sciences, vol. 45, no. 1, pp. 161–196, 2003.

[27] C. Wang, “Post-buckling of a clamped-simply supported elastica,” Inter-

national Journal of Non-Linear Mechanics, vol. 32, no. 6, pp. 1115–1122,

1997.

[28] M. Mahtabi, N. Shamsaei, and M. Mitchell, “Fatigue of nitinol: the state-

of-the-art and ongoing challenges,” Journal of the Mechanical Behavior of

Biomedical Materials, vol. 50, pp. 228–254, 2015.
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