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Abstract 

 

Cortical bone is an example of a mineralized tissue containing a compositional distribution of 

hard and soft phases in 3-dimensional space for mechanical function. X-ray computed 

tomography (XCT) is able to describe this compositional and morphological complexity but 

methods to provide a physical output with sufficient fidelity to provide comparable 

mechanical function is lacking. A workflow is presented in this work to establish a method of 

using high contrast XCT to establish a virtual model of cortical bone that is manufactured 

using a multiple material capable 3D printer. Resultant 3D printed structures were produced 

based on more and less remodelled bone designs exhibiting a range of secondary osteon 

density. Variation in resultant mechanical properties of the 3D printed composite structures 

for each bone design was achieved using a combination of material components and 

reasonable prediction of elastic modulus provided using a Hashin-Shtrikman approach. The 

ability to 3D print composite structures using high contrast XCT to distinguish between 

compositional phases in a biological structure promises  improved anatomical models as well 

as next-generation mechano-mimetic implants. 
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Introduction 

 

Biological processes are adept at producing complex structures optimized for a range of 

mechanical functions, while maintaining biological function. Such structural complexity 

requires both morphological and compositional control often lacking in synthetic routes. 

Bone is a prevalent example of a mineralized tissue demonstrating considerable mechanical 

performance, including resistance to compression and relatively high toughness1, by means 

of optimised combination of hard mineral apatite and a range of softer materials mostly 

consisting of collagen2-5. Bone is commonly classified into a number of hierarchical levels from 

the whole bone down to nanoscale components6. A number of disease states and conditions 

exist that compromise the mechanical integrity of bone, mainly including osteoporosis and 

osteoarthritis7,8. Considerable improvement in healthcare therefore requires effective 

replacement of bone material that is able to provide suitable mechanical function.  

 

The replacement of bone broadly follows two pathways of either employing biomaterials for 

bone tissue engineering to allow bone regeneration8 or using engineering structures to 

replace significant volumes of the whole bone via traditional total hip or knee replacements 9. 

The former design of biomaterials has become a sophisticated research field that employs a 

range of solutions that are mostly suited for small defects, whereas larger structures are 

perhaps less developed10. Specifically, prosthetics are typically employed to interface with 

bone material but lack the morphological and compositional complexity comparable to that 

of the host material. This lack in complexity often results in failure of the implant, mainly due 

to aseptic loosening11.  

 

Manufacturing processes able to provide complexity in order to satisfy mechanical function 

comparable to bone are limited. Additive layer manufacturing, commonly referred to as 

three-dimensional (3D) printing, shows significant potential in producing the complexity 

required for mimicking bone, or indeed any biological structure. Extensive efforts have been 

made in applying 3D printing to a range of biological structures related areas. Healthcare, 

particularly in surgery, is an area of significant growth for structures produced from 3D 

printing12. Highlighted use of 3D printing includes the manufacture of anatomic models 13 as 
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well as surgical guides and templates14, implants15 and molds predominantly for maxillofacial 

and orthopaedic operations16. Interestingly, a recent review indicates the activity in 3D 

printing of anatomic models was over seven times larger than for implant studies17 and 

perhaps reflects the demands in controlling the biological and mechanical function of an 

implant compared to a model. The aim of manufacturing a bone replica mimicking the host 

tissue using 3D printing therefore remains a significant goal both for providing increasingly 

effective implants as well as more accurate anatomic models. 

 

Previous works have highlighted the use of 3D printing in presenting engineered structures 

based on biological composite topologies including a rotated bone-like geometry18. 3D 

printing critically requires a design input that is realised in a physical model output. Such an 

input ranges from computer aided design (CAD)13 to more sophisticated use of x-ray 

computed tomography (XCT) imaging19. The latter approach is powerful as the three-

dimensional complexity of a biological structure is captured depending on the resolution and 

field of view. A less developed aspect of XCT scanning res ides in capturing both geometric 

information as well as compositional information based on the attenuation between the 

probing incident x-ray and the materials organized within the biological structure. The ability 

to obtain a digital model of bone that maintains high fidelity with the host tissue using XCT is 

persuasive. While 3D printing shape information from bone has been achieved20, the use of 

multiple material 3D printing of biological structures is lacking. Prevalent examples of 3D 

printed multi-material structures inspired by nature exist for the nacreous layer of sea shells 

that consist of a high volume fraction of hard mineral plates, within softer material referred 

to as a ‘bricks and mortar’ organization21. The challenge of accurately manufacturing volume 

fractions above 90% of hard material within a softer matrix material still remains, but works 

have indicated a broader approach that allows a mimetic hard-soft material composite with 

functionality that tends towards that of the host biological structure18. However, the 

integration of an efficient workflow that allows information translation from XCT to a virtual 

model that gives a 3D printed physical output with mechanical fidelity from shape and 

composition is required. This work presents such an integrated approach demonstrated for 

compact bone structures. Compact bone is a demanding biological structure for XCT as the 

solid volume fraction is high, with few voids that provide high contrast at interfaces with the 

solid mineralised material. Compact bone that is remodelled also gives opportunities to 
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examine regions of compositional variations between secondary osteons compared to the 

primary osteonal bulk. The potential for 3D printing structures that retain the characteristics 

of the host biological tissue additionally require selection of appropriate materials with a 

distribution of mechanical properties that enable suitable function. While the establishment 

of a workflow approach from imaging through to manufacturing is critical, the developmen t 

of future materials is expected to give increased fidelity. A 3D printed structure directly using 

biological design must finally provide mechanical function comparable to the host to achieve 

a ‘mechano-mimetic’ goal.  

 

The main aim of this study is to establish a workflow able to provide a physical 3D printed 

output of a bone structure using XCT approaches. The resultant structural output is primarily 

exploiting the power of 3D printing in giving organizational complexity of materials, but 

utilizes commercially available materials. Materials with a range of mechanical properties will 

explore the ability to tune composition combined with structural fidelity to approach a more 

mechano-mimetic 3D printed bone-like structure.   

 

Experimental section 

 

Cortical bone samples were harvested from mature bovines that were bred and slaughtered 

for alimentary purposes. Typical age of sacrifice in dairy cows ranges 36-48 months and this 

is considered as the ‘biological’ age of the samples used in the current study. Samples from 

the mid-diaphysis of bovine bone femura were cored by removing cylinders of approximate 

diameters and lengths of 4 mm x 5 mm respectively from the host. The long axis of the cored 

cylinder was parallel to the long axis of the bovine bone femur. Cored samples were extracted 

from an extensively remodelled bovine bone region showing a significant number of 

secondary osteons less remodelled bovine bone region limiting the number of secondary 

osteons. Cored bone samples were wrapped in saline soaked gauze and frozen prior to 

imaging. 

 

The approach taken here is to image the samples using XCT to give morphological information 

and identify the compositional variations of primary and secondary bone. Primary bone is 

produced rapidly in bovine structures but is remodelled into more ordered secondary 
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osteonal regions. While the composition of bone is predominately hard mineral phase and 

softer collagen, regions of disordered bone have been shown to have relatively lower 

stiffness5 whereas more ordered bone exhibits increased stiffness22. A workflow is therefore 

established as indicated in Figure 1 to image cortical bone samples with regions of 

compositional variation and then develop a virtual model of the bone, including 

morphological and mechanical information, which is translated to a 3D printed composite 

structure of multiple materials exhibiting an organizational fidelity with the host tissue.      

 

Imaging of bone was carried out using an x-ray microscope (Versa 520, Carl Zeiss Ltd., USA) 

operating with at a 70 kV/6 W X-ray tube energy. A total of 3201 projections across 360 

degrees of sample rotation, with each projection collected using a 6 second exposure time 

provided a 5.3 m isotropic voxel size. The core samples were immersed in saline during the 

tomography to prevent desiccation. The 2D X-ray projections from XCT were reconstructed 

to a 3D volume using a filtered back projection algorithm implemented in the manufacturers  

software. A standard Shepp-Logan filter, Gaussian filter (0.5 strength) and beam hardening 

correction (strength 0.05) was applied to the projections. Approximately 50 slices from the 

top and bottom regions of the XCT datasets were disregarded due to artefacts. The resulting 

3D dataset was segmented into primary and secondary bone regions  by thresholding to 

exclude voxels with a scale of grey value equal to zero. This thresholding allowed provided a 

3D analogue of the datasets using image analysis software (Avizo 8, Fra.). An isosurface was 

extracted from the 3D analogue and triangulated as a mesh of polygons and volume meshes 

using meshing software (MeshLab v1.3.3., Ita.). Each mesh was decimated in terms of 

triangles number with a multistep procedure defined by a step number equal to three. A 

quadric edge collapse decimation algorithm with a quality threshold parameter of 0.5 and a 

boundary preservation weight of 5 was used to decimate the mesh to reduce data size. 

Meshes were imported into CAD software (Rhinoceros 5.0, Robert McNeel and Associates, 

USA) and scaled by x10 to increase feature density within the 3D printed structure. Validation 

of the closed surface of the meshing and removal of hole artefacts was carried out using 

software (NetFabb, Autodesk, UK). Finally, 3D printed samples were outputted from the CAD 

to a physical composite model using an inkjet based 3D printer (ProJet 5500X, 3D Systems, 

USA) that allowed the additive deposition of multiple materials. The hardest material was 

used for the secondary bone regions (VisiJet CR-WT, 3D Systems, USA) and a series of 
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increasingly softer matrix materials (VisiJet RWT-FBK 100, VisiJet RWT-FBK 250 and VisiJet 

RWT-FBK 500, 3D Systems, USA) defined as hard, medium and soft respectively were used as 

the primary bone material. The materials were chosen from the range available commercially 

for use in the 3D printer. The approximate ratios of the hardest to the increasingly softer 

materials using the manufacturers elastic modulus specifications are 2.7, 11 and 40 

respectively. The ratio of elastic modulus for the secondary osteonal material compared to 

primary osteon is approximately 10, taken from literature5, indicating a ratio of 3D printed 

materials comparable to those found in bone despite the absolute values being lower. These 

3D printed base materials are noted as USP Class VI certified for healthcare applications. The 

printer was operated in XHD mode with a 13 m spatial resolution is the z-axis and 34 m 

spatial resolution in the x- and y- axes of the buildt plate plane. The long axis of the cortical 

bone structure was aligned along the x-axis. XCT validation of the 3D printed samples was 

attempted but was impossible to distinguish between the different material compositions 

due to similarity of x-ray attenuation across all the base materials. 

 

Mechanical properties of the cortical bone samples and 3D printed mimics were evaluated 

using acoustic measurements. The propagation of ultrasonic waves is an established method 

of measuring the elastic properties of bone as well as 3D printed trabecular bone phantoms 

as demonstrated recently20. Samples of bone and 3D printed structures were fixed between 

a transmitting and receiving transducer setup (Olympus V103/V153, UK). The transducers 

were clamped using coupling media (ShearGel, Magnaflux, USA) to the opposite ends of the 

samples using an approximate force of 10 N.cm2 so that the long axis of the sample traversed 

between the transducers. A 1 MHz sinepulse was generated, with a repetition frequency 

between 10-1,000 Hz, at the transmitted end of the sample so that the ultrasonic pulse was 

detected at the receiver using an oscilloscope. The fast first arrival ultrasonic wave velocity, 

define as the primary p-wave velocity Vp, and secondary s-wave velocity Vs where calculated 

using: 
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Where tp and ts are the p- and s-wave arrival times, and L is the sample length. The apparent 

elastic modulus E of the cortical bone is calculated from23: 

 

    (3) 

 

Where  is the sample density given from volumetric methods.  

 

Results 

 

Complete volumes of the bovine bone were successfully imaged using XCT for both the less 

remodelled and more remodelled cortical bone samples. Figure 2 shows plane sections 

orthogonal to the long axis of the bone and indicates the prevalence of the tubular secondary 

osteon regions in the more remodelled bone and an absence of secondary osteon regions in 

the less remodelled bone. The 3D tomography data sets for less and more remodelled bone 

samples were used to provide a virtual model of the bone following a series of steps as shown 

in Figure 3. The 3D data was segmented to highlight the secondary osteons and then finally 

meshed with a range of triangular features from approximately 1.5 million for the less 

remodelled bone to 3 million for the more remodelled bone. The increased digital weight for 

the more remodelled bone compared to the less remodelled bone was due to the increased 

number of secondary osteon features in the mesh. The 3D printed physical output from the 

virtual model is shown in Figure 4 for a number of samples. The 3D printing provides a low 

density wax material support that is observed as the lighter coloration under the darker 

structural material. 

 

Mechanical evaluations of the base materials used to construct the 3D printed s tructures of 

bovine-like bone are shown in Table 1. Minimal variations of both p- and s- wave velocities 

between the hardest and hard materials resulted in similar elastic modulus values of 3.95 GPa 

and 3.85 GPa respectively. A reduction of 16% in elastic modulus is observed between the 

hard and medium materials with a further 17% reduction in elastic modulus for the soft 
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material. Elastic modulus measurements for the 3D printed structures and the corresponding 

less and more remodelled bone samples are shown in Table 2. The bone samples exhibit 

noticeably higher elastic moduli than the 3D printed structures and is expected to be due to 

the high elastic modulus, reported as 129 GPa4, of the mineral phase in bone. Interestingly, 

the less and more remodelled cortical bone samples have similar elastic moduli. The variation 

of the secondary osteon composition of the less and more remodelled bone is clearly shown 

in Figure 2, with analysis of the 3D tomographs indicating volume fractions of 4% and 55% 

respectively for less and more remodelled bone. However, the volume fraction porosity of 

the more remodelled bone is slightly higher at 8% than the 7% for less remodelled bone. The 

porosity of the less and more remodelled bone samples as well as their corresponding 3D 

printed designs was taken from the XCT imaging data sets and calculated using volume 

fraction analysis (Visual SI Advanced, ORS, Can.). The more and less remodelled porosity 

volume fraction was found to be 7.12% and 6.63% respectively. The corresponding average 

volume fraction porosity from the 3D printed samples for the more and less remodelled 

designs was 5.47% and 4.24% respectively. The bone samples show a slight increase in 

porosity from the less to more remodelled bone. The 3D printed samples show the same 

trend of increasing porosity moving from the less remodelled to the more remodelled bone 

design. The lower porosity for the 3D printed samples compared to the bone is expected to 

be due to the meshing process removing small pores that are below the mesh size prior to 

the 3D printing. We also note that the voxel size of over 5 m may also ignore sub-micron 

porosity in bone linked to the larger scale porosity. The increase in the stiffer secondary 

osteon phase of more remodelled bone is thus potentially offset by the enhanced porosity 

relative to the less remodelled bone. An attempt to understand the variation in the 

mechanical properties of the 3D printed structures was attempted by plotting the ratio of 

hard osteonal-like regions to softer matrix against the measured elastic modulus in Figure 5. 

A linear trend of increasing measured elastic modulus with decreasing ratio was observed for 

both the less and more remodelled designs. This trend is reasonable as the replacement of a 

soft matrix with materials of higher elastic modulus, which occurs when moving from the soft 

to the hard matrix material. The higher volume fraction of osteonal-like material for the more 

remodelled bone is reflected in the higher elastic modulus of the structures using the 

corresponding bone design relative to the less remodelled bone design.  
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Discussion 

 

A workflow providing a manufactured realization of the XCT imaging data has enabled 

composition and morphology to be captured using multi-material 3D printing. The less and 

more remodelled bone designs provided morphological information with the selection of a 

range of base materials providing compositional variation in a 3D printed bone-like structure. 

While the measured elastic modulus of 3D printed structures are almost ten times smaller 

than that of the native bone, the potential to increase the elastic modulus of the overall 

structure is achievable provided higher elastic modulus base materials are used.  

 

An analytical model able to describe the link between the composition of the 3D printed 

structures and measured elastic modulus, for each cortical bone design, is explored here in 

order to understand the potential for tuning mechanical properties towards a more mechano-

mimetic structure. A Hashin-Shtrikman description of a composite system of softer matrix and 

harder phase of homogenous, isotropic and arbitrary geometry was considered as 

appropriate24. The elastic modulus of the 3D printed structures was predicted using the 

generalized form of the Hashin-Shtrikman upper bound for a multiphase composite 

material25. The Hashin-Shtrikman upper bound is expressed in terms of the elastic modulus  

of the material constituents using: 

 (4) 

 

Where Ecalc is the calculated upper bound of the bulk modulus for the composite material, N 

is the total number of phases in the composite, i is the volume fraction of a given phase, Ei 

the elastic modulus of the individual phase materials,  is the Poisson’s ratio of the given 

phase measured acoustically26 and Gmax is the maximum shear modulus contained within the 

composite where E*
max/(1-2) = 4 Gmax. A plot of the calculated elastic modulus for the Hashin-

Shtrikman upper bound condition against the measured elastic modulus from ultrasound 

measurements are shown in Figure 6 below. The calculated elastic modulus values show 

somewhat comparable values to the measured elastic modulus values for the 3D printed 

structures. Further calculations of the elastic modulus for the bone samples using Equation 4 
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were attempted by incorporating elastic modulus values for the more disordered and ordered 

collagen structures representative of primary and secondary bone5 but the resultant 

correlation with measured elastic modulus values is poor, potentially due to isotropic 

assumptions in Equation 4 applied to more anistropic constituent behavior in bone. The 

Hashin-Shtrikman model is limited in predicting the bone elastic modulus but more effective 

in determining the elastic modulus of the 3D printed composites. The 3D printed materials 

are amorphous and isotropic, lacking the anisotropy of the materials found in bone such as 

collagen1,2. However, potential geometric features could be incorporated into the printed 

design to replicate anisotropy but is not considered in this current work. Additionally, the 

Hashin-Shtrikman model assumes interfaces are elastic and the 3D printed materials are also 

expected to have strong effective interfaces. Such a statement can be partially justified by the 

calculated elastic modulus fitting more closely to the experimentally measured elastic 

modulus for the 3D printed samples. Bone is known to have weak interfaces 3 and therefore 

contributes towards a discrepancy between the calculated elastic modulus for the remodelled 

bone and the experimental measurement. We note that the ultrasonic methods of measuring 

the elastic modulus of bone tends to give significantly higher results than other mechanical 

testing techniques27. The trend of increasing elastic modulus as stiffer constituents are used 

is an obvious outcome from Figure 6. The analytical model of Equation 4 is suitable in 

consistently predicting a higher elastic modulus for the more remodelled bone design across 

all material compositions compared to the less remodelled bone design. These elastic 

modulus variations highlights how selecting more appropriate materials, which are currently 

limited in commercial 3D printing multi-material systems, will achieve both structural and 

mechanical fidelity with the imaged tissue.  

Conclusions 

 

An established workflow that enables the physical output of a 3D printed structure using 

multiple materials from XCT imaging data has been achieved in this work. Variation in design 

using less and more remodelled bone samples gave corresponding variability in the elastic 

modulus of the 3D printed samples and, combined with a range of mechanically diverse 

materials, allowed selection of a composite structure with an elastic modulus predicted by an 

upper bound Hashin-Shtrikman model. The ability to 3D print composite structures from 3D 
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image data sets is a general approach and can be applied to many biological structures 

provided sufficient imaging contrast is able to discern morphological features and 

composition, as well as a suitable range of materials providing fidelity with the native tissue 

considered. Such success will enable improved 3D printed anatomic models and move 

towards suitable mechano-mimetic structures for potential next-generation patient specific 

implants.     
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Figures and Tables 

 
Table 1. List of the p- and s- wave velocities and corresponding calculated elastic modulus  

values for a range of the 3D printed base materials used. 
 

 P-Wave Velocity 

(m.s-1) 

S-Wave Velocity 

(m.s-1) 
Density (g.cm-3) 

Elastic Modulus  

(GPa) 

Hardest 2401 1100 1.19 3.95 

Hard 2367 1073 1.22 3.85 
Medium 2269 997 1.18 3.24 

Soft 2155 921 1.15 2.71 

 
 
 

 
 
 
 
Table 2. List of the p- and s- wave velocities and corresponding calculated elastic modulus  
values for the less and more remodelled cortical bone samples, and the corresponding 3D 
printed composite structures with a range of matrix materials . 
 

 P-Wave Velocity 

(m.s-1) 

S-Wave Velocity 

(m.s-1) 

Density 

(g.cm-3) 

Elastic Modulus 

(GPa) 

More remodelled  4591 2104 2.65 32.07 

Hard matrix 2409 1101 1.21 4.00 

Medium matrix 2331 1070 1.19 3.72 

Soft matrix 2290 988 1.18 3.18 

Less remodelled 4808 2415 2.04 31.74 

Hard matrix 2260 1027 1.20 3.45 

Medium matrix 2194 968 1.19 3.08 

Soft matrix 2164 910 1.19 2.75 
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Figure 1. Workflow employed to 3D print a bone structure exhibiting morphological and 
mechanical fidelity with the host biological structure. XCT is first applied to provide a 3D 
tomography image of the cortical bone structure. The 3D image data contains both 
compositional and morphological information that is translated to a virtual multi -dimensional 
model incorporating morphological information as well as assigning mechanical properties of 
the primary and secondary osteonal regions. A physical output of this virtual model is 
provided by the 3D printer.  
 

 
 

Figure 2. 2D Virtual Slices of the 3D tomography data generated from the XCT highlighting 
less remodelled (left) and more remodelled (right) cortical bone structure. Extensive 

secondary osteon regions are shown around the pores of the more remodelled bone whereas 
more limited numbers of secondary osteon regions are seen in the less remodelled cortical 

bone.    
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Figure 3. Virtual model development first used the x-ray tomograms (left) and resultant 
segmented data (middle) to distinguish the primary bone from the tubular features of the 
secondary osteons. Meshing (right) gave a complete model that was suitable for a physical 
output from 3D printing that retain compositional and morphological information. 
 

 
 
Figure 4. Optical image showing the 3D printing bovine bone structures from XCT data. The 
printed material is effectively the darker coloration whereas the wax support is the lighter 

region underneath the sample. Note the long axis of the bone is left to right in the image and 
parallel to the build plate of the 3D printer.  
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Figure 5. Plot of the variation in the measured elastic modulus of 3D printed structures based 

on less and more remodelled cortical bone design with the ratio of elastic moduli of the hard 
to soft materials used in these structures.   
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Figure 6. Plot of the measured elastic modulus for bone and 3D printed structures and the 
corresponding calculated elastic values using the Hashin-Shtrikman upper bound described 

by Equation 4. 
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