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Abstract

In reliability theory projects are usually evaluated in terms of their risk-

iness, and often decision under risk is intended as the one-shot-type binary

choice of accepting or not accepting the risk. In this paper we elaborate on

the concept of risk acceptance, and propose a theoretical framework based on

network theory. In doing this, we deal with system reliability, where the in-

terconnections among the random quantities involved in the decision process

are explicitly taken into account. Furthermore, we explore the conditions to

be satisfied for risk-acceptance criteria to be consistent with the axiomatiza-

tion of standard expected utility theory within the network framework. In

accordance with existing literature, we show that a risk evaluation criterion

can be meaningful even if it is not consistent with the standard axiomati-

zation of expected utility, once this is suitably reinterpreted in the light of

networks. Finally, we provide some illustrative examples.
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1 Introduction

Reliability theory is of paramount relevance in a number of economic, engi-

neering and environmental contexts. In particular, the reliability of a system

is strongly connected with its riskiness. A risk is accepted when the asso-

ciated system is reliable enough or, in other words, when the cost of its

avoidance is higher than a predetermined threshold. Essentially, a risk is

accepted when, once a criterion for risk evaluation is fixed, the risk level

is below a predetermined threshold (see, e.g., Fischhoff et al., 1981; Aven,

2003, 2007). Thus, in order to provide a scientific representation of indi-

vidual choices on risk acceptance, the formalization of the risk evaluation

mechanism is required.

It is widely accepted that individuals are not risk-neutral, and several

important theories have been developed on this fact, mostly building upon

von Neumann and Morgenstern’s (1944) seminal contribution. The basic

idea is that realizations of random amounts should be filtered through the

so-called utility function, to capture the evidence that risky quantities are

evaluated for what they represent for the decision maker, rather than under

a purely objective basis. This important framework is formalized into five

axioms, which are satisfied under expected utility maximization (see, e.g.,

Abrahamsen and Aven, 2008). To be self-contained, we have reported the

expected utility axiomatization in the Appendix.

Violations of the expected utility theory axioms stand at the core of the de-

bate in decision theory (see, e.g., Loomes, 1991; Katsikopoulos and Gigeren-

zer, 2008). However, decision rules inconsistent with expected utility theory

are not necessarily meaningless. In this respect, a risk acceptance criterion

compared to the axiomatization of the expected utility theory has been pro-

posed by Abrahamsen and Aven (2008). These authors face an engineering

reliability problem and introduce the FAR value as the expected number

of fatalities per 100 million exposed hours. From their point of view, the
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risk should be accepted when the FAR value is less than 10. However,

Abrahamsen and Aven (2008) show that the FAR value risk acceptance cri-

terion is not consistent with the independence axiom of expected utility.

Their conclusions elaborate on the perspective of the decision maker with-

out philosophically rejecting neither models violating the expected utility

axioms nor their utility-based counterparts.

On the same basis of the above-quoted paper, some authors elaborate on

the so-called non-linear utility theory, and provide also acceptance criteria

grounded on the analysis of the probability distributions of the involved

random variables (see, e.g., Geiger, 2002, 2005, 2008, and the references

therein).

Criticisms on the setting of a-priori criteria for deciding whenever ac-

cepting a risk are expressed by Aven and Vinnem (2005), who write:

“introduction of pre-determined criteria may give the wrong fo-

cus — meeting these criteria rather than obtaining overall good

and cost/effective solutions and measures.”

More specifically, Aven and Vinnem (2005) discuss risk acceptance for envi-

ronmental protection in the context of fossil fuels extraction and argue that

a risk should be properly characterized and evaluated to construct suitable

risk acceptance criteria.

In this paper we share the same perspective of Aven and Vinnem (2005),

and present a model for risk acceptance taking care of the main character-

istics of the problem. In particular, we formalize the concept of risk in the

language of network theory, to capture the presence of interactions between

the random variables playing a role in the decision process. In doing this,

we contribute to the field of literature related to the so-called systemic risk,

which is much interested in the consequences related to the existence of

interconnections among the components of a system (for the paradigmatic

application of systemic risk in the banking sector see, e.g., Rochet and Ti-
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role, 1996; Freixas et al., 2000; Bartram et al., 2007; Haldane and May,

2011). More specifically, we are particularly close to Leippold and Vanini

(2003), where the authors elaborate on operational risk acceptance in a net-

work analysis framework. Indeed, Leippold and Vanini (2003) argue that

there are many risky variables driving the risk acceptance decision, and they

present a topological and a stochastic dependence structure.

Here we model the set of decision variables — the random variables

involved in the risk acceptance problem — and their connections by a specific

network, and opportunely define a network measure to evaluate the risk. A

numerical threshold for the network measure is then introduced to identify

acceptable and not-acceptable risks.1

Moreover, following the line traced by Hendon et al. (1994) and Abra-

hamsen and Aven (2008), we compare the proposed criterion with classical

decision theory. With this aim, we adapt and extend the axioms of the

expected utility theory to our specific context, arguing that the weights of

network’s arcs and nodes play an active role in the identification of the

preference order.

We also show that a suitable definition of the model terms leads to a

criterion which is consistent with the expected utility theory. On the other

hand, we argue that inconsistency with respect to the axioms of expected

utility does not necessarily imply that the associated risk-acceptance criteria

are meaningless.

To develop our arguments, we fully explore the algebraic structure of the

set of networks and suitably define the network binary operators of sum and

product by scalars.

The rest of the paper is organized as follows: the next Section contains

the formal definition of the set of networks, along with the assessment of

1For a survey on the theory of networks, we refer the interested reader to Wasserman

and Faust (1994), and Scott (2013).
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its algebraic structure. Section 3 outlines the risk-acceptance criterion and

presents some relevant examples and applications supporting the developed

model under a practical point of view. Section 4 presents the rewriting of

the expected utility axioms in the language of networks and discusses the

consistency of the proposed criterion with expected utility theory. The last

Section offers some concluding remarks.

2 The set of networks

Consider a probability space (Ω,F ,P), which contains all the random quan-

tities that will be defined in this paper.

We denote by A the set collecting all the random variables defined in

the probability space (Ω,F ,P). The risk acceptance problem is assumed to

be identified by the behaviour of some relevant random quantities, which

are collected in a subset S of A defined as:

S = {X1, X2, . . . , Xn} ⊆ A. (1)

We will refer to the set S as the decision set, where the variables X1, X2, . . . ,

Xn are the decision variables.

The decision set S is here viewed as the set of the nodes (vertices) of a

weighted oriented graph. There exist weights both for the arcs and for the

nodes of the graph. Specifically, under a pure formal perspective:

• there exists a function ρ : S → R such that ρ(Xj) = ρj is the weight

of the node Xj , for each j = 1, 2, . . . , n;

• we introduce a binary variable for the identification of the arcs of the

graph:

v(i, j) =

 1, if there exists the oriented arc connecting i and j,

0, otherwise;
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for each i, j = 1, 2, . . . , n. The case of i = j is associated to the

presence of a self-connection of the node i with itself;

• a measure for the asymmetric (oriented) connection between each cou-

ple of elements of the decision set is introduced, namely: δi→j ∈ R

is the measure of the oriented arc from Xi to Xj , for each i, j =

1, 2, . . . , n, i 6= j. The numbers δ’s represent the weights related to

the n2 edges, which are given by n(n− 1) coupled connections and n

self-connections. It is worth noting that the orientation is meaningless

when considering the self connections. However, for the sake of sim-

plicity, we adopt also in this case the ”oriented notation” and write

δi→i, for each i = 1, 2, . . . , n.

The graph is then fully identified by the knowledge of its nodes and the

related functions ρ’s, v’s and δ’s. The resulting quadruple is a network N

as follows:

N = (S, ρ, v, δ) , (2)

where ρ = {ρj}j=1,2,...,n, v = {v(i, j)}i,j=1,2,...,n and δ = {δi→j}i,j=1,2,...,n.

The space of the networks is then given by

Net =
{

(S, ρ, v, δ) ∈ P(A)× R|S| × {0, 1}|S|2 × R|S|
2
}
,

where P(?) indicates the set of the part of ?.

The risk problems are then here modeled through specific networks,

which are assumed in the present framework to fully describe the inves-

tigated risky projects (to be or not to be accepted).

2.1 Algebraic structure of the set Net

This section contains the discussion on some algebraic properties of the set

Net. In so doing, we pursue three scopes: first, we convince the reader that

the space of networks is rather wide, and can be properly used to model
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a relevant number of risky projects; second, we construct the theoretical

framework for introducing a risk-acceptance criterion based on networks;

third, we offer the instruments for checking whenever such a risk-acceptance

criterion is consistent with the axiomatization of the expected utility theory.

To proceed, we need the definition of the concept of equivalence of net-

works within the set of the elements of Net.

Definition 1. Consider two networks

Nk =
(
S(k), ρ(k), v(k), δ(k)

)
∈ Net, k = 1, 2.

We say that N1 is equivalent to N2 — and we write N1 ≡ N2 — when one

of the following conditions is satisfied:

(i)
(
S(1), ρ(1), v(1), δ(1)

)
=
(
S(2), ρ(2), v(2), δ(2)

)
;

(ii) if 1 = v(k1)(i, j) 6= v(k2)(i, j) = 0, then δ
(k1)
i→j = 0, for each i, j indices

of the nodes of S(k1) and k1, k2 = 1, 2 with k1 6= k2, all other things

being equal;

(iii) if Xj ∈ S(k1) \ S(k2), then ρ
(k1)
j = 0 and δ

(k1)
i→j = δ

(k1)
j→i = 0, for each i

index of the nodes in S(k1) ∪ S(k2) and k1, k2 = 1, 2 with k1 6= k2, all

other things being equal.

The equivalence relation introduced in Definition 1 leads to the identifi-

cation of equivalence classes in the set Net. It assumes that a zero-weighted

connection means absence of connection and a node with zero weight can be

removed from the decision set. These conditions will turn out to be useful

in the definition of the risk measures on Net.

Remark 1. Given a network N, it is possible to construct a network Ñ

equivalent to N by adding further nodes j1, . . . , jk such that ρj = 0 and

δi→j = δj→i = 0, for each j = j1, . . . , jk and for each i-th node of Ñ. Hence,

under such conditions on the weights of arcs and nodes, it is not restrictive
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to assume that networks share the same set of nodes, which is the maximal

one. Moreover, it is also equivalent to consider v(i, j) = 0 or, alternatively,

v(i, j) = 1 and δi→j = δj→i = 0. Therefore, under the condition of null

weights of not existing arcs, it is not restrictive to assume v(i, j) = 1, for

each i, j.

It is worth exploring the topological structure of Net by introducing the

operators acting on it.

Definition 2. Consider N1,N2 ∈ Net such that Nk ≡
(
S(k), ρ(k), v(k), δ(k)

)
for k = 1, 2.

The direct sum of N1 and N2 is

N1 ⊕N2 ≡ N, (3)

where N ≡ (S, ρ, v, δ) with S = S(1) ∪S(2) and, for each i, j = 1, . . . , n, it is

ρj = ρ
(1)
j + ρ

(2)
j , δi→j = δ

(1)
i→j + δ

(2)
i→j and v(i, j) = max{v(1)(i, j), v(2)(i, j)}.

By Definition 2, the direct sum of two networks is equivalent to a new

one with all the nodes and the connections existing in the two summed

networks. The weights of the new network comes out from aggregating —

i.e. summing — those of the summed ones.

We note that the distinction between the sets of nodes S(1) and S(2)

and the connection binary variables v(1) and v(2) are useful here to have an

intuitive view of the concept of summed networks, even if Remark 1 could

suggest to impose S(1) = S(2) and v(i, j) = 1, for each i, j.

Definition 3. Consider N ≡ (S, ρ, v, δ) ∈ Net and a scalar α ∈ R.

The product scalar-network α ·N is a new network Nα ≡
(
S, ρ(α), v, δ(α)

)
such that ρ

(α)
j = α · ρj and δ

(α)
i→j = α · δi→j, for each i, j = 1, . . . , n.

Definition 3 explains that a scale factor applied to a network plays the

role of applying such a scale factor to the weights of the arcs and the nodes

of the network.
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The assessment of the topological structure of the set Net — endowed

with the binary operator ⊕ — is of particular relevance for adapting to

the network framework the axiomatization of expected utility theory. We

formalize this topological framework as follows:

Theorem 1. The couple (Net,⊕) is an Abelian group.

Proof. To prove the theorem, we need to check the validity of the five axioms

identifying an Abelian group2.

G.1 If N1,N2 ∈ Net, then N1 ⊕N2 ∈ Net.

This is a direct consequence of Definition 2.

G.2 If N1,N2,N3 ∈ Net, then N1 ⊕ [N2 ⊕N3] ≡ [N1 ⊕N2]⊕N3.

In fact, define Nk ≡
(
S(k), ρ(k), v(k), δ(k)

)
for k = 1, 2, 3.

Then, this axiom is easily verified, being:

(
S(1) ∪ S(2)

)
∪ S(3) = S(1) ∪

(
S(2) ∪ S(3)

)
;(

ρ
(1)
j + ρ

(2)
j

)
+ ρ

(3)
j = ρ

(1)
j +

(
ρ
(2)
j + ρ

(3)
j

)
∀ j ;(

δ
(1)
i→j + δ

(2)
i→j

)
+ δ

(3)
i→j = δ

(1)
i→j +

(
δ
(2)
i→j + δ

(3)
i→j

)
∀ i, j ;

max
[
max{v(1)(i, j), v(2)(i, j)}, v(3)(i, j)

]
= max

[
v(1)(i, j),

max{v(2)(i, j), v(3)(i, j)}
]
∀ i, j .

G.3 There exists an unique null network N0 ∈ Net such that N0 ⊕N ≡

N⊕N0 ≡ N, for each N ∈ Net.

In fact, consider N ≡ (S, ρ, v, δ) and define the null network N0 ≡(
S(0), ρ(0), v(0), δ(0)

)
such that:

S(0) = S

ρ
(0)
j = 0 ∀ j ∈ S(0);

δ
(0)
i→j = 0 ∀ i, j | v(0)(i, j) = 1;

v(0) arbitrary.

2For the concept of Abelian group see, e.g., Robinson (1996).
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Definition 2 gives that N⊕N0 ≡ N0 ⊕N ≡ N.

The uniqueness — to be intended in the sense of the equivalence classes

introduced in Definition 1 — comes out from Definitions 1 and 2.

G.4 Consider N ∈ Net. There exists the inverse network N−1 ∈ Net such

that N−1 ⊕N ≡ N⊕N−1 ≡ N0.

In fact, denote N ≡ (S, ρ, v, δ) and define N−1 ≡
(
S−1, ρ−1, v−1, δ−1

)
such that: 

S−1 = S

ρ−1j = −ρj ∀ j ∈ S−1;

v−1(i, j) ≥ v(i, j) ∀ i, j;

δ−1i→j = −δi→j ∀ i, j | v−1(i, j) = v(i, j);

δ−1i→j = 0 ∀ i, j | v−1(i, j) > v(i, j).

By Definition 2 we have N⊕N−1 ≡ N−1 ⊕N ≡ N0.

G.5 The operator ⊕ is commutative in Net, i.e. N1 ⊕N2 ≡ N2 ⊕N1, for

each N1,N2 ∈ Net.

The validity of this axiom is due to Definition 2, by applying the

commutative property of the operator ∪ and + over their respective

action sets.

Validity of G.1–G.5 proves the Theorem.

The following result states that the set Net is closed with respect to

linear combinations, to be intended in the sense of Definitions 2 and 3.

Proposition 1. Consider α1, α2 ∈ R and N1,N2 ∈ Net such that Nk ≡(
S(k), ρ(k), v(k), δ(k)

)
for k = 1, 2.

Then α1 ·N1 ⊕ α2 ·N2 ∈ Net.

Proof. The proof is a direct consequence of Theorem 1 and Definition 3.
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A simple and meaningful consequence of Proposition 1 is the following:

Corollary 1. The set Net is convex.

Proof. The proof comes out from Proposition 1, by considering α1, α2 ∈

[0, 1], with α1 + α2 = 1.

3 Risk acceptance criterion

A general concept of risk measure on networks is now introduced. More

details and illustrative examples will be provided below.

Definition 4. A risk measure on networks (RMN, hereafter) is a function

µ : Net→ R such that:

• If N1 ≡ N2, then µ(N1) = µ(N2);

• the function µ induces a total order �µ in Net as follows:

N1 �µ N2 if and only if µ(N1) ≤ µ(N2),

for each N1,N2 ∈ Net;

• µ(N1) < µ(N2) means that N1 is less risky — in the sense captured

by the preference order �µ — than N2.

We collect the RMNs in a set MNet.

Definition 4 is rather general. It simply states that any function which

respects the equivalence between networks — in the sense that it assigns

an identical value to equivalent networks — and which induces a preference

order describing riskiness over Net is a RMN. Of course, each risk can be

viewed as a network belonging to a specific subset of Net? ⊆ Net which

contains networks with peculiar characteristics. In this respect, Definition 4

can be rewritten by considering a restriction of µ to an opportunely defined
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Net? which induces a total order on it. To assist the reader in grasping this

point, an example is provided below.

The uniqueness of the RMN is also a relevant theme, and it is quite simple

to see that networks can be identically ordered by employing different µ’s.

The following Definition is particularly useful:

Definition 5. Consider two RMNs µk : Net→ R, with k = 1, 2.

µ1 is equivalent to µ2 — and we indicate µ1 ≡ µ2 — if and only if

µ1(N1) ≤ µ1(N2) if and only if µ2(N1) ≤ µ2(N2),

for each N1,N2 ∈ Net.

Definition 5 leads to the identification of equivalence classes over the set

MNet.

The following example contributes to the understanding of the points

illustrated above:

Example 1. A financial institution offers to Frank and Lisa the same struc-

tured product which can be replicated by a portfolio composed by units of three

risky assets with stochastic uniperiodal returns X1, X2 and X3. The shares

of capital forming the replication portfolio are (x1, x2, x3),being xj the per-

centage of the capital invested in the asset with return Xj, for j = 1, 2, 3. It

is assumed that x1 + x2 + x3 = 1, i.e. the entire capital is invested. More-

over, xj ∈ [0, 1], i.e. short selling is not allowed. In a uniperiodal world, the

investor must take a decision by guessing what will happen at time 1.

Frank evaluates the riskiness of the product by computing the maximum

value of the Pearson correlation coefficients between couples of returns mul-

tiplied with the related shares of portfolio. As the value of the maximum

value of the Pearson correlation coefficient increases, the riskiness of the

corresponding portfolio grows.

In this case, each portfolio can be represented through a (symmetric)

network NF , where the subscript F means ”related to Frank”. The subset
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of Net containing such portfolios is denoted by NetF and, evidently, it is

not unique. A meaningful definition of NetF is the following:

• the decision variables — i.e. the vertices of each network NF ∈ NetF

— are fixed, and given by X1, X2 and X3;

• the weights of the (oriented) arcs are fixed, and given by:

δi→j = δj→i =
C [Xi, Xj ]√

V [Xi] ·
√
V [Xj ]

, i, j = 1, 2, 3,

where C and V are the covariance and variance operator, respectively;

• since, by definition of the correlation coefficient, there exists a connec-

tion between each couple of different nodes (self-connection and unitary

correlation coefficient is not introduced in Frank’s decision process),

then v(i, j) = 1 for each i, j = 1, 2, 3, i 6= j, and v(i, i) = 0, for each

i = 1, 2, 3;

• functions ρ’s are given by the shares of portfolio, so that ρj = xj, for

j = 1, 2, 3. Hence, ρ ∈ [0, 1]3.

The RMN adopted by Frank is (equivalent to) µF : NetF → [−1, 1] such

that:

µF (NF ) ≡ max
i,j=1,2,3

v(i, j)ρiρjδi→j . (4)

Lisa has a different strategy. She takes X1 as reference return, and eval-

uates the risk of a portfolio by making the difference between the probabilities

that x1 ·X1 is greater than x2 ·X2 and that it is greater than x3 ·X3. Such

a difference increases with the riskiness of the portfolio.

Portfolios can be modeled through networks NL ∈ NetL ⊆ Net, where

the subscript L means ”referred to Lisa”. A meaningful definition of the

subset NetL is the following:

• the vertices of the networks are, also in this case, X1, X2 and X3;
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• the weights of the (oriented) arcs are given by:

δi→j = P [xi ·Xi > xj ·Xj ] , i = 1, j = 2, 3. (5)

Hence,

δi→j ∈

 [0, 1], if i = 1 and j = 2, 3;

R, otherwise;

• the binary variables in v are given by

v(i, j) =

 1, if (i, j) ∈ {(1, 2), (1, 3)}

0, otherwise.

• ρ ∈ R3.

The RMN adopted by Lisa is (equivalent to) µL : NetL → [−1, 1] such that:

µL(NL) ≡ δ1→3 − δ1→2. (6)

Some comments on Example 1 are in order: Frank and Lisa’s decision

processes proceed through the analysis of the weights of the arcs and of

the nodes. In particular, Frank considers a specific subfamily of networks

NetF ⊂ Net, with nodes given by the stochastic returns X1, X2, X3, the δ’s

given by the correlation coefficients and v(i, j) = 1 if and only if i 6= j, and

all the possible nonnegative weights ρ’s for the nodes whose sum is unitary.

NetF collects the available portfolios obtained by the assets with returns

X1, X2 and X3 and correlation coefficients captured by the vector δ.

By construction, Frank refuses the risk in the case of a replicating port-

folio of polarized type, i.e. in presence of a couple of nodes (Xi, Xj) with a

high value of ρi and ρj and also a great level of connection δi→j . Polarized

portfolios are those where the main part of the capital is shared among the

returns with a high correlation coefficients, probably positively correlated.

The motivation for rejecting such a risk could be found in the attitude to-

wards the risk of Frank, who seems to be risk-averse. In fact, the polarized
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portfolios defined above are, in the general theory of finance, those more

risky, even if they provide a great level of expected return.

As far as Lisa’s perspective is concerned, she considers a subset of net-

works NetL ⊂ Net, with nodes given by the stochastic returns X1, X2, X3,

v(i, j) = 1 if and only if (i, j) ∈ {(1, 2), (1, 3)}, the δ’s belonging to [0, 1]

and all the possible nonnegative weights ρ’s for the nodes whose sum is

unitary. As in the Frank’s case, the set NetL collects the available portfo-

lios obtained by the assets with returns X1, X2 and X3. However, on the

basis of the different definition of the weights of nodes and arcs, we have

NetL 6= NetF . Moreover, it is interesting to note that the network measure

µL(NL) increases when the realizations of X2 grow and those of X3 decrease,

letting the other quantities be the same. This is a direct consequence of def-

inition (6) and of the remark that, in this case, P [X1 > X2] decreases and

P [X1 > X3] increases. More formally, fix a portfolio (x1, x2, x3) and con-

struct two networks

N
(a)
L ≡

(
{X1, X

(a)
2 , X

(a)
3 }, ρ, v, δ

(a)
)
, N

(b)
L ≡

(
{X1, X

(b)
2 , X

(b)
3 }, ρ, v, δ

(b)
)
,

where X
(a)
2 >SD1 X

(b)
2 , X

(b)
3 >SD1 X

(a)
3 and the δ’s are defined according

to (5). Then µL(N
(a)
L ) ≥ µL(N

(b)
L ).

From a behavioural finance point of view, return X1 represents an anchor

for Lisa’s decision process. The assessment of how rational is the selection

of such an anchor is beyond the scopes of the present paper, but it is clear

that X1 can be a financially reasonable reference point or, simply, the effect

of a psychological bias (see Ritter, 2003).

Example 1 suggests also the presence of a couple of thresholds HF , HL ∈

[−1, 1] such that Frank (Lisa) purchases the portfolio NF ∈ NetF (NL ∈

NetL) if and only if µF (NF ) ≤ HF (µL(NL) ≤ HL).

We are now in the position of defining the risk acceptance criterion.

Definition 6. Consider a RMN µ ∈MNet and a constant H ∈ R. More-
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over, consider a risk modeled through a network N ∈ Net.

Network N is said to be an acceptable risk at level H if and only if

µ(N) ≤ H. (7)

Definition 6 is in accord to the concept of RMN introduced in Definition

4. In fact, Definition 6 says implicitly that a great value of µ(N) means a

high level of risk for the system described by the network N.

3.1 A real world application: insurability of nuclear risks

Insurability is a concept related to a specific risk, and represents the de-

scription of the conditions under which an insurance company has economic

convenience to stipulate a contract for insuring such a risk. It is clear that

the problem of insurability is of great relevance when the event associated

to the insured risk leads to losses of large amount, i.e. in presence of the

so-called catastrophic events.

In the context of catastrophic events, a prominent role is played by the

nuclear risk. The problem of insurability of a risk in the nuclear case is thus

of particular interest. This task is widely discussed at an academic as well as

institutional level, and we refer to the authoritative scientific documentation

provided by Faure and Hartlief (2003). Nuclear risk is commonly acknowl-

edged to be a ”systemic” one, in that the occurrence of a nuclear disaster

has a dramatic impact on a number of human activities and environmental

entities. Hence, the evaluation of the damages generated by a nuclear ac-

cident can be performed only by analyzing the network describing all the

entities involved in the disaster, along with their interconnections and their

individual relative relevance in the overall context. Therefore we assume the

existence of a network Nnuclear = (S, ρ, v, δ) associated to the nuclear risk.

Faure and Hartlief (2003) explain that major insurance companies of any

nuclear country operate on a cooperative and non-competitive basis and pool
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their resources to jointly insure the nuclear risk. This fact implicitly means

that each individual insurance company does not accept the risk, whereas is

willing to accept it only when the riskiness of the nuclear accident is suitably

reduced. This behaviour can be easily formalized in the language used in

this paper.

Indeed, consider a country withK (major) insurance companies. Assume

that the k-th company measures the nuclear risk through a RMN µk, and

accepts the risk if and only if the risk measure is below a specific threshold

H̄k ∈ R, for each k = 1, 2, . . . ,K. The evidence that individual companies

do not accept the risk can be interpreted as the existence of a real number

Hk ∈ R such that

µk (Nnuclear) = Hk > H̄k,

for each k = 1, 2, . . . , N .

The pooling strategy acts by sharing the overall risk among all the K

insurance companies. Formally, the interaction among companies leads to a

transformation of the network Nnuclear into the new one Ñnuclear, with the

convenience that there exist K weights α1, α2, . . . , αK ∈ (0, 1) such that

µk

(
Ñnuclear

)
= αk ·Hk,

and αk ·Hk < H̄k.

Hence, the cooperation reduces the nuclear risk level, and such a reduced

risk is then accepted by all the insurance companies.

4 Consistency of RMNs with the expected utility

theory

The link between utility theory and risk criteria can be easily identified: ex-

pected utility is maximized by the decision maker while the risk — captured

by the function µ — is minimized by the decider (and accepted only if its

level is below a certain threshold, see Definition 6).
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This section contains a proposal for rewriting the classical axioms of the

expected utility theory in terms of the networks belonging to the set Net

and of the RMNs µ.

In general the realizations of the decision variables may be less risky

when they are great or, depending on the specific considered model, low.

In accordance with this observation, generally there is no direct relation

between high (low) levels of weights δ’s and connections ρ’s with high (low)

risk of the associated network. Therefore, it is not possible to propose an

a-priori universal view of the networks as risk models. However, it is still

possible to construct a theoretical framework for providing the conditions for

consistency of the network risk-acceptance criterion with standard expected

utility theory.

To this end, it is important to point out that the original axioms of

expected utility theory listed in the introduction are based on a “positive

role” played by high probabilities over high realizations on the preference

order. An illustrative example of this fact can be found in axiom A.3, where

it is clear that higher probabilities of higher realizations are preferred. This

is of course a conventional agreement needed for stating an axiomatization

of the expected utility theory: however, it is not the unique way to read

the concept of lottery. In fact, lotteries X and Y could be a-priori defined

as the amount to be lost by the player. In this case, axiom A.3 should be

reverted to maintain reasonableness in decision theory.

We here move from an analogous basis. In particular, we prepare —

when needed — the theoretical ground for deriving the conditions on µ such

that the risk-acceptance criterion of Definition 6 fits with the axioms of

expected utility theory.

First, we provide a reformulation of axioms A.1–A.5 in the language of

networks, to include also the role of the weights (see axioms A.1′–A.5′).

Axioms A.1′ and A.2′ are simple rewritings of the corresponding axioms
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A.1 and A.2 by replacing “lotteries” with “networks” and by using the op-

erators introduced in Definitions 2 and 3.

A.1′ Weak order — Preferences are: 1) complete, i.e. the decider can

state whether two networks are equivalent or whether one is preferred

to the other; 2) transitive, i.e. given three networks N1,N2,N3, if N1

is preferred to N2 and N2 is preferred to N3, then N1 is preferred

to N3; 3) reflexive, i.e. the decision-maker is indifferent between two

equivalent networks.

No requirements are needed to let Axiom A.1′ be satisfied.

Proposition 2. Consider µ ∈MNet and the induced order preference �µ.

Then, �µ satisfies Axiom A.1′.

Proof. We discuss separately the three properties leading to the weak order

axiom.

1) Completeness is due to the property of the RMN of inducing a total

order over the set Net.

2) Transitivity comes out easily from Definition 4, being the preference

order �µ over Net induced — by means of the real function µ — by the

preference order ≤ over R.

3) Reflexivity is a direct consequence of Definition 4, for which if N1 ≡

N2 then µ(N1) = µ(N2), for each N1,N2 ∈ Net.

A.2′ Continuity — Given three different lotteries N1,N2,N3 such that

N1 is preferred to N2 and N2 is preferred to N3, then there exists

a number p ∈ (0, 1] such that the decider is indifferent between the

compounded lottery p ·N1 ⊕ (1− p) ·N3 and N2.

Some conditions are needed to let the preference order be in line to

Axiom A.2′.
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Proposition 3. Assume that µ ∈MNet satisfies one of the following con-

ditions:

(i) µ is independent from the weights δ’s and it is linear with respect to

ρj, for each j = 1, . . . , n;

(ii) µ is independent from the weights ρ’s and it is linear with respect to

δi→j, for each i, j = 1, . . . , n.

Then the induced order preference �µ satisfies Axiom A.2′.

Proof. Consider three networks N1,N2,N3 ∈ Net such that N1 �µ N2 and

N2 �µ N3. Then we can write

µ(N1) ≤ µ(N2) ≤ µ(N3),

which means that there exists p ∈ [0, 1] such that

µ(N2) = pµ(N1) + (1− p)µ(N3).

To prove the result, we need to check that

µ(N) = pµ(N1) + (1− p)µ(N3),

with

N ≡ p ·N1 ⊕ (1− p) ·N3. (8)

Under Remark 1, define the networks as follows: Nk ≡
(
S, ρ(k), v(k), δ(k)

)
,

for k = 1, 2, 3. Then, Definitions 3 and 2 and formula (8) lead to N ≡

(S, ρ, v, δ), with
ρj = pρ

(1)
j + (1− p)ρ(3)j ; ∀ j

δi→j = pδ
(1)
i→j + (1− p)δ(3)i→j , ∀ i, j

v(i, j) = max{v(i, j)(1), v(i, j)(3)}, ∀ i, j.

(9)

Hence, by assuming that one among conditions (i) and (ii) holds, relations

in (9) give the thesis.
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A.3′ Preference increasing with probabilities (and with connections

and weights) — Consider S(1) = {X(1)
1 , X2} and S(2) = {X(2)

1 , X2},

where X
(1)
1 , X

(2)
1 , X2 ∈ A and X

(1)
1 >SD1 X

(2)
2 , where >SD1 denotes

stochastic dominance of order 1.

Moreover, consider two networks Nk ≡
(
S(k), ρ(k), v, δ(k)

)
, for k = 1, 2,

such that: 

ρ
(1)
1 ≥ ρ

(2)
1 ;

ρ
(1)
2 = ρ

(2)
2 ;

δ
(1)
i→j ≥ δ

(2)
i→j , for i = 1, j = 2;

δ
(1)
i→j = δ

(2)
i→j , otherwise.

(10)

Then the decision maker prefers network N1 to N2.

Axiom A.3′ extends and complements axiom A.3 in expected utility theory.

In fact, consider the following scheme: (i) system (10) is verified with all

equalities, and some zero weights are taken to remove the node X2 in ac-

cord to Definition 1; (ii) the variables X
(1)
1 and X

(2)
1 may assume only two

realizations a, b, with a < b; (iii) it results P (X
(1)
1 = a) < P (X

(2)
1 = a).

Then axiom A.3 means that X
(1)
1 is preferred to X

(2)
1 . Moreover, we have

X
(1)
1 >SD1 X

(2)
1 , and this leads also to axiom A.3′, so that N1 is better than

N2.

Axiom A.3′ states also that the decider is assumed to prefer high values of

weights and connections for the nodes with better performance (to be here

intended in the general probabilistic sense of the stochastic dominance).

Of course, axiom A.3′ can be extended to the general case of n decision

variables and in presence of couples of them ordered according to stochastic

dominance of order 1.

To let the preference order �µ be consistent with axiom A.3′, the RMN

µ should satisfy a natural requirement:

Proposition 4. Consider the networks Nk ≡
(
S(k), ρ(k), v, δ(k)

)
, for k =

1, 2 as in the statement of axiom A.3′, with X
(1)
1 >SD1 X

(2)
2 and assuming
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that (10) holds.

The order preference �µ satisfies axiom A.3′ if and only if µ(N1) <

µ(N2).

Proof. By construction of the networks N1 and N2 and by the formalization

of the axiom A.3′, we obtain the thesis.

A.4′ Compound networks — Fix n ∈ N. Consider n networks Nk ≡(
S(k), ρ(k), v(k), δ(k)

)
, for k = 1, 2, . . . , n, and a compound network N?

having the n networks as nodes as follows:

N? ≡ ({N1,N2, . . . ,Nn}, ρ?, v?, δ?) .

Furthermore, define Ñ ∈ Net as Ñ ≡
(
S̃, ρ̃, ṽ, δ̃

)
, where

S̃ =
n⋃
k=1

S(k),

two transformations φ and ψ can be identified such that: ρ̃ = φ
(
ρ?, ρ(1), ρ(2), . . . , ρ(n)

)
;

δ̃ = ψ
(
δ?, δ(1), δ(2), . . . , δ(n)

) (11)

and, for each (i, j) ∈ S(ki) × S(kj), we have
ṽ(i, j) = 1 if ki 6= kj and v?(Ni,Nj) = 1;

ṽ(i, j) = 1 if ki = kj = k and v(k)(i, j) = 1;

ṽ(i, j) = 0 otherwise.

Then, two transformations φ and ψ as in (11) exist such that Ñ and

N? are equivalent for the preference order.

It is evident that axiom A.4′ represents an extension to the networks of the

corresponding axiom A.4 of expected utility theory. In fact, axiom A.4 states

the deciders reduce a multistage lottery — whose outcomes are lotteries —

to a suitably defined one-stage lottery.

We now formalize the conditions to be satisfied by µ in order to let the

preference order �µ be consistent with axiom A.4′.
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Proposition 5. Fix n ∈ N, consider n networks N1,N2, . . . ,Nn and a

network N? having the n networks as nodes, as in the statement of axiom

A.4′.

Then the order preference �µ satisfies axiom A.4′ if and only if two

transformations φ and ψ as in (11) exist such that:

µ
(

({N1,N2, . . . ,Nn}, ρ?, v?, δ?)
)

= µ
(

(S̃, ρ̃, ṽ, δ̃)
)
.

Proof. The proof is a direct consequence of the formalization of axiom A.4′.

A.5′ Independence — Consider two networks Nk ≡
(
S(k), ρ(k), v(k), δ(k)

)
,

for k = 1, 2. Assume that S(1) = {X(1)
1 , . . . , X

(1)
n } and S(2) = {X(2)

1 , . . . , X
(2)
n },

with X
(1)
i 6= X

(2)
i for each i = 1, . . . , n. Suppose that X

(1)
1 >SD1 X

(2)
1

and suppose also that N1 is preferred to N2. Let us now consider two

networks Ñ1, Ñ2 defined as follows:

Ñk ≡
(
S̃(k), ρ(k), v, δ(k)

)
, k = 1, 2,

where S̃(1) = {X̃(1)
1 , X

(1)
2 , . . . , X̃n} and S̃(2) = {X̃(2)

1 , X
(2)
2 , . . . , X̃n},

being X̃
(1)
1 >SD1 X̃

(2)
1 .

Then Ñ1 is preferred to Ñ2.

Axiom A.5′ provides an extension of axiom A.5 in expected utility theory.

In fact, let us impose the necessary zero weights ρ’s and δ’s to restrict to

the case of network Nk with S(k) = {X(k)
1 }, for each k = 1, 2, in accord

to Definition 1. Moreover, assume that X
(1)
1 and X

(2)
1 share a common

outcome a ∈ R and X
(1)
1 >SD1 X

(2)
1 . Now consider X̃

(k)
1 as the random

variable obtained by replacing in X
(k)
1 the outcome a with ã ∈ R, so that

the new network Ñk has set of nodes S̃(k) = {X̃(k)
1 }, for k = 1, 2. The

independence axiom A.5′ is satisfied when the selection of X
(1)
1 and X

(2)
1

leads to X̃
(1)
1 >SD1 X̃

(2)
1 , and this implies in turn that Ñ1 is preferred to

Ñ2, for each ã ∈ R.
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Next Proposition explains the conditions to be satisfied by µ in order to

have �µ satisfying axiom A.5′.

Proposition 6. Consider four networks N1,N2, Ñ1 and Ñ2 as in the state-

ment of axiom A.5′.

Then the order preference �µ satisfies axiom A.5′ if and only if µ(N1) <

µ(N2) implies µ(Ñ1) < µ(Ñ2).

Proof. The proof stems from the formulation of axiom A.5′.

Let us go back to Example 1, in order to show that risk-acceptance

criteria can be reasonably identified even when they do not satisfy the ax-

iomatizations of the expected utility theory in the language of the networks.

With this aim, we limit the attention to the mathematical definition of the

RMNs µF and µL as introduced in (4) and (6), respectively.

Proposition 7. Consider the RMNs µF : Net → R and µL : Net → R

in (4) and (6), respectively. Denote as �F and �L the preference orders

induced by µF and µL, respectively.

(i) �F is not consistent with the expected utility theory;

(ii) �L satisfies axioms A.1, A.2, A.3′, A.4′, A.5′, hence being consistent

with the axiomatization of the expected utility theory in the language

of the networks.

Proof. We discuss separately the two cases.

(i) By (4), it is easily obtained that µF is not linear neither with respect to

δi→j nor ρj , for the presence of the max operator. Therefore, �F does

not satisfy axiom A.2′, and so it is not consistent with the expected

utility theory.

(ii) Propositions 2 and 3 guarantee that �L satisfies axioms A.1′ and A.2′.
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Formula (6) assures that µL is linear with respect to δi→j and inde-

pendent from the weights ρ’s, hence leading to the fulfillment of axiom

A.3′.

Consider the networks Ñ and N? defined as in the statement of axiom

A.4′. Assume that the transformation ψ of (11) is such that δ̃i→j =

δ?i→j , for i = 1 and j = 2, 3. Then µL(N?) = µL(Ñ), and this means

that axiom A.4′ is satisfied by �L.

Consider two networks Nk ≡
(
S(k), ρ(k), v(k), δ(k)

)
, with k = 1, 2, such

that µL(N1) < µL(N2). Moreover, consider the networks Ñk, with

k = 1, 2, as in the statement of axiom A.5′. Since the networks Nk

and Ñk share the same set of δ’s, then we have that µL(Ñ1) < µL(Ñ2)

and axiom A.5′ holds for �L.

Example 1 and Proposition 7 confirm the conclusion advocated in Abra-

hamsen and Aven (2008) that the use of risk-acceptance criteria is not nec-

essarily consistent with the expected utility theory, reformulated here in the

language of networks.

5 Conclusions

In this paper we discuss the concept of risk-acceptance, when risks are mod-

elled through networks. We propose a description of the algebraic structure

of the set of networks, in order to better formalize the theoretical frame-

work we deal with. With this aim, we offer a reformulation of some of the

axioms of expected utility theory, extended in the language of networks.

Moreover, we show that risk measures — and risk-acceptance criteria —

can be properly selected to achieve a consistency condition of the related

preference order with the suitable rewriting of the usual expected utility
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axiomatization. However, it is important to note that inconsistency with

standard expected utility theory does not necessarily lead to meaningless

risk-acceptance criteria: in this sense we agree with Abrahamsen and Aven

(2008).
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Appendix

In the present Appendix we recall the expected utility axiomatization, as in

Abrahamsen and Aven (2008).

A.1 Weak order — Preferences are: 1) complete, i.e. the decider can state

whether two lotteries are equivalent or whether one is preferred to the

other; 2) transitive, i.e. given three lotteries X,Y, Z, if X is preferred

to Y and Y is preferred to Z, then X is preferred to Z; 3) reflexive,

i.e. the decision-maker is indifferent between two similar lotteries.

A.2 Continuity — Given three different lotteries X,Y, Z such that X is

preferred to Y and Y is preferred to Z, then there exists a number

p ∈ (0, 1] such that the decider is indifferent between the compounded

lottery pX + (1− p)Z and Y .

A.3 Preferences increasing with probability — Consider two lotteries

X and Y with only two outcomes a and b, where a > b. The decider

prefers X to Y if and only if P (X = a) > P (Y = a).

A.4 Compound probabilities — Consider a compound lottery X whose

outcomes are two lotteries X1 (with probability p) and X2 (with prob-

ability 1−p). Then lottery X is indifferent to the simple lottery given

by the outcomes of X1 and X2 with probabilities obtained by the prod-

uct of those of the outcomes of X1 with p (those of the outcomes of

X2 with 1− p).

A.5 Independence — Consider two lotteries X and Y sharing a common

outcome a and suppose that the decider prefers X to Y . If the lotteries

X̃ and Ỹ are obtained by replacing a with ã in X and Y , respectively,

then the decider prefers X̃ to Ỹ .
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