1	
2	
3	
4	
5	
6	
7	
8	
9	
10	A Ballistic Pollen Dispersal Strategy Based on Stylar Oscillation
11	of Hypochaeris radicata (Asteraceae)
12	
13	Shuto Ito*, Hamed Rajabi, Stanislav N Gorb
14 15	Department of Functional Morphology and Biomechanics, University of Kiel, Am Botanischen Garten 9, D-24118 Kiel, Germany
16	
17 18	* corresponding author

- 19 Abstract

21	Asteraceae, one of the largest flowering plant families, is adapted to a vast range of
22	ecological niches. Their adaptability is partially based on their strong ability to reproduce.
23	The initial, yet challenging, step for the reproduction of animal-pollinated plants is to
24	transport pollen to flower-visiting pollinators. We adopted Hypochaeris radicata as a model
25	species to investigate the functional morphology of the typical floral feature of Asteraceae, a
26	pollen-bearing style. Using quantitative experiments and numerical simulations, here we
27	show that the pollen-bearing style can serve as a ballistic lever for catapulting pollen grains
28	to pollinators. This can potentially be a pollen dispersal strategy to propel pollen to safe
29	sites of pollinators' bodies, which are beyond the physical reach of the styles. Our results
30	suggest that the specific morphology of the floret and the pollen adhesion avoid pollen
31	waste by catapulting pollen within a specific range equal to the size of a flowerhead. The
32	insights into the functional floral oscillation may shed light on the superficially
33	unremarkable, but ubiquitous functional floral design of Asteraceae.
34	

36 1. Introduction

37

51

38 Animal-mediated pollination is a complex interaction between plants and pollinators with conflicting interests. Plants strive for efficient and reliable pollen dispersal, whereas 39 40 pollinators seek floral rewards that can be harvested as efficiently as possible^{1,2}. Plants 41 employ various strategies to attract pollinators and ensure efficient pollen dispersal. One 42 common approach is to offer floral rewards, such as nectar and pollen, to entice pollinators 43 and facilitate direct physical contact between the exposed pollen grains and the floral visitors. To enhance this process, many plants have diversified their morphologies, such as corolla 44 tube^{3,4}, staminal lever⁵, trapping device⁶, or even sexual deception through the use of petals⁷. 45 In contrast, there are other dynamic pollination strategies without involving direct contact 46 47 between the presented pollen and pollinators, such as explosive pollen release⁸⁻¹⁰ and buzz 48 pollination^{11–16}. In this paper, we focus on a ubiquitous floral feature of Asteraceae and aimed to shed light on previously unexplored dynamic pollen dispersal mechanics in the plant 49 family. 50

52 The Asteraceae family, with over 23,000 species making up roughly 10% of all 53 flowering plants, is widely distributed on every continent except Antarctica¹⁷. These plants 54 are characterized by their tightly packed inflorescences, or flower heads, comprised of 55 numerous individual flowers, known as florets (Fig. 1). Pollination in the Asteraceae family is 56 initiated by the release of pollen grains into anther tube, which pushes or brushes the pollen 57 out and exposes it at the stylar surface^{18,19}. The flowers of Asteraceae are visited by a diverse 58 range of pollinators, making them considered generalists²⁰. However, some visitors utilize 59 their elongated mouthparts to obtain nectar without frequently contacting the exposed pollen 60 grains (Fig. 2f-h), potentially leading to insufficient pollen transfer for successful pollination. Corbiculate bees have refined pollen-collection methods using adhesive saliva and a pollen-61 collecting apparatus²¹⁻²⁴, but without strategies to prevent excess pollen collection, the costs of 62 attracting such pollinators can outweigh the benefits. While dynamic pollination strategies, 63 such as explosive pollen release and buzz pollination, have been documented in other plant 64 65 families, they have not been documented in Asteraceae. In this study, we examine the feasibility of transferring pollen to pollinators without direct physical contact through the 66 67 oscillation of a pollen-bearing style. Our objective is to uncover a previously undocumented 68 mode of pollen dispersal in a typical flower of the Asteraceae family through quantitative 69 experiments and numerical simulations.

70	
71	
72	2. Material and methods
73	
74	2.1. Plant Species
75	
76	Hypochaeris radicata (Asteraceae) was previously adopted as a model species to investigate
77	pollen adhesion ^{25,26} . In this paper, this species was used, to study the motion of pollen-
78	bearing styles and the resulting pollen dispersal. <i>H. radicata</i> is a perennial plant, native to
79	Europe, and currently is a cosmopolitan invasive species occurring in a wide range of
80	temperate zones, including America, Japan, and Australia ²⁷ . <i>H. radicata</i> is known to be self-
81	incompatible. This means that the successful transport of pollen grains to different
82	individual plants of the same species is of necessity to enable its healthy reproduction ²⁸ .
83	Flowering stems of <i>H. radicata</i> were collected in Kiel, Germany, for experimentation. They
84	were placed in water until the youngest florets exposed fresh pollen.
85	
86	2.2. Field observations
87	
88	To observe the pollen-collecting behaviors of pollinators on flowerheads of <i>H. radicata</i> , we
89	filmed videos in slow motion (120 fps) by using an iPhone 7 (Apple Inc., California, USA)
90	together with a 30x magnifying glass (Fig. 2c-e).
91	
92	2.3. Mechanical characterization of florets
93	
94	We collected the newly opened florets from the flower heads and analyzed the morphology
95	of the florets under a light microscope (Leica Microsystem, Wetzlar, Germany) (Fig. 1). In
96	order to characterize the mechanical properties of the florets, we measured the spring
97	constant of the following segments: (1) styles, (2) anther tubes, and (3) filaments. Fig. 3a
98	illustrates the experimental setup used for this purpose. Each freshly opened floret was first
99	horizontally fixed between two wooden blocks. We fixed the floret specimens at different
100	positions to measure the spring constant of their different segments (right-hand sketch in
101	Fig. 3b): (1) The entire anther tube was fixed to test the style (fixation at f_1), (2) the basal part
102	of the anther tube including the filaments was fixed to test the anther tube (fixation at f_2),

103 and (3) the basal part of the petal was fixed to test the filaments (fixation at f₃). Floret 104 specimens were deflected using a thin metallic part mounted onto a force transducer (10g 105 capacity; World Precision Instruments Inc., Sarasota, FL, USA). The deflections were always 106 applied at 1 mm distal to the fixation positions at a controlled displacement speed of 0.01 mm/sec. The required force to deflect the specimens was continuously recorded using 107 108 AcqKnowledge 3.7.0 software (Biopac Systems Ltd, Goleta, CA, USA). To measure the 109 spring constant of the floret specimens, we always used the data from the initial part of obtained force-displacement curves (limited to a displacement equal to 50 μ m). In total, we 110 111 tested 34 florets including 9 tests on styles, 10 on anther tubes, and 15 on filaments. Each 112 floret was subjected to a single test and was not used again.

113

114 2.3. Stylar oscillation experiments

115

116 Black circular polyethylene plates with a hole at the center were prepared for visualizing the 117 distribution of pollen grains catapulted by stylar oscillations. Each newly opened floret was vertically fixed through the hole of the plate onto the vise to stand upright (Fig. 4). To 118 119 examine whether the pollen dispersal caused by the stylar oscillation depends on the 120 magnitude of an initial deflection, an insect pin attached to a micro-manipulator (World 121 Precision Instruments, FL, USA) was brought in contact with one of the two following 122 segments of the standing floret: (1) the style and (2) anther tube (Fig. 4). The contact with the 123 anther tube resulted in a large deflection of the floret, while the contact with the style caused a smaller deflection. The insect pin was kept moving horizontally until the deflected 124 125 floret was released (Figs. 2i-k, 4). After the release, the floret started to oscillate and this led to the release of clumps of pollen grains, here called 'dispersal units' (DU), from the style 126 (Fig. 2j-k). The oscillations were filmed by a high-speed camera (Olympus, Tokyo, Japan) at 127 128 5000 fps and tracked using open-source tracking software (Tracker by Douglas Brown)²⁹. In 129 total, we analyzed the stylar oscillations of 55 specimens, among which 24 specimens were 130 used to analyze the distribution and the number of pollen grains catapulted by the 131 oscillations.

132Assuming linearity of the oscillatory system, the damping ratio, ζ , of a floret was133obtained based on the logarithmic decrement, δ :

134

 $\delta = \frac{1}{i} ln \frac{a_1}{a_i},\tag{1}$

135 Where a_1 and a_i are the amplitudes of the first peak and the peak, which is i - 1 periods 136 away, respectively. By using eq.1, we obtained the damping ratio, ζ :

170	equal to those of the styles. The initial position of a dispersal unit (x, y) is referred to here as
171	the detachment point of that unit (Fig. 7b).
172	Here, we assumed the dispersal units to consist of 13 pollen grains ($n = 13$) based on the
173	measurements, mentioned earlier. The diameter of the dispersal units can be calculated by ³⁰ :
174	$R = 3r, \tag{4}$
175	where the radius of a single pollen grain, r , is equal to 15 μ m ²⁵ .
176	Reynolds number at a given time, R_e , is given as:
177	$R_e = \frac{2 v R\rho}{\varphi},\tag{5}$
178	where v is the velocity of a dispersal unit at a given time, $ ho$ is the density of air (1.204
179	kg/m ³), and φ is the dynamic viscosity of air at 20°C (1.825 × 10 ⁻⁷ kgm ⁻¹ s ⁻¹). Considering the
180	low range of Reynolds number (0.3 < Re < 8.5), the drag coefficient C_d is not constant,
181	instead is calculated by the following empirical relationship ³¹ :
182	$C_D = \frac{24}{R_e} \left(1 + \frac{3R_e}{16} \right). \tag{6}$
183	Once C_d is obtained, the drag force, $D(t)$, can be calculated using the following
184	equation:
185	$D = \frac{1}{2} C_D \rho A v v, \qquad (7)$
186	where A is the frontal area of the dispersal unit and equal to πR^2 . Then, we obtain a system
187	of first-order ODEs:
188	$\begin{cases} \dot{x} = v_x \\ \dot{v}_x = -D_x \\ \dot{y} = v_y \\ \dot{v}_y = -g - D_{y'} \end{cases} $ (8)
189	where the gravitational acceleration, g_i is equal to 9.81 m/s ² . We have solved the system of
190	the differential equations by using Runge-Kutta fifth-order accurate (RK45) solver in the
191	Python package SciPy. The dispersal distance of a dispersal unit was defined as the landing
192	position on the x-axis with reference to the origin, i.e. the position of the style.
193	
194	
195	3. Results
196	
197	3.1. Functional segments of floret
198	
199	Florets of <i>H. radicata</i> can be subdivided into three functional segments from top to bottom:
200	an exposed distal style, an anther tube in the middle, and five basal filaments (Figs. 1, 3b).

201	Mechanical testing of the florets revealed distinct stiffness of the three segments. The style,
202	which passes through the anther tube and is exposed at its distal segment, has the lowest
203	spring constant (N = 9, $K = 0.2 \pm 0.1$ Nm ⁻¹) among other segments. It is embraced by the
204	stiff anther tube, which features the highest spring constant (N = 10, $K = 6.5 \pm 2.7$ Nm ⁻¹).
205	The anther tube is connected to the petal at its proximal part by five filaments, which
206	altogether have an intermediate spring constant (N = 15, $K = 2.3 \pm 1.9$ Nm ⁻¹). The spring
207	constants of the three segments are significantly different from each other (Tukey multiple
208	comparisons of means, filaments vs style: p -value = 0.01; anther tube vs style: p -value =
209	2.0×10^{-7} ; anther tube vs filaments: <i>p</i> -value = 1.3×10^{-4}).
210	
211	3.2. Mechanics of pollen dispersal
212	
213	The high-speed video analysis enabled us to investigate stylar oscillations. Fig. 2i-k shows
214	three snapshots of the stylar oscillation from release to return. When the floret was
215	deflected, the elastic energy was mainly stored in the proximal part of the flexible style and
216	the filaments. However, no obvious deformation was observed in the anther tube (Fig. 2i).
217	Upon the release, the style snapped back in the opposite direction of the applied
218	displacement, initiating the first half cycle of oscillation. The oscillation decayed quickly,
219	and the style returned to the resting position (N = 55, damping ratio ζ = 0.182 \pm 0.05,
220	frequency $f = 119 \pm 23$ Hz) (Fig. 5b).
221	Based on the high-speed videos, we found that the first half cycle caused the major
222	pollen dispersal (Fig. 2k). The maximum acceleration in each half cycle decreased over time
223	(Fig. 5b and 5c, left), so that they were significantly different from each other (Tukey
224	multiple comparisons of means, large deflections, a_1 vs a_2 : p-value < 0.001, a_2 vs a_3 : p-value
225	= 0.0013, a_3 vs a_1 : p-value < 0.001; small deflections, a_1 vs a_2 : p-value < 2.2 × 10 ⁻⁶ , a_2 vs a_3 :
226	p -value = 0.0098, a_3 vs a_1 : p -value < 0.001).
227	As shown in Fig. 5c, for both large and small deflections, the maximum stylar
228	acceleration in the first half cycle, a_1 , exceeded the critical acceleration, a_c . However, the
229	maximum acceleration in the subsequent half cycles (i.e. a_2 and a_3 , respectively) largely
230	overlapped with the critical acceleration, and the third peak, a_3 , mostly became lower than
231	the median critical acceleration.
232	The velocity corresponding to the maximum acceleration in the first half cycle, v_1 ,
233	was by far the highest and significantly different from velocities corresponding to the
234	accelerations in the second and third peaks, v_2 and v_3 (Fig. 5c, right) (Tukey multiple

235 comparisons of means, large deflections, v_1 vs v_2 : p-value < 0.001, v_2 vs v_3 : p-value = 0.97, 236 v_3 vs v_1 : p-value < 0.001; small deflections, v_1 vs v_2 : p-value < 0.001, v_2 vs v_3 : p-value = 237 0.77, v_3 vs v_1 : p-value < 0.001). We examined the relationship between the number of dispersed grains, nd, with 3 238 239 potentially influential parameters of frequency, damping ratio, and maximum acceleration 240 of the styles (Fig. 5a). While no correlation was found between the frequency or damping 241 ratio with the number of dispersed grains (Pearson's product-moment correlation, f vs nd: t = 242 -0.22 df = 22, p-value = 0.82; ζ vs nd: t = -0.74, df = 22, p-value = 0.47), we found a significant 243 correlation between maximum acceleration and the number of dispersed grains (Pearson's 244 product-moment correlation, max a vs n_d : t = 3.2, df = 22, p-value = 0.004). The relatively low 245 coefficient of determination ($R^2 = 0.32$) can be attributed to variations in the amount of 246 pollen grains on the examined styles. 247 3.3. Effects of deflection magnitude on pollen dispersal 248 249 250 Large deflections resulted in significantly higher accelerations in the first two peaks, but not 251 in the subsequent peaks (t-test, a1: t = 3.90, df = 52, p-value = 0.00028; a2: t = 2.03, df = 52, p-252 value = 0.047; as: t = 0.96, df = 52, p-value = 0.34) (Fig. 5c, left). They also lead to a 253 significantly higher number of dispersed grains, in comparison with small deflections (t-254 test, t = -2.34, df = 16, p-value = 0.034). This is reflected by the positive correlation between 255 the maximum acceleration in the first half cycle, a_1 , and the number of dispersed grains, n_d , 256 demonstrated in Fig. 5a. Whereas large deflection caused higher corresponding velocity at only the first acceleration peak (t-test, v_{7} : t = 6.10, df = 52, p-value < 0.001; v_{2} : t = 1.13, df = 52, 257 258 *p*-value = 0.26; *v*₃: t = 1.66, df = 52, *p*-value = 0.10) (Fig. 5c, right). 259 In contrast, as shown in Fig. 6a, the different deflection magnitudes had no 260 significant effect on pollen distribution (t-test, t = -0.96, df = 397, p-value = 0.34). The stylar 261 oscillation tended to catapult the dispersal units against the deflection direction with a 262 median dispersal distance of 5.5 mm, in both large and small deflections. Surprisingly, 263 93.5% of the dispersal units landed within 15.8 mm from the origin, which is equal to the mean radius of flowerheads of H. radicata. 264

Although our simulations showed a broader peak of the dispersal distances (Fig. 6), the simulated pollen distribution exhibited similar trends as the measurements: the tendency of pollen dispersal toward a pollinator and the restrained dispersal distances within the size of the flowerhead.

269	Fig. 7a shows the representative simulated trajectories of dispersal units based on the
270	tracked stylar oscillations (red asterisks), initiated by the small and large deflections of the
271	styles. Fig. 7b shows estimated detachment points, where eq.3 was satisfied. Large
272	deflections widened the range of detachment points, in comparison to small deflections.
273	They also shifted the detachment points towards lower values in both the x and y axes,
274	compared with the small deflections (Kruskal test, x-axis: chi-squared = 29.9, p -value <
275	0.001; y-axis: chi-squared = 45.2, p -value < 0.001). It means that the larger deflections caused
276	pollen detachment closer to the ground and further from a pollinator than the smaller
277	deflections.
278	
279	
280	4. Discussion
281	
282	This study is focused on the oscillation of the style triggered by an initial deflection and its
283	potential as a ballistic lever that catapults pollen towards a flower-visiting pollinator. Since
284	the pollen catapult is a passive spring-driven system, the adaption to a variety of deflection
285	magnitudes is likely to be a key to the successful delivery of pollen to a pollinator and
286	minimizing the waste of dispersed pollen. Here we will discuss the potential role of
287	morphological and mechanical features of the reproductive part of a floret as well as the
288	adhesive properties of pollen in the pollen catapult system.
289	
290	4.1. Floret: a functional composite
291	
292	Similar to other species in the Asteraceae family ³² , florets of <i>H. radicata</i> can be regarded as
293	composites made from three morphologically distinctive segments (Figs. 1, 3b). It is known
294	that each of the segments plays an essential role in pollen presentation 18,19,33. Do they also
295	contribute to the pollen catapulting towards visiting pollinators, after pollen presentation?
296	To present pollen and successfully deliver it to visiting pollinators, the floret with the
297	pollen-bearing style should meet these requirements: (1) high mechanical compliance
298	during contact to store elastic energy and prevent damage and (2) catapult pollen towards a
299	pollinator by adapting to varying magnitudes of initial deflections.
300	At the distal end of a floret, the flexibility of the pollen-bearing style enables high
301	compliance under contact as well as energy storage for pollen catapult after release (Fig. 2i-
302	k). The middle segment of the floret is reinforced by the anther tube, which functions as a

303 support for the slender style during contact and stabilizes the shape of the floret during 304 non-contact periods. Previous studies have shown that the deformation of a flexible 305 cantilever with a high aspect ratio occurs proximally to the deflection points³⁴. Therefore, in 306 the case of physical contact at the style, the elastic energy would be stored in the broad 307 proximal area of the floret. However, the reinforcement of the proximal segment of the 308 floret by the anther tube prevents the deformation of this segment, limiting the amount of 309 energy stored and released at the distal end of the style. This is likely to restrict excessive 310 stylar acceleration, and thus reduce the number of catapulted pollen grains.

311 The other energy-storing segment, consisting of filaments, is located at the base of the 312 floret. This segment, with its intermediate stiffness, functions as a flexible joint. It enhances 313 the mechanical compliance of the whole structure in contact, and therefore, enables 314 adaptation to the different deflection magnitudes. When the large initial deflection is 315 applied, the flexible joint helps to recline the whole floret (Figs. 2i, 7a). As mentioned earlier, 316 larger deflections lower the detachment points and shift them further from a pollinator (Fig. 317 7b). This is likely to counterbalance the increased initial velocity of catapulted dispersal 318 units (Fig. 5c, vi) to still distribute pollen within the same range of distances, independent of 319 the initial deflection magnitudes (Fig. 6a).

- 320
- 321 322

323 4.2. Pollen adhesion

324

328

Some animals, such as insects and elks, clean themselves by vibrating their hairs to remove
 accumulated particles^{35,36}. In such systems, the natural frequency governs particle
 detachment:

 $a = Sf^2$,

(12)

where *a* is the acceleration, *S* is the spacing between the hairs, which dictates the maximum deflection of the hairs, and *f* is the natural frequency³⁵. However, here, we did not find correlations between the natural frequency and the number of dispersed grains (Fig. 5a) or between the natural frequency and maximum linear acceleration (Fig. S1).

333It is important to mention that the major pollen detachment occurs only in the first334half oscillation cycle. Hence, the general oscillatory frequency has very little influence on335pollen detachment. To restrict the pollen detachment only to the first half cycle, the critical

acceleration, a_c , should be less than the first maximum acceleration, a_1 , but greater than maximum accelerations in any other oscillation cycles (Fig. 5c, left).

As shown in eq.3, the critical acceleration depends not only on the pollen-style 338 339 adhesion, but also on the pollen-pollen adhesion, which governs the number of pollen grains in a dispersal unit. The weaker pollen-pollen adhesion, therefore, decreases the 340 number of grains in a dispersal unit, in comparison to n = 13 measured here. Since the 341 342 inertial force is proportional to the mass of the dispersal unit, a smaller number of pollen in a dispersal unit can challenge its detachment from the style. If the number of grains is as 343 344 small as n = 3, the median critical acceleration would be greater than most of the measured 345 maximum stylar accelerations, and this would completely emasculate the pollen catapult. In 346 contrast, higher pollen-pollen adhesion would result in a higher number of grains in the 347 dispersal units. This would, on the other hand, lead to a prolonged, and probably, isotropic 348 pollen dispersal (both towards and against the pollinator) and, therefore, increase the 349 number of wasted pollen. Hence, for a guided pollen dispersal towards a pollinator, pollen 350 adhesion and the size of dispersal units should be kept in a certain range.

Unlike wind-pollinated species, the insect-pollinated ones are covered by a thick layer of a viscous oily substance called pollenkitt³⁷, which helps to form large dispersal units by bonding pollen grains together^{37,38}. In addition to its general function as "pollen adhesive", we recently showed that pollenkitt inhibits pollen adhesion by weakening water capillary attraction²⁵. Therefore, we can assume that pollenkitt may play a role in maintaining pollen adhesion in a specific range. Future studies are needed to quantitatively investigate the role of pollenkitt in pollen-pollen adhesion.

358

4.3. Phase shift in the first half oscillation cycle

360

359

361 Once the pollen detachment occurs, the pollen dispersal is mainly governed by the initial 362 velocity of the dispersal units, rather than their acceleration. Hence, the velocity 363 corresponding to each maximum stylar acceleration (Fig. 5c, right) is another key for the 364 guided pollen dispersal towards a pollinator.

Unlike the stylar acceleration peaks, the corresponding stylar velocities abruptly
 decayed, so that the velocities corresponding to the second and third maximum
 accelerations (i.e., *v*₂ and *v*₃, respectively) were not significantly different from each other
 (Fig. 5c, right). Only the first corresponding velocity, *v*₁, is significantly higher than the

369	others, because of the phase shift between the stylar acceleration and velocity at the first half
370	cycle.
371	In a free oscillation, the displacement, $x(t)$, is given as:
372	$x(t) = A\cos(\omega t - \phi), \qquad (13)$
373	where A is an arbitrary constant and ω is the angular frequency. Differentiating eq.13 with
374	respect to t gives the velocity $v(t)$ as:
375	$v(t) = \omega A \cos(\omega t - \phi + \frac{\pi}{2}), \qquad (14)$
376	In the same manner, the acceleration, $a(t)$, is given as:
377	$a(t) = \omega^2 A \cos(\omega t - \phi + \pi), \qquad (15)$
378	The phase difference between the acceleration and velocity is equal to $\frac{\pi}{2}$, or a quarter of an
379	oscillation cycle. Therefore, in the free oscillation, the corresponding velocities at the
380	moment of acceleration peaks, ideally, are the local minima. As shown in Fig. 5b, this typical
381	phase difference appeared in the stylar oscillations, resulting in the extremely small values
382	of v_2 and v_3 . However, the first corresponding velocity, v_1 , was shifted from the local
383	minimum; therefore, v_1 was by far the highest than other corresponding velocities. The
384	cause of the phase shift is seemingly due to the style sliding over the insect pin during the
385	release, and therefore, a detailed study on this topic will be required in the future.
386	
387	
388	4.4. Biological significance
389	
390	Asteraceae are known for attracting various insect pollinators ²⁰ . Their robust adaptability
391	makes a number of them notorious invasive species ^{39,40} . To enable their versatile
392	reproduction, Asteraceae may use multiple strategies to secure pollen transfer to diverse
393	pollinators. Each pollinator species may have its own difficulties to be a functional pollen
394	vector for the benefit of plants. Bees, for example, are both pollen-transporting vectors and
395	pollen consumers. Actively collected pollen grains, are soaked with their saliva and are
396	packed in a specialized pollen-carrying apparatus, and no longer available for
397	pollination ^{21,41} . Some pollinators, such as flies from the family Bombyliidae, with their
398	specialized long mouthparts and slender limbs less frequently make physical contact with
399	styles on flowers, yet are able to obtain nectary rewards ⁴² (Fig. 2f-h).
400	In this paper, we discussed that the superficially unremarkable floret of <i>H. radicata</i> ,
401	by optimizing its (1) morphological and mechanical properties, (2) adhesive properties of
402	pollen, and (3) phase difference between the stylar acceleration and velocity, functions as a

403 projectile tool to catapult pollen towards pollinators. The airborne pollen dispersal system is 404 advantageous to deliver pollen to various body parts of pollinators, including their safe sites, as well as to engage the long-limbed insects beyond the physical reach of the styles^{43,44}. 405 406 The attached pollen on the pollinators is potentially transferred to the stigma of other flowers by electrostatic attractions^{45–48} or grooming³⁶. It is also remarkable that more than 407 408 90% of the dispersal units landed within a region of the same size as that of the flowerhead. 409 Therefore, even if the dispersal units fail to reach the target pollinator, they remain within 410 the flowerhead, waiting for being transferred to the forthcoming pollinators.

411 It is well known that florets of Asteraceae consecutively mature from the outer row 412 towards the central row. For many species of this family, including *H. radicata*, this means 413 that young and most pollen-bearing styles are situated in the center of the flowerhead⁴⁹. The 414 tuned travel distance of the dispersal units, therefore, may explain the order of the floret 415 maturity in Asteraceae. The working principles of the pollen catapult in Asteraceae are 416 rooted in a common floral feature of the family. If this mechanism is found to be present in 417 other species within the family, it could potentially contribute to the reproductive success of one of the largest families of flowering plants. However, future research is necessary to 418 419 determine the prevalence of similar pollen dispersal mechanics in other species within the 420 family

- 421
- 422

423 5. Conclusions

424

425 In this study, we suggested a novel pollen dispersal strategy resulting from the stylar 426 oscillation of H. radicata. Based on the combination of high-speed motion analysis, 427 mechanical tests, and numerical simulations, we found that the morphologically and 428 mechanically distinctive segments composing the floret, as well as the optimal pollen 429 adhesion, potentially contribute to (1) catapulting pollen towards a visiting pollinator while 430 (2) minimizing the wasteful pollen dispersal by (3) adapting to a different amount of 431 oscillation-inducing external deflections. Since the ballistic pollen dispersal arises from a 432 standard floral morphology of Asteraceae, it can potentially play a role in the pollination of 433 the most ubiquitous flowering family on the planet. 434

405

435

437 6. Acknowledgments

438 439		The authors thank Alexander Köhnsen for the help in motion tracking, and the Youtube
440		channel "JustNature" for the permission to use video footage of a Bombyliidae. Yuka Ito is
441		acknowledged for the permission to use her iPhone for fieldwork, and Aria Ito for
442		inspiration of this study.
443 444	7.	Funding
445		
446		"DAAD Research grant – doctoral programs in Germany" to S.I.
447		
448	8.	Data availability
449		
450		The codes used in this study is available at https://www.notion.so/biomimetica/pollen-
451		catapult-c75f8abd93e44ab7b03f6226b47d4446.
452 453	9.	Author contributions
454		
455		S.I., H.R., and S.N.G. conceptualized the study. S.I. and H.R. designed the experiments. S.I.
456		conducted the research, collected and analyzed the data. S.I. and H.R. participated in the
457		data presentation. S.N.G. provided equipment and supervised the study. S.I. wrote the first
458		draft. H.R. and S.N.G. edited the manuscript. All authors discussed the results and gave the
459		final approval for publication.
460 461	10.	Competing interests
462		
463		The authors declare no competing or financial interests.
464		
465 466		

Fig. 1 Floral structures of *Hypochaeris radicata* at three different scales: a whole flowerhead (left)
composed of many florets (middle), of which basal segment, so-called filaments, are magnified
(right).

479

Fig. 2 (a,b) Conceptualization of the current study. A stylar deflection toward a pollinator causes a direct pollen delivery to the pollinator (a), whereas a deflection to the opposite direction enables a ballistic pollen delivery to the pollinator (b). (c-h) Interaction between insects and styles. A style, which positions are shown with blue triangles, was deflected by a limb of a bee *Apis mellifera* (c-e) or that of a fly from the family Bombyliidae (f-h). Upon the release, the style snaps back towards the insect. (d-f) Snapshots from a high-speed video of an oscillating style showing pollen dispersal after a larger deflection. DF: deflection, OS: oscillation, DU: pollen dispersal units.

Fig. 4 The experimental setup of the oscillation experiments. The initial deflections, which triggered
the stylar oscillation, were applied to two different positions to cause two distinct deflection
magnitudes. The stylar oscillations were recorded by using a high-speed camera. The dispersed
pollen grains, catapulted by the stylar oscillations and landed on the circular substrates, were

524 photographed from above.

Fig. 5 (a) Correlation analysis between the number of dispersed grains and each variable extracted from the motion data: a_i (left), frequency f (middle), and damping ratio ζ (right). (b) Time series of the stylar displacement *x*, linear acceleration *a*, and velocity *v*. The first, the second, and the third peak of linear acceleration were denoted as a_1 , a_2 , and a_3 , respectively. The corresponding velocities at the moment of each acceleration peak were denoted as v_1 , v_2 , and v_3 , respectively. The shadowed half cycles show the regimes where pollen should be catapulted towards a pollinator if the pollen detachment from the style occurs. (c) Bar plots of the acceleration peaks in stylar oscillations after small or large deflections (left) and the corresponding velocities at each acceleration peaks (right). The shadowed region with a vertical dashed line in the left-hand side figure shows the first and the third

- quantile, and the median value of the critical acceleration, ac. The critical acceleration is the required
- acceleration to detach dispersal units from the style, calculated based on the measured pollen
- adhesion on the style and the average number of pollen grains in a dispersal unit (n = 13).
- 537 Fig. 6 Stacked histograms of the distributions of dispersal units catapulted by stylar oscillations due
- to small and large deflections: (a) measurement (N = 55) and (b) simulation.
- 539
- 540

Fig. 7 (a) Calculated trajectories of dispersal units (thin solid lines with varying colors) based on the
 measured trajectories of stylar oscillations (red asterisks) initiated by different deflection magnitudes.

546	Different trajectories of the dispersal units were colored differently to make them distinguishable. (b)		
547	Estimated detachment points of stylar oscillations initiated by different deflection magnitudes.		
548			
549 550 551 552	11. R	eferences	
553			
554	1.	van der Kooi, C. J., Vallejo-Marín, M. & Leonhardt, S. D. Mutualisms and (A)symmetry in	
555		Plant-Pollinator Interactions. Curr. Biol. 31, R91–R99 (2021).	
556	2.	Westerkamp, C. Pollen in Bee-Flower Relations. Bot. Acta 109, 325–332 (1996).	
557	3.	Gurung, V., Yuan, Y. W. & Diggle, P. K. Comparative analysis of corolla tube development	
558		across three closely related Mimulus species with different pollination syndromes. Evol. Dev.	
559		23 , 244–255 (2021).	
560	4.	Katzer, A. M., Wessinger, C. A. & Hileman, L. C. Nectary size is a pollination syndrome trait	
561		in Penstemon. New Phytol. 223, 377–384 (2019).	
562	5.	Claßen-Bockhoff, R. et al. The staminal lever mechanism in Salvia L. (Lamiaceae): A key	
563		innovation for adaptive radiation? Org. Divers. Evol. 4, 189–205 (2004).	
564	6.	Bröderbauer, D., Weber, A. & Diaz, A. The design of trapping devices in pollination traps of	
565		the genus Arum (Araceae) is related to insect type. Bot. J. Linn. Soc. 172, 385–397 (2013).	
566	7.	Vereecken, N. J. et al. Pre-adaptations and the evolution of pollination by sexual deception:	
567		Cope's rule of specialization revisited. Proc. R. Soc. B Biol. Sci. 279, 4786–4794 (2012).	
568	8.	Edwards, J., Whitaker, D., Klionsky, S. & Laskowski, M. A record-breaking pollen catapult.	
569		Nature 435, 2005 (2005).	
570	9.	Switzer, C. M., Combes, S. A. & Hopkins, R. Dispensing Pollen via Catapult: Explosive Pollen	
571		Release in Mountain Laurel (Kalmia latifolia). <i>Am. Nat.</i> 191 , 767–776 (2018).	
572	10.	Taylor, P. E., Card, G., House, J., Dickinson, M. H. & Flagan, R. C. High-speed pollen release in	
573		the white mulberry tree, Morus alba L. Sex. Plant Reprod. 19, 19–24 (2006).	
574	11.	Michener, C. D. An interesting method of pollen collecting by bees from flowers with tubular	
575		anthers. <i>Biol. Trop</i> 10 , 167–175 (1962).	
576	12.	King, M. J., Buchmann, S. L. & Spangler, H. Activity of asynchronous flight muscle from two	
577		bee families during sonication (buzzing). J. Exp. Biol. 199, 2317–2321 (1996).	
578	13.	Marcus J King & Buchmann, S. L. Bumble Bee-Initiated Vibration Release Mechanism of	
579		Rhododendron Pollen. America (NY). 82, 1407–1411 (2011).	
580	14.	Vallejo-Marín, M. Buzz pollination: studying bee vibrations on flowers. New Phytol. 224, 1068–	

581		1074 (2019).
582	15.	Vallejo-Marín, M., Pereira Nunes, C. E. & Russell, A. L. Anther cones increase pollen release in
583		buzz-pollinated Solanum flowers. Evolution (N. Y). 76, 931–945 (2022).
584	16.	Jankauski, M., Ferguson, R., Russell, A. & Buchmann, S. Structural dynamics of real and
585		modelled Solanum stamens: Implications for pollen ejection by buzzing bees. J. R. Soc. Interface
586		19 , (2022).
587	17.	Barreda, V. D. et al. Early evolution of the angiosperm clade Asteraceae in the Cretaceous of
588		Antarctica. Proc. Natl. Acad. Sci. U. S. A. 112, 10989–10994 (2015).
589	18.	Erbar, C. & Leins, P. Diversity of styles and mechanisms of secondary pollen presentation in
590		basal Asteraceae-New insights in phylogeny and function. Flora 217, 109–130 (2015).
591	19.	Leins, P. & Erbar, C. Secondary pollen presentation syndromes of the Asterales — a
592		phylogenetic perspective. Bot. Jahrbücher 127, 83–103 (2006).
593	20.	Alarcón, R., Waser, N. M. & Ollerton, J. Year-to-year variation in the topology of a plant-
594		pollinator interaction network. Oikos 117, 1796–1807 (2008).
595	21.	Parker, A. J. et al. Pollen packing affects the function of pollen on corbiculate bees but not non-
596		corbiculate bees. Arthropod. Plant. Interact. 9, 197-203 (2015).
597	22.	Matherne, M. et al. Biomechanics of pollen pellet removal by the honey bee. J. R. Soc. Interface
598		18 , (2021).
599	23.	Roberts, R. B. & Vallespir, S. R. Specialization of Hairs Bearing Pollen and Oil on the Legs of
600		Bees (Apoidea: Hymenoptera)1. Ann. Entomol. Soc. Am. 71, 619–627 (2015).
601	24.	Snodgrass, R The anatomy of the honey bee. Cornell Univ. Press (1910).
602	25.	Ito, S. & Gorb, S. N. Fresh 'pollen adhesive' weakens humidity-dependent pollen adhesion.
603		ACS Appl. Mater. Interfaces 11, 24691–24698 (2019).
604	26.	Ito, S. & Gorb, S. N. Attachment-based mechanisms underlying capture and release of pollen
605		grains. J. R. Soc. Interface 16, 20190269 (2019).
606	27.	Doi, M., Ito, M. & Auld, B. A. Growth and reproduction of Hypochoeris radicata L. Weed Biol.
607		Manag. 6 , 18–24 (2006).
608	28.	Picó, F. X., Ouborg, N. J. & Van Groenendael, J. Influence of selfing and maternal effects on
609		life-cycle traits and dispersal ability in the herb Hypochaeris radicata (Asteraceae). Bot. J. Linn.
610		<i>Soc.</i> 146 , 163–170 (2004).
611	29.	Brown, D. & Cox, A. J. Innovative Uses of Video Analysis. Phys. Teach. 47, 145–150 (2009).
612	30.	Huang, W. & Yu, L. Serial symmetrical relocation algorithm for the equal sphere packing
613		problem. Appl. Res. Comput. 25 (2012).
	0.1	

614 31. Jones, A. M. & Knudsen, J. G. Drag coefficients at low Reynolds numbers for flow past

615 immersed bodies. *AIChE J.* **7**, 20–25 (1961).

- Meiri, L. & Dulberger, R. Stamen filament structure in the Asteraceae: the anther collar. *New Phytol.* **104**, 693–701 (1986).
- 618 33. Erbar, C. & Leins, P. Portioned pollen release and the syndromes of secondary pollen
 619 presentation in the Campanulales-Asterales-complex. *Flora* 190, 323–338 (1995).
- 820 34. Rajabi, H. *et al.* Both stiff and compliant: Morphological and biomechanical adaptations of
 821 stick insect antennae for tactile exploration. *J. R. Soc. Interface* **15**, 20180246 (2018).
- Amador, G. J. & Hu, D. L. Cleanliness is next to godliness: Mechanisms for staying clean. J. *Exp. Biol.* 218, 3164–3174 (2015).
- Amador, G. J. *et al.* Honey bee hairs and pollenkitt are essential for pollen capture and
 removal. *Bioinspiration and Biomimetics* **12**, 026015 (2017).
- An Article Strate
 Bacini, E. & Hesse, M. Pollenkitt Its composition, forms and functions. *Flora* 200, 399–415
 (2005).
- 428 38. Lisci, M., Cardinali, G. & Pacini, E. Pollen dispersal and role of pollenkitt in Mercurialis annua
 L. (Euphorbiaceae). *Flora* 191, 385–391 (1996).
- 39. Thebaud, C. & Abbott, R. J. Characterization of invasive Conyza species (Asteraceae) in
 Europe: Quantitative trait and isozyme analysis. *Am. J. Bot.* 82, 360–368 (1995).
- 40. Hao, J. H., Qiang, S., Chrobock, T., van Kleunen, M. & Liu, Q. Q. A test of baker's law:
- Breeding systems of invasive species of Asteraceae in China. *Biol. Invasions* **13**, 571–580 (2011).
- 41. Thorp, A. R. W. The collection of pollen by bees. *Plant Syst. Evol.* 222, 211–223 (2000).
- Kastinger, C. & Weber, A. Bee-flies (Bombylius spp., Bombyliidae, Diptera) and the pollination
 of flowers. *Flora* 196, 3–25 (2001).
- 43. Macior, L. W. An experimental study of the floral ecology of Dodecatheon meadia. *Am. J. Bot.*51, 96–108 (1964).
- Koch, L., Lunau, K. & Wester, P. To be on the safe site Ungroomed spots on the bee's body
 and their importance for pollination. *PLoS One* 12, 1–16 (2017).
- 45. Vaknin, Y., Gan-mor, S., Bechar, A., Ronen, B. & Eisikowitch, D. Are flowers morphologically
 adapted to take advantage of electrostatic forces in pollination? *New Phytol.* 152, 301–306
 (2001).
- 46. Eisikowitch, D., Vaknin, Y., Bechar, A., Ronen, B. & Gan-Mor, S. The role of electrostatic forces
 in pollination. *Plant Syst. Evol.* 222, 133–142 (2005).
- 646 47. Bowker, G. E. & Crenshaw, H. C. Electrostatic forces in wind-pollination-Part 1: Measurement
 647 of the electrostatic charge on pollen. *Atmos. Environ.* 41, 1587–1595 (2007).
- 48. Bowker, G. E. & Crenshaw, H. C. Electrostatic forces in wind-pollination-Part 2: Simulations of

- 649 pollen capture. *Atmos. Environ.* **41**, 1596–1603 (2007).
- 49. Elizabeth M. Harris. Inflorescence and floral ontogeny in asteraceae: A synthesis of historical
 and current concepts. *Bot. Rev.* 61:93, (1995).