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ABSTRACT  

The distribution of fixed steel offshore platforms around the world reveal a global fleet that has exceeded or is 

approaching the end of its design life. In many operating areas, there is an attraction to continue using these 

aging facilities due to continued production or as an adjoining structure to facilitate a new field development or 

expansion. To justify continued operations of the fixed offshore platform, various integrity assessment 

techniques are often used. One of the major techniques used is the phenomena of Local Joint Flexibility (LJF). 

The substructure of a fixed offshore platform is generally made up of steel tubular members. These tubular 

members are connected at joints by thickened sections called joint cans. These joint cans are designed as rigid 

tubular joint connections however in reality tubular joints exhibit some degree of flexibility. This local 

flexibility at the tubular joint allows a better redistribution of the moments and thus stresses to other members of 

the jacket truss structure compared to the rigid joint condition. This re-distribution of moments and stresses 

therefore allow the tubular joint to exhibit much longer fatigue lives and greater strength capacity than the 

design condition.  

 

Keywords: Ageing Fixed Offshore Structures, Local Joint Flexibility (LJF), Structural Integrity Management 
(SIM), 

 

 

 

 

 

 

 

 



1.0 INTRODUCTION 

The vintage of fixed offshore steel structures globally range from those installed in the 1950s to those designed 

to the latest code of practice. A great variety of the grandfather type structures are still operating well beyond 

their design life and leading the industry to believe they are still  fit for purpose with regards to fatigue lives and 

ultimate strength. Nichols et al (2006)  identified a trend in the ageing of offshore facilities in Malaysian waters. 

He provided the following table as evidence of an ageing fleet for three operating regions in Malaysia. 

 

 Age Distribution, x (Years) 
 x<10 10<x<20 20<x<25 25<x<30 x>30 

Region A 13 5 13 4   
Region B 1 3 7 10 6 
Region C 1 33 17 19 33 

 
Table 1.0:  Platform Age Distribution for operator in Malaysia 

 

Table 1.0 indicate that of the 165 offshore structures operating by a Malaysian Oil and Gas operator, 

approximately 44% are operating beyond 25 years and approximately 24 % were operating beyond 30 years. 

Similar type ageing trends have been discussed by O’Connor (2005) and Ersdal (2005) within various 

conferences and presentations for other operating regions. From the evidence of operation experience in oil and 

gas producing regions, most of the older structures and those that have exceeded a “design life” are still 

producing and once well maintained perform quite well to various levels of structural acceptance criteria.  

While the offshore oil and gas industry has been in existence for the past seventy-five years, there has been a 

lack of understanding of assessment engineering techniques with regards to fitness for purpose and acceptance 

criteria around offshore structures. In many cases, integrity management is viewed as restoring to the design 

condition and considerable sums are invested in inspections or platforms are shut down due to Health, Safety 

and Environmental (HSE) requirements, when they need not be. 

 
2.0 BACKGROUND  

 
For most Oil and Gas Producers (OGPs) they normally practice the As Low as Reasonably Practicable 

(ALARP) principles when making decisions on the risk analysis to continue operating a facility For ageing 

structures, tools such as LJF, allow operators to make better informed decisions with their ageing assets by 

better understanding their operating risk. O’Connor et al. (2005) has argued that the structural integrity 

management (SIM) of fixed offshore structures is about understanding structural risk and seeking for continuous 

risk reduction of the structure while it operates (Figure 1.0). If technological achievements such as LJF are used 

when assessing structures,  then operators may be able to avoid costly frequent inspections (by adopting a Risk 

Based Inspection, RBI, approach) and hazardous and costly strengthening, modification and underwater repair 

schemes.  
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Figure 2.0 b: Assessment methods in the Structural Integrity Management framework 
 

 
ISO 19902 (2007)  proposed a flowchart for the assessment process for ageing structures, (Figure 3.0). If design 

level checks are not met then, further assessments have to be performed to determine fitness for purpose. 
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5.0 CODES & STANDARDS   

In recent years, API Recommended Practice, Structural Integrity Management, API RP 2SIM (2014) , has been 

developed to provide guidance to operators for an ageing fleet, with some elements of ISO 19902, API RP 21st 

Ed (Sections 14 and 17) incorporated within it. In 2014, a new OGP/ISO 19901-09 Task Force was launched to 

present the format for a new ISO SIM code of practice. As of mid-2016, the ISO 19901-09 SIM has proceeded 

for ballot and is currently a DIS (Draft Industry Standard) with an intended issue in early 2017. Apart from the 

American Petroleum Institute API and International Standards Organizations, ISO, Det Norske Veritas, DNV 

has also published standards on the design and analysis of offshore structures and these are widely used in the 

offshore industry by most design engineers. The codes of practices have specifically mentioned the use of local 

joint flexibility of tubular joints but in each case the guidance is fairly limited in scope and not well defined. The 

only standard that explicitly quotes equations for use is the DNV Offshore Standard (2010), which only makes 

reference to the Butraigo’s suite of equations.  

 

DNV-SINTEF-BOMEL (1999) published the findings of their ultimate strength study entitled “Best Practices 

for use of Non-Linear Analysis Methods in Documentation of Ultimate Limit States for Jacket Type Offshore 

Structures.” or Ultiguide. BOMEL et al encouraged the use of Local Joint Flexibility (LJF) and they 

acknowledged “For typical structures the joints may be modeled as rigid connections at the brace to chord 

intersections. For conventional structures this introduces some conservatism in the analysis results. Joint 

Flexibility may be modeled by separate finite elements introduced between a node at the chord to brace 

intersection and the chord center node. The flexibility properties may be assigned to formulae developed by 

various researchers”  

 

6.0 LJF PARAMETRIC EQUATIONS AND LABORATORY TESTING 

The body of work on local joint flexibility (LJF) is varied. However it can be categorized under five major areas 

with some overlap from one area to the other. These areas of interest include: 

 guidance from offshore structures codes of practices 

 finite element modelling  

 a series of studies where local joint flexibilities have been applied 

 derivation of empirical formulae for local joint flexibility calculations  

 tests and experimental data 

 

Figure 6.0 provides an overview of the various studies and guidance on the concepts and applications of LJF. 

Presently there are ten published sets of LJF equations that have been used since the 1980s to predict fatigue life 

and ultimate strength of the jacket structures. There derivations have evolved in many ways including use of 

finite element methods to predict the joint behaviour. 
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provide a stiffer section with less ability to “flex”. These structures are typical of pre 1979 API structures. In 

many cases these older perform quite well for fatigue driven assessments but may need to be strengthened for 

continuous operations for ultimate strength.  

 

The earliest type of studies to determine the global effects of LJF on frame structures were performed by  

Bouwkamp et al (1980)  who sought to determine the joint flexibility effects on the overall response of a 2-D 

tower structure. Bouwkamp reported the use of the nine (9) node doubly curved iso-parametric degenerate shell 

elements, using quadratic Lagrange polynomials. Bouwkamp showed that the inclusion of LJF can lead to: 

 Up to 30% larger calculated displacements at the lower framing levels, although at upper levels the 

calculation deflections were within 1% of rigid joints nodal predictions. Bouwkamp suggested that this 

is due firstly to the effect of longer brace members at upper levels which reduces the axial stiffness of 

the members and secondly to the modeling of increased joint can thickness which increases the relative 

stiffness. 

 Slight increases in calculated leg axial forces (up to 2% higher) and considerable reductions in 

calculated brace axial forces (up to 20%). 

 A modified distribution of pile loads with load transferred towards piles through main legs.  

 Increase fundamental periods particularly for higher modes and changes in mode shapes. 

 

WS Atkins and Partners under contract to the Underwater Engineering Group, UEG (1982) carried out a project 

to determine the effects of LJF on the three 2-D frames. The authors concluded that: 

 Deflection changes are significant on one structure partly because of the large number of flexible joints 

(γ =25.3 and β = 0.53) and partly because of the small height-to-width ratio of the frame. The 

deflection increases for the structures (γ =25.3 and β = 0.53) range from 1 and 3, to 13% for the frame 

structure with respect to conventional rigid-frame analysis.  

 Axial stress changes are insignificant. 

 In terms of percentage change for in-plane moment effects, Structure 1 shows the largest increase in the 

horizontal braces at the KT joints. The 90◦ brace member is rotated by opposite axial forces in the 

adjacent 45◦ braces. An increase of 34N/mm2 resulted, which represents an increase of 200% on the 

conventional rigid frame analysis. 

 Brace buckling loads are reduced by 10%. 

 The greatest changes in natural frequency of similar modes between the conventional and most flexible 

(γ =25.3 and β = 0.53) analyses is 82% and occurred for the Structure 3.  

  

Mirtaheri et al. (2009) investigated the effects of joint flexibility of tubular joints based on the finite element 

method. In this study, in analogous to Bouwkamp (1980), individual full scale tubular connections are modelled 

with the aid of multi-axial shell elements and loaded to reach moment-rotation relations. 
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and the design (SACS) to enable the user to make the appropriate selections when conducting structural 

analysis.  
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Appendix: 



 

No. Year of 
Study 

Researcher Research/Study 

1 1977 Det Norske 
Veritas (DNV)   

Proposed formulae for the translational and rotational spring 
stiffness for T joints within the DNV (1977) “Design, 
Construction and Inspection of Offshore Structures” 

 
2 1983 & 

1986 
Fessler et al. at 
Nottingham 
University  

Published a set of LJF formulae for T/Y joints based on tests 
on precision-cast epoxy specimens. The formulae have been 
updated in 1986 and are generally referred to as the Fessler 
improved equations. Formulations have now been adopted 
within the SACS software. 

 
3 1985 Efthymiou   Produced a series of LJF expressions for the bending load 

cases. 

 
4 1987 Ueda et al  Published LJF equations for 90 degree T joints under axial 

load and in-plane bending. 

 
5 1993  Hoshyari and 

Kohoutek   
Published expressions for the flexibility of tubular T joints 
studied using a dynamic method of analysis. 

6 1993 Chen et al 

 

Modified the earlier work on the semi-analytical method to 
account for T/Y, K symmetric and K non-symmetric joints 
and extended the work to cater for multi planar braces. 

7 1993 Butraigo et al.  Developed LJF parametric equations which showed a strong 
dependency on the β and γ with a lesser influence on the τ 
and θ parameters. Formulations have now been adopted 
within the SACS software. 

 
8 2002 MSL-Joint  Developed as a part of JIP for ultimate strength, the 

formulations are now adopted within the SACS and USFOS 
Software. 

 
9 2013 Qian et al  Attempted to benchmark current research at National 

University Singapore to MSL equations and BOMEL Frame 
Tests. 

 
10 2014 Asgarian et al  An FE based study of single planar multi-brace tubular Y-T 

and K- Joints  
 

Table 3.0:  Parametric Equations developed to calculate the effects of local joint flexibilities 

Source Ref Basis Single Brace Cross Gapped K 
Overlapped 

 K 
   AXL IPB OPB AXL IPB OPB AXL IPB OPB AXL IPB OPB 

DNV 1977 
Not 

applicable  X X          



UEG 1985 
Epoxy 
Models 

27 points 
X X X          

Fessler et 
al 

1986 

Epoxy 
Models 

27 T & Y 
joints 

X X X X X X X X X    

Efthymiou 1985 

FE 
PMBSHEL

L 
12 T Joints 
3 Y Joints 

9 (90-45) K 
Joints 

 X X     X X  X  

Udea 1990 
FE 

11 points 
X X           

Chen et al 1990 
Semi-

Analytical 
21 points 

      X X     

Kohoutek 1992 

Semi-
Empirical 

11steel 
models 

 X           

Butraigo 1993 
FE 

Analysis X X X X X X X X X X X X 

MSL 2002 
FE 

Analysis 
The formulations for MSL address ultimate strength considerations alone and the effects of 

IPB, OPB and Axial Loadings are not implicitly expressed. 

Qian et al  2009 
Lab Tests 

& FE 
Analysis 

Similar to MSL Study, the formulations are based on ultimate strength considerations and 
the effects of IPB, OPB and Axial Loadings are not implicitly expressed 

Asgarian 2014 
FE 

Analysis   X X  X X  X X  X X 

 

Table 4.0: Summary of the applicability of Local Joint Flexibility Equations 
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