
7

Not Just for Fun
Geoff Cox and Alex McLean

There is something inherently human about the ability to perform creative
actions with verbal language expressed in the form of jokes. To Paolo Virno,
jokes are not simply Freudian clues to the unconscious, but diagrams of
innovative action that represent how humans can diverge from social norms.1
This chapter argues for something similar in the way fun is had with software
which exemplifies the innovative action of code in addressing software norms.
This indeed is common in critical approaches to making software, where fun
often indicates the use of irony or satiric humour by programmers to jolt the
user out of their usual interactions with normative tools and productive work.
But, as the distinction between work and play becomes ever more blurred, fun
is an expected part of all kinds of serious production; indeed fun like most of
lived experience has become subsumed into the ‘social factory’.

That fun can be had with software is demonstrated in the numerous titles
that make explicit reference to it: for instance Fun with Computers by T.
Ramasami, or the many examples of technical manuals that try to convince the
user that things are far easier and more fun than the otherwise serious reality
of coding. A quick search reveals numerous examples of this tendency: Fun and
Games with the Computer by Edwin R. Sage; Fun with Computers by A. Roy
Chowdhury; Fun with Computers and BASIC by Donald D. Spencer; Fun with
Computer Electronics by Luann Colombo and Peter Georgeson; (and even more
assertively) Computers are Fun by Tony Gray and Carl Billson; and The Fun of
Programming by Jeremy Gibbons and Oege de Moor.2 Fun is a useful way of
encouraging productive work with computers and viewing some of the under-
lying difficulties as enjoyable challenges. This is perhaps particularly noticeable
with game development, exemplified by Raph Koster’s A Theory of Fun for
Game Design, where the inherent fun of computer games is understood through
cognitive science as ‘the feedback the brain gives us when we are observing

9781623560942_txt_print.indd 157 03/04/2014 11:32

158 Fun and Software

patterns for learning purposes’, taking players beyond mere entertainment
value and suggesting ‘alternatives to fun’.3 Deviating from the norm in this way
is widely regarded as an essential part of the process of capitalist innovation as
well as its critique; fun in this sense seems to have become instrumentalized.

A further example is Linus Torvalds’s book title Just for Fun: The Story of an
Accidental Revolutionary, written with David Diamond, which is part autobi-
ography and at the same time charts the serious development of the GNU/
Linux operating system.4 The development of the Linux kernel makes a good
case study as it emerges from a culture of sharing across code repositories
and software distribution networks, like sharing a good joke. Yet this is to be
expected as the history of sharing is as old as the sharing of recipes, as Richard
Stallman puts it, ‘as old as computers, just as the sharing of recipes is as old as
cooking’.5 With free software development, each individual’s work is valued in
the context of the multiple efforts of all contributors, indeed it emphasizes that
innovation and value creation need to account for a deeper understanding of
collaborative processes and the social relations that arise from these cultures of
sharing.

This point is also what Adrian Mackenzie develops when he claims that the
Linux kernel represents a particularly unstable relation to commodified software
and hardware as performative action. He thinks that the way in which Linux is
produced and continually changed cannot be separated from its performative
structure as code, and describes it as a performative ‘speech act’ that produces
an uncertain relation between the code object (the Linux kernel) and the code
subject (the programmers who use it), and thus challenges its property relations
and corporate relations of production.6 It diverges from the software norm and
innovates in ways that follow the logic of free software development. Fun in this
case coexists with the serious business of making source code freely available
and open to further modifications. But rather than declaring development
by accident in the case of Torvalds, this chapter makes reference to Virno’s
conception of jokes as an expression of innovative actions drawn from the
kernel of political possibilities across human and program languages. Thus the
chapter is a speculation on the source code of (software) jokes, and explores this
at the intersection of human and machine interpretation.

9781623560942_txt_print.indd 158 03/04/2014 11:32

 Not Just for Fun 159

On jokes

The point for Virno is not the content of jokes, but that newly invented forms
diverge from established rules and perceived norms as a result of the innate
creativity embedded in language itself. The chapter extends this to program
language, to coding practices and, in particular, the ways that code jokes most
often do not operate within the confines of formal language, but either outside
it in comments, variable names and layout (as with code poetry or codeworks)
or in the development of playful esoteric languages (such as brainfuck and
befunge, which will be introduced later). It is not that jokes are embedded in
the machine’s unconscious, of course, but that jokes can be based on innovative
deviations from the conventions of coding practices and their formal expression
and interpretation.

Before discussing Virno’s ideas in more depth, it is worth considering some
other commentaries on jokes and the phenomenon of humour from the wider
sources at hand. There are far too many to mention but Sigmund Freud’s reflec-
tions on jokes and the ‘wittiness’ of dreams is clearly an important reference. In
The Joke and Its Relation to the Unconscious, first written in 1905, Freud draws
upon his theory of the unconscious to explore the idea that jokes express hidden
desires and fantasies.7 Joke-work, like dream-work, is thereby understood
as a means of negotiating the ways that consciousness censors and disguises
intellectual processes. Joke techniques of condensation, displacement, repre-
sentation by absurdity or by the opposite, indirect representation, and so on
are all present in dreams. But whereas the dream is asocial and serves to spare
displeasure, jokes are distinctly social and operate to gain pleasure by releasing
inhibitions and discharging excess energy through laughter which involves
the whole body. Both share the complex workings of the psyche that does not
express itself by accident even when appearing to mash up ideas or develop an
operating system. This social aspect of jokes is crucial.

Writing more recently, the philosopher Simon Critchley has examined
the importance of humour, emphasizing how a change of situation exerts a
powerful critical function, of particular relevance to creative practices. In an
interview for Cabinet magazine in 2005, drawing upon his book On Humour
(2002), he emphasizes humour as a social practice that reveals wider social
insights.8 Repression is clearly part of this, with the example given from Plato’s
Republic where it is explained that the guardians of the polis were not meant to
laugh because laughter was considered too uncivilized and bestial. It is because

9781623560942_txt_print.indd 159 03/04/2014 11:32

imvgc
Highlight

imvgc
Sticky Note
program language -> programming language

160 Fun and Software

laughter is considered deviant that jokes are seen to exhibit the potential to be
a powerful critical tool.

Yet Critchley also explains how witticism (as a sophisticated style of humour)
is also considered to be a sign of advanced civilization as opposed to common
jokes, where witticism is tied to the development of liberal democracy, and
characterized by the figure of the dandy or wit. The witticisms of Slavoj
Žižek seem to exemplify this, including his many jokes related to the subject
of really xisting Socialism.9 One example he gives is a joke that reveals the
futility of dissident protest and the lack of recognition of wider conditions.
His claim is that no one really took the subject of totalitarianism seriously but
rather as a joke; and that progressive intellectuals who thought it was serious
merely indicated the futility of their protests. As we can see from the above,
the function of humour for Žižek lies in its ability to invert common sense,
following the Marxist-Hegelian logic of dialectical reversal. Moreover, concep-
tualizes such things in terms of the ‘return of the real’ (reworking Freud’s ‘return
of the repressed’), where impulses previously repressed erupt into social life at
unexpected moments and confound previously held certainties. This explains
how we laugh in bad taste, and as a way of coping with the disappointment of
our lived realities. Can we also ask whether anyone really thinks Windows or
Mac OSX are serious operating systems in similar terms? Or indeed, that their
free software alternatives are rendered as jokes too (to counter seriousness),
and reveal their futility as they in turn become commercialized (as in the case
of Ubuntu perhaps)?

The point we are making is that it is possible to draw some analogies between
jokes and code, as witty utterances hidden behind the surface of normative
software production and totalitarian server-client architectures that really are
a joke. This issue is also explored in Inke Arns’s essay, ‘Read_Me, Run_Me,
Execute_Me’, with its subtitle ‘Software and its Discontents’,10 implying that
the performative dimension of code lies repressed, as with the description of
the Linux kernel cited earlier,11 and further evoking Freud’s Civilisation and its
Discontents, that capitalism was founded on the repression of the libido. In post-
Marxist thinking (where the constitution of subjectivity is considered more
fully), something similar can be detected in the way that repression is considered
to be socially determined and can only be released by freeing productive desire,
perhaps expressed as nervous laughter. Drawing these threads together in the
1970s, Herbert Marcuse’s Eros and Civilisation and, to a greater extent, Gilles
Deleuze and Félix Guattari’s Anti-Oedipus: Capitalism and Schizophrenia argue

9781623560942_txt_print.indd 160 03/04/2014 11:32

imvgc
Sticky Note
missing e
should be existing

imvgc
Sticky Note
Moreover, he conceptualizes

imvgc
Highlight

imvgc
Highlight

imvgc
Highlight

imvgc
Sticky Note
Mac OSX -> Mac OS X

 Not Just for Fun 161

for the liberatory potential of desiring-production.12 So in this way the release
of free software can be understood as less an imaginary force based on lack (as
in Freud), and more a real, productive force, as a neat example of a ‘desiring-
machine..13 A good example of this is perhaps Gordan Savičić and Danja
Vasiliev’s project 120days of *buntu which proposes 120 modified humorous
and useless Ubuntu Operating Systems.14 By making playful reference to de
Sade’s The 120 Days of Sodom, the suggestion is that alternative operating
systems might be able to liberate desire, in excess of the masochistic desires of
free/libre software development in which Ubuntu is seen to operate too close
to normativity.15

Similarly, Franco ‘Bifo’ Berardi detects the fundamental political struggle
between machines for liberating desire and mechanisms of control over the
imaginary.16 Thus, to Berardi the various liberatory strategies such as refusal of
work, the invention of temporary autonomous zones, free software initiatives
and so on offer ‘dynamic recombination’.17 Therefore, and further developing
the analogy between repression and the performativity of software, free software
development (where the code is made openly available/shared) might offer

Figure 7.1 Sample of logos from Gordan Savičić and Danja Vasiliev’s 120days of
*buntu (2011)

Source http://120buntu.com/

9781623560942_txt_print.indd 161 03/04/2014 11:32

imvgc
Sticky Note
remove extra full stop

imvgc
Highlight

162 Fun and Software

therapeutic assistance in putting the programmer in touch with his/her, and
indeed culture’s, sublimated desires repressed under proprietary software devel-
opment.18 If normative software could be thought of as software without a body,
might desiring-production be explored through free software development with
a body? As Christopher M. Kelty describes it, ‘geeks’ share a social imaginary
about the production of actually existing alternatives, and as such the free
software movement is an example of a ‘recursive public’, capable of creating and
modifying the domain or platform through which they act.19 In other words,
they share a culture through which their repressed desires find release in the
public domain and body politic.

The ideology of the Free Software Foundation clarifies this point with a
humorous play on the ambiguity of freedom in ‘you should think of ‘free’ as in
“free speech”, not as in “free beer”’.20 Commercial (free market) interests seek
to assert their control over free software by replacing the word ‘free’ with the
phrase ‘open source’, placing emphasis on visibility of code rather than freedom
to share.21 Moreover, the broader ideological issues are evident in the parallel
narratives of the development of free and open source software development.
On the one hand, there is free software referring back to the 1980s when
software freedom was meant in resistance to proprietary software, and on the
other, open source that emanated from arguments about its economic benefits
and in parallel to free market thinking. Furthermore, like the joke from Žižek,
the futility of progressive alternatives like Ubuntu run the risk of missing the
mark unless the broader political issue of the ability to modify the domain or
platform through which these desiring-practices are enacted is also considered.

That freedom of speech relates to free software (at least according to the
Free Software Foundation), and not free beer, may be one of the analogies that
leads commentators (such as Mackenzie) to discuss the performative dimension
of software and its relation to speech act theory, making reference to John
Langshaw Austin’s How To Do Things With Words.22 Although the analogy
between program code and speech acts has become rather commonplace
since it was made by Terry Winogrand and Fernando Flores in 1987,23 and is
perhaps left a little general here, the point is to emphasize the ways in which
programmers express themselves through the witty manipulation of layers of
representation, including symbols, then words, language and notation. But
clearly code is a special kind of language, and one that can automatically enable
and disable certain kinds of actions.24 It does this through its special ability to
convert action to language and this is where the joke lies.

9781623560942_txt_print.indd 162 03/04/2014 11:32

 Not Just for Fun 163

Also drawing on Austin, Virno refers to linguistic innovation as: ‘how to do
new things with words’, where words constitute an action in and of themselves
– like program code in as much as when it is interpreted it says something and
does something at the same time. Virno’s interest is in the ability of the human
animal to execute ‘innovative actions’ capable of modifying ‘consolidated
norms’.25 A key reference underpinning this is Noam Chomsky’s description of
the apparatus of power as repressing the innate creativity of verbal language, and
to Aristotle’s description of contingency at the heart of our use of language (in
Ethics),26 as well as the more general point that intellectual and linguistic labour
are no longer separated from general conditions of informational capitalism.
In Virno’s opinion, rhetorical persuasion and the concept of the public sphere
in which speech is paramount, demonstrate the ability of language to establish
social relations between a ‘mass of speakers’, that is necessarily shared and
collective.27 He emphasizes that the ‘language system is a social fact’ wherein
the human animal is ‘ready made for language, but not actually in possession
of it’ until it starts interacting in the social realm.28 This is part of early years
development (the ‘mirror stage’, in Lacanian terms) but remains evident in every
utterance made thereafter. For Virno, this confirms the biopolitical dimension
of the human animal in the world, and the social importance of language and
the sharing of codes.

According to Virno, underpinning political possibilities is the simple fact
that the human animal is capable of modifying its forms of life.29 This is what
makes for innovation in the general sense that newly invented forms might
diverge from established rules and perceived norms – based on the Chomskian
innate creativity referred to above, and perhaps also to the idea that jokes
can be understood as hard-wired (in as much as creativity relates to playing
with language). And this is where jokes also figure as an example of how
humans diverge from social norms, how ‘linguistic animals give evidence of
an unexpected derivation from their normal praxis’, as Virno puts it.30 For
him, witty utterances are similar to the performative utterances that Austin
described, where words constitute an action in and of themselves.31 But as
already emphasized, the point for Virno is not the content of jokes, which might
poke fun at social norms, hierarchies or the ruling order, for such jokes tend to
obscure what is important: the apparatus or the ‘logicolinguistic resources that
jokes utilize’.32 His argument is that innovative action uses these resources like a
toolbox or library. In this way, it produces ambivalences: oscillating between the
‘determined rule and the regularity of species-specific forms of conduct’.33 Such

9781623560942_txt_print.indd 163 03/04/2014 11:32

164 Fun and Software

contradictory factors characterize the social character of the human species and
its innovative force, despite its repression by power structures. In other words,
jokes demonstrate innovative techniques and the possibilities for transforming
the linguistic operating system. This happens in two main ways according to
Virno: first by demonstrating how divergences in following rules often result
in changing the rule itself (put differently the application of the norm also
contains surprises, and situations where the rule is broken and justified in
terms of exceptional circumstances34); and secondly, through the incorrect use
of semantic ambiguity, an ‘error’ (or glitch).35 The rules are not only there to
be broken, but applied differently, adapted and modified, and ultimately trans-
formed. So how does software demonstrate similar possibilities at the level of
code, and where the modifications undermine normalized behaviour?

Code jokes

It would be relatively easy to mention the use of parody in this connection to
software, but perhaps this is too predictable under present conditions and its
effectiveness thereby questionable in a similar manner to a political joke that fails
to register its wider effects once executed. So although an example like Gordan
Savičić’s sing_slavoj_sing might poke fun at the seriousness of Žižek’s philoso-
phizing, by hacking billy the fish and replacing the soundchip with a good quote
or two, this is not the kind of joke that we wish to emphasize for our argument
as it does not present an intervention in terms of the apparatus of language.36
If humour is somewhat hard-wired, then jokes are an inevitable component of
the structures of language where humans demonstrate their innate ability to
innovate new forms. But can code jokes be reduced to their functional aspects
in this way, as procedures that are open to recombination as language is more
generally? Our concern is about jokes at the level of changing rules and the use
of semantic ambiguity, in keeping with Virno’s emphasis thus far.

Such tendencies can be detected in the example of Signwave’s Auto-Illustrator,
an experimental, semi-autonomous, generative software artwork that includes
a wide range of generative and procedural techniques, packaged as a fully
functioning parody of Adobe’s vector graphics application Illustrator.37 Humour
is an important part of the software package as indicated, not least, by the release
date of version 1.2 on April Fool’s Day, in 2003. The new release included parody
plug-ins that serve to question how contemporary software should ‘behave’,

9781623560942_txt_print.indd 164 03/04/2014 11:32

 Not Just for Fun 165

Figures 7.1 and 7.2 Screenshots of Signwave’s Auto-Illustrator (2001): ‘Dicshunary’
spelling tool and ‘Psychosis’ preferences option

Source http://swai.signwave.co.uk

9781623560942_txt_print.indd 165 03/04/2014 11:32

166 Fun and Software

including one function that would shut the computer down with no notice if
the software ‘decided’ the design was unworthy. The user’s expectations were
challenged by presenting tools and functions that do not conform to expectations
of what software usually does as a tool. Perhaps most controversial was the terms
of use which insisted that designs using the software were co-credited to the author
and the software company. This caused some outrage by users who assumed the
company were overstepping their proprietary rights and imposing measures
beyond a joke. Yet, to Signwave, this seemed to be an entirely logical statement
which recognized the difficulties of making any claim of single authorship, and
moreover exemplified the principle that the making of software can be regarded
as an artwork in itself. Thus Signwave extended some of the ambiguities built into
software production into a playful form that relates to the way social relations
are organized with normative software development. If Auto-illustrator’s satire of
Adobe’s Illustrator operates at the level of code in a general sense – in the domain
of intellectual property within the legal system, itself a system of rules, codes and
speech acts – could this also work in the domain of source code?

To repeat the Virno formulation, jokes are identified as operating in two
significant ways: first by demonstrating how divergences in following syntac-
tical rules often generate a change in the rule itself; and secondly, through
the ironic use of semantic ambiguity. This perhaps happens in a general way
with Auto-illustrator, but how do these ideas translate to code more precisely?
In this sense, it could be said that we wish to crack the source code of jokes
by examining the concept of interpretation in more detail. The interpreter is
a codification of the language in which the source code is expressed, or, in
other words, a partially evaluated computational process.38 The source code
is not a program on its own, rather it is a replaceable component of a larger
computation. The relationship between source code and interpreter is recursive;
the rules behind an interpreter are themselves implemented in source code,
requiring another interpreter. If we follow these recursive layers of interpre-
tation we find hardware microcode that mediates between the discrete digital
world and our continuous physical world.

With few exceptions, mainstream programming languages are Turing-
complete. This means it is possible to write a program in any of the languages
that interprets any other computer language. Therefore the rules of any language
can be changed simply by writing an interpreter for another language within
it; and thereby the scope for breaking rules is boundless. Turing-completeness
extends beyond mainstream language into some surprising places. Simple

9781623560942_txt_print.indd 166 03/04/2014 11:32

 Not Just for Fun 167

cellular automata, including the well-known Game of Life by John Conway and
Stephen Wolfram’s Rule 110,39 even some configuration files such as that of the
‘sendmail’ electronic mail transport software, have turned out to be Turing-
complete. The fact that Turing-completeness comes so easily to these invented
languages, allowing any symbolic constraint to be broken at will, provides a
programmer’s playground with glimpses of the infinite.

With this emphasis on breaking rules, it is no surprise that source code
humour centres on interpretation of code. Esoteric programming languages
are those which take a humourous approach to language design, challenging
the norms of source code interpretation. For example, obfuscated programs
written in the brainfuck language consist entirely of punctuation, each of the
eight characters ‘><+-.,[]’ representing a single elementary operation. Brainfuck
is Turing-complete, and so can be used to write any program in theory, but in
practice it is extremely difficult to write any program in it at all. Below is The
Game Of Life implemented in brainfuck.40

9781623560942_txt_print.indd 167 03/04/2014 11:32

imvgc
Sticky Note
adjust first line. see note 1

168 Fun and Software

A comment on the left side of the web page where the program is posted, simply
states ‘get a Life);’.

The tortuous nature of brainfuck escapes the world of computation to
be wrought on the human body as bodyfuck, a brainfuck interpreter using
computer vision techniques to map from bodily gestures to the brainfuck
instructionset (like a desiring-machine). The brainfuck demo shows how much
physical exertion is required to produce a short sequence of symbols,41 and
the programmer uses his/her body in a more overt manner than previously
required. To take another example, befunge is an esoteric language that breaks
the usual downward direction of interpretation through a program to create
two-dimensional syntax. This is done using punctuation, as in brainfuck but
in a more understandable way; each of the four instructions ‘^>v<’ represent
graphical arrows, which change the direction of control flow as you might
expect. The question mark character ‘?’ changes the direction in a random
direction. The instruction set goes beyond this, and is again Turing-complete,
but by following the arrows we can already understand the operation of the
following program, which, when read starting from the top left-hand corner,
outputs a random number from 0 to 9:

vv < <
 2
 ^ v<
v1<?>3v4
 ^ ^
> >?> ?>5^
 v v
v9<?>7v6
 v v<
 8
. > > ^
^<

Despite being Turing-complete these interpreters appear useless, and some
esoteric languages seem to exist simply as ‘in jokes’ for geeks, having unimple-
mentable instruction sets. In the case of IRP (Internet Relay Programming)
there is no formal instruction set at all, the interpreters are human participants
in an internet chat room, a running joke since 2005. Below is the obligatory
‘Hello, World!’ example:

9781623560942_txt_print.indd 168 03/04/2014 11:32

imvgc
Highlight

imvgc
Sticky Note
incorrect code. see note 2

imvgc
Highlight

imvgc
Sticky Note
‘get a Life);’. -> ‘get a Life ;)’.

 Not Just for Fun 169

<GregorR> Please say ‘Hello, World!’
<jix> Hello, World!

The likelihood of an IRP program being interpreted as you wish is improved if
you are polite, however this does not always work:

<GregorR> Please, write the lyrics to the song 99 Bottles of Beer on
the Wall.

<memonic> go to hell

Recursion is possible, up to a point:

<CakeProphet> Could someone please ask someone to repeat this request?
<pikhq> Could someone please repeat the previous request?
<RodgerTheGreat> Could someone please ask someone to repeat this request?

In recasting English as a machine language and humans as interpreters, we
are given the opportunity to examine the relationship between performative
phrases and computer code in some detail. In this way, we might begin to
understand that jokes can be interpreted in multiple ways which reflect the
complexity of human and machine logic that moves beyond simple amusement.
Indeed all jokes express a purpose. As in Virno’s earlier descriptions, this is
where innovative techniques are demonstrated that diverge from established
conventions by changing and breaking rules, and playing with ambiguities
related to code. This is where other possibilities reside.

But is software development taken too seriously when it is a joke all along?
Indeed software development is in danger of losing its sense of humour
altogether as it becomes more and more standardized and packaged. For
instance, with service-based platforms access to source code is no longer
possible, and the differentiation between files, software and network services
evaporates altogether. This is an apt description of the Apple iOS paradigm of
software development, where users of the Apple iPad and iPhone are allowed
only restricted access to programming language interpreters, and software
licenses favoured by the Free Software Foundation are forbidden. Access to
humour is denied and the example confirms that proprietary logic is a serious
business of repression. In Berardi’s terms, interpretation has become schizo-
phrenic (like fast speech), and the relations between metaphors and things,
representation and life, have become thoroughly confused. This is particu-
larly evident when it comes to language that is more and more influenced by
machines, leading to a situation where the learning of language and affectivity

9781623560942_txt_print.indd 169 03/04/2014 11:32

170 Fun and Software

have been separated.42 On the contrary, what needs to be rediscovered are forms
of happiness and laughter tied to collective formations: the sharing of code that
liberates desire and mechanisms of control over the imaginary from the serious
business and sense of determinism that is normally associated with code.43

The reference to Virno’s work on jokes draws attention to their function in
relation to ‘innovative action’ in the public sphere. In the case of the title of
this chapter, the use of ‘not’ as prefix to Torvald’s title (in ‘not just for fun’) is in
keeping with Virno’s comments that the system of language both ‘does’ negation
(by identifying what something is not), and ‘is’ negation (in as much as it can
only signify something): ‘The negation, or something that language does, is
understood, above all, as something that language is’.44 He is speculating here on
a non-representational form of politics, and despite recognizing the sovereign
forces that restrain such abilities, concludes that humans are capable of adapting
themselves and their circumstances in parallel to their linguistic abilities and
possibilities for innovative action. We have attempted to consider the execution
of program code in similar terms; that the potential for divergent forms comes
into existence through social interactions and modifications. Rules are not just
there to be broken, but transformed altogether through negation. For instance,
the function of humour (to Žižek) lies in its ability to invert common sense.
Code jokes remind us of the possibilities of non-deterministic interpretation
in this inverse way, as deviations from the conventions of coding as formal
expression. What we mean to stress is that having fun with software does not
simply encourage people to work with computers (and distract them from the
hard work that is unavoidable when programming) but offers a way to rethink
political possibilities in public, and to reimagine the seriousness of normative
visions of life that code otherwise implies.

Notes

1 Virno, Paolo, Multitude: Between Innovation and Negation, trans. Isabella
Bertoletti, James Cascaito and Andre Casson (Los Angeles: Semiotext(e) Foreign
Agents, 2008).

2 This issue of fun is also something that Christopher M. Kelty raised in his talk
‘No Fun. Work, Labor, Action in Free Software’, presented at ‘The Internet as
Playground and Factory Conference’, Eugene Lang College, The New School, New
York (12–14 November 2009), http://digitallabor.org/. His presentation slides

9781623560942_txt_print.indd 170 03/04/2014 11:32

 Not Just for Fun 171

can be seen online at http://www.scribd.com/doc/22394057/No-Fun-Slides (all
accessed 12.12.2013).

3 Cited in Bogost, Ian, ‘An Alternative to Fun’, in Unit Operations (Cambridge, MA:
MIT Press, 2006), 118.

4 Torvalds, Linus, Just for Fun: The Story of an Accidental Revolutionary (New
York: HarperCollins, 2001), http://en.wikipedia.org/wiki/Just_for_Fun (accessed
12.12.2013).

5 Stallman, Richard, Free Software, Free Society: Selected Essays of Richard M.
Stallman, ed. Joshua Gay (Boston, MA: Free Software Foundation, 2002), 15.

6 Mackenzie, Adrian, ‘The Performativity of Code: Software and Cultures of
Circulation’, in Theory, Culture & Society, 22(1): 13.

7 Freud, Sigmund, The Joke and Its Relation to the Unconscious (London: Penguin,
2002).

8 Dillon, Brian and Simon Critchley, ‘Very Funny: An Interview with Simon
Critchley’, in Laughter, Cabinet, 17 (spring 2005), http://www.cabinetmagazine.
org/issues/17/dillon.php (accessed 12.12.2013).

9 In this connection, it is well worth watching his performance in a clip from
YouTube where he tells an old Russian joke, http://www.youtube.com/
watch?v=XEnkDEgALGI (accessed 12.12.2013).

10 Arns, Inke, ‘Read_Me, Run_Me, Execute_Me: Software and Its Discontents, or:
It’s The Performativity of Code, Stupid’, in Read_Me: Software Art & Cultures
– Edition 2004, (eds) Olga Goriunova and Alexei Shulgin, 176–93 (Aarhus,
Denmark: Digital Aesthetics Research Centre, Aarhus University, 2004).

11 See note 6.
12 Deleuze, Gilles and Guattari, Félix, Anti-Oedipus: Capitalism and Schizophrenia,

trans. Robert Hurley, Mark Seem and Helen R. Lane (London: Athlone, 1990).
13 Ibid.
14 Savičić, Gordan and Vasiliev, Danja,120 days of *buntu (2011), http://120buntu.

com/ (accessed 12.12.2013).
15 See Cox, Geoff, ‘Notes on 120 days of *buntu’, in World of the News, (eds)

Geoff Cox and Christian Ulrik Andersen (Berlin/Aarhus: transmediale/DARC,
2012), 9.

16 Berardi, Franco ‘Bifo’, Precarious Rhapsody: Semiocapitalism and the Pathologies of
the Post-alpha Generation (London: Minor Compositions, 2009). His performative
reading of the source code of the ‘I Love You’ virus resonates with this description;
he read the source code of the virus at the D-I-N-A (Digital Is Not Analog) digital
art festival in 2001, http://www.digitalcraft.org/iloveyou/loveletter_reading.htm
(accessed 12.12.2013).

17 Ibid., 72.

9781623560942_txt_print.indd 171 03/04/2014 11:32

172 Fun and Software

18 In French, free software is known as ‘libre’ software. Although it does not have an
analogue in English, this unambiguous term evokes a libertarian attitude.

19 Kelty, Christopher M. Two Bits: The Cultural Significance of Free Software
(Durham, NC: Duke University Press, 2008).

20 See http://www.gnu.org/philosophy/free-sw.html. This was made into more of a
joke by the Danish artists Superflex in their project Free Beer, in which they share
recipes for free beer, http://www.superflex.net/projects/freebeer/ (both accessed
31–3–88).

21 Releasing and sharing source code therefore represents a number of ambiguities
relating to trust, cost, liberty, making free but making money on the stock market
instead, a belief in open standards or a cynical business move to capitalize on free
labour.

22 Austin, John Langshaw, How to Do Things with Words (Cambridge, MA: Harvard
University Press, 1962). For an elaboration of this, see Cox, Geoff and Alex
McLean, Speaking Code: Coding as Aesthetic and Political Expression (Cambridge,
MA: MIT Press, 2011).

23 Winograd, Terry and Flores, Fernando, Understanding Computers and Cognition:
A New Foundation for Design (Reading, MA: Addison-Wesley, 1987).

24 Chun, Wendy, Programmed Visions: Software and Memory (Cambridge, MA: MIT
Press, 2011), 27.

25 Virno, Multitude: Between Innovation and Negation, 20.
26 Ibid., 13.
27 Ibid., 46.
28 Ibid., 47.
29 Ibid., 69.
30 Ibid., 72.
31 Ibid., 85.
32 Ibid., 165.
33 Ibid., 166.
34 The so-called ‘state of exception’, invoking Carl Schmitt, to describe the way the

state legitimates the breaking of its own legal rules in exceptional circumstances.
According to Giorgio Agamben, this has become the working paradigm of
modern government.

35 Ibid., 73, 74.
36 sing_slavoj_sing was developed for DEVICE-ART Zagreb, by fleshgordo (Gordan

Savičić) in 2006. See http://www.youtube.com/watch?v=D9FXyr-LLeI (accessed
12.12.2013).

37 See http://swai.signwave.co.uk/ (accessed 12.12.2013).
 See Signwave, Auto-Illustrator Users Guide (first written 2001), published to

9781623560942_txt_print.indd 172 03/04/2014 11:32

 Not Just for Fun 173

coincide with the boxed set as part of the Generator exhibition, Spacex 2002–03,
and touring in the UK.

38 Futamura, Yoshihiko, ‘Partial Evaluation of Computation Pprocess – An Approach
to a Compiler-compiler’, in Higher-Order and Symbolic Computation, 12(4) (1999):
381–91, http://portal.acm.org/citation.cfm?id=609205 (accessed 12.12.2013).

39 John Conway’s Game of Life is a cellular automaton devised in 1970, consisting
of a collection of cells which, based on a few mathematical rules, can live, die or
multiply. See http://www.bitstorm.org/gameoflife/ (accessed 12.12.2013).

 Similarly Stephen Wolfram’s Rule 110 is an elementary cellular automaton
with interesting behaviour on the boundary between stability and chaos that is
considered to be Turing-complete, meaning that in principle, any calculation
or computer program can be simulated using this automaton. See http://www.
wolframalpha.com/input/?i=rule+110 (accessed 12.12.2013).

40 Akesson, Linus, The Game of Life implemented in brainfuck, http://www.
linusakesson.net/programming/brainfuck/index.php (accessed 12.12.2013).

41 See http://www.nikhanselmann.com/projects/bodyfuck/ (accessed 12.12.2013).
42 Berardi, Precarious Rhapsody, 9.
43 As our smiles are clearly not simply fixed like George Maciunas’ Flux Smile

Machine (1971), a device that forces the shape of the user’s mouth into a smile.
This work was the reference point for the exhibition Smile Machines, curated by
Anne-Marie Duguet, for the Transmediale Festival for Digital Culture, in 2006.

44 Virno, Multitude: Between Innovation and Negation, 50.

9781623560942_txt_print.indd 173 03/04/2014 11:32

imvgc
Highlight

imvgc
Sticky Note
http://www.nikhanselmann.com/projects/bodyfuck/ -> http://www.nikhanselmann.com/?/projects/bodyfuck/

9781623560942_txt_print.indd 174 03/04/2014 11:32

