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Abstract: Driving while drowsy poses significant risks, including reduced cognitive function and
the potential for accidents, which can lead to severe consequences such as trauma, economic losses,
injuries, or death. The use of artificial intelligence can enable effective detection of driver drowsiness,
helping to prevent accidents and enhance driver performance. This research aims to address the
crucial need for real-time and accurate drowsiness detection to mitigate the impact of fatigue-related
accidents. Leveraging ultra-wideband radar data collected over five minutes, the dataset was
segmented into one-minute chunks and transformed into grayscale images. Spatial features are
retrieved from the images using a two-dimensional Convolutional Neural Network. Following
that, these features were used to train and test multiple machine learning classifiers. The ensemble
classifier RF-XGB-SVM, which combines Random Forest, XGBoost, and Support Vector Machine
using a hard voting criterion, performed admirably with an accuracy of 96.6%. Additionally, the
proposed approach was validated with a robust k-fold score of 97% and a standard deviation of
0.018, demonstrating significant results. The dataset is augmented using Generative Adversarial
Networks, resulting in improved accuracies for all models. Among them, the RF-XGB-SVM model
outperformed the rest with an accuracy score of 99.58%.

Keywords: drowsiness; ultra-wideband radar; convolutional neural network; spatial features; ensemble
models

1. Introduction

Drowsiness manifested by drooping eyes, mind wandering, eye rubbing, inability to
concentrate, and yawning, is a state of fatigue that presents a substantial danger, especially
when it comes to road safety. Recent investigations highlight the seriousness of the problem,
revealing that 30% of the 1 million deaths caused by road accidents can be related to driver
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weariness or drowsiness [1,2]. The likelihood of a collision increases thrice when the driver
is experiencing weariness, emphasizing the importance of taking preventative steps. The
American Automobile Association (AAA) has discovered that there are approximately
328,000 crashes caused by drowsy driving each year [3]. These crashes have had a signifi-
cant impact on society, costing almost 109 billion USD, not including property damage [3].
This staggering figure encompasses immediate and long-term medical expenses, produc-
tivity losses in both workplace and household contexts, legal and court costs, insurance
administration expenses, and the economic impact of travel delays. Specific demographic
groups are particularly susceptible to drowsiness while driving. Night-shift male workers
and individuals with sleep apnea syndrome emerge as high-risk categories [4]. Several
research studies have been published, suggesting strategies to mitigate or notify drivers
about possible indications of drowsiness [5–14]. These measures are important steps in
tackling the critical issue of drowsy driving and improving road safety.

Drowsiness detection systems can be classified into three main categories: vehicle
dynamics, physiological signals, and recognition of driver face characteristics [11,12,15,16].
Nevertheless, the efficacy of vehicle dynamics-based systems is hindered by the suboptimal
performance caused by unpredictable variables such as road geometry, sluggish process-
ing speed, traffic conditions, and head movement [15–17]. Conversely, the examination
of yawning and blinking by analyzing facial images of the driver has shown potential
in controlled or virtual environments [16,17]. However, the performance of these sys-
tems often decreases when used in real-world settings due to factors including changes
in lighting, differences in skin color, and temperature fluctuations [16,17]. Conversely,
systems relying on physiological signals have demonstrated a high level of accuracy,
establishing them as a dependable approach for real-world applications. Physiological mea-
sures such as electroencephalography (EEG) [6,18–24], electrooculography (EOG) [25–30],
respiration rate [12,31–35], electrocardiography (ECG) [34,36–38], and electromyography
(EMG) [39–43] are commonly used in the systems designed to identify driver drowsiness.
Although the sensors used to capture these signals are effective, a significant obstacle occurs
due to their invasive character, making it difficult to integrate or practically use them in
real-world contexts.

Among these physiological signals, the respiration rate is especially noteworthy be-
cause it fluctuates significantly from awake to sleep and varies depending on numerous
physiological situations. In addition, the respiratory system undergoes modifications
during sleep, which are impacted by decreased muscle tone and shifts in chemical and
non-chemical reactions [44]. It is worth mentioning that a decline in the rate at which a
person breathes is frequently noticed prior to a driver reaching a state of sleep [45,46]. This
study aims to address the challenge of accurately detecting driver drowsiness in real time
using UWB radar signals and advanced machine learning (ML) techniques. The primary
objectives are to develop robust feature extraction methods, design efficient ensemble
models, and validate their effectiveness against existing methods. In this manuscript,
the proposed system employs the non-invasive acquisition of chest movement through
Ultra-Wideband (UWB) radar to distinguish between the drowsy and non-drowsy states of
the driver. UWB radar offers notable benefits such as fast data rates and low power trans-
mission levels [47]. This is achieved by transmitting very short-duration pulses, resulting in
signals with wide bandwidth. The technology does not raise any privacy problems because
it is not influenced by ambient elements, does not rely on light or skin color, and emits very
little power, guaranteeing human safety [48–50]. Furthermore, the system maintains its
resilience even when exposed to Wi-Fi and mobile phone transmissions. The UWB radar’s
ability to penetrate different materials or obstructions, combined with its non-intrusive
nature [51,52], makes it an excellent option for this drowsiness detection system. The chest
readings obtained are subsequently transformed into grayscale images, as illustrated in [53],
and these images are utilized as input deep learning (DL) models. The features extracted
from these models are then employed to train and test ML algorithms. The contributions of
this study are as follows:
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• This system utilized a dataset from [12] and transformed it into grayscale images
for analysis.

• The system employs Convolutional Neural Network (CNN) architecture to extract
features from these images.

• These features are input into various machine learning (ML) algorithms, and the
performance of these algorithms is assessed on a test set.

• The hybrid ensemble models RF-MLP and RF-XGB-SVM have been developed to
combine the unique capabilities of multiple algorithms.

• The models undergo evaluation using metrics such as accuracy, precision, recall, and
F1 score. In the end, a comparative analysis is conducted to determine which deep
learning-based feature yields superior results.

This paper is organized into several sections. Section 2 presents the literature review of
the study, while Section 3 describes the methodology of the proposed approach. Section 4
presents the results, and finally, Section 5 contains the study’s conclusion.

2. Literature Review

The literature review examines various prominent studies that specifically investigate
the identification and categorization of drowsy and alert conditions in drivers. The classifi-
cation of drowsy and non-drowsy states is accomplished by utilizing non-invasive IR-UWB
radar to measure the breathing rate, as stated in the research [12]. The chest motions of
40 individuals were collected, and the Support Vector Machine algorithm achieved an
accuracy rate of 87%. The study demonstrates the efficacy of UWB in detecting driver
drowsiness by analyzing breathing rates. The paper introduces an EEG-based spatial-
temporal CNN (ESTCNN) in [54] to detect driver fatigue. The network independently
acquires characteristics from EEG inputs, with an exceptional classification accuracy of
97.37%. The experiments involve the collection of EEG signals from eight participants
in both alert and fatigue stages. The research presented by [55] focuses on two distinct
categories of videos: alert and drowsy. The study utilizes a thorough dataset consisting of
60 individuals who have been classified into three groups: alert, low vigilant, and drowsy.
Two separate models are created, utilizing computer vision and deep learning to analyze
temporal and spatial features. Ref. [56] suggests a method of evaluating exhaustion that
does not require any intrusive procedures. This method involves analyzing physiological
signs such as heart rate variability (HRV) and ECG data. During sleep periods, ECG data
are collected, and the continuous wavelet transform is used to extract features. The average
accuracy achieved via ensemble logistic regression is 92.5%, with a processing time of 21 s.
Ref. [57] improves the detection of drowsiness by combining ECG and EEG features. The
data collected from 22 participants in a driving simulator exhibit noteworthy characteristics
that differentiate between states of being alert and tired. By combining modalities, Sup-
port Vector Machine (SVM) classification produces enhanced performance, while channel
reduction ensures accuracy using only two electrodes.

The Intelligent Drowsiness Detection System (DDS) described in [58] uses Deep Con-
volutional Neural Networks (DCNNs), specifically VGG16, InceptionV3, and Xception,
to address driver fatigue. The Xception model has exceptional performance, with an ac-
curacy of 93.6%. It surpasses both the VGG16 and InceptionV3 models when applied to
a dataset containing facial recordings depicting drowsy and non-drowsy states. In [59],
an approach with two phases tackles the difficulties in intelligent transportation systems
by presenting an improved fatigue detection system that relies on DenseNet. The system
consists of a module that represents the model and a sophisticated method for channel
attention. The second stage utilizes a guided policy search (GPS) algorithm to facilitate
collaborative decision-making, adjusting to the current levels of driver fatigue in real time.
Empirical validation on datasets such as YaWDD, RLDD, and DROZY showcases sub-
stantial enhancements and achieved an average accuracy of 89.62%. The fatigue detection
method, implemented in [60], utilizes powerful CNN models to specifically target yawning.
This system demonstrates a remarkable accuracy of 96.69% on the YaWDD dataset. The
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analysis demonstrates that data augmentation achieves a trade-off between accuracy and
model resilience, resulting in a modest decrease in accuracy but an improvement in the
model’s ability to withstand complications. In [61], a novel deep learning approach for
driver drowsiness identification utilizes a MobileNet-SSD CNN with the SSD technique.
Trained on a diverse dataset of 6000 photos, the model achieves a substantial Mean Av-
erage Precision (mAP) of 0.84, prioritizing computing efficiency for real-time processing
on mobile devices. The methodology incorporates a unique dataset from various sources,
ensuring diverse representation. Experimental results demonstrate the model’s resilience,
achieving high mAP values for closed eyes (0.776), open eyes (0.763), and outstanding face
detection (0.971).

In a study conducted by researchers [62], a Regularized Extreme Learning Machine
(RELM) showed exceptional performance in identifying driver drowsiness. The RELM
achieved an accuracy rate of 99% using a dataset consisting of 4500 pictures. The combina-
tion of video surveillance, image processing, and ML [63] results in a sleepiness detection
system that achieves a 93% accuracy rate. This accuracy is determined by analyzing eye
blink patterns from the YawDD dataset. The system described in [64] utilizes the PERCLOS
algorithm, Python modules, and ML techniques to evaluate eye movements. It achieves a
high accuracy rate of 93% in the real-time detection of driver drowsiness. The utilization of
mmWave FMCW radar enables [65] to reach an accuracy of 82.9% in detecting drowsiness.
This is accomplished by collecting chest motions and employing ML methods. Ref. [66]
integrates MTCNN facial detection with GSR sensor-based physiological data, resulting in
an accuracy of 91% in the real-time detection of driver drowsiness. The study [67] combines
behavioral metrics and physiological data, utilizing Raspberry Pi and SVM classifiers, to
achieve a commendable accuracy rate of 91% in detecting driver tiredness. The study [68]
uses a histogram of oriented gradients (HOG) and linear SVM to achieve outstanding
precision. The DDS in [69] uses CNN to extract features, resulting in an accuracy rate
of 86.05% on a dataset of 48,000 photographs. The study [70] conducted in Zimbabwe
mainly addresses the issue of road safety. It successfully achieves a detection accuracy
of over 95% in identifying drowsiness. This is accomplished by the implementation of
the principal component analysis (PCA) dimensionality reduction technique, along with
classifiers such as XGBoost and Linear Discriminant Analysis. The implementation of a
real-time drowsiness detection system on Nvidia Jetson Nano, as described in [71], achieves
an accuracy rate of 94.05%. In particular, it excels particularly in detecting yawning. The
paper [72] presents a DDS that uses webcam-based surveillance to detect drowsiness in
real-time. The system achieves a high level of accuracy, with over 97% accuracy in multiple
metrics such as precision, sensitivity, and F1-score. Ref. [55] presents a DDS that operates
in real-time. The system utilizes the Viola–Jones algorithm, a beeping sound mechanism,
and calculates the distance between the lips. This combination of technologies provides
scalability and cost-effectiveness, which ultimately leads to increased road safety.

Although these investigations contribute substantially to the field of driver drowsiness
detection, it is important to highlight numerous limitations. Although video-based methods
are successful in controlled environments, they can face difficulties in real-world situations
due to inconsistent lighting conditions, which could potentially affect the precision of
drowsiness detection. Furthermore, the adoption of physiological data-centric systems in
real-time is hindered by practical problems arising from the invasive nature of on-body
sensors, regardless of their effectiveness. Not only does this give rise to privacy problems,
but it also obstructs the smooth incorporation of such technologies into ordinary driving
situations. Hence, the implementation of these techniques in actual driving scenarios
requires careful deliberation of these limitations.

3. Methodology

The proposed methodology is depicted in Figure 1. Initially, a data set was sourced
from [12], which included chest movement signals acquired through the UWB radar in both
drowsy and non-drowsy states. Subsequently, the dataset was transformed into grayscale
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images, which were then used as input for a CNN model. The Features were extracted from
the images using the DL model and then saved in a CSV file, along with their accompanying
labels. Following that, the dataset was divided into two distinct sets: the training set and
the testing set. The training set was utilized to train various ML classifiers, whilst the test
set was put aside for evaluating the performance of these models. The test set was used to
make predictions, which were then evaluated using key metrics like accuracy, precision,
recall, and F1 score.

Figure 1. Proposed methodology diagram of the system.

3.1. Dataset

The dataset used in this investigation was obtained from [12] which comprises the
chest movements of the drivers in the drowsy and non-drowsy state using the X4M300
UWB radar (NOVELDA, Oslo, Norway). The experiment involved forty professional male
drivers engaged in extended intercity driving sessions that lasted approximately 10 h. For
non-drowsy states, chest movement data were recorded before the drivers commenced
their driving shifts. Conversely, in the case of fatigued data, the chest data of the same
participants were collected shortly after they finished a 10-h driving shift. The raw radar
signal of the chest movement is shown in Figure 2.

Figure 2. Raw radar signal of chest movement.

In order to promptly evaluate the drivers following their return from their trips, a
specially designed testing area was established in a vacant room at the Manthar Transport
Company’s terminal in Sadiq Abad, Punjab, Pakistan. Throughout the process of collecting
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data, drivers were given instructions to position themselves directly in front of the radar. A
minimum distance of 1 m was maintained between the radar and the subject at chest level,
as shown in Figure 3. The radar had a range of 9.4 m from the transmitter-receiver point,
allowing it to detect any movements within this distance. The selected 1-meter distance
was predicated on the supposition that the driver could be in any position within this range
while operating the vehicle. The radar device was positioned at chest level to guarantee
that the subject stayed inside the radar’s effective range. Practically, the distance from the
dashboard to the human body could range from 0.2 m to 0.5 m. The chest movement from
each subject was collected for five minutes and stored in a CSV file.

Figure 3. Subject in front of the radar while collecting data obtained from [12].

3.2. Conversion to Images

Each file consists of a five-minute recording of the chest movement, which is then
divided into one-minute segments and labeled as matrix “A”. An approach is utilized
to produce grayscale image representations of the matrix “A”, which are denoted as “I”.
The purpose of this conversion is to visually depict the matrix, hence improving the
comprehensibility and analysis of the data. In order to accomplish this, the ’mat2gray’
function in MATLAB R2020a is utilized. The function initially identifies the minimum
and maximum values in the input matrix. Using these values, a normalization formula as
shown in Equation (1) is applied to each element, subtracting the minimum value and then
dividing by the difference between the maximum and minimum values. This procedure
adjusts the minimum value of the matrix to 0 and rescales the maximum value to 1, so
ensuring that all other values proportionally fall within this range. If the minimum and
maximum values of a matrix are equal, which implies that all values in the matrix are the
same, mat2gray assigns a value of 0.5 to all output values. This is executed to prevent
undefined operations and provide a reasonable default value.

I =
A−min(A)

max(A)−min(A)
(1)

Here, ‘min(A)’ represents the minimum value within matrix ‘A’, and ‘max(A)’ signi-
fies the maximum value within the same matrix. The procedure entails subtracting the
minimum value from each element of ‘A’ and then dividing the resulting value by the
range of values, which is the difference between the maximum and minimum values. The
normalization technique guarantees that the values in the matrix ‘A’ are rescaled to fit
inside the typical grayscale image representation range of [0, 1]. The converted images for
both drowsy and fresh classes are shown in Figure 4.
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(a) (b)
Figure 4. Converted grayscale images of (a) drowsy class (b) fresh class.

3.3. Feature Extraction

The study utilized the Convolutional Spatial Feature Engineering (CSFE) method,
as presented in [53], to extract spatial features from grayscale images. The process is
visualized in Figure 5. By incorporating 2D convolutional layers into CNN architectures,
this technique enables the extraction of complex spatial features from the image data. The
spatial features obtained provide a thorough depiction, encompassing intricate patterns and
movements that are essential for a range of applications. In this research, CSFE features were
derived from grayscale images, forming a new feature set along with corresponding labels.
These features are then used to train and evaluate ML models, with the goal of accurately
detecting driver drowsiness. By harnessing the spatial information extracted through
CSFE, these models exhibit the potential to discern nuanced patterns and movements often
overlooked by conventional CNNs, thereby enhancing accuracy in drowsiness detection.
The architecture of the 2D CNN used in this research is given in Table 1. The rescaling
layer performs an initial normalization of the pixel values, guaranteeing a uniform input
range of [0, 1]. The initial convolutional layer has 64 filters and a 3 × 3 kernel to identify
basic patterns and edges in the input image. It utilizes the ReLU activation function
to introduce non-linearity and improve the representation of features. Following max
pooling decreases spatial dimensions, preserving important characteristics while decreasing
computational complexity.

Figure 5. The architecture diagram of CSFE feature extraction.

Table 1. Neural Network Model Configuration.

Layer Type Configuration

Input Rescaling Scaling factor: 1.0/255
Convolutional (Conv2D) Filters: 64, Kernel: (3, 3), Activation: ReLU
Max Pooling (MaxPooling2D) Pool Size: (2, 2)
Convolutional (Conv2D) Filters: 32, Kernel: (3, 3), Activation: ReLU
Max Pooling (MaxPooling2D) Pool Size: (2, 2)
Flatten N/A
Dense Neurons: 128, Activation: ReLU

The second convolutional layer utilizes 32 filters to enhance the process of extracting
features while using additional max-pooling to assist in reducing spatial dimensions. The
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flattened layer prepares the data for fully connected layers, facilitating global feature
integration. The 128-neuron dense layer refines the hierarchical features in order to capture
intricate patterns and relationships. This architecture is a result of the run-and-test method,
demonstrating its adaptability to the specific characteristics of the data set. The selection of
these layers aims to achieve an in-depth balance, allowing for efficient feature extraction
without introducing unnecessary complexity. The architecture’s advantages stem from
its capacity to systematically extract complex spatial characteristics from images. These
128 features are stored in a CSV file along with labels for the classification of the drowsy
and non-drowsy states of the drivers.

3.4. Data Augmentation

The study presented in this manuscript employs Generative Adversarial Networks
(GANs) to address the problem of a small dataset size. Specifically, the dataset used in
this manuscript contains only 200 instances per class, which is insufficient for training
robust ML models. GANs, which were proposed by Ian Goodfellow [73], are a type of
ML framework specifically created to produce artificial data that closely resemble a given
dataset. A GAN comprises two neural networks: a Generator and a Discriminator. The
Generator produces novel, artificial data instances, while the Discriminator assesses them
to differentiate between genuine and artificial (counterfeit) data. The two networks are
trained concurrently in a competitive environment: the Generator grows its proficiency in
generating actual data, while the Discriminator improves its ability to identify counterfeit
data. The Generator model is specifically designed to accept a random noise vector as
input and convert it into a synthetic data instance that closely mimics the actual data. The
structure of the Generator commences with an input layer that receives a noise vector of
102 dimensions. Subsequently, a sequence of compact layers is employed with the objective
of gradually enhancing the data representation. The initial dense layer is composed of
256 neurons that utilize the Rectified Linear Unit (ReLU) activation function. This is
then followed by batch normalization and a dropout layer with a 30% probability. These
measures are implemented to enhance stability and mitigate overfitting. The second
dense layer consists of 512 neurons, which are likewise activated using the ReLU function.
Additionally, batch normalization and dropout layers are applied. The architecture then
incorporates a third layer that is densely populated with 256 neurons, and a fourth layer
with 128 neurons. Both layers adhere to the identical sequence of activation, normalization,
and dropout. The Generator’s final output layer generates a 100-dimensional vector
via linear activation, which represents the synthetic data that have been created. The
architecture of the generator is shown in Figure 6a.

The Discriminator model’s objective is to distinguish between genuine data from
the dataset and the artificial data produced by the Generator. The process starts with an
input layer that receives a data vector consisting of 102 dimensions. The first layer of
the Discriminator consists of 512 neurons with ReLU activation, which is then followed
by a dropout layer with a 30% probability in order to mitigate overfitting. Following
this, there are further layers with a high concentration of neurons, namely 256, 128, and
64 neurons, respectively. Each of these layers is activated using the ReLU function and
includes dropout layers. The final output layer of the Discriminator is a single neuron with
sigmoid activation, outputting a probability score that indicates whether the input data are
real or synthetic. The architecture of the discriminator model is shown in Figure 6b.

During the training phase, the Generator and Discriminator participate in a two-player
minimax game. The Discriminator is trained by being presented with batches of real data
and data produced by the Generator. It learns to improve its ability to distinguish real data
from fake data. Simultaneously, the Generator is trained to generate artificial data that
can deceive the Discriminator into categorizing it as authentic. The process of adversarial
training persists until the Generator generates data that are indistinguishable from genuine
data, therefore, substantially enhancing the original dataset with synthetic examples of
high quality. Using GANs, the dataset is effectively augmented by adding 1000 instances to
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each class, resulting in a total of 1200 instances for each class. This enhancement facilitates
the creation of more robust and accurate ML models. The sample of the augmented data is
shown in Table 2.

(a) (b)
Figure 6. The architecture of GAN (a) Generator (b) Discriminator.

Table 2. Snippets of the dataset post augmentation.

Sr. No. 0 1 2 . . . 97 98 99 Label

0 0.39622176 0.4066065 0.51660347 . . . 0.46284893 0.48666704 0.3540284 0
1 0.41745254 0.54292786 0.5974161 . . . 0.4108211 0.47298706 0.3946942 0
2 0.4305402 0.48049223 0.5213418 . . . 0.40519458 0.6011478 0.22075108 0
3 0.422287 0.6520922 0.63822633 . . . 0.34400716 0.442513 0.39881736 0
4 0.41309932 0.47723842 0.51149786 . . . 0.3870272 0.5330019 0.20417304 0
5 0.52232856 0.45020208 0.57795453 . . . 0.46976835 0.4652797 0.17163844 0
6 0.4189465 0.47918236 0.51208353 . . . 0.3875902 0.5244716 0.19999994 0
7 0.40711606 0.33762354 0.5082019 . . . 0.5300679 0.5099058 0.32978377 0
8 0.43408674 0.6784697 0.64829403 . . . 0.33602956 0.43760943 0.38681032 0

. . . . . . . . . . . . . . . . . . . . . . . . . . .
2391 0.5387267 0.540245 0.6575716 . . . 0.4398443 0.5939529 0.30980185 1
2392 0.5398885 0.62441266 0.6159498 . . . 0.39132738 0.79611707 0.20297673 1
2393 0.5654393 0.59164715 0.63794005 . . . 0.4651416 0.7560228 0.23912714 1
2394 0.5286886 0.5439412 0.6900763 . . . 0.46690488 0.5235571 0.33242399 1
2395 0.34617162 0.47954148 0.5320659 . . . 0.49993005 0.40980458 0.19199125 1
2396 0.53729063 0.5442955 0.67633796 . . . 0.4568716 0.55147946 0.32810143 1
2397 0.5563764 0.61615664 0.633111 . . . 0.4239145 0.7834681 0.22323802 1
2398 0.5673374 0.5729127 0.6460825 . . . 0.47191876 0.7099173 0.26245716 1
2399 0.49523562 0.5511889 0.705765 . . . 0.47301993 0.4585747 0.34522685 1
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3.5. Proposed Ensemble Models

In this manuscript, in addition to individual ML models, two ensemble models RF-
MLP and RF-XGB-SVM are proposed with hard voting for the classification task between
drowsy and fresh classes. The rationale behind the selection of the RF-MLP and RF-XGB-
SVM models is to exploit the advantages of various methods in order to improve the
accuracy of predictions. RF-MLP is a hybrid model that combines the robustness of RF
with the deep learning skills of MLP. On the other hand, RF-XGB-SVM is a model that
merges the strong boosting powers of Extreme Gradient Boosting with the effectiveness
in handling high-dimensional data of SVM. The voting mechanism among these separate
ensembles introduces diversity, robustness, and computational efficiency, allowing us to
balance accuracy and model interpretability. The architecture of both ensemble models is
presented in Figure 3. Here, in Figure 7, P1, P2, and P3 the predictions of the respective
classifiers, and in the final classification, the class with the majority of votes among the
predictions will be selected as the final prediction.

(a) (b)

Figure 7. The architecture of ensemble models (a) RF-XGB-SVM, (b) RF-MLP.

The Algorithm 1 outlines the procedural steps employed by the RF-MLP ensemble
model following the hard voting criteria. The trained Random Forest (TRF) and Trained
Multilayer Perceptron (TMLP) models operate on the feature vector to predict whether a
given sample belongs to the drowsy or fresh class. Each model contributes one vote, and
the ultimate prediction, denoted as HBPred, is determined by the majority of votes from
these models for the drowsy or fresh class.

Algorithm 1 RF-MLP Algorithm for Drowsiness Prediction

Require: CSFE Features, TrainedRF, TrainedMLP
Ensure: Drowsy, Fresh

1: TRF ← TrainedRF
2: TMLP ← TrainedMLP
3: for i in Dataset do
4: RFPrediction← TRF(i)
5: MLPPrediction← TMLP(i)
6: HVPred[i]← arg max{RFPrediction, MLPPrediction}
7: end for
8: Output: Drowsy | Fresh← HVPred

The Algorithm 2 outlines the steps used by the RF-XGB-SVM ensemble model fol-
lowing the hard voting criteria. The trained Random Forest (TRF), Trained XGB (TXGB),
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and trained SVM (TSVM) models operate on the feature vector to predict whether a given
sample belongs to the drowsy or fresh class. Each model contributes one vote, and the
ultimate prediction, denoted as HVPred, is determined by the majority of votes from these
models for the drowsy or fresh class.

Algorithm 2 RF-SGB-SVM Algorithm for Drowsiness Prediction

Require: CSFE Features, TrainedRF, TrainedXGB, TrainedSVM
Ensure: Predictions (Drowsy or Fresh)

1: TRF ← TrainedRF
2: TXGB ← TrainedXGB
3: TSVM ← TrainedSVM
4: for each i in Dataset do
5: RFPrediction← TRF(i)
6: XGBPrediction← TXGB(i)
7: SVMPrediction← TSVM(i)
8: HVPred[i]← arg max({RFPrediction, XGBPrediction, SVMPrediction})
9: end for

10: Output: Drowsy | Fresh← HVPred

4. Results and Discussion

This section provides a comprehensive analysis and discussion of the results obtained
from the experiments carried out during this research. The objective is to provide a
thorough analysis of the results while clarifying their importance within the context of
this study. Furthermore, it involves a substantial discussion exploring the impacts and
importance of these findings, thereby enriching the understanding of the broader academic
and practical implications stemming from the research endeavor.

4.1. Experiment Setup

The experimental analyses were conducted on the HP EliteBook x360 1040 G6 (HP
Inc., Lahore, Pakistan), which serves as the primary computing platform. Equipped with
an Intel(R) Core (TM) i5-8365U processor operating at 1.60 GHz, this system exhibits
remarkable computational prowess at a peak speed of 1.90 GHz. An additional 16.0 GB of
RAM significantly enhances the performance of the CPU, resulting in improved efficiency
when it comes to multitasking and data management. Implementing Windows 11 Pro and
running on a 64-bit architecture, the system demonstrates the seamless integration of state-
of-the-art hardware and software components. This technical configuration highlights the
utilization of advanced capabilities throughout the experimentation phase, ensuring a stable
and flexible computing environment. Data preprocessing was performed using MATLAB
R2020a. The subsequent experiments, including feature extraction and model training, were
implemented in Python 3.0 using Jupyter Notebook 6.5.2. This environment allowed for the
seamless integration of code, visualizations, and documentation, facilitating an interactive
and iterative workflow. The software environment comprised Python 3.8, TensorFlow 2.4,
and scikit-learn 0.24. Hyperparameter tuning was performed using grid search to identify
optimal configurations for each model. Software debugging and iterative refinements were
managed using Jupyter Notebook’s real-time monitoring and visualization tools, which
allowed for dynamic adjustments during the training process.

4.2. Data Splitting

The dataset comprises recordings obtained from forty male participants, encompassing
both drowsy and alert states. By segmenting each file at one-minute intervals, the total
number of files within each category rises to 200. The dataset is subsequently divided into
test and training sets in the proportion of 70% for training and 30% for testing. Additionally,
a GAN is employed to augment the dataset, resulting in each class having 1200 values.
These augmented datasets are then divided into training and testing sets in an 80–20 split,
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ensuring a robust and comprehensive evaluation of the model’s performance. The objective
of this strategic division is to guarantee an equitable distribution of instances for drowsy
and non-drowsy states throughout the training and testing stages, thereby promoting the
development and assessment of resilient models.

4.3. Classification Results

In this study, a diverse array of machine learning classifiers, encompassing SVM,
Random Forest (RF), XGBoost (XGB), and Multi-Layer Perceptron (MLP), were employed
for the classification task. Furthermore, ensemble classifiers were implemented in two
ways RF-MLP Ensemble and RF-XGB-SVM Ensemble. To improve the performance of the
models, rigorous hyperparameter tuning was performed using the Grid Search technique.
The selected specific hyperparameters are provided in Table 3.

Table 3. Classifiers and Their Hyperparameters.

Classifiers Hyperparameters

SVM C = 10, kernel = ‘rbf’
RF max_depth = None, n_estimators = 100
XGB learning_rate = 0.2, n_estimators = 50
MLP alpha = 0.001, hidden_layer_sizes = (100,)

RF-MLP RF (max_depth = None, n_estimators = 100), MLP (alpha = 0.001,
hidden_layer_sizes = (100,))

RF-XGB-SVM RF (max_depth = None, n_estimators = 100), XGB (learning_rate = 0.2,
n_estimators = 50), SVM (C = 10, kernel = ‘rbf’)

The training phase included the use of the training dataset, followed by testing on an
independent test set. Table 4 completely presents the classification performance of these
models on the test set, providing insights into their efficacy and comparative evaluation.

Table 4. Classification matrices of the classifiers on the test data.

Classifiers Accuracy (%) Precision Recall F1-Score

SVM 91.6 0.91 0.91 0.91
RF 93.33 0.94 0.94 0.94

XGB 91.6 0.91 0.92 0.92
MLP 74.6 0.74 0.75 0.75

RF-MLP 95 0.95 0.95 0.95
RF-XGB-SVM 96.6 0.97 0.97 0.97

The results in Table 4 show that ensemble models, RF-MLP and RF-XGB-SVM, show-
cased exceptional performance, with an accuracy of 95% and 96.6%, respectively. This
strong result emphasizes the efficacy of combining several learning techniques, demon-
strating their capacity to greatly improve predictive accuracy. Notably, RF consistently
outperformed all the measures tested, attaining an amazing accuracy of 93.33% and an
F1-score of 0.94. SVM and XGBoost performed similarly, with both models achieving a
roughly 91% accuracy and F1 scores of 0.91 and 0.92, respectively. Although effective, they
marginally trailed RF’s superior performance. The MLP performed significantly worse,
with an accuracy of 74.6% and an F1-score of 0.75. This result sheds light on the potential
limits of the MLP model architecture for the specific drowsiness detection task. For accurate
drowsiness detection, the ensemble model, notably RF-XGB-SVM, emerges as a highly
promising classifier. The confusion matrix is shown in Figure 8.
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Figure 8. Confusion matrix of RF-XGB-SVM on original dataset.

The augmented dataset was used to ensure fair and comparable evaluations across
different models and datasets by maintaining consistency in model training. The same set
of hyperparameters as those applied to the original dataset was used, guaranteeing uniform
training conditions. Following successful training, the trained models were rigorously
tested using the designated test set. The evaluation results, meticulously documented and
presented in Table 5, provide insights into the classifiers’ performance metrics, including
accuracy, precision, recall, and F1-score.

Table 5. Results of classifier on Augmented dataset.

Classifiers Accuracy (%) Precision Recall F1-Score

SVM 98.76 0.99 0.99 0.99
RF 99.17 0.99 0.99 0.99

XGB 99.17 0.99 0.99 0.99
MLP 99.5 100 100 100

RF-MLP 99.3 0.99 0.99 0.99
RF-XGB-SVM 99.58 100 100 100

It is evident from Table 5 that the SVM achieved an accuracy of 98.76%, with a
Precision, Recall, and F1-Score all standing at 0.99, indicating a highly consistent and reliable
performance across different evaluation metrics. The RF and XGB classifiers both exhibited
identical performance metrics, each attaining an accuracy of 99.17%, and scoring 0.99 in
Precision, Recall, and F1-Score. This suggests that both classifiers were equally effective
in handling the augmented dataset, offering robust and accurate predictions. The MLP
demonstrated the highest performance among the individual classifiers, with an accuracy
of 99.5%. Remarkably, it achieved perfect scores of 100 in Precision, Recall, and F1-Score,
indicating an exceptional ability to correctly identify and classify instances without any
false positives or negatives. For the ensemble classifiers, the RF-MLP Ensemble achieved
an accuracy of 99.3%, with a Precision, Recall, and F1-Score of 0.99. This performance is
slightly lower than that of the MLP alone but still indicates strong predictive capabilities by
leveraging the strengths of both RF and MLP. The RF-XGB-SVM Ensemble outperformed
all other models, reaching an accuracy of 99.58%. It also achieved perfect scores of 100 in
Precision, Recall, and F1-Score. This superior performance highlights the effectiveness of
combining multiple classifiers, capitalizing on their individual strengths to deliver highly
accurate and reliable predictions. The results demonstrate that all classifiers performed
exceptionally well on the augmented dataset, with ensemble methods, particularly the
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RF-XGB-SVM Ensemble, providing a slightly higher accuracy than other classifiers. The
confusion matrix of RF-XGB-SVM is shown in Figure 9.

Figure 9. Confusion matrix of RF-XGB-SVM on augmented dataset.

4.4. K-fold Cross Validation

To assess the robustness and reliability of the models, a K-fold cross-validation ap-
proach was implemented in this study. The dataset underwent a process of partitioning
into five distinct folds, and the models underwent iterative training and evaluation across
each of these folds. Table 6 provides a comprehensive presentation of the results obtained
from the cross-validation process. This enables readers to gain a nuanced comprehension
of the performance of the models across various subsets of the data.

Table 6. Kfold cross-validation results on original dataset.

Classifiers Accuracy ± Std

SVM 0.91 ± 0.05
RF 0.94 ± 0.02

XGB 0.91 ± 0.04
MLP 0.73 ± 0.04

RF-MLP 0.95 ± 0.03
RF-XGB-SVM 0.97 ± 0.018

The findings presented in Table 4 indicate that the ensemble models, specifically
RF-XGB-SVM, demonstrated superior performance in terms of both accuracy and consis-
tency. It is noteworthy that RF-XGB-SVM demonstrated the highest accuracy at 97% and
a remarkably low standard deviation of 0.018. These results indicate that RF-XGB-SVM
operates with robustness and dependability across various factors. Indicating its effective
generalization capabilities, RF-MLP additionally exhibited notable results, possessing a
precision rate of 95% and a standard deviation of 0.03. In comparison to other individual
classifiers, RF demonstrated its efficacy as a solitary model by attaining an accuracy of 94%
and a moderate standard deviation of 0.02. In contrast, SVM and XGBoost exhibited similar
performance levels, attaining accuracies of approximately 91% each. With a standard
deviation of 0.04 compared to SVM’s 0.05, XGBoost exhibited marginally less variability.
The MLP demonstrated the most substantial standard deviation of 0.04 and the lowest
accuracy of 73%.

The k-fold cross-validation results on the augmented dataset, presented in Table 7,
provide a comprehensive evaluation of the classifiers’ performance in terms of accuracy
and variability. The accuracy is reported along with the standard deviation (Std), which
indicates the consistency of the model across different folds. The SVM and RF classifiers
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both achieved an average accuracy of 0.98 with a standard deviation of 0.01. This reflects
their robust performance and reliability, with minimal variation in accuracy across the
different folds of the dataset. XGB exhibited a slightly lower average accuracy of 0.97
with a standard deviation of 0.01. While still demonstrating strong performance, the
XGB classifier showed a slightly higher variability in its predictions compared to SVM
and RF. The MLP classifier outperformed the other individual classifiers, achieving an
impressive average accuracy of 0.99 with a standard deviation of 0.01. This high accuracy,
coupled with low variability, underscores MLP’s effectiveness and stability in handling
the augmented dataset. The RF-MLP Ensemble, which combines the strengths of both
Random Forest and Multi-Layer Perceptron, achieved an average accuracy of 0.98 with a
standard deviation of 0.01. This indicates that the ensemble method is as reliable as the
individual RF and SVM classifiers, but did not surpass the performance of MLP alone.
The RF-XGB-SVM Ensemble demonstrated the highest performance among all models,
with an average accuracy of 0.99 and a standard deviation of 0.01. This suggests that
combining Random Forest, XGBoost, and SVM in an ensemble approach results in a model
that is not only highly accurate but also consistently reliable across different subsets of the
dataset. The k-fold cross-validation results affirm the high performance and robustness of
the classifiers, with ensemble methods, particularly the RF-XGB-SVM Ensemble, providing
the best accuracy and consistency.

Table 7. Kfold cross-validation results on augmented dataset.

Classifiers Accuracy ± Std

SVM 0.98 ± 0.01
RF 0.98 ± 0.01

XGB 0.97 ± 0.01
MLP 0.99 ± 0.01

RF-MLP 0.98 ± 0.01
RF-XGB-SVM 0.99 ± 0.01

4.5. Computational Time Complexity

Table 8 summarizes the computational time complexity of classifiers, measured in
seconds. SVM demonstrates the lowest time complexity at 1.53 s, followed by RF (2.47) and
XGB (2.81). MLP has a higher complexity at 3.63 s, while the RF-MLP ensemble increases
to 3.72 s. The RF-XGB-SVM ensemble requires the most time at 4.15 s. This highlights a
trade-off between computational efficiency and model complexity, with simpler models
offering faster predictions, while more complex ensembles deliver heightened accuracy at
the expense of increased computational time.

Table 8. Computational time complexity of classifiers.

Classifiers Computational Time (s)

SVM 1.53
RF 2.47

XGB 2.81
MLP 3.63

RF-MLP 3.72
RF-XGB-SVM 4.15

The computational time complexity of the classifiers on the augmented dataset, as
shown in Table 9, provides insight into the efficiency of each model in terms of training
time measured in seconds. The SVM required 4.19 s for training, indicating a relatively fast
processing time given its sophisticated algorithm. Similarly, the RF classifier took 4.22 s,
which is comparable to SVM and reflects its efficiency in handling the dataset with multiple
decision trees. XGB demonstrated the shortest computational time among all classifiers,
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completing its training in 3.93 s. This rapid processing time is indicative of XGB’s optimized
implementation for gradient boosting, which is known for its speed and performance. The
MLP, however, required the longest training time of 5.1 s. This increased time complexity
can be attributed to the neural network’s iterative training process, involving numerous
parameters and layers that need to be optimized. Among the ensemble classifiers, the
RF-MLP Ensemble took 4.3 s to train. This slight increase compared to the individual RF
model reflects the added complexity of integrating the MLP component, yet it remains
efficient. The RF-XGB-SVM Ensemble had a computational time of 4.7 s. While this is higher
than the individual classifiers, it remains reasonable given that it combines three different
models. The increase in computational time is justified by the significant boost in accuracy
and robustness provided by this ensemble approach. The computational time complexity
results illustrate a trade-off between training time and model performance. While MLP and
ensemble methods take longer to train, their superior accuracy and reliability often justify
the additional computational cost. Conversely, XGB stands out for its quick processing
time, making it an efficient choice when computational resources or time are limited.

Table 9. Computational time complexity of classifiers on Augmented dataset.

Classifiers Computational Time (s)

SVM 4.19
RF 4.22

XGB 3.93
MLP 5.1

RF-MLP 4.3
RF-XGB-SVM 4.7

4.6. Comparison with Existing Studies

In comparison to a prior study conducted by Siddiqui et al. [12], which used the
same dataset as employed in this manuscript, the proposed method presented in this
manuscript has exhibited advancements in accuracy as shown in Table 10. The study [12]
achieved an accuracy of 87.5%, while our proposed methodology achieved a significantly
higher accuracy of 99.58%. This substantial improvement underscores the efficacy of
the approach introduced in this manuscript. The enhanced accuracy suggests that the
employed classifiers, such as RF-XGB-SVM, have effectively leveraged the features within
the dataset, surpassing the performance achieved in the earlier study.

Table 10. Comparison with other Studies.

Study Accuracy

[12] 87.5%
Proposed 99.58%

4.7. Discussion

The results demonstrate that the RF-XGB-SVM ensemble model outperforms all other
classifiers. In multiple evaluation criteria, such as accuracy, precision, recall, and F1-score,
RF-XGB-SVM consistently exhibited superior performance compared to its competitors.
The remarkable efficacy of the RF-XGB-SVM ensemble model can be attributed to the
synergistic cooperation of RF, XGB, and SVM. RF, with its collection of decision trees,
effectively captures complex data relationships. The XGB algorithm, a robust gradient
boosting technique, enhances the performance of less capable models, while SVM priori-
tizes the identification of suitable hyperplanes for classification. The integration of these
classifiers produces a model that not only utilizes a range of learning techniques but also
performs exceptionally well in detecting different patterns throughout the feature space.
The ensemble approach offers a reliable solution by reducing overfitting and allowing
error correction through the combined knowledge of classifiers for drowsiness detection.
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Despite its excellent classification performance, it is noteworthy that the RF-XGB-SVM
model incurs a higher computational time compared to individual classifiers.

The accuracy comparison of all the classifiers on both datasets is shown in Figure 10.
The analysis revealed that while individual models like SVM, RF, XGBoost, and MLP
performed exceptionally well, achieving high accuracy rates (up to 99.5% for MLP), ensem-
ble methods provided the best results. The RF-XGB-SVM ensemble achieved the highest
accuracy of 99.58%, coupled with perfect precision, recall, and F1-score, demonstrating
the advantage of combining diverse classifiers. K-fold cross-validation confirmed the
robustness and consistency of all models, with low standard deviations indicating reliable
performance across different folds.

Figure 10. Comparison of accuracies on both datasets.

The findings highlight the effectiveness of ensemble approaches in achieving high
performance while balancing computational efficiency. The primary aim of this study is
to achieve high accuracy in detecting driver drowsiness, which is crucial for enhancing
road safety. This focus, however, leads to higher computational complexity. The benefits
of improved detection accuracy justify the additional computational cost. To make the
method more practical for deployment in various real-world scenarios, efforts are being
made to explore optimizations that improve real-time performance.

5. Conclusions

Drowsiness while driving offers a significant risk, resulting in decreased cognitive
performance and an increased likelihood of an accident. Drowsiness-related vehicle crashes
have serious consequences, including trauma, economic costs, injuries, and even fatalities.
This study demonstrates the effectiveness of using UWB radar and advanced ensemble
models for real-time driver drowsiness detection. This study focuses on classifying drivers
into drowsy and non-drowsy states using data from ultra-wideband radar. The five-minute
dataset was divided into one-minute chunks and converted to grayscale images. A Two-
Dimensional Convolutional Neural Network was used to extract spatial features from
these images. Using these features, various machine learning classifiers were trained and
tested. Notably, the ensemble classifier RF-XGB-SVM attained an amazing accuracy of
96.6% by combining Random Forest, XGBoost, and Support Vector Machine. The k-fold
cross-validation score was 97%, with a standard deviation of 0.018, indicating a stable and
consistent performance. Utilizing Generative Adversarial Networks for dataset augmenta-
tion led to enhanced accuracies across all models, with the RF-XGB-SVM model surpassing
others by achieving an accuracy score of 99.58%. The proposed method significantly im-
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proves detection accuracy, highlighting its potential to enhance road safety by reducing
fatigue-related accidents. Future research could investigate the integration of other sensor
modalities for improved detection, as well as the deployment of the system in real-world
driving scenarios for comprehensive validation.
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