Cycling Time-trial Performance with Per-

 cooling via Cold-water in Hot ConditionsFreya Bayne

A thesis submitted in partial fulfilment of the requirements of London South Bank University for the degree of Doctor of Philosophy

Content List

[^0]2.3.4. Physiological Responses
2.3.4.1. Rectal/Core Temperature ($\mathrm{T}_{\text {rectal }} / \mathrm{T}_{\text {core }}$)
2.3.4.2. Skin Temperature ($\mathrm{T}_{\text {sk }}$)
2.3.4.3. Heart Rate (HR)
2.3.4.4. Sweat Rate (SR)
2.3.5. Perceptual Responses
2.3.5.1. Ratings of Perceived Exertion (RPE)
2.3.5.2. Thermal Sensation (TS)
2.3.5.3. Thermal Comfort (TC)
2.3.5.4. Affect (AF)
2.3.5.5. Motivation (M)
2.3.6. Conclusion
2.4. Cycling performance in hot conditions (dry vs humid) with per-cooling (cold-water ingestion vs pouring).
2.4.1. Heat Acclimation/acclimatization
2.4.2. Hydration
2.4.3. Cooling
2.4.3.1. Performance response
2.4.3.2. Physiology Response
2.4.3.3. Perceptual Response
2.4.4. Literature Search
2.4.4.1. Inclusion/Exclusion Criteria
2.4.4.2. Outcome Measures
2.4.4.3. Article Characteristics
2.4.4.4. Quality Assessment
2.4.5. Results and Discussion
2.4.5.1. Physical Performance in Hot and Dry and Hot and Humid
2.4.5.2. Physiological Responses
2.4.5.2.1. Rectal/Core Temperature ($\mathrm{T}_{\text {rectal }} / \mathrm{T}_{\text {core }}$)
2.4.5.2.2. Skin Temperature (T_{sk})
2.4.5.2.3. Heart Rate (HR)
2.4.5.2.4. Sweat Rate (SR)
2.4.5.3. Perceptual Responses
2.4.5.3.1. Ratings of Perceived Exertion (RPE)
2.4.5.3.2. Thermal Sensation (TS)
2.4.5.3.3. Thermal Comfort (TC)
2.4.5.3.4. Affect (AF)
2.4.5.3.5. Motivation (M)
2.4.6. Conclusion
2.4.7. Research questions arising from the narrative review

3. General Methods

3.1 Ethical approval
3.2 Participants
3.2.1 Recruitment
3.2.2 Eligibility
3.3. Familiarisation Procedures.
3.4. Experimental trial procedures
3.4.1 Experimental trial standardization
3.4.2. Maximal Oxygen Uptake $\left(\mathrm{VO}_{2 \text { max }}\right)^{2,4}$
3.4.3. Warm-up
3.4.4. Steady-state (pre-load)
3.4.5. Time-trial
3.4.6 Feedback provided during TT
3.4.7. Cooling Intervention
3.4.8. Rest days
3.5. Environmental conditions
3.5.1 Laboratory conditions
3.5.2 Experimental conditions
3.6. Heat Alleviation Strategy Questionnaire and interview
3.6.1 Online Questionnaire
3.6.2 Case Study Style Interviews
3.7 Materials and measurements
3.7.1 Cycle ergometers/bikes
3.7.1.1 Turbo
3.7.1.2 Lode Excalibur
3.7.2 Physiological responses
3.7.2.1 Anthropometric assessment
3.7.2.1.1. Height
3.7.2.1.2. Body mass
3.7.2.2 Heart rate
3.7.2.3. Hydration assessment
3.7.2.4. Rectal temperature ($\mathrm{T}_{\text {rectal }}$)
3.7.2.5 Sweat rate (SR)
3.7.2.6 Skin temperature ($\mathrm{T}_{\text {sk }}$)
3.7.3 Perceptual responses
3.7.3.1 Ratings of perceived exertion (RPE)
3.7.3.2 Thermal comfort (TC)
3.7.3.3 Thermal sensation (TS)
3.7.3.4 Affect (AF)
3.7.3.5. Task motivation (TM)
3.7.3.6. Situation motivation (SIMS)
3.7.3.7. Markers of overtraining and recovery.
3.7.4 Eye Tracker
3.7.5 Debrief
3.7.6. Equipment cleaning and control of substances hazardous to health
3.7.6.1 Waste disposal
3.7.7. Criteria for termination of experiments
3.7.8. Data Processing
3.7.9. Eye-Tracking and Video Analysis ${ }^{1}$
3.7.10. Data Analysis
3.7.11. Statistical analysis
4. Methodological study - Less is more - The effect of multiple vs single feedback on experience and novice cyclists 30min cycling time-trial performance.
4.1. Abstract
4.2. Introduction
4.3. Methods
4.3.1. Participants
4.3.2. Experimental Design
4.3.3. Familiarization, Critical Power Test, and $\mathrm{VO}_{\text {2peak }}$
4.3.4. Experimental Trials
4.3.5. Performance Measurements
4.3.6. Physiological Measurements
4.3.7. Perceptual Measurements
4.3.8. Statistical Analysis
4.4. Results
4.4.1. Performance Responses
4.4.2. Psychopercpetual Responses
4.4.3. Information Acquisition
4.5. Discussion
4.5.1. Main Findings
4.5.2. Limitations and Perspectives
4.6. Conclusion
4.7. Importance of findings for subsequent chapter and thesis
5. Study 2 - Hot and humid conditions result in a greater impairment in 30 min cycling time-trial performance compared to hot and dry conditions.
5.1. Abstract
5.2. Introduction
5.3. Methods
5.3.1. Participants
5.3.2. Experimental Design
5.3.3. Familiarisation and Standardization
5.3.4. Experimental Trials
5.3.5. Performance Measurements
5.3.6. Physiological Measurements
5.3.7. Perceptual Measurements
5.3.8. Statistical Analysis
5.4. Results
5.4.1. The effect of heat and humidity on performance
5.4.1.1. Power Output in Hot and Dry
5.4.1.2. Power Output in Hot and Humid

5.4.3.2.2. Thermal Comfort (TC)

5.4.3.2.2.1. Thermal Comfort (TC) in Hot and Dry (Group 1)
5.4.3.2.2.2. Thermal Comfort (TC) in Hot and Humid (Group 2)
5.4.3.2.2.3. Thermal Comfort (TC) in Hot and Dry and Hot and Humid (Group Comparison)
5.4.3.2.3. Thermal Sensation (TS)
5.4.3.2.3.1. Thermal Sensation (TS) in Hot and Dry (Group 1)
5.4.3.2.3.2. Thermal Sensation (TS) in Hot and Humid (Group 2)
5.4.3.2.3.3. Thermal Sensation (TS) in Hot and Dry and Hot and Humid (Group Comparison)
5.4.3.2.4. Task Motivation (TM)
5.4.3.2.5. Affect (AF)
5.4.3.2.5.1. Affect (AF) in Hot and Dry (Group 1)
5.4.3.2.5.2. Affect (AF) in Hot and Humid (Group 2)
5.4.3.2.5.3. Affect (AF) in Hot and Dry and Hot and Humid (Group Comparison)
5.4. Discussion
5.4.1. Main Findings
5.4.2. The effect of heat on performance response (dry vs control)
5.4.3. The effect of humidity on performance response (humid vs con).
5.4.4. The effect of humidity on performance response (humid vs dry).
5.4.5. Limitations and Perspectives
5.5. Conclusion
5.6. Importance of Findings for Subsequent Chapter and Thesis
6. Study 3 - Cyclists-triathletes use cold-water ingestion during training and/or competitions in hot and dry conditions compared to cold-water ingestion and pouring in hot and humid conditions.
6.1. Abstract
6.2. Introduction
6.3. Methods
6.3.1. Participants
6.3.2. Experimental Design
6.3.3. Design of Questionnaire
6.3.4. Design of Case Study Interviews
6.3.5. Data Analysis
6.4. Results
6.4.1. Understanding of Hot Conditions.
6.4.2. Type of Per-Cooling Strategy
6.4.3. Timing of Per-Cooling Strategy
6.4.4. Justification of Per-Cooling Strategy
6.4.5. Perceived Effectiveness of Per-Cooling Strategy
6.4.6. Comparison of Participant Level
6.5. Discussion
6.5.1. Main findings
6.6. Limitations and Perspectives
6.7. Conclusion
6.8. Importance of Findings for Subsequent Chapter and Thesis
7. Study 4 - To drink or to pour? Per-cooling cold-water ingestion has a greater ergogenic effect on 30min cycling time-trial performance in hot and dry and hot and humid environmental conditions compared to cold-water pouring.
7.1. Abstract
7.2 Introduction
7.3 Methods
7.3.1. Participants
7.3.2. Experimental Design
7.3.3. Familiarisation and Standardization
7.3.4. Experimental Trials
7.3.5. Cooling intervention
7.3.6. Performance Measures
7.3.7. Physiological measurements
7.3.8. Perceptual Measurements
7.3.9. Statistical Analysis

7.4. Results

7.4.2. The Effect of Cooling on Performance
7.4.2.1. Power Output in Hot and Dry
7.4.2.2. Power Output in Hot and Humid
7.4.2.3. Power Output in Hot and Dry and Hot and Humid (Group Comparison)
7.4.2.4. Distance Covered in Hot and Dry (Group 1)
7.4.2.5. Distance Covered in Hot and Humid (Group 2)
7.4.2.6. Distance Covered in Hot and Dry and Hot and Humid (Group Comparison)
7.4.3. The Effect of Cooling on Physiological Responses
7.4.3.1. Rectal Temperature (Trectal)
7.4.3.1.1. Rectal Temperature (Trectal) in Hot and Dry (Group 1)
7.4.3.1.2. Rectal Temperature (Trectal) in Hot and Humid (Group 2)
7.4.3.1.3. Rectal Temperature (Trectal) in Hot and Dry and Hot and Humid (Group Comparison)

7.4.3.2. Heart Rate (HR)

7.4.3.2.1. Heart Rate (HR) in Hot and Dry (Group 1)
7.4.3.2.2. Heart Rate (HR) in Hot and Humid (Group 2)
7.4.3.2.3. Heart Rate (HR) in Hot and Dry and Hot and Humid (Group Comparison)
7.4.3.3. Hydration Status (Urine Specific Gravity and Sweat Rate)
7.4.3.3.1. Sweat Rate in Hot and Dry (Group 1)
7.4.3.3.2. Sweat Rate in Hot and Humid (Group 2)
7.4.3.3.3. Sweat Rate in Hot and Dry and Hot and Humid (Group Comparison)
7.4.4. The Effect of Cooling on Perceptual Responses
7.4.4.1. Perceptual Responses Prior to Experimental Trials
7.4.4.2. Perceptual Responses During Experimental Trials
7.4.4.2.1. Ratings of Perceived Exertion (RPE)
7.4.4.2.1.1. Ratings of Perceived Exertion (RPE) in Hot and Dry (Group 1)
7.4.4.2.1.2. Ratings of Perceived Exertion (RPE) in Hot and Humid (Group 2)
7.4.4.2.1.3. Ratings of Perceived Exertion (RPE) in Hot and Dry and Hot and Humid (Group Comparison)
7.4.4.2.2. Thermal Comfort (TC)
7.4.4.2.2.1. Thermal Comfort (TC) in Hot and Dry (Group 1)
7.4.4.2.2.2. Thermal Comfort (TC) in Hot and Humid (Group 2)
7.4.4.2.2.3. Thermal Comfort (TC) in Hot and Dry and Hot and Humid (Group Comparison)
7.4.4.2.3. Thermal Sensation (TS)
7.4.4.2.3.1. Thermal Sensation (TS) in Hot and Dry (Group 1)
7.4.4.2.3.2. Thermal Sensation (TS) in Hot and Humid (Group 2)
7.4.4.2.3.3. Thermal Sensation (TS) in Hot and Dry and Hot and Humid (Group Comparison)
7.4.4.2.4. Task Motivation (TM)
7.4.4.2.5. Affect (AF)
7.4.4.2.5.1. Affect (AF) in Hot and Dry (Group 1)
7.4.4.2.5.2. Affect (AF) in Hot and Humid (Group 2)
7.4.4.2.5.3. Affect (AF) in Hot and Dry and Hot and Humid (Group Comparison)
7.5. Discussion
7.5.1. Main Findings
7.5.2. The Effect of Cooling on Performance Responses in Hot and Dry
7.5.3. The Effect of Cooling on Performance Responses in Hot and Humid
7.5.4. The Effect of Cooling on Performance Responses in Hot and Dry and Hot and Humid
7.5.5. Limitations and Perspectives
7.6. Conclusion
7.7. Importance of Findings for Subsequent Chapter and Thesis
8. General discussion
8.1. Thesis Aims and Main findings
8.2. Real-world availability and application of cooling
8.3. Limitations
8.4. Conclusions and Future Research Direction
9. References
10. Appendix

Abstract

The overall aim of this thesis was to investigate the effect of cold-water ingestion and pouring on 30min cycling time-trial performance in hot and dry, and hot and humid environmental conditions.

Study one (i) determined the impact of multiple vs single feedback on 30 min cycling time-trial performance in experienced cyclists-triathletes' and non-cyclists-triathletes', and (ii) investigated experienced cyclists-triathletes' information acquisition during a 30min cycling time-trial. The findings from this study highlighted that experienced cyclists-triathletes' 30 min cycling time-trial performance was impaired with multiple feedback ($227.99 \pm 42.02 \mathrm{~W}$) compared to single feedback ($287.9 \pm 60.07 \mathrm{~W} ; \mathrm{p}<0.05$), despite adopting and reporting a similar pacing strategy and perceptual responses ($p>0.05$). In addition, cyclists-triathlete's primary and secondary objects of regard (i.e. main variable of focus) were power (64.95s) and elapsed time (64.46s). Notably, total glance time during multiple feedback decreased from the first $5 \mathrm{~min}(75.67 \mathrm{~s})$ to the last $5 \mathrm{~min}(22.34 \mathrm{~s})$ which may have resulted from a mental overload (exercise and cognitive task). The findings from this study were used to inform the subsequent studies in this PhD in an attempt to minimise any external impact on performance. Therefore, participants in study 2 and 4 were only given feedback on elapsed time whilst completing the time-trial.

Study two investigate the effect of heat (hot vs thermoneutral) and humidity (dry vs humid) on physiological and perceptual responses during a 30min cycling time-trial in experienced cyclists-triathletes. The findings from this study highlighted that performance was significantly impaired in hot and dry conditions compared to thermoneutral/control conditions ($177.35 \pm 1.68 \mathrm{~W}$ vs $236.86 \pm 1.83 \mathrm{~W}$). This impairment was accompanied by a higher $\mathrm{T}_{\text {rectal }}$ and thermal discomfort ratings during the TT. $\mathrm{T}_{\text {rectal }}$ was significantly greater in hot $\left(38.05 \pm 0.15^{\circ} \mathrm{C}\right)$ compared to control $\left(38.55 \pm 0.04^{\circ} \mathrm{C}\right)$ throughout the TT $\left.\mathrm{p}=0.001\right)$. Thermal comfort ratings were also significantly lower in thermoneutral/control ($0 \pm 0(0 \%)$) compared to hot $(12 \pm 2(60 \%))$ during the $T T(p=0.003)$. Secondly, power was also significantly impaired

in hot and humid compared to thermoneutral/control conditions $(160.12 \pm 3.43 \mathrm{~W}$ vs $235 \pm 2.48 \mathrm{~W} ; \mathrm{p}=0.001$). This impairment was accompanied by a higher $\mathrm{T}_{\text {rectal }}$ and thermal discomfort ratings during the TT . $\mathrm{T}_{\text {rectal }}$ was significantly greater in hot $\left(38.85 \pm 0.09^{\circ} \mathrm{C}\right)$ compared to control $\left(38.55 \pm 0.12^{\circ} \mathrm{C}\right)$ throughout the $T T(p=0.004)$. Thermal comfort ratings were also significantly lower in thermoneutral/control ($0 \pm 0(0 \%)$) compared to hot $(19 \pm 3(95 \%))$ during the time-trial $(p=0.001)$. Thirdly, power was significantly impaired in hot and humid compared to hot and dry ($160.12 \pm 3.43 \mathrm{~W}$ vs $177.35 \pm 1.68 \mathrm{~W}, \mathrm{p}=0.038$). This impairment was accompanied by a higher $\mathrm{T}_{\text {rectal }}$ and thermal discomfort ratings during the TT . $\mathrm{T}_{\text {rectal }}$ was significantly greater throughout the TT in hot and humid $\left(38.7 \pm 0.09^{\circ} \mathrm{C}\right)$ compared to hot and dry ($38.49 \pm 0.07^{\circ} \mathrm{C} ; \mathrm{p}=0.043$). Thermal comfort ratings were significantly higher in hot and humid compared to hot and dry during the TT (19 3 (95%)) vs $12 \pm 2(60 \%)) ; p=0.029)$. Overall, cycling power output was significantly impaired in hot and dry and hot and humid conditions compared to thermoneutral conditions, and hot and humid conditions caused a greater impairment to cycling power output compared to hot and dry conditions. All impairments were accompanied by a greater thermal strain (physiological (rectal temperature) and/or perceptual responses (thermal comfort)). The findings from this study highlight an impairment in cycling performance in hot conditions (dry and humid) and therefore athletes should use heat alleviation strategies to minimise this impairment.

Study three investigated (i) the level of perceived heat strain cyclists-triathletes (recreational, competitive and professional) experience during competitions in hot conditions, (ii) which heat alleviation strategies (i.e. hydration and cooling) athletes use during competitions in hot conditions, and (iii) whether or not these strategies are dependent on the environmental heat (i.e. dry vs humid heat). The findings from this study highlighted that the type of percooling strategies currently employed by competitive and professional cyclists-triathletes during training and competition are condition (dry vs humid) dependant. Specifically, coldwater ingestion was the most employed strategy in hot and dry conditions (HD), whereas a combination of cold-water ingestion and pouring was the most employed strategy in hot and
humid conditions (HH). The timing of application was pre-planned based on 'distance' and supplemented with 'how participants felt during' and 'when pit stops were available' in HD. Whereas timing of application was pre planned based on 'distance' and 'how participants felt during' only in HH . The justification for type and timing of strategies was previous experience/perceived effectiveness (e.g., trial and error). An additional finding of this study was that competitive athletes found benefits from mental strategies, such as imagery and modelling; whereas professional athletes found benefits from positive self-talk and locus of control during competition in hot conditions. The findings from the questionnaire were used to inform the cooling methods used in study four (i.e. type of cooling, amount of cooling, frequency of cooling etc). Therefore, the two cooling methods that were used in study four were cold-water ingestion and cold-water pouring.

Study four investigated the effect of cold-water ingestion and pouring on 30min cycling timetrial performance in hot and dry, and hot and humid conditions in experienced cycliststriathletes. Participants were assigned to a group; Group 1 - hot and dry, or group 2 - hot and humid. Within their group participants completed $4 \times 30 \mathrm{~min}$ cycling time-trials on separate occasions: (i) thermoneutral, (ii) hot with no cooling (dry or humid, group dependant), (iii) cold-water ingestion, and (iv) cold-water pouring. The findings from this study showed that cold-water pouring was more beneficial compared to cold-water ingestion for power output in hot and dry conditions (Mean \pm SD $199.40 \pm 0.82 \mathrm{~W}$ vs $180.35 \pm 1.51 \mathrm{~W}, \mathrm{p}=0.023$). This performance benefit occurred in absence of a significant difference in rectal temperature between cold-water pouring and ingestion $\left(38.18 \pm 0.13^{\circ} \mathrm{C}\right.$ vs $\left.38.38 \pm 0.14^{\circ} \mathrm{C}, \mathrm{p}=\mathrm{p}=0.121\right)$. There was also no difference in thermal comfort between cold-water pouring and ingestion ($11 \pm 1(55 \%)$ vs $12 \pm 2(60 \%) ; p=0.067$). Conversely, cold-water ingestion was more beneficial compared to cold-water pouring for power output in hot and humid conditions (Mean \pm SD $173.77 \pm 0.97 \mathrm{~W}$ vs $165.16 \pm 1.31 \mathrm{~W}, \mathrm{p}=0.760$). This was supported by physiological responses such as rectal temperature which was significantly lower with cold-water ingestion
compared to cold-water pouring $\left(37.9 \pm 0.1^{\circ} \mathrm{C}\right.$ vs $\left.38.5 \pm 0.19^{\circ} \mathrm{C}, \mathrm{p}=0.001\right)$. This was also supported by perceptual responses such as mean \pm SD thermal comfort ratings which was significantly greater with cold-water pouring than cold-water ingestion during the time-trial in hot and humid conditions ($14 \pm 3(70 \%)$ vs $12 \pm 1(60 \%) ; p=0.004)$. Power in the hot and dry conditions with cold-water pouring ($199.40 \pm 0.82 \mathrm{~W}$) was significantly greater compared to hot and humid condition with cold-water pouring ($165.16 \pm 1.31 \mathrm{~W}, \mathrm{p}=0.001$). This difference occurred in absence of a difference in physiological responses such as rectal temperature as there was no difference between groups respectively ($38.18 \mathrm{~T} \pm 0.13$ vs $38.4 \pm 0.22, \mathrm{p}=$ 0.253). However, this performance difference was supported by perceptual responses such as thermal comfort ratings which were significantly greater with cold-water pouring during the time-trial in hot and humid conditions compared to hot and dry conditions ($14 \pm 3(70 \%)$ vs $12 \pm 2(60 \%) ; p=0.021)$. In conclusion, cold-water pouring provided a greater ergogenic effect on 30 min cycling time-trial performance in HD conditions compared to cold-water ingestion. Whereas cold-water ingestion provided a greater ergogenic effect on power output during a 30 min cycling time-trial performance in HH conditions compared to cold-water pouring. Collectively, the findings from this study show that athletes and coaches should not only consider the condition (dry vs humid) but also which cooling strategy is best suited for said condition (internal vs external) when preparing for training and/or competing in hot conditions.

The distinction of the effect of hot and dry, and hot and humid conditions on 30min cycling time-trial performance and subsequent physiological, and perceptual responses are a particular novel and applicable aspect of this thesis and contribute new data and interpretations to this area of research.

430 Acknowledgements

431 Supervisory Team

432 Nadia Gaoua

433 Katya Mileva

434 Sebastien Racinais

435 Steve Hunter

436

437 PhD Companions

Sarah Williamsons

Julian Werth

Luke Oates

Family

Sharon Bayne

Greg Bayne

Rory Glackin

Declaration

I declare that the research presented within this thesis is the original work of the author unless stated. This work has been submitted solely for the degree of Doctor of Philosophy to London South Bank University.

Freya Bayne

Date - November 2022

List of abbreviations - Words

456 AF Affect

457 ANOVA Analysis of variance

458 BF Blood flow

459 BM Body mass

460 BP Blood pressure

461 BT Body temperature

462 BV Blood volume

463

464

465

466

CF Cognitive function

CT Cyclists-triathlete

CTs Cyclists-triathletes

DC Distance covered.

DM Decision-making

EE Energy expenditure

ES Effect size

FeCO2 Fraction of expired carbon dioxide

FeO2 Fraction of expired oxygen

FICO2 Fraction of inspired carbon dioxide

FiO2 Fraction of inspired oxygen

HAS Heat alleviation strategy/strategies

HD Hot and Dry

HE Heat exhaustion

HH Hot and Humid

HS Heat stroke

LSBU London South Bank University

LV Left ventricular

MAP Mean arterial pressure

MBF Muscle blood flow

MAP maximal aerobic power

NBM Nude body mass

NHS National Health Service

O2 Oxygen

O2Hb Oxygenated haemoglobin

Q Cardiac output

RAP Right arterial pressure

RER Respiratory exchange ratio

PANAS Positive and negative affects schedule

PO Power output

RPE Rating of perceived exertion

SBF Skin blood flow

SDM Subjective decision making

SR Sweat rate

497 SV Stroke volume
$498 \quad \mathrm{~T}_{\text {core }}$ Core temperature

499 TM Task motivation
$500 \mathrm{~T}_{\text {rectal }}$ Rectal temperature
$501 \mathrm{~T}_{\mathrm{sk}}$ Skin temperature

502 TT Time-trial

503 VCO2 Carbon dioxide output

504 VE Volume expired

505 VI Volume inspired
$506 \mathrm{VO}_{2}$ Oxygen uptake
$507 \mathrm{VO}_{2 \text { max }}$ Maximum oxygen uptake
$508 \mathrm{VO}_{\text {2peak }}$ Peak oxygen uptake

509 WHO World Health Organisation

510 WBGT Wet-bulb globe temperature

511 WS wind speed

512 List of abbreviations - Units

513 au Arbitrary units
$518 \mathrm{HR}_{\text {MAX }}$ Maximum heart rate
$519 \mathrm{kcal} / \mathrm{min}^{-1}$ Kilocalories per minute

520 kg Kilograms
$521 \mathrm{ll} \mathrm{kg} / \mathrm{m}^{-2}$ Kilograms per metre squared

522 Kph Kilometres per hour
523 L Litres
$524 \mathrm{~L} / \mathrm{min}^{-1}$ Litres per minute

Lhr Litres per hour

526

List of Tables

Table 1. Table outlines literature search criteria for articles acceptance and rejection.

Table 2. Article characteristics (Sample, Condition and Task) of the 26 articles included in this review.

Table 3. Results from the article quality assessment based on the following criteria: 1=Inclusion criteria were clearly stated, 2=Subjects were randomly allocated to groups, $3=$ Intervention was clearly defined, 4=Groups were tested for similarity at baseline, 5=A control group was used (thermoneutral conditions), 6=Outcome variables were clearly defined, 7=Assessments were practically useful, $8=$ Duration of intervention was practically useful, $9=$ Between-group statistical analysis was appropriate, 10=Point measures of variability.

Table 4. Physical performance (power output and completion time/distance covered) in hot and dry (HD) and hot and humid (HH) conditions.

Table 5. Physiological responses during cycling time-trial in hot and dry(HD) and hot and humid (HH) conditions.

Table 6. Perceptual responses during cycling TTs in hot and dry (HD) and hot and humid (HH) conditions.

Table 7. Table outlines literature search criteria for articles acceptance and rejection.

Table 8. Article characteristics from the literature search including sample, condition, task and intervention.

Table 9. Results from the article quality assessment based on the following criteria: 1=Inclusion criteria were clearly stated, 2=Subjects were randomly allocated to groups, 3=Intervention was clearly defined, 4=Groups were tested for similarity at baseline, 5=A control group was used (thermoneutral conditions), $6=$ Outcome variables were clearly defined, $7=$ Assessments were practically useful, $8=$ Duration of intervention was practically
useful, $9=$ Between-group statistical analysis was appropriate, 10=Point measures of variability.

Table 10. Cycling time-trial performance in hot and dry (HD) and hot and humid (HH) conditions with cold-water ingestion, adapted from Taylor et al., (2016) review.

Table 11. Physiological responses such as rectal (Trectal)/core (Tcore) temperature, Tsk, sweat rate (SR) and heart rate (HR).

Table 12. Perceptual responses reported during cycling TT performance in hot and dry and hot and humid conditions.

Table 13. Ranges of urine specific gravity, urine osmolality and interpretation adapted from Cheuvron and Sawka (2005).

Table 14. Mean \pm SD differences in cyclists-triathletes and non-cyclist's sex ($F: M$), age (yrs), stature (cm), body mass (kg), body mass index ($\mathrm{kg} / \mathrm{m} 2$), $\mathrm{VO}_{\text {2peak }}\left(\mathrm{mL} . \mathrm{kg} . \mathrm{min}^{-1}\right)$, critical power (w) and prior experience (yrs)

Table 15. Mean \pm SD total distance and power output during the 30min cycling time-trial. Table 16. Cyclists-triathletes and non-cyclists overall mean \pm SD and 5 min segments for perceived exertion, affect, task motivation used with permission of Bayne et al., (2020). Table 17. cyclists-triathletes $(\mathrm{N}=6)$ overall mean \pm SD number of glances and in 5 min segments used with permission of Bayne et al., (2020). .

Table 18. Cyclists-triathletes $(\mathrm{N}=6)$ mean \pm SD time spent looking at multiple feedback represented as a percentage (\%) of overall time available in each 5 min block and 30 min time-trial used with permission of Bayne et al., (2020). .

Table 19. Mean \pm SD differences in cyclists-triathletes in each group for sex, age, stature, body mass, $\mathrm{VO}_{2 \text { max }}$, prior experience and weekly training.

Table 20. Mean \pm SD total distance and power output during the 30 min cycling time-trial.

Table 21. Mean \pm SD rectal temperature $\left({ }^{\circ} \mathrm{C}\right)$ during the preload and time-trial.

Table 22. Mean \pm SD (b. $\min ^{-1}$; \% of $\mathrm{HR}_{\max }$ at $\mathrm{VO}_{2 \max }$) HR during the preload and time-trial.

Table 23. Mean \pm SD Urine Specific Gravity (USG) and sweat rate (L.hr) values across all experimental trials.

Table 24. Mean \pm SD hours of sleep(hrs), quality of sleep, stress, fatigue and muscle soreness ratings across all trials using Hooper et al., (1995) markers for monitoring overtraining and recovery scale.

Table 25. Mean \pm SD ratings of perceived exertion (RPE), thermal comfort (TC), thermal sensation (TS), task motivation (TM) and affect (AF) during the 45 min preload and 30min cycling time-trial (A.U. (\% of max value on the scale).

Table 26. Participant Inclusion and Exclusion Criteria.
Table 27. Participant characteristics including number of participants, sex ratio (M:F), country participants live in, years of experience (yrs), number of competitions competed in, number of training sessions in hot conditions, percentage of group that have experienced symptoms related to heat related illnesses (\%). Table used with permission from Bayne et al., (2022).

Table 28. Athletes' classification and their most prevalent descriptive key terms.

Table 29. Mean \pm SD differences in cyclists-triathletes in each group for sex(M:F), age(yrs), stature (cm), body mass $(\mathrm{kg}), \mathrm{VO}_{2 \max }\left(\mathrm{~mL} . \mathrm{kg} \cdot \mathrm{min}^{-1}\right)$, maximal aerobic power at $\mathrm{VO}_{2 \max }(\mathrm{~W})$, prior experience(yrs) and weekly training(hrs).

Table 30. Mean \pm SD total distance (km) and power (W) during the 30min cycling time-trial.

Table 31. Mean \pm SD rectal temperature $\left({ }^{\circ} \mathrm{C}\right)$ during the preload and time-trial.

Table 32. Mean \pm SD (b. $\min ^{-1}$; \% of HRmax at $\mathrm{VO}_{2 \max }$) HR during the preload and time-trial.

Table 33. Mean \pm SD Urine Specific Gravity (USG) and sweat rate (L.hr) values across all experimental trials.

Table 34. Mean \pm SD hours of sleep(hrs), quality of sleep, stress, fatigue and muscle soreness ratings across all trials using Hooper et al., (1995) markers for monitoring overtraining and recovery scale.

Table 35. Mean \pm SD ratings of perceived exertion (RPE), thermal comfort (TC), thermal sensation (TS), task motivation (TM) and affect (AF) during the 45 min preload and 30 min cycling time-trial (A.U. (\% of max value on the scale).

List of Figures

Figure 1. Flowchart of literature search and screening process using PRISMA Protocol.
Figure 2. Flowchart of literature search and screening process using PRISMA Protocol.
Figure 3. Overview of the research question (black boxes) developed from the current literature review, and how the experimental studies within the thesis (light grey boxes) will answer these questions.

Figure 4. Laboratory set-up of $\mathrm{VO}_{2 \max }$ test using a cycle ergometer.
Figure 5. Laboratory set up of the road bike for the steady state and time-trial in study 2 and 4.

Figure 6. Picture of body cap pill and wireless monitor used to measure rectal temperature during study 2 and 4.

Figure 7. Perpetual scales included in study 2 and 4 from left to right (AF, RPE, TC, TM and TS).

Figure 8. Hooper et al., (199) original 1-7 scale for sleep, stress, fatigue and muscle soreness.

Figure 9. Head mounted eye tracker which was worn like glasses.

Figure 10. Illustrated structure of study design.

Figure 11. (A) multiple feedback (power, cadence, heart rate, elapsed time, speed, elapsed distance) and (B) single feedback (elapsed time) visual monitors provided throughout the time-trial.

Figure 12. Cyclists-triathletes (CTSF, cyclists-triathletes single feedback; CTMF, cycliststriathletes multiple feedback) and non-cyclists (NCSF, non-cyclists' single feedback; NCMF, non-cyclists multiple feedback) 5min segment mean \pm SD power output and pacing used with permission of Bayne et al., (2020). *denotes $P<0.05$.

Figure 13. Cyclists-triathletes $(N=6)$ overall mean $\pm S D$ total glance time (s) at power, time, heart rate, speed, distance and cadence. White circle markers denote group mean. Black diamond makers denote individual differences within the group used with permission of Bayne et al., (2020). .

Figure 14. Cyclists-triathletes ($N=6$) mean $\pm S D$ total glance time(s) in 5min segments at power (A) and time(B). White circle markers denote group mean. Black diamond markers denote individual differences within the group used with permission of Bayne et al., (2020)..

Figure 15. Illustrated structure of Study 2 design outlining that participants were invited to the laboratory for 3 visits.

Figure 16. Illustrated figure of experiment trials in study 2 with key. Trectal = rectal temperature, $T_{\text {sk }}=$ skin temperature, $H R=$ heart rate, $U S G=$ urine specific gravity, map = mean aerobic power, subjective measures $=$ Ratings of perceived exertion, thermal sensation, thermal comfort, and affect.

Figure 17. 5 min mean \pm SD power output during 30min cycling time-trial in hot and dry conditions (A) and hot and humid conditions (B). Con $=$ thermoneutral, hot $=$ hot and dry or hot and humid, and (C) mean \pm SD power output during 30min cycling time-trial in hot and dry
and hot and humid conditions (white = group 1 (hot and dry), grey = group 2 (hot and humid).

Figure 18. Mean $\pm S D$ rectal temperature $\left({ }^{\circ} \mathrm{C}\right)$ values during the 45 min preload and 30 min time-trial in A) hot and dry conditions and B) hot and humid conditions. CON= Control condition, $\mathrm{HOT}=$ hot condition (dry or humid)

Figure 19. Methodological flow chart of the study design. Grey boxes = data collection; white boxes $=$ participants.

Figure 20. Question design outlining the page by page flow. Blue boxes = page number, section number and focus. Dashed lines =custom pathways between pages, for example in 'page 4, section 3 - prior knowledge in the area' if the participants selected that they used the same strategy regardless of environmental condition they would be taken on a different pathway and answer the questions on 'heat alleviation strategies in all hot conditions' rather than hot and dry and hot and humid.

Figure 21. Potential factors influencing perceived heat strain during cycling in hot conditions based on the experiences of 3 cyclists-triathletes. Themes are shaded in grey boxes and subthemes are in white boxes.

Figure 22. (A) Perceived difference between hot and dry and hot and humid conditions, (B) perceived condition with the greatest thermal stress, and (C) approach to using the same or different strategies in hot and dry and hot and humid conditions based off perceived thermal strain. Figure used with permission of Bayne et al., (2022)

Figure 23. (A) Strategies employed in hot and dry conditions by 60\% ($N=21$) participants who use different strategies depending on condition, (B) strategies employed in hot and humid conditions by $60 \%(N=21)$ participants who use different strategies depending on condition, and (C) strategies employed in all hot conditions by $40 \%(N=14)$ participants who employed the same strategy regardless of condition. Figure used with permission of Bayne et al., (2022).

Figure 24. Timing of cooling strategies employed in hot and dry conditions by $60 \%(N=21)$ participants who use different strategies depending on condition, (B) timing of cooling strategies employed in hot and humid conditions by $60 \%(N=21)$ participants who use different strategies depending on condition, and (C) timing of strategies employed in all hot conditions by $40 \%(N=14)$ participants who employed the same strategy regardless of condition.

Figure 25. (A) How the type and timing of strategies employed in hot and dry conditions by $60 \%(N=21)$ participants who use different strategies depending on condition were established, (B) how the type and timing of strategies employed in hot and humid conditions by $60 \%(N=21)$ participants who use different strategies depending on condition were established, and (C) how the type and timing of strategies employed in in all hot conditions by $40 \%(N=14)$ participants who employed the same strategy regardless of condition were established.

Figure 27. Illustrated structure of study design outlining the 4 experimental trials completed within each group ((i) thermoneutral and no cooling, (ii) hot with no cooling, (iii) hot with coldwater ingestion, and (iv) hot with cold-water pouring).

Figure 28. Illustrated figure of experiment trials in study 4 with key above. $T_{\text {rectal }}=$ rectal temperature, $T_{s k}=$ skin temperature, $H R=$ heart rate, USG = urine specific gravity, map = mean aerobic power, subjective measures = Ratings of perceived exertion, thermal sensation, thermal comfort, and affect. In non-cooling trials the water bottle icon represents hydration timings so that trials were matched for hydration status.

Figure 29. 5 min mean \pm SD power output during 30min cycling time-trial in hot and dry conditions (A) and hot and humid conditions (B). Con = thermoneutral, hot $=$ hot and dry or hot and humid, drink = cold-water ingestion, pour = cold-water pouring.

Figure 30. Mean \pm SD rectal temperature $\left({ }^{\circ} \mathrm{C}\right)$ values during the 45 min preload and 30 min time-trial in A) hot and dry conditions and B) hot and humid conditions. CON= Control
condition, HOT = hot condition with no cooling, DRINK = cold-water ingestion, POUR = coldwater pouring.

List of Publications

Jodie N. Moss, Freya M. Bayne, Federico Castelli, Mitchell R. Naughton, Thomas C. Reeve, Steven J. Trangmar, Richard W.A. Mackenzie, and Christopher J. Tyler. (2019) Short- and medium-term isothermic heat acclimation. European Journal of Applied Physiology.

Bayne F, Racinais S, Mileva K, Hunter S and Gaoua N (2020) Less Is More-CyclistsTriathlete's 30 min Cycling Time-Trial Performance Is Impaired With Multiple Feedback Compared to a Single Feedback. Frontiers in Psychology. 11:608426. doi: 10.3389/fpsyg.2020.608426.

Bayne, F., Racinais, S., Mileva, K.N., Hunter, S. and Gaoua, N., (2022). The Type of PerCooling Strategies Currently Employed by Competitive and Professional Cyclists-Triathletes During Training and Competition Are Condition (Dry vs Humid) Dependent. Frontiers in Sports and Active Living, p.137.

Conference Proceedings

Bayne F, Racinais S, Mileva K, Hunter S and Gaoua N (2020) Less Is More-CyclistsTriathlete's 30 min Cycling Time-Trial Performance Is Impaired With Multiple Feedback Compared to a Single Feedback. In. European College of Sport Sciences, Seville, Spain, September 2022.

Chapter 1. General Introduction

Cycling performance is commonly evaluated as time to exhaustion (TTE) at a constant load (Ely et al., 2010; Peiffer and Abbiss, 2011) or as power output (PO) maintained during a simulated time-trial (TT; Tucker et al., 2004). Both TTE and TT are markedly impaired in hot conditions when compared to thermoneutral/control conditions. For example, Galloway and Maughan (1997) investigated TTE $\left(70 \%\right.$ of $\left.\mathrm{VO}_{2 \max }\right)$ in four temperatures $3.6 \pm 0.3,10.5 \pm 0.5$, 20.6 ± 0.2, and $30.5 \pm 0.2^{\circ} \mathrm{C}$ with a relative humidity (RH) of $70 \pm 2 \%$, reporting that TTE was shortest at $30.5^{\circ} \mathrm{C}(51.6 \pm 3.7 \mathrm{~min})$ and longest at $10.5^{\circ} \mathrm{C}(93.5 \pm 6.2 \mathrm{~min})$. However, exercise intensity in this study was at a constant load (a modality that does not allow power regulation based on physiological responses and perception), and thus self-paced methodologies have been used in more recent studies. Self-paced TTs in hot and humid conditions ($\mathrm{HH} ; 35^{\circ} \mathrm{C}$, $60 \% \mathrm{RH}$) are impaired in comparison to thermoneutral ($18^{\circ} \mathrm{C}, 40 \% \mathrm{RH}$) (Periard and Racinais, 2016). Most studies have investigated the consequences of heat alone, not the combined consequences of heat and humidity (i.e., tropical climate). Yet the tropical climate, which is characterized by a temperature of about $30^{\circ} \mathrm{C}$ and a hygrometry level exceeding 70% RH can be considered an environmental stressor (Robin, Coudevylle, Hue, \& Sin napah, 2017). Therefore, it is unclear whether cycling TT performance is impaired further in HH compared to hot and dry (HD). In humans, heat loss by evaporation occurs as a result of a difference in humidity between the skin surface, which is physiologically moistened by eccrine sweating, and ambient air (Jay and Morris, 2018). Thus, in circumstances where all sweat does not readily evaporate and residual sweat sits on the skin (e.g. exercise coupled with high humidity), thermoregulation is challenged (Jay and Morris, 2018). As such, the first aim of this thesis was to characterise the effect of HD and HH conditions on cycling time-trial performance.

In an attempt to mitigate heat-related impairments in aerobic exercise, athletes and sports practitioners regularly employ different cooling strategies both before (pre-cooling) and during (per-cooling) exercise (Binger et al., 2015; Ruddock et al., 2017). Research has
shown that pre-cooling athletes, using cold water immersion $\left(2-20^{\circ} \mathrm{C}\right)$ (Duffield et al., 2010; Minett et al., 2011), ice vests applied to the torso (Cotter et al., 2001) or neck cooling collars (Tyler and Sunderland, 2011; Sunderland et al., 2015) blunts heat related decrements in performance (Bongers et al., 2015). While likely beneficial, most of these interventions are not particularly feasible in low-resource environments (such as away games, competition in remote areas and amateur sport) and have limited application as a cooling strategy during exercise, especially competition. Arguably, the most practical cooling solution is the ingestion of cold water or an ice slurry (cold water mixed with crushed ice) before and/or during exercise. The evidence supporting the efficacy of ice slurry or cold $\left(10^{\circ} \mathrm{C}\right)$ water ingestion for improving endurance exercise performance in hot conditions when employed as a precooling, per-cooling, or recovery between bouts strategy has been comprehensively reported (Jay and Morris, 2018). However, in competition/race settings, it is common to see athletes using pit stops, or water provided on their bikes to ingest or pour over themselves in attempt to cool themselves down whilst competing in hot conditions (Morris and Jay, 2016). However, it is unclear as to whether these strategies actually reduce the amount of heat stored inside the body during exercise in hot conditions, even at a fixed metabolic rate. Therefore, the second aim of thesis was to investigate the effect of both cold-water ingestion and pouring on cycling time-trial performance HD and HH conditions. This information will inform coaches and athletes on cooling strategies to use during major international sporting events such as Los Angeles 2028.

Chapter 2. Narrative Review - Cycling performance in hot conditions (Dry vs Humid)

2.1. Cycling Performance and External Factors

Cycling performance is often characterised by power output (PO), with its relative changes (\% of max) used to characterise pacing strategies when applicable. For example, to avoid premature physical fatigue and associated performance decrements, cyclists' pace themselves by adjusting(i.e. increase, maintain, decrease) physical aspects of their performance such as PO, speed or energy expenditure (EE) across an event (Abbiss and Laursen, 2008). The alterations in pacing strategies are negatively affected by external factors such as hot conditions (Junge et al., 2016), hypoxia (Périard and Racinais, 2016), inaccurate feedback (Davies et al., 2016), manipulated feedback/deception (Jones et al., 2016), no feedback/blind (Davies et al., 2016). In addition, cyclists-triathletes' commonly receive feedback verbally (via headpiece from coach) or visually (via wireless network sensors on their bike) during training and/or competition. Therefore, type and quantity of feedback will be considered.

The overall aim of this thesis was to investigate the effect of cold-water ingestion and pouring on 30min cycling time-trial performance in hot and dry, and hot and humid environmental conditions. Therefore, this review is separated into two sections: (I) Cycling performance in hot conditions and (ii) Cycling performance in hot conditions with per-cooling.

2.1.1. Defining Heat Stress and Heat Strain.

The term "hot conditions" has been used to describe a wide range of environmental conditions, for example in Junge et al., (2016) review the term "hot conditions" is used to describe ambient temperatures of $\sim 32-40^{\circ} \mathrm{C}$, humidity of $\sim 14-60 \% \mathrm{rH}$, and wind speed of $0.5-11 \mathrm{~m} . \mathrm{s}$. As a result of this, Junge et al., (2016) concludes that self-paced cycling performance is impaired in "hot conditions" compared to thermoneutral/control conditions $\left(\sim 20^{\circ} \mathrm{C}\right.$ in power output). All impairments were characterized by a progressive decline in PO
which has been consistently supported in the literature (Périard and Racinais, 2019 pp 246247). However, the impairment varied by $\sim 2-25 \%$ between the reviewed studies. This variation in impairment cannot be solely dependent on the environmental condition as task duration, fitness level, experience, feedback provided have all been identified as factors that can influence pacing. However, if researchers are aiming to determine the effect of environmental conditions on cycling performance (physical and mental), the term "hot condition" must (i) be defined, and (ii) measured in the same way globally.

2.1.1.1. Heat Stress

According to Taylor, (2014) the most common environmental factors reported in a laboratory setting are:

- Ambient temperature $\left({ }^{\circ} \mathrm{C}\right)$
- Relative Humidity (\%)
- Air velocity/Wind speed (m.s)
- Solar radiation (W/m 2). Notably, radiation is reported in few laboratory studies due to the difficulty in replicating outdoor conditions.

When two or more of these environmental factors are combined at a level that disrupts homeostasis (i.e. thermal equilibrium within the body equalling $\sim 37^{\circ} \mathrm{C}$ core temperature) they are classed as a "stressor" or "heat stress". Examples of this can be seen when an organism is subjected to conditions of high exogenous thermal load or are producing large amounts of metabolic heat during high intensity dynamic exercise. To categories heat stress, Yaglou and Minard (1957) combined ambient temperature, humidity, wind speed and radiation to create a heat stress index called wet-bulb globe temperature (WBGT). The aim of this index was to be the "first approximation of the heat stress on a person" (ISO 7243, 2017). WBGT is computed as a weighted average of the dry-bulb ambient temperature, natural wet-bulb temperature (Tw; ambient temperature and relative humidity), and globe temperature (Tg ; indicates radiant heat) as follows:

WBGT $=0.7 \mathrm{~T}_{\mathrm{w}}+0.2 \mathrm{~T}_{\mathrm{g}}+0.1 \mathrm{~T}_{\mathrm{a}}$ (Hosokawa et al., 2019)

A WBGT of $34^{\circ} \mathrm{C}$ positively correlated with exertional heat illnesses (EHI) and exertional heat stroke (EHS) incidence and mortality (Heidari et al., 2020). Therefore, WBGT has been used globally by sporting governing bodies such as Union Cycliste Internationale (UCI) to subjectively decide on whether to reschedule, shorten, or cancel an event (Périard and Racinais, 2019 pp 256). However, Junge et al., (2016) evaluated WBGT in the context of cycling TTs, reporting that WBGT failed to predict the impact of environmental heat stress on prolonged self-paced cycling performance. It was purported that WBGT does not sufficiently afford wind speed an important enough weighting in the formula, as trained cyclists travel at speeds greater than $10 \mathrm{~m} \mathrm{~s}^{-1}\left(36 \mathrm{~km} \mathrm{~h}^{-1}\right)$ when cycling outdoors on flat terrain. An elevated speed such as this can enhance convective and evaporative heat loss.

Grundstein et al., (2015) also found a fault with WBGT, outlining that an ambient temperature and relative humidity of $28^{\circ} \mathrm{C}$ and $60 \% \mathrm{rH}$, and $36^{\circ} \mathrm{C}$ and $15 \% \mathrm{rH}$ would both constitute to a WBGT of $28^{\circ} \mathrm{C}$ despite contrasting levels of humidity. Vanos, and Grundstein, (2020) supported these findings stating that equivalent WBGT values occurred across different environmental conditions (warm and humid versus hot and dry), which resulted in different abilities to cool the body during times of heat stress. It was purported that hot and dry (HD) conditions offered a 13\%-17\% greater ability to cool than warm and humid conditions at an equivalent WBGT value of $32.38^{\circ} \mathrm{C}$ and activity wind speed of $0.3-0.7 \mathrm{~m} \cdot \mathrm{~s}^{-1}$. This is related to the impairment in evaporation in hot and humid conditions as a result of the greater water vapour content in the air causing sweat to remain on the skin surface rather than evaporating as it does in hot and dry conditions.

As a result of the recently highlighted concerns with using WBGT as a measurement of heat stress in sports such as cycling, researchers should seek to develop a satisfactory index for heat stress that takes into account (i) wind speed whilst cycling (Junge et al., 2016) and (ii) differences in humidity so that the index evokes the same physiological response for all combinations of its constituent variables (Vanos, and Grundstein, 2020). Taking humidity
into consideration is key for sporting events such as the Tokyo 2021 Olympics because humid conditions are much more physiologically stressful than dry conditions (Lei et al., 2021). Despite this understanding and succinctly summarized biophysics and thermoregulatory differences between dry and humid conditions in Lei et al., (2021) article, the research in both dry and humid conditions is far from complete. In fact, current studies have yet to determine and compare the exact (i) degree of performance impairments (\%) in both conditions, and (ii) heat alleviation strategy that is best suited for endurance performance and thermoregulatory function in both conditions. If this approach (separating HH (>50\%) and HD) was applied to Jung et al., (2016) review, the results would show that HH has a greater impairment on PO (2-22\%) compared to HD (11-25\%) when compared to thermoneutral/control conditions. To contribute to the understanding of heat stress on cycling performance (physical and mental), heat stress will be reported as ambient temperature, humidity and wind speed with conditions separated by humidity (HD vs HH) in this thesis.

2.1.1.2. Heat Strain - Physiological

The impairment in physical performance in hot conditions (not specific to humidity) has historically been accompanied by physiological and perceptual responses (Periard and Racinais, 2019, pp.245). These responses can be described as "heat strain" as they are affected by the magnitude of heat stress and the extent that homeostasis is disturbed (Travers, unpublished work).

Physiological responses can be separated into thermoregulatory, cardiovascular and metabolic. A common trend in thermoregulatory responses during cycling in hot ambient temperatures (not specific to humidity or wind speed) are an increase in core temperature ($\mathrm{T}_{\text {core }}$)/rectal temperature ($\mathrm{T}_{\text {rectal }}$), skin temperature $\left(\mathrm{T}_{\text {sk }}\right.$) and sweat rate (SR). The greater the disturbance in homeostasis (variation in $\mathrm{T}_{\text {core }} / \mathrm{T}_{\text {rectal }}$ from resting values of $\sim 37^{\circ} \mathrm{C}$; Benzinger, 1969) the greater the heat strain experienced.

Cardiovascular responses stem from a thermoregulatory redistribution of blood towards the periphery and a temperature-mediated increase in intrinsic heart rate (HR), which contribute to compromise central blood volume and the maintenance of cardiac output (Rowell, 1974). Although cutaneous blood flow reaches a virtual plateau, or upper limit when a $\mathrm{T}_{\text {core }}$ of $\sim 38 \mathrm{C}$ is attained during exercise (Brengelmann et al., 1977), a significant volume of blood perfuses peripheral vascular beds (Rowell, 1974). Moreover, for each 1 C elevation in $\mathrm{T}_{\text {core }}$, a ~7 b. min^{-1} increase in HR occurs during passive heat stress (Jose et al., 1970). This suggests that the greater increase in HR during exercise in the heat may stem in part from the direct effects of temperature on cardiac nodal cells, along with adjustments in autonomic nervous system activity (i.e. sympathetic activation and parasympathetic withdrawal; Gorman et al., 1984). Thus, the metabolic and thermoregulatory requirements associated with cycling under heat stress appear to interact and alter cardiac function, modify the distribution of cardiac output, and/or compromise the ability to sustain adequate blood pressure (Rowell, 1986). Moreover, Sawka et al. (2012) have highlighted that high $\mathrm{T}_{\text {sk }}$ alone may impair aerobic performance, such as prolonged self-paced cycling. This occurs as hot skin narrows the core-to-skin temperature gradient, which increases peripheral thermoregulatory blood flow requirements and in turn circulatory strain-reducing cardiac filling and elevating HR for a given cardiac output (Cheuvront, 2010; Rowell, 1986). As outlined above, the increased cardiovascular strain associated with high $\mathrm{T}_{\text {sk }}$ may contribute to modulate performance in advance of a rise in $T_{\text {core }} / T_{\text {rectal }}$ (i.e. hyperthermia).

The most common physiological responses measured in a laboratory setting are $T_{\text {core }} / T_{\text {rectal }}$, $T_{s k}, S R, H R$. Therefore, these physiological measurements will be the main focus of the literature review and thesis.

It should be noted that the way humans handle or respond heat stress and subsequent heat strain can be influenced by fitness level and previous experience of that stressor and strain. For example, Racinais et al., (2019) reported $\mathrm{T}_{\text {core }}$ values of $\geq 41.5^{\circ} \mathrm{C}$ in elite cyclists during the 2016 UCI Road World Championships without suffering any heat related illnesses.

Based on this understanding, physiological responses (i.e. core temperature) alone are not sufficient enough to understand the effects of hot conditions on cycling performance and health in experienced cyclists-triathletes, especially elite/professional. Therefore, we must also consider perceptual responses to determine heat strain experienced.

2.1.1.3. Heat strain - Perceptual

Common perceptual responses measured during cycling performance in hot conditions (not humidity specific) are ratings of perceived exertion (RPE), thermal sensation (TS), thermal comfort (TC), affect (AF), motivation.

RPE is a subjective rating of an athlete's exertion are a good indicator as to how hard a performance was and are a simple measurement for coaches and practitioners to assess during training and competition(Borg, 1998).

Thermal comfort refers to how comfortable a person feels (Gagge et al., 1967), whereas thermal sensation is how hot or cold a person feels (Young et al. 1987) in the surrounding environment in reference to ambient temperature and humidity.

Affect refers to how a person feels (Hardy \& Rejeski, 1989). In regard to exercise, Parfitt, et al., (1994) observed a significantly greater positive affect 5 min postexercise compared to the last 20 sec of exercising at moderate to high intensities. This suggests that affect is influenced by level of physical exertion.

Motivation can be defined as "the investigation of the energ-isation and direction of behaviour" (Roberts \& Treasure, 2001, p. 6). Thus, it comprises the reasons or forces that influence behaviour. Briefly, motivation is commonly separated into two categories; internal/intrisnic motives (i.e. need for companionship) and/or external/extrinsic events (i.e. prize money) or amotivation (i.e. unmotivated by anything; Mallett \& Hanrahan, 2004) or Therefore, perceptual responses should be measured to help characterise heat stress and/or heat strain experienced during exercise in hot conditions.

In summary, the literature on cycling performance in hot conditions encompasses a wide range of ambient temperatures, humidity and wind speeds. Therefore, this literature review aims to investigate cycling TT performance in HD and HH conditions and characterise the performance response. This was done by reviewing literature in the area and identifying trends in pace (power output) and performance (completion time or distance covered). Secondly, heat strain experienced during cycling TTs can be characterised by physiological and perceptual responses. Therefore, this narrative review aimed to characterise these responses during cycling TTs in HD and HH conditions. This was done by extracting physiological ($T_{\text {core }} / T_{\text {rectal }}, T_{\text {sk }}, H R, S R$) and perceptual responses (RPE,TC,TS,AF, motivation) reported during cycling TTs.

2.2. Literature Search

A literature search was carried out in Google scholar, research gate, Scopus. The following search terms were combined to search for the full text of experimental articles published after 2000 and before January 2020: The following search terms were used: "Cycling" OR "Time-trial" OR "Self-paced" OR "Pacing" AND "Heat" OR "Hot", "Humid", "Dry".

Firstly, titles were assessed for relevance to the topic and selected if they met the inclusion criteria outlined in Table 1. This process was repeated for abstracts and full texts. In addition to the literature search, references were scanned for further relevant articles and were included if they met the inclusion criteria.

2.2.1. Inclusion/exclusion Criteria

Table 1. Table outlines literature search criteria for articles acceptance and rejection.

Inclusion	Exclusion
Published between 2000-2020	Published before 2000 and after 2020
Full text available	No full text available
Written in the English Language.	No English source available
Experimental peer-reviewed research article	Not original or peer-review article
Human population	Animal population
Healthy non-acclimated participants.	Clinical or occupational setting, notable mental or physical

	impairments (i.e. diseases, loss of motor function) and/or heat acclimatised population (Exposure to $>30^{\circ} \mathrm{C}$ in the last 30 days)
Male	Female, transgender.
Assessment of at least one of the following parameters: Trectal, $\mathrm{T}_{\text {core, }}$ Tsk, SR, HR, PO, completion time, DC.	No performance or physiological parameters measured
Self-paced cycling completed	No self-paced cycling completed
Inclusion of at least one task related and unmanipulated feedback variable (elapsed time, distance, HR, PO, cadence, or speed)	Manipulation of feedback, or irrelevant feedback to the task given
Adult participants ($\geq 18 \mathrm{yrs}$)	Children participants (<18yrs)
Ambient temperatures $\geq 28^{\circ} \mathrm{C}$	Ambient temperatures <28응

$T_{\text {rectal }}=$ rectal temperature, tcore $=$ core temperature, $T_{s k}$, skin temperature, $S R=$ sweat rate, $H R=$ heart rate, $P O=$ power output, $D C=$ distance covered.

In this review the thresholds for thermoneutral, HD and HH conditions were set as $21^{\circ} \mathrm{C}$, $\leq 50 \%, \geq 28^{\circ} \mathrm{C}, \leq 50 \%$ and $\geq 28^{\circ} \mathrm{C}, \geq 51 \%$ respectively. These thresholds were based off previous literature review criteria's on the topic (Vanos, and Grundstein, 2020; Coudevylle et al., 2021)

2.2.2. Outcome measures

The outcome measures extracted from the eligible articles were:

1. Article characteristics - Number of participants, sex ratio (M:F), Group $\mathrm{VO}_{2 \max }$ (mL.kg.min ${ }^{-1}$)
2. Task and conditions - Task (duration or intensity), indoor/outdoor, ambient temperature $\left({ }^{\circ} \mathrm{C}\right)$, relative humidity $(\%)$, wind speed $(\mathrm{m} / \mathrm{s})$, WGBT $\left({ }^{\circ} \mathrm{C}\right)$, feedback given.
3. Physical performance - Power Output (W, Completion time (min)/distance (km), PO improvement with intervention (\%), Completion time improvement with intervention ()
4. Physiological responses - Rectal/core temperature $\left({ }^{\circ} \mathrm{C}\right)$, skin temperature $\left({ }^{\circ} \mathrm{C}\right)$, sweat rate (L.hr), heart rate (b. min^{-1}).
5. Perceptual responses - Ratings of perceived exertion (\% of max), thermal sensation (\% of max), thermal comfort (\% of max), affect (\% of max), task motivation (\% of max).

Figure 1. Flowchart of literature search and screening process using PRISMA Protocol.

2.2.3. Article Characteristics

Of the 26 articles included in this report, 15 incorporated a cycling TT in HD (Table 2). 9 of the articles in HD conditions included a control/thermoneutral condition (Peiffer and Abbiss 2011; Schlader et al., 2011; Keiser et al., 2015; Schmit et al., 2016; Racinais et al., 2015b; VanHaitsma et al., 2016; Kent et al., 2018; Munten et al., 2018; English et al., 2019), 4 were the control condition as a result of interventions (i.e. cooling and/or supplementation; AlHorani et al., 2018; Mejuto et al., 2018; Faulkner et al., 2019; Osborne et al., 2019) and 2 compared performance in HD and HH conditions (Teunissen et al., 2013; Lei et al., 2020) 11 articles incorporated a cycling TT in HH conditions (Table 2). 7 of the articles in HH conditions included a control/thermoneutral condition (Watson et al., 2005; Roelands et al., 2008a; 2008b; Periard et al., 2011a; Periard and Racinais 2015a; Periard and Racinais 2015b; Periard and Racinais 2016). Whereas, 4 of the articles in HH conditions were the control condition as a result of interventions (i.e. cooling and/or supplementation; Cramer et al., 2015; Che Jusoh et al., 2016; Schulze et al., 2016; Maia-Lima, et al., 2017) and 2 article compared HD and HH conditions (Teunissen et al., 2013; Lei et al., 2020).

Table 2. Article characteristics (Sample, Condition and Task) of the 26 articles included in this review.

Condition	Authors	Sample			Condition			Task	
		Participant (N)	Sex Ratio (M/F)	$\underset{\min -1)}{\mathrm{VO}_{2 \max }(\mathrm{~mL} . \mathrm{kg} .}$	Environmental condition (${ }^{\circ} \mathrm{C}$, $\%, \mathrm{~m} / \mathrm{s}$)	WBGT (${ }^{\circ} \mathrm{C}$)	Setting (Indoor/Outdoor)	Exercise Length	Feedback given.
Dry	Peiffer and Abbis (2011)	9	9:0	60.5 ± 4.5	$\begin{gathered} 32,40,8.9 \\ (17,40,8.9) \end{gathered}$	$\begin{aligned} & 24.6 \\ & \text { (12) } \end{aligned}$	Indoor	40km TT	Visual elapsed distance.
Dry	Peiffer and Abbis (2011)	9	9:0	60.5	$\begin{gathered} 27,40,8.9 \\ (17,40,8.9) \end{gathered}$	$\begin{aligned} & 21.2 \\ & (12) \end{aligned}$	Indoor	40km TT	Visual elapsed distance.
Dry	Schlader et al., (2011d)	11	11:0	59.8 ± 11.6	$\begin{gathered} 40,14,1.5(20.4 \\ \pm 0.7^{\circ} \mathrm{C}, 24 \% \pm \\ 7 \%) \end{gathered}$	$\underset{)}{26.5(16.3}$	Indoor	30 min	Visual elapsed time.
Dry	$\begin{gathered} \text { Teunissen et al., } \\ (2013) \end{gathered}$	7		-	33,40	26.5	Indoor	15 min at starting at 80W and increased by 20W every 3min, followed by 15 km TT	Visual elapsed distance.
Dry	$\begin{aligned} & \text { Keiser et al., } \\ & (2015) \end{aligned}$	8		61.2 ± 4.4	$\begin{gathered} 38,30,3 \\ (18,30,3) \end{gathered}$	$\begin{gathered} 28.1 \\ (12.1) \end{gathered}$	Indoor	30min	Visual power output and elapsed time.
Dry	Racinais et al., (2015b)	9	9:0	62.1 ± 28.6	$\begin{gathered} 36.0 \pm 0.4^{\circ} \mathrm{C}, \\ 13 \pm 1 \%, 6.8 \\ \left(8.2 \pm 3.5^{\circ} \mathrm{C}, 30 \pm\right. \\ 8 \%, 6.0) \end{gathered}$	22.6(3.6)	outdoors	43.4 km	Visual HR, power output, speed, and elapsed distance.
Dry	VanHaitsma et al., (2015)	20		54.8 ± 5.9	$\begin{gathered} 35,25,0.5(21 \\ \left.{ }^{\circ} \mathrm{C}, \sim 20 \%\right) \end{gathered}$	$\underset{)}{25.4(13.6}$	Indoor	40km	Visual power output, speed, cadence and elapsed distance.
Dry	Schmit et al., (2016)	12 (22)	22:0	$\begin{gathered} 62.2 \pm 3.6(63.3 \\ \pm 2.1) \end{gathered}$	$\begin{gathered} 35,50,12.5 \\ \left(21^{\circ} \mathrm{C}, 50 \%,\right. \\ 12.5) \end{gathered}$	$\begin{gathered} 28.6 \\ (16.4) \end{gathered}$	Indoor	20km	Visual elapsed distance.

Dry	Al-Horani et al., (2018)	9		43.0 ± 5.2	33,40,2.77	25.7	Indoor	16.1 km	Not reported.
Dry	Mejuto et al., (2018)	7		59.54	32, 50	26.9	Indoor	10km TT	Visual elapsed distance.
Dry	Kent et al., (2018)	12		65.8 ± 5.5	$\begin{gathered} 34.9 \pm 0.3^{\circ} \mathrm{C} \\ 48.0 \pm 1.9 \% \\ (21,52) \end{gathered}$	$\begin{aligned} & \sim 29.2(17 . \\ & \text { 2) } \end{aligned}$	Indoor	14kj.kg-1	Not reported.
Dry	$\begin{gathered} \text { English et al., } \\ (2019) \end{gathered}$	12	3 women, 9 men)	49 ± 8	$\begin{gathered} 36,50\left(21^{\circ} \mathrm{C},\right. \\ 50 \%) \end{gathered}$	$\begin{gathered} 30.4 \\ (17.1) \end{gathered}$	Indoor	30 min at 50% $\mathrm{VO}_{2 \text { max }}$ followed by a 5 min rest and 15 min TT	Verbal elapsed time from researcher at 5, 10, 12, 13, 14, 14.30 and 14.50 min
Dry	Faulkner et al., (2019)	9		60.6	27,50.7	22.4	Indoor	902.9さ127.6kj	Visual work done, target workload and a graphical representation of fluctuations in power output.
Dry	Faulkner et al., (2019)	9		61.3	35,50.6	29.6	Indoor	$902.9 \pm 127.6 \mathrm{kj}$	Visual work done, target workload and a graphical representation of fluctuations in power output
Dry	Osborne et al., (2019)	12		610 ± 6.2	35,50	29.5	Indoor	20km TT	No feedback.
Dry	Racinais et al., (2019)	5-7		-	37,25	29.7	Outdoor TT	40km TT	Not reported.
Dry	Racinais et al., (2019)	3-10		-	37,25	29.7	Outdoor TT	40km	Not reported.

Dry	Racinais et al., (2019)	1-3		-	37,25	29.7	Outdoor Road Race	257.5 km	Not reported.
Dry	Lei et al., (2020)	14		59 ± 9	35,50, 5.27	28.7	Indoor	30 min TT	Elapsed work done on completion of every 20\%. (not stated whether it was visual or verbal).
Humid	Roelands et al., (2008a)	8	8:0	-	$\begin{aligned} & \hline 30,50-60 \% 0.5 \\ & (18,50-16,0.5) \end{aligned}$	$\begin{gathered} 31.1 \\ (14.5) \end{gathered}$	Indoor	predetermined amount of work equal to 30 \min at 75% Wmax as quickly as possible.	No feedback provided.
Humid	Roelands et al., (2008b)	9	9:0	-	30, 50-60\%, 0	31.1	Indoor	predetermined amount of work equal to 30 \min at 75% Wmax as quickly as possible.	No feedback provided.
Humid	$\begin{aligned} & \text { Périard et al., } \\ & (2011 \mathrm{a}) \end{aligned}$	8	8:0		$\begin{gathered} \hline 35,60,3.47(20, \\ 40,3.47) \end{gathered}$	30.2(14.6	Indoor	40km	verbal feedback at 95% to finish the time trial at maximal effort.
				66.4 ± 6.3					
Humid	Périard and Racinais (2015a)	10	9:1	-	$35^{\circ} \mathrm{C}, 60 \%$, $0.14 \mathrm{~m} / \mathrm{s}$ (18, $40 \%, 0.14 \mathrm{~m} / \mathrm{s}$)	$\begin{gathered} 30.7(13.5 \\) \end{gathered}$	Indoor	$\begin{aligned} & 4 \times 16.5 \text {-min time trials } \\ & \text { interspersed by } 5 \text { min } \\ & \text { of passive/active } \\ & \text { recovery (} \sim 75 \mathrm{~W}) \text {. } \end{aligned}$	Visual elapse distance every 5 min and verbal encouragement was given, and visual display (power, heart rate, cadence, speed, elapsed distance) was revealed to in the last 1.5 min of each 16.5 min TT.
Humid	Périard and Racinais (2015b)	11		57.1 ± 5.13	35,60,4	30.2	Indoor	750 kJ	Work completed each 10% and verbal feedback at 95% to finish the time trial at maximal effort.
Humid	$\begin{gathered} \text { Watson et al., } \\ (2005) \end{gathered}$	9		67.8 ± 7.5	30,55,0.5	25.3	Indoor	60 min at 55% of Wmax followed by 30 min TT	No feedback provided.

Humid	$\begin{aligned} & \hline \text { Teunissen } \\ & \text { et al., (2013) } \end{aligned}$	10	10:0	-	28,80	26.2	Indoor	15 min at starting at 80 W and icreased by 20W every 3min, followed by 15 km TT	Elapsed distance.
Humid	$\begin{aligned} & \text { Teunissen et al., } \\ & \text { (2013) } \end{aligned}$	10	10:0	-	33,80,4m/s	30.9	Indoor	15 min at starting at 80W and increased by 20W every 3 min , followed by 15 km TT	Elapsed distance.
Humid	Periard and Racia nis, (2016)	12		${ }^{-}$	35,60,3.47	30.2	Indoor	750kJ	Visual 10\% of elapse work completed and kilojoule countdown was provided upon reaching the last 3\% until completion.
Humid	Che Jusoh et al., (2016)	8		65 ± 10	$30 \pm 2,78 \pm 3,5.55$	27.8	Indoor	15 min	Elapsed time every 3 mins .
Humid	Maia-Lima, et al., (2017)	8		55.7 ± 7.88	35,68,0.5	31.5	Indoor	30km	Visual elapse distance.
Humid	Lei et al., (2020)	14	14:0	59 ± 9	$\begin{gathered} 29.2 \pm 0.2^{\circ} \mathrm{C}, 69.4 \\ \pm .0 \%, \\ 5.27\left(34.9 \pm 0.2^{\circ}\right. \\ \mathrm{C} \\ 50.1 \pm 1.1 \%, 5.27) \end{gathered}$	26 (28.7)	Indoor	30 min TT	Elapsed work done on completion of every 20% (not stated whether visual or verbal)..

WBGT = Wet-bulb Globe Temperature

2.2.4. Quality Assessment

The methodological quality of the articles included in this review was completed following selection of full text articles. The modified version of PRISMA (10-items) was applied due to the greater representation for experiments employing a training intervention, compared to the Delphi, PEDro and Cochrane scales (Paul et al., 2016). A 10-item quality rating guide included the criteria listed below and guided the assessment scoring of each article as follows: $0=$ clearly no; 1 = maybe; 2 = clearly yes. The scores for each item were added together to give an overall rating from 0 (poor)-20 (excellent) reported in Table 3.

Table 3. Results from the article quality assessment based on the following criteria: $1=$ Inclusion criteria were clearly stated, $2=$ Subjects were randomly allocated to groups, $3=$ Intervention was clearly defined, 4=Groups were tested for similarity at baseline, 5=A control group was used (thermoneutral conditions), $6=$ Outcome variables were clearly defined, $7=$ Assessments were practically useful, $8=$ Duration of intervention was practically useful, 9=Between-group statistical analysis was appropriate, 10=Point measures of variability.

Condition	Authors	1	2	3	4	5	6	7	8	9	10	Total
Humid	Peiffer and Abbiss (2011)	1	2	2	2	2	2	2	2	2	2	19
Humid	Schlader et al., (2011d)	1	2	2	2	2	2	2	2	2	2	19
Humid	$\begin{aligned} & \text { Teunissen } \\ & \text { et al., (2013) } \end{aligned}$	2	2	2	2	0	2	2	2	2	2	18
Humid	$\begin{gathered} \text { Keiser et al., } \\ (2015) \end{gathered}$	2	2	2	2	2	2	2	2	2	2	20
Humid	Racinais et al., (2015b)	2	2	2	2	2	2	2	2	2	2	20
Humid	Schmit et al., (2016)	1	2	2	2	2	2	2	2	2	2	17
Humid	VanHaitsma et al., (2016)	1	2	2	2	2	2	2	2	2	2	17
Humid	Al-Horani et al., (2018)	2	2	2	2	0	2	2	2	2	2	18
Humid	$\begin{gathered} \text { Kent et al., } \\ (2018) \\ \hline \end{gathered}$	2	2	2	2	2	2	2	2	2	2	18
Humid	Mejuto et al., (2018)	1	2	2	2	0	2	2	2	2	2	17
Humid	Munten et al., (2018)	2	2	2	2	2	2	2	2	2	2	20
Humid	English et al., (2019)	1	2	2	2	2	2	2	2	2	2	17
Humid	Faulkner et al., (2019)	2	2	2	2	0 (warm)	2	2	2	2	2	18
Humid	Osborne et al., (2019)	2	2	2	2	0	2	2	2	2	2	18

Humid	Racinais et al., (2019)	1	0	2	0	0	2	2	2	2	2	13
Humid	Lei et al., (2020)	2	2	2	2	0	2	2	2	2	2	18
Dry	Watson et al., (2005)	1	2	2	2	2	2	2	2	2	2	19
Dry	Roelands et al., (2008a)	1	2	2	2	2	2	2	2	2	2	18
Dry	Roelands et al., (2008b)	1	2	2	2	2	2	2	2	2	2	18
Dry	Periard et al., (2011a)	2	2	2	2	2	2	2	2	2	2	18
Dry	Cramer et al., (2015)	2	2	2	2	0	2	2	2	2	2	18
Dry	Periard and Racinais (2015a)	2	2	2	2	2	2	2	2	2	2	20
Dry		2	2	2	2	2	2	2	2	2	2	20
Dry	Che Jusoh et al., (2016)	1	2	2	2	0	2	2	2	2	2	17
Dry	Periard and Racinais (2016)	2	2	2	2	2	2	2	2	2	2	20
Dry	Schulze et al., (2016)	1	2	2	2	0	2	2	2	2	2	17
Dry	Maia-Lima et al., (2017)	2	2	2	2	0 (warm)	2	2	2	2	2	18
Dry	Lei et al., (2020)	2	2	2	2	0	2	2	2	2	2	18

1008

1009 The results of Table 3 identified that the articles included in this review were of high quality and therefore the results extracted from these 1010 articles contributed to the quality of the review.

2.3. Results and Discussion

2.3.1. Physical Performance in Hot and Dry

Six articles compared average PO in HD with CON (Peiffer and Abbiss, 2011; Schlader et al., 2011d; Keiser et al., 2015; Racinais et al., 2015b; VanHaitsma et al., 2015; Schmit et al., 2016; Table 4). Collectively these articles reported an impairment of $\sim 2-23 \%$ impairment in HD compared to CON.

Racinais et al., (2015b) and Racinais et al., (2019) were the only studies to be conducted outdoors. Racinais et al., (2015b) reporting a significantly lower average PO in hot and dry conditions compared to control. In addition, PO was remained lower than control from 30\% of the distance covered until completion. Whereas, Racinais et al., (2019) reported pacing during a competition setting and therefore the pace reported would have resulted from multiple factors (i.e. condition, competition etc).

Seven articles that compared HD conditions to CON reported pacing data (Pieffer and Abbiss, 2011; Schlader et al., 2011d; Racinais et al., 2015b; Schmit et al., 2016; VanHaitsma et al., 2016; Munten et al., 2018 English et al., 2019). All seven articles reported a progressive decrease in PO over the duration of the TT implying that they were not able to maintain their starting PO throughout the TT (Table 4). Whereas, the control groups reported a J -shape implying that they were able to maintain their pace throughout the TT (Table 4). There was an increase in PO over the last $\sim 10 \%$ of all TTs regardless of task length or environmental condition (Table 2).

Six articles compared average CT in HD with CON (Peiffer and Abbiss, 2011; Schlader et al., 2011d; Keiser et al., 2015; Racinais et al., 2015b; VanHaitsma et al., 2015; Schmit et al., 2016; Table 6). Collectively these articles reported an impairment of 1-22\% in CT in HD compared to CON. The greatest impairment of $\sim 22 \%$ was reported in Schlader et al., (2011d) article which had the highest ambient temperature $\left(40^{\circ} \mathrm{C}\right)$ of all of the articles included in this review.

2.3.2. Physical Performance in Hot and Humid

Three articles compared average PO in HH with CON (Roelands et al., 2008a; Roelands et al., 2008b; Périard et al., 2011a; Table 4). Collectively these studies reported an impairment in PO of $7-75 \%$ in HH compared to CON. The greatest impairment of 75% was reported in Roelands et al., (2008a) and (2008b) article which may be explained by the heat stress of $30^{\circ} \mathrm{C}, 50-60 \% \mathrm{rH}$ and $0-0.5 \mathrm{~m} / \mathrm{s}\left(\mathrm{WBGT}=\sim 31.1^{\circ} \mathrm{C}\right)$ resulting in a rapid increase in heat strain responses such as $\mathrm{T}_{\text {core }} / \mathrm{T}_{\text {rectal }}$ (increase of $\sim 2^{\circ} \mathrm{C}$ and end value of $>39^{\circ} \mathrm{C}$) in a short period of time ($\sim 40 \mathrm{~min}$). Notably, Periard et al., (2011a) used a greater heat stress compared to Roeland et al., (2008a;2008b; Table 2) which did not result in a greater heat strain response. This may be explained by location of data collection. For example, Periard et al., (2011a) was conducted in Qatar, which is notably hot throughout the year, whereas Roeland et al., (2008a;2008b) was conducted in Belgium which is hot half of the year.

Five of the seven of the articles that compared HH conditions to CON reported pacing data (Watson et al., 2005; Periard et al., 2011a; Periard and Racinais 2015a; Periard and Racinais 2015b; Periard and Racinais 2016). All five of the articles reported a progressive decrease in PO over the duration of the TT implying that they were not able to maintain their PO throughout the TT (Table 4). Whereas, the control groups reported that pace was maintained through the TT (Table 4). There was an increase in PO over the last $\sim 10 \%$ of all TTs regardless of task length or environmental condition (Table 4). Périard and Racinais (2015a) was the only article to report variations in pace relative to average PO showing that the variation was greater in $\mathrm{HH}(11.7-23.2 \%)$ compared to $\mathrm{CON}(4.5-6.9 \%)$. In addition, the pace reported in Cramer et al., (2015) and Maia-Lima et al., (2017) support the trend reported in HH conditions, however, cannot be compared to control conditions because there was no control in these articles. Therefore, the articles included in this review support the common trends of a progressive decline in PO in hot conditions (both HD and HH) highlighted in the literature.

Three articles compared average CT in HH with CON (Roelands et al., 2008a; Roelands et al., 2008b; Périard et al., 2011a; Table 4). Collectively these studies reported an impairment in PO of $13-68 \%$ in HH compared to CON. The greatest impairment of 68% was reported in Roelands et al., (2008a) article which may be explained by the heat stress of $30^{\circ} \mathrm{C}, 50-60 \%$ rH and $0-0.5 \mathrm{~m} / \mathrm{s}\left(\mathrm{WBGT}=\sim 31.1^{\circ} \mathrm{C}\right)$ resulting in a rapid increase in $\mathrm{T}_{\text {core }} / \mathrm{T}_{\text {recta }}$ (increase of $\sim 2^{\circ} \mathrm{C}$ and end value of $>39^{\circ} \mathrm{C}$) and PO impairment ($\sim 64 \mathrm{~W}$).

2.3.3. Physical Performance in Hot and Dry and Hot and Humid

Only two articled compared average PO in HD and HH (Teunissen et al., 2013; Lei et al., 2020; Table 6). Both articles reported no significant differences between HD and HH and HH with wind.

Two of the articles compared HH to HD (Teunissen et al., 2013; Lie et al., 2020). Teunissen et al., (2013) specifically compared cycling performance in HH conditions (with and without wind) and HD conditions. The progressive decline in PO occurred much earlier (before 2 km) in HH conditions with no wind compared to HH with wind (\sim after 4 km) and HD conditions (after 10km; Table 4). The progressive decline in PO in HH with no wind lasted until 13 km ($\sim 85 \%$ of the TT; $0-13 \mathrm{~km}$) whereas the decline only lasted until 10 km in HH with wind ($\sim 50 \%$ of the TT; 2-10km). The decline in PO in HD conditions didn't occur till 10km to similar values as the HH with wind condition which lasted until 13 km . All of the TTs ended with an increase in PO regardless of condition, however the increase in PO started at 10 km in HH with wind (lasting $\sim 33 \%$ of the TT; 10-15km) compared to 13 km in HH with no wind and HD (lasting ~15\% of the TT; 13-15km; Table 4). Therefore, Teunissen et al., (2013) findings highlight that pace is impaired at earlier stages of a TT in HH conditions with no wind compared to HH with wind and HD. Whereas, Lie et al., (2020) compared performance in $\mathrm{HD}\left(34.9 \pm 0.2^{\circ} \mathrm{C}, 50.1 \pm 1.1 \%\right)$ and $\mathrm{HH}\left(29.2 \pm 0.2^{\circ} \mathrm{C}, 69.4 \pm 1.0 \%\right)$ conditions that were matched for vapor pressure/absolute humidity $(2.8 \pm 0.1 \mathrm{kPa})$. PO was not significantly different between conditions over the duration of the 30 min TT . The findings of Lie et al., (2017;2019;2020) clearly demonstrate that male and female endurance performance in hot
conditions is determined by the vapor pressure of the environment, such that even a difference in ambient temperature of $\sim 6^{\circ} \mathrm{C}$ does not differentially affect exercise performance.

The restricted heat loss capabilities caused by high humidity can result in an impaired exercise performance and capacity. Maughan, Otani and Watson (2012) investigated the effects of 4 seperate relative humidity conditions ($24 \%, 40 \%, 60 \%$ and 80% RH) on cycling TTE at $70 \% \mathrm{~V}_{\mathrm{O}_{2 \text { max }}}$ in the heat $\left(30.2 \pm 0.2^{\circ} \mathrm{C}\right)$. TTE was progressively impaired at 60% ($14.5 \pm 8.6 \mathrm{~min}$) and 80% RH ($22.1 \pm 11.0 \mathrm{~min}$) when compared to $24 \% \mathrm{RH}(68 \pm 19 \mathrm{~min})$. This was supported by Che Muhamed et al. (2016) who stated that an individual's capacity to continue exercising was reduced at 61% and 71% RH compared to 23% and 53% RH. The increasing relative humidity was associated with a linear increase in a thermoregulatory and circulatory strain. Collectively, these findings highlight the importance of absolute humidity on exercise performance in a warm environment.

A novel finding of this section highlighted that the feedback provided to participants during cycling was different (i.e. type and quantity) between articles, regardless of condition (i.e. dry vs humid). Previous findings have demonstrated that end-point knowledge (for example elapsed time and elapsed distance) can significantly improve pacing during training and/or competition (Wingfield et al., 2018; Smits et al., 2016). More recent findings by Boya et al., (2017) highlighted that end point knowledge is often used in conjunction with performance related feedback (for example speed, power output, cadence). Therefore, posing the question as to which feedback type and in what quantity to provide cyclists-triathletes with during training and/or competition for optimal performance.

In summary, average PO is impaired by $\sim 2-23 \%$ in HD compared to CON . This impairment is characterised by a progressive decrease in PO over the duration of the TT implying that they were not able to maintain their starting PO throughout the TT. This impairment in PO and pace resulted in a $\sim 1-22 \%$ impairment in CT in HD compared to CON. Secondly, average PO is impaired by $\sim 7-75 \%$ in HH compared to CON. This impairment is also
characterised by a progressive decrease in PO over the duration of the TT implying that they were not able to maintain their PO throughout the TT This impairment in PO and pace resulted in a $\sim 13-68 \%$ impairment in CT in HH compared to CON. Thirdly, there was no significant difference in average PO in HD and HH , however, there was a difference in pace, in which the decline in PO in HH occurred earlier than in HD, especially if there was no wind. Fourthly, all TTs finish with an increase in PO (lasting $\sim 10 \%$ of the TT) regardless of condition. Fifthly, there is limited research that compares direct WBGT ensuring that thermal stress and strain experienced is similar to be able to draw accurate conclusions. Therefore, future research should investigate this to form stronger conclusions on the effect of HD and HH on cycling TT performance.

Table 4. Physical performance (power output and completion time/distance covered) in hot and dry (HD) and hot and humid (HH) conditions.

Condition	Authors	Timing	Task		Physical Performance				
			Task	Feedback given.	PO (W)	Completion time (min)/distance (km)	Power output deficit compared to contro (\%)	Completion time deficit compared to control	Pacing Shape
Dry	Peiffer and Abbis (2011)	$\begin{gathered} \text { Start } \\ \text { Average } \\ \text { End } \end{gathered}$	40km TT	Visual elapsed distance.	$\begin{aligned} & 309 \pm 35 \mathrm{~W} \\ & ((329 \pm 31) \end{aligned}$	$60.7 \pm 2.9 \mathrm{~min}(58.8 \pm 2.0 \mathrm{~min})$	6\%	3\%	J (progressive decrease in PO until 30km from which point PO was increased in the final 10 km)
Dry	$\begin{aligned} & \text { Peiffer and Abbi } \\ & \mathrm{s}(2011) \end{aligned}$	$\begin{gathered} \hline \text { Start } \\ \text { Average } \\ \text { End } \end{gathered}$	40km TT	Visual elapsed distance.	$322 \pm 32 \mathrm{~W}(329 \pm 31 \mathrm{~W})$	$(59.1 \pm 2.3$ min (58.8 ± 2.0 min	2\%	1\%	
Dry	Schlader et al., 2011d)	$\begin{gathered} \text { Start } \\ \text { Average } \\ \text { End } \end{gathered}$	30 min	Visual elapsed time.	154 ± 33 (201156)	-	23\%	22\%	progressive decrease in PO until completion of a $30 \min$ TT in HD a J-shaped pacing strategy was adopted in control conditions.
Dry	Teunissen et al., (2013)	$\begin{gathered} \text { Start } \\ \text { Average } \\ \text { End } \end{gathered}$	15 min at starting at 80 W and increased by 20W every 3 min , followed by 15 km TT	Visual elapsed distance.	249さ31	-	No Control.	No Control.	maintained after 2 km until 10 km from was a decrease to similar values as the hot and humid with wind condition until 13 km . PO remained greater in the HD condition compared the two humid completion.
Dry	Keiser et al., (2015)	$\begin{gathered} \text { Start } \\ \text { Average } \\ \text { End } \end{gathered}$	30 min	Visual power output and elapsed time.	240(210)	-	13\%	-	${ }^{\text {-shape }}$
Dry	Racinais et al., (2015b)	$\begin{gathered} \text { Start } \\ \text { Average } \\ \text { End } \end{gathered}$	43.4km	Visual HR, power output, speed, and elapsed distance.	256 19 (304 +9)	77.17 ± 6.26 min(66.13土3.26min)	19\%	17\%	PO was remained lower than control from 30% of the distance covered until completion
Dry	VanHaitsma et al., (2015)	$\begin{gathered} \text { Start } \\ \text { Average } \\ \text { End } \end{gathered}$	40km	Visual power output, speed, cadence and elapsed distance.	$157 \pm 32.3(187 \pm 40.3)^{*}$	$79.0 \pm 7.20 \mathrm{~min}(75.2 \pm 6.58)^{*}$	16\%	5\%	progressive decrease in PO in HD 25 km , followed by a maintenance phase from until 35 km and finishing with an end sprint for the final 5km. (J-shpaed)

Dry	$\underset{(2016)}{\text { Schmit et al．，}}$	$\begin{gathered} \text { Start } \\ \text { Average } \\ \text { End } \end{gathered}$	20 km	Visual elapsed distance．	$\begin{gathered} 223+20 \\ (247 \pm 42) \end{gathered}$	$33.22 \pm 1.58(32.16 \pm 2.01)$	6\％	3\％	progressive decrease in pace throughout the TT in hot 18 km ，from which point the pace was progressive increased over the last 2km（J－shaped）
Dry	Al－Horani et al．， （2018）	$\begin{gathered} \text { Start } \\ \text { Average } \\ \text { End } \end{gathered}$	16．1km	Not reported．	154 ± 4.32	32．8さ4．4min	Control．	Control．	
Dry	Mejuto et al．， （2018）	$\begin{gathered} \text { Start } \\ \text { Average } \\ \text { End } \end{gathered}$	10km TT	Visual elapsed distance．	－	15.75 ± 1.48 min	Control．	Control．	
	Munten et al．， （2018）								progressive decrease in PO （J－shaped）
Dry	Kent et al．， （2018）	$\begin{gathered} \text { Start } \\ \text { Average } \\ \text { End } \end{gathered}$	14kj．kg－1	Not reported．	－	58：30 $\pm 04: 48$ min（ $54: 01 \pm 04: 05$ ）	－	8\％	
Dry	English et al．， （2019）	$\begin{gathered} \text { Start } \\ \text { Average } \\ \text { End } \end{gathered}$	30 min at $50 \% \mathrm{VO}_{2 \text { max }}$ followed by a 5 min rest and 15 min TT	Verbal elapsed time from researcher at $5,10,12,13,14$ ， 14.30 and 14.50 min	$-168 \pm 59 \mathrm{~kJ}(203 \pm 60 \mathrm{~kJ}){ }^{*}$－		－	21\％	
Dry	$\underset{\substack{\text { Faulkner et al．，} \\(2019)}}{ }$ （2019）	$\begin{gathered} \text { Start } \\ \text { Average } \\ \text { End } \end{gathered}$	902．9さ127．6kj	Visual work done，target workload and a graphica representation of fluctuations in power output．	235	63.33	Control．	Control．	progressive decrease in pace until 12 min from which point pace was increase or the final 13 min of the TT．（Maintained throughout）
Dry	$\begin{aligned} & \text { Faulkner } \\ & \text { et al., (2019) } \end{aligned}$	$\begin{gathered} \text { Start } \\ \text { Average } \\ \text { End } \end{gathered}$	902．9さ127．6kj	Visual work done，target workload and a graphical representation of fluctuations in power output	230	68.33	Control．	Control．	
Dry	Osborne et al．， （2019）	$\begin{gathered} \text { Start } \\ \text { Average } \\ \text { End } \end{gathered}$	20 km TT	No feedback．	256 ± 29	33.22 min	Control	Control．	

Dry	Racinais et al., (2019)	$\begin{gathered} \text { Start } \\ \text { Average } \\ \text { End } \end{gathered}$	40km TT	Not reported.	333	-	No control	No control	
Dry	Racinais et al., (2019)	$\begin{aligned} & \text { Start } \\ & \text { Average } \\ & \text { End } \end{aligned}$	40km	Not reported.	379	-	No control	No control	
Dry	Racinais et al., (2019)	$\begin{aligned} & \text { Start } \\ & \text { Average } \\ & \text { End } \end{aligned}$	257.5km	Not reported.	221	-	No control	No control	
Dry	Lei et al., (2020)	$\begin{aligned} & \text { Start } \\ & \text { Average } \\ & \text { End } \end{aligned}$	30 min TT	Elapsed work done on completion of every 20%. (not stated whether it was visual or verbal).	$206 \pm 37 \mathrm{~W}$	$371 \pm 64 \mathrm{kj}$			Maintained throughout until 24 where there was an increase in PO until the end of the TT
Humid	Roelands et al., (2008a)	$\begin{gathered} \text { Start } \\ \text { Average } \\ \text { End } \end{gathered}$	predetermined amount of work equal to 30 min at 75% Wmax as quickly as possible	No feedback provided.	196 $335 \sim \sim 260)$	$45.24 \pm 7.18 \mathrm{~min}(\sim 31 \mathrm{~min})$	75\%	68\%	
Humid	Roelands et al., (2008b)	$\begin{aligned} & \text { Start } \\ & \text { Average } \\ & \text { End } \end{aligned}$	predetermined amount of work equal to 30 min at 75% Wmax as quickly as possible.	No feedback provided.	$189.6 \pm 49.2 \mathrm{~W}$ (250.7 $\pm 30.9 \mathrm{~W}$)	$40.36 \pm 6.24 \mathrm{~min}(18.29 \pm 1.18 \mathrm{~min})$	75\%	45\%	
Humid	Périard et al., (2011a) (2011a)	$\begin{aligned} & \text { Start } \\ & \text { Average } \\ & \text { End } \end{aligned}$	40km	verbal feedback at 95% to finish the time trial at maximal effort.	$242.1 \pm 27.3\left(279.4 \pm 22.0 \mathrm{~W}^{*}{ }^{*}\right.$	$64.3 \pm 2.8(59.8 \pm 2.6 \mathrm{~min})^{*}$	7\%	13\%	

Humid	Périard and Rac inais (2015a)	$\begin{gathered} \text { Start } \\ \text { Average } \\ \text { End } \end{gathered}$	4×16.5-min time trials interspersed by 5 min of passive/active recovery (~ 75 W).	Visual elapse distance every 5 min and verbal encouragemen was given, and visual display (power, heart rate, cadence, speed, elapsed distance) was revealed to in the last 1.5 min of each 16.5 min TT.	-	-			
Humid	Périard and Rac inais (2015b)	$\begin{aligned} & \text { Start } \\ & \text { Average } \\ & \text { End } \end{aligned}$	750 kJ	Work completed each 10% and verbal feedback at 95% to finish the time trial at maximal effort.	-	55.8さ14.4 min	-	12.50\%	
Humid	$\underset{(2005)}{\text { Watson et al., }}$	$\begin{gathered} \text { Start } \\ \text { Average } \\ \text { End } \end{gathered}$	60 min at 55% of Wmax followed by 30min of Wmax followed	No feedback provided.	279 ± 35	$39.8 \pm 3.9 \mathrm{~min}$	Control	Control	
Humid	Cramer et al., (2015)						Control	Control	progressive decline in PO over the TT until 30 min , from which point PO was increased for the final 10 min .
Humid	$\begin{aligned} & \text { Teunissen } \\ & \text { et al., (2013) } \end{aligned}$	$\begin{gathered} \text { Start } \\ \text { Average } \\ \text { End } \end{gathered}$	15 min at starting at 80 W and icreased by 20W every 3 min , followed by 15 km TT	Elapsed distance.	244 ± 26	26:37 \pm 3:10-	No control.	No Control.	progressive decline in PO after the first 2 km until 13 km , finishing with an end sprint for the final 2 km .
Humid	Teunissen et al., (2013)	$\begin{gathered} \text { Start } \\ \text { Average } \\ \text { End } \end{gathered}$	15 min at starting at 80 W and icreased by 20W every 3 min , followed by 15 km TT	Elapsed distance.	248 ± 30	26:09 $\pm 3: 26$	No control.	No Control.	progressive until 10 km , from which point PO gradually increased until completion of 15 km .
Humid	Periard and Rac ianis, (2016) ianis, (2016)	$\begin{gathered} \text { Start } \\ \text { Average } \\ \text { End } \end{gathered}$	750kJ	Visual 10\% of elapse work completed and kilojoule countdown was provided upon reaching the last 3% unil ompletion.	230	55.8さ14.4min		13.62\%	
Humid	$\begin{aligned} & \text { Che Jusoh et } \\ & \text { al., (2016) } \end{aligned}$	$\begin{aligned} & \text { Start } \\ & \text { Average } \\ & \text { End } \end{aligned}$	15 min	Elapsed time every 3mins.	221 ± 33	-	Control.	Control.	

Humid	Maia-Lima, et al., (2017)	$\begin{gathered} \text { Start } \\ \text { Average } \\ \text { End } \end{gathered}$	30km	Visual elapse distance.	PO continued to decrease after 12km	60.62+3.47	Control	control	progressive decline in PO until 24km, from which PO was gradually increased of 30 km .
Humid	Lei et al., (2020)	$\begin{gathered} \text { Start } \\ \text { Average } \\ \text { End } \end{gathered}$	30 min TT	Elapsed work done on completion of every 20%.	$206 \pm 37 \mathrm{~W}$	$-371 \pm 64 \mathrm{kj}$	No control	No control	Maintained throughout until 24 where there was an the end of the TT

2.3.4. Physiological responses

2.3.4.1. Rectal/Core Temperature ($\mathrm{T}_{\text {rectal }} / \mathrm{T}_{\text {core }}$)

The change in $\mathrm{T}_{\text {rectal }} / \mathrm{T}_{\text {core }}$ during a cycling TT in HD ranged from ~ 0.8 to $2^{\circ} \mathrm{C}$ (Table 5). Keiser et al., (2015) was the only article to compare changes in $\mathrm{T}_{\text {rectal }} / \mathrm{T}_{\text {core }}$ in HD and CON, reporting a $\sim 2^{\circ} \mathrm{C}$ increase in $\mathrm{CON}\left(37.9 \pm 0.1\right.$ to $\left.39.2 \pm 0.1^{\circ} \mathrm{C}\right)$ compared to $\mathrm{a} \sim 0.8^{\circ} \mathrm{C}(38.8 \pm 0.2$ to $39.6 \pm 0.2^{\circ} \mathrm{C}$) increase in HD. Notably end $\mathrm{T}_{\text {rectal }} / \mathrm{T}_{\text {core }}$ was not different between studies. Whereas, Racinais et al., (2015b) reported a $\sim 1.6^{\circ} \mathrm{C}$ greater end $\mathrm{T}_{\text {rectal }} / \mathrm{T}_{\text {core }}$ in HD $\left(40.1 \pm 0.4^{\circ} \mathrm{C}\right)$ compared to $\mathrm{CON}\left(38.5 \pm 0.6^{\circ} \mathrm{C}\right)$. Notably, the greatest $\mathrm{T}_{\text {rectal }} / \mathrm{T}_{\text {core }}$ achieved was $41.5^{\circ} \mathrm{C}$ in Racinias et al., (2019) article which investigated physiological responses during the UCI Road Cycling World Championships. 34 of 40 participants (85%) reached a $\mathrm{T}_{\text {core }}$ of $39^{\circ} \mathrm{C}$ and $10(25 \%)$ of those exceeded $40^{\circ} \mathrm{C}$. Despite the elevated $\mathrm{T}_{\text {core }}$, none of the athletes were admitted to the medical facilities for heat-related illnesses. In addition, $\mathrm{T}_{\text {core }}$ were greater in TTT and ITT than RR, despite being shorter events. This reinforces the notion that exercise intensity is a more potent parameter than duration for increasing body temperature. Whereas the change in $\mathrm{T}_{\text {rectal }} / T_{\text {core }}$ in HH ranged from 0.5 to $2.7^{\circ} \mathrm{C}$ (Table 5). All articles had an increase of $\sim 1^{\circ} \mathrm{C}$, apart from Roelands et al., (2008b) with an increase of $0.5^{\circ} \mathrm{C}$ which may have been related to a high starting $\mathrm{T}_{\text {rectal }} / \mathrm{T}_{\text {core }}\left(38.5^{\circ} \mathrm{C}\right.$; Table 5). The greatest increase in $\mathrm{T}_{\text {rectal }} / \mathrm{T}_{\text {core }}$ was reported in Roelands et al., (2008a) article, in which there was minimal wind speed ($0.5 \mathrm{~m} / \mathrm{s}$), impaired PO ($196 \pm 35 \mathrm{vs} \sim 260 \mathrm{~W}$) and CT compared to CON (45.24 ± 7.18 vs $\sim 31 \mathrm{~min}$). 4 articles compared the change in Trectal/Tcore in HH compared to CON reporting no difference in the change in $\mathrm{T}_{\text {rectal }} / \mathrm{T}_{\text {core }}$ in conditions (Roelands et al., 2008a; Roelands et al., 2008b; Périard et al., 2011a; Périard and Racinais, 2015a).

Collectively, the change in $\mathrm{T}_{\text {rectal }} / \mathrm{T}_{\text {core }}$ was greater in $\mathrm{HH}\left(1-2.7^{\circ} \mathrm{C}\right)$ compared to $\mathrm{HD}\left(0.8-2^{\circ} \mathrm{C}\right)$ which supports Vanos, and Grundstein, (2020) findings of a greater cooling ability in HD compared to HH. However, when compared in a single article, Teunissen et al., (2013) and Lei et al., (2020) reported that there was no significant difference in average or end $\mathrm{T}_{\text {rectal }} / \mathrm{T}_{\text {core }}$ between HD and HH conditions which were matched for WBGT and vapour
pressure, respectively (Table 5). Therefore when conditions are not matched for WBGT or water vapour there was a greater heat storage in HH compared to HD and CON. The performance impairment in HH compared to HD stated above may be related to the impairment in heat dissipation via evaporation in HH conditions resulting in a greater internal heat storage ($\mathrm{T}_{\text {rectal }} / \mathrm{T}_{\text {core }}$).

2.3.4.2. Skin Temperature ($\mathrm{T}_{\text {sk }}$)

Only two articles reported the change in $\mathrm{T}_{\text {sk }}$ in both HD compared to CON (Table 5). Keiser et al., (2015) reported an increase of $\sim 1.2^{\circ} \mathrm{C}(36.9 \pm 0.4$ to $38.1 \pm 0.3)$ in HD compared to an increase of $\sim 3.8^{\circ} \mathrm{C}$ in CON (32.6 ± 0.5 to $36.4 \pm 0.4^{\circ} \mathrm{C}$). Whereas, Kent et al., (2018) reported no change in $\mathrm{T}_{\text {sk }}$ in both $\mathrm{HD}\left(34.6\right.$ to $34.6^{\circ} \mathrm{C}$) and CON in (31.8 to $32^{\circ} \mathrm{C}$). Collectively, the change in $\mathrm{T}_{\text {sk }}$ in HD was $\sim 1.2^{\circ} \mathrm{C}$ (Table 5).

Two articles reported the change in T_{sk} in HH compared to CON (Table 5). Périard et al., (2011a) article reported no change in $\mathrm{T}_{\text {sk }}$ in $\mathrm{HH}\left(35\right.$ to $\left.35^{\circ} \mathrm{C}\right)$ whereas $\mathrm{T}_{\text {sk }}$ decreased by $3^{\circ} \mathrm{C}$ in CON (31 to $28^{\circ} \mathrm{C}$). Whereas Periard and Racinais, 2015a) reported a ~ 3.2 increase in $\mathrm{T}_{\text {sk }}$ in HH (31 to 24.2) compared to a $\sim 4.9^{\circ} \mathrm{C}$ decrease in $\mathrm{T}_{\text {sk }}$ in CON (31 to 26.2; Table 5). Collectively the change in $T_{\text {sk }}$ in HH ranged from ~ 0 to $6^{\circ} \mathrm{C}$. The greatest increase in $\mathrm{T}_{\text {sk }}$ was $\sim 6^{\circ} \mathrm{C}$ (31 to 37) reported in Periard and Racianis, (2016).

Lie et al., (2020) reported no different in the change in $\mathrm{T}_{\text {sk }}$ between HD $\left(\sim 1.2^{\circ} \mathrm{C} ; 34.8\right.$ to $36^{\circ} \mathrm{C}$) and $\mathrm{HH}\left(\sim 1^{\circ} \mathrm{C} ; 37.25\right.$ to $38.25^{\circ} \mathrm{C}$). Notably, the start and end $\mathrm{T}_{\text {sk }}$ was $\sim 2.4^{\circ} \mathrm{C}$ and $\sim 2.2^{\circ} \mathrm{C}$ greater in HH compared to HD, respectively. Whereas, Teunissen et al., (2013) reported a greater change of $\mathrm{T}_{\text {sk }}$ in $\mathrm{HD}(\sim 2.35 ; 37.25-39.6)$ compared to $\mathrm{HH}\left(\sim 2.25^{\circ} \mathrm{C} ; 37.25-\right.$ $38.5^{\circ} \mathrm{C}$) and HH with wind $\left(\sim 2.3^{\circ} \mathrm{C} ; 37.25-38.6^{\circ} \mathrm{C}\right)$.

2.3.4.3. Heart Rate (HR)

Three articles compared the change in HR in HD and CON reporting no differences between the conditions (Keiser et al., 2015; Racinais et al., 2015b; Kent et al., 2018; Table 5). Schlader et al., (2011d) was the only article to compare average HR in HD ($183 \pm 7 \mathrm{~b} . \mathrm{min}^{-1}$)
and CON (176 $\pm 10 \mathrm{~b} \cdot \mathrm{~min}^{-1}, \mathrm{P}<0.05$; Table 5). The change in HR in HD ranged from 3-102 b. min^{-1}. The smallest change was reported in Racinais et al., (2015b) article of $\sim 4 \mathrm{~b} . \mathrm{min}^{-1}$ in which starting HR was high (174 b. min^{-1}; Table 5).

Three articles compared the change in HR in HH and CON reporting no differences between the conditions (Roelands et al., 2008b; Périard et al., 2011a; Périard and Racinais, 2015a; Table 5). Collectively the change in HR in HH ranged from 19-100 b. min^{-1}. The greatest change in HR (~ 100 b. $\mathrm{min}^{-1} ; 70$ to 170 b. min^{-1}) was reported in Maia-Lima, et al., (2017) article. This may have been related to the heat stress $\left(31.5^{\circ} \mathrm{C}\right)$ and length of task $(30 \mathrm{~km}$ in $60.62 \pm 3.47 \mathrm{~min} ;$ Table 5 and 4).

The change in HR in HD and HH was not compared in any of the articles. However, Teunissen et al., (2013) reported a greater end HR in HH (185) compared to HD (180 b.min ${ }^{1}$; Table 5).

2.3.4.4. Sweat Rate (SR)

Three articles compared the difference in SR in HD compared to CON (Schlader et al., 2011d; Kent et a., 2018; English et al., 2019; Table 5). SR was ~0.4-0.5L.hr greater in HD compared to CON (Table 5). Kent et al., (2018) reported the greatest difference in SR between HD and CON ($\sim 0.5 \mathrm{~L} . \mathrm{hr}$). Collectively the SR in HD ranges from 0.82-2.2Lhr (Table 5). The greatest SR in HD of 2.2Lhr was reported in Kent et al., (2018) article (Table 5). No firm conclusions can be made on the mechanisms behind the SR reported in Kent et al., (2018) article because no PO was reported in this article and no completion time/DC were reported in Schlader et al., (2011d) and English et al., (2019) article.

Two articles compared SR in HH and CON (Periard et al., 2011a; Periard and Racinais, 2015a; Table 5). Both articles reported a ~0.7-1L.hr greater SR in HH compared CON (Table 5). Collectively, the SR in HH ranged from $\sim 0.79-2.4 \mathrm{~L} . \mathrm{hr}$ (Table 5). The greatest SR in HH of $\sim 2.4 \mathrm{Lhr}$ was reported in Periard and Racinais (2015b) article. In contrast, the lowest SR (0.79L.hr) reported in HH conditions was in Teunissen et al., (2013) article. A contributing
factor to the difference in SR between these two articles may be related to the difference in end $\mathrm{T}_{\text {core }}\left(\sim 1.1^{\circ} \mathrm{C}\right)$ and $\mathrm{T}_{\text {sk }}\left(\sim 0.5^{\circ} \mathrm{C}\right)$. This may imply that there was greater amount of heat stored in Periard and Racinais (2015b) article compared to Teunissen et al., (2013) article warranting a greater SR response for thermoregulation.

Lie et al., (2020) reported $\sim 0.13 \mathrm{~L} . \mathrm{hr}$ greater SR in HD (0.97 $\pm 0.31 \mathrm{~L} . \mathrm{hr}$) compared to HH ($0.84 \pm 0.21 \mathrm{~L} . \mathrm{hr}$). These findings may reflect the impairment of SR in HH conditions compared to HD. (Vanos, and Grundstein, 2020).

In summary, this section highlighted that thermoregulatory responses such as the change in $\mathrm{T}_{\text {recta }} / / \mathrm{T}_{\text {core }}$ in HD and HH ranged from ~ 0.8 to $2^{\circ} \mathrm{C}$ and ~ 0.5 to $2.7^{\circ} \mathrm{C}$, respectively. Only one article compared change in $\mathrm{T}_{\text {rectal }} / \mathrm{T}_{\text {core }}$ in HD and CON reporting a greater change in CON ($\sim 2^{\circ} \mathrm{C}$) compared to HD ($\sim 0.8^{\circ} \mathrm{C}$; Keiser et al., (2015). Notably starting $\mathrm{T}_{\text {rectal }} / \mathrm{T}_{\text {core }}$ was ~ 1 higher in HD and end $\mathrm{T}_{\text {rectal }} / T_{\text {core }}$ was not different between conditions. Whereas, there was no difference in the change in $T_{\text {rectal }} / T_{\text {core }}$ between HH and CON. Secondly, the change in $\mathrm{T}_{\text {sk }}$ in HD and HH ranged from $\sim 1.2^{\circ} \mathrm{C}$ and ~ 0 to $6^{\circ} \mathrm{C}$, respectively. However, there were conflicting results regarding the change in $\mathrm{T}_{\text {sk }}$ in HD and $\mathrm{CON}, \mathrm{HH}$ and CON and HD and HH. Notably, $T_{\text {sk }}$ in CON decreased in both by $\sim 3-4.9^{\circ} \mathrm{C}$. Thirdly, the change in HR in HD and HH ranged from 3-102 b. min^{-1} and 19-100 b. min^{-1}, respectively. The change in HR in HD and HH was not compared in any of the articles. Fourthly, SR in HD and HH ranged from 0.82-2.2Lhr and $\sim 0.79-2.4 \mathrm{~L} . \mathrm{hr}$, respectively. SR was $\sim 0.13 \mathrm{~L} . \mathrm{hr}$ greater in HD compared to HH.

Collectively this section of the review highlighted that more research needs to be conducted on the change in thermoregulatory responses in HD compared to HH where WBGT is matched to ensure that thermal strain experienced is similar in both conditions to be able to draw accurate conclusions.

Table 5. Physiological responses during cycling time-trial in hot and dry (HD) and hot and humid (HH) conditions.

Condition	Authors	Timing	Condition			Task		Physiological response			
			Environment al condition (${ }^{\circ} \mathrm{C}$, \%, m/s)	WBGT (${ }^{\circ} \mathrm{C}$)	Indoor/Outdoor	Exercise Length	Feedback given.	$\begin{gathered} \mathbf{T}_{\text {rectal/ }} \\ \mathbf{T}_{\text {core }}\left({ }^{\circ} \mathrm{C}\right) \end{gathered}$	Tsk (${ }^{\circ} \mathrm{C}$)	$\underset{(\underset{(b)}{\text { (b.min }}}{\substack{\text { HR }}}$	$\begin{gathered} \text { SR } \\ \text { (L.hr) } \end{gathered}$
Dry	Peiffer and Abbis (2011)	Start Average End	$\begin{gathered} 32,40,8.9 \\ (17,40,8.9) \end{gathered}$	$\begin{aligned} & 24.6 \\ & (12) \end{aligned}$	Indoor	40km TT	Visual elapsed distance.	$\begin{gathered} 37.2 \\ -\quad \\ 39.5 \end{gathered}$	-	-	-
Dry	Peiffer and Abbis (2011)	Start Average End	$\begin{gathered} 27,40,8.9 \\ (17,40,8.9) \end{gathered}$	$\begin{aligned} & 21.2 \\ & (12) \end{aligned}$	Indoor	40km TT	Visual elapsed distance.	$\begin{gathered} 37.3 \\ -79.3 \end{gathered}$	-	-	-
Dry	Schlader et al., (2011d)	Start Average End	$\begin{gathered} 40,14,1.5 \\ (20.4 \pm 0.7 \\ { }^{\circ} \mathrm{C}, 24 \% \pm \\ 7 \%) \end{gathered}$	$\begin{aligned} & \text { 26.5(16. } \\ & \text { 3) } \end{aligned}$	Indoor	30min	Visual elapsed time.	$\begin{gathered} 37.9 \pm 0.4 \\ (37.8 \pm 0.4) \end{gathered}$	$\begin{gathered} 36.6 \\ \pm 0.6 \\ \star \\ (31 . \\ 2 \pm 1 . \\ 5)^{*} \end{gathered}$	$\begin{gathered} 183 \pm 7 \\ (176 \pm 1 \\ 0)^{*} \end{gathered}$	$\begin{gathered} 1.38 \\ (0.97)- \end{gathered}$
Dry	Teunissen e t al., (2013)	Start Average End	33,40	26.5	Indoor	15 min at starting at 80W and increased by 20W every 3min, followed by 15 km TT	Visual elapsed distance.	$\begin{gathered} 37.25 \\ - \\ 39.6 \end{gathered}$	$\begin{gathered} 35.1 \\ - \\ 36.2 \end{gathered}$	180	$\begin{gathered} 0.90 \pm 0 . \\ 17 \end{gathered}$
Dry	Keiser et al., (2015)	Start Average End	$\begin{gathered} 38,30,3 \\ (18,30,3) \end{gathered}$	$\begin{gathered} 28.1 \\ (12.1) \end{gathered}$	Indoor	30min	Visual power output and elapsed time.	$\begin{gathered} 38.80 .2 \\ (37.90 .1) \\ - \\ 39.6 \\ (39.2 \\ (30.1) \end{gathered}$	$\begin{gathered} 36.9 \\ \pm 0.4 \\ (32 . \\ 6 \end{gathered}$	$\begin{gathered} 79 \pm \\ 7(68 \pm 5 \end{gathered}$)	$\begin{gathered} 0.82 \\ \pm 0.09 \end{gathered}$

									$\begin{gathered} \pm 0.5 \\ \dagger) \\ - \\ 38.1 \\ \pm 0.3 \\ (36 . \\ 4 \\ \pm 0.4 \\)^{*} \\ \hline \end{gathered}$	$\begin{gathered} 181 \\ \pm 2(180 \\ \pm 1) \end{gathered}$	
Dry	Racinais et al., (2015b)	Start Average End	$\begin{gathered} 36.0 \pm 0.4^{\circ} \mathbf{C}, \\ 13 \pm \pm \%,, 6.8 \\ \left(8.2 \pm 3.5^{\circ} \mathrm{C},\right. \\ 30 \pm 8 \%, 6.0) \end{gathered}$	$\underset{\text {) }}{22.6(3.6}$	outdoors	43.4km	Visual HR, power output, speed, and elapsed distance.	$\begin{gathered} 38.4 \\ - \\ 40.1 \pm \\ 0.4(38.5 \pm \\ 0.6) \end{gathered}$		$\begin{gathered} \hline 174(\sim 1 \\ 63) \\ -173 \pm \\ 1(166 \pm \\ 2) \\ 177(16 \\ 3) \end{gathered}$	-
Dry	VanHaitsma et al., (2015)	Start Average End	$\begin{gathered} 35,25,0.5(21 \\ \left.{ }^{\circ} \mathrm{C}, \sim 20 \%\right) \end{gathered}$	25.4(13. 6)	Indoor	40km	Visual power output, speed, cadence and elapsed distance.	$\begin{gathered} 37(37) \\ - \\ 39.2 \\ (38.7) \end{gathered}$		$\begin{gathered} -160 \\ 165 \pm \\ 15.7(1 \\ 64 \pm \\ 15.7) \\ 180 \\ \hline \end{gathered}$	-
Dry	Schmit et al., (2016)	Start Average End	$\begin{gathered} 35,50,12.5 \\ \left(21^{\circ} \mathrm{C}, 50 \%,\right. \\ 12.5) \end{gathered}$	$\begin{gathered} 28.6 \\ (16.4) \end{gathered}$	Indoor	20km	Visual elapsed distance.	-	-	-	-
Dry	Al-Horani et al., (2018)	Start Average End	33,40,2.77	25.7	Indoor	16.1 km	Not reported.	$\begin{gathered} 36.8 \\ - \\ 38.3 \end{gathered}$		165	1.1
Dry	Mejuto et al., (2018)	Start Average End	32, 50	26.9	Indoor	10km TT	Visual elapsed distance.	$\begin{gathered} 37.2 \\ - \\ 38.8 \end{gathered}$	-	182	-
Dry	English et al., (2019)	Start Average End	$\begin{gathered} 36,50\left(21^{\circ} \mathrm{C},\right. \\ 50 \%) \end{gathered}$	$\begin{gathered} 30.4 \\ (17.1) \end{gathered}$	Indoor	30 min at 50% $\mathrm{VO}_{2 \text { max }}$ followed by a 5 min rest and 15 min TT		$\begin{gathered} 37.8 \\ (37.6) \\ - \\ 38.4 \\ (38.2) \end{gathered}$	-	-	$\begin{aligned} & \sim 0.87 \\ & (0.55) \end{aligned}$

Dry	$\begin{aligned} & \text { Kent et al., } \\ & (2018) \end{aligned}$	Start Average End	$\begin{gathered} 34.9 \pm 0.3^{\circ} \mathrm{C}, \\ 48.0 \pm 1.9 \% \\ (21,52) \end{gathered}$	$\begin{gathered} \sim 29.2(1 \\ 7.2) \end{gathered}$	Indoor	14kj.kg-1		$\begin{gathered} 37.6 \\ (37.5) \\ - \\ 39(38.2) \end{gathered}$	$\begin{gathered} \hline 34.6 \\ (31 . \\ 8) \\ - \\ 34.6 \\ (32) \end{gathered}$	$\begin{gathered} \sim 100 \\ (97) \\ - \\ \sim \\ (165) \end{gathered}$	$\begin{gathered} 2.2 \\ (1.5) \end{gathered}$
Dry	Lie et al., (2020)	Start Average End	$\begin{gathered} 34.9 \pm 0.2^{\circ} \mathrm{C}, \\ 50.1 \pm 1.1 \%, 5 \\ 27 \end{gathered}$	28.7	Indoor	30 min TT	Elapsed work done on completion of every 20%.	$\begin{gathered} 37.25 \\ -\quad \\ 38.5 \end{gathered}$	$\begin{gathered} 34.8 \\ - \\ 36 \end{gathered}$		$\begin{gathered} 0.97 \pm 0 . \\ 31 \end{gathered}$
Humid	Roelands et al., (2008a)	Start Average End	$\begin{gathered} 30,50-60 \% \\ 0.5 \\ (18,50-16, \\ 0.5) \end{gathered}$	$\begin{gathered} 31.1 \\ (14.5) \end{gathered}$	Indoor	predetermined amount of work equal to 30 min at 75% Wmax as quickly as possible (13).	No feedback provided.	$\begin{gathered} \hline 36.8(37) \\ -39.3 \\ (\sim 39) \end{gathered}$		$\begin{gathered} \sim 180(\\ \sim \end{gathered}$	-
Humid	Roelands et al., (2008b)	Start Average End	30, 50-60\%, 0			predetermined amount of work equal to 30 min at 75% Wmax as quickly as possible (13).	No feedback provided.	$\begin{gathered} \sim 38.5(\sim 37 \\ .5) \\ - \\ \sim 39(\sim 38) \end{gathered}$		$\begin{gathered} \sim 180 \\ \text { (control } \\ \sim 170) \\ - \\ 170 \\ (\sim 180) \\ \hline \end{gathered}$	
Humid	Périard et al., (2011a)	Start Average End End	$\begin{gathered} 35,60,3.47 \\ (20,40,3.47) \end{gathered}$	$\begin{gathered} \text { 30.2(14. } \\ 6) \end{gathered}$	Indoor	40km	verbal feedback at 95\% to finish the time trial at maximal effort.	$\begin{gathered} \hline 37.1(37) \\ -(38.7) \end{gathered}$	$\begin{gathered} \hline 35 \\ (31) \\ -\quad \\ 35(2 \\ 8) \\ \hline \end{gathered}$	$\begin{gathered} \hline 165(16 \\ 0) \\ - \\ 184 \\ (180) \\ \hline \end{gathered}$	$\begin{gathered} 1.8 \pm \\ 0.5(1.1 \\ \pm 0.4) \end{gathered}$
Humid	Périard and Racinais (2 015a)	Start Average End	$\begin{gathered} 35^{\circ} \mathrm{C}, 60 \% \\ 0.14 \mathrm{~m} / \mathrm{s}(18, \\ 40 \%, \\ 0.14 \mathrm{~m} / \mathrm{s}) \end{gathered}$	$\begin{gathered} 30.7(13 . \\ 5) \end{gathered}$	Indoor	$4 \times 16.5-m i n$ time trials interspersed by 5 min of passive/active recovery (~75 W).	Visual elapse distance every 5 min and verbal encouragement was given, and visual display (power, heart rate, cadence, speed, elapsed distance) was revealed to in the last1.5min of each 16.5 min TT.	$\begin{gathered} \hline 36.8(36.8) \\ - \\ 39.40 .7^{\circ} \mathrm{C} \\ (38.6 \\ \left.0.3^{\circ} \mathrm{C}\right)^{\star} \end{gathered}$	$\begin{gathered} 31(3 \\ 1) \\ - \\ \sim 34 . \\ 2(26 \\ .2) \end{gathered}$	$\begin{gathered} 160(15 \\ 6) \\ - \\ 185(17 \\ 8) \end{gathered}$	$\begin{gathered} \hline 2.30 .4 \\ (1.3 \\ 0.2) \end{gathered}$
Humid	Périard and Racinais (2 015b)	Start Average End	35,60,4	30.2	Indoor	750 kJ	Work completed each 10% and verbal feedback at 95%	$\begin{gathered} 37 \\ - \\ 39.6 \end{gathered}$	$\begin{gathered} 31 \\ - \\ 36 \end{gathered}$	$\begin{gathered} 158 \\ - \\ 183 \end{gathered}$	2.4 ± 0.8

							to finish the time trial at maximal effort.				
Humid	Watson et al., (2005)	Start Average End	30,55,0.5	25.3	Indoor	60 min at 55% of Wmax followed by 30 min TT	No feedback provided.	39.7			1.8
Humid	```Teunissen et al., (2013)```	Start Average End	28,80	26.2	Indoor	15min at starting at 80W and icreased by 20W every 3min, followed by 15 km TT	Elapsed distance.	$\begin{gathered} 37.25 \\ - \\ 38.5 \end{gathered}$	$\begin{gathered} 34.5 \\ - \\ 35.5 \end{gathered}$	185	$\begin{gathered} 0.79 \pm 0 . \\ 25 \end{gathered}$
Humid	Teunissen e t al., (2013)	Start Average End	33,80,4m/s	30.9	Indoor	15min at starting at 80W and icreased by 20W every 3min, followed by 15 km TT	Elapsed distance.	$\begin{gathered} 37.25 \\ - \\ 38.6 \end{gathered}$	$\begin{gathered} 34.8 \\ - \\ 35.6 \end{gathered}$		$\begin{gathered} 0.87 \pm \\ 0.19 \end{gathered}$
Humid	Periard and Racianis, (2016)	Start Average End	35,60,3.47	30.2	Indoor	750kJ	Visual 10\% of elapse work completed and kilojoule countdown was provided upon reaching the last 3\% until completion.	$\begin{gathered} 37 \\ - \\ 39.7 \end{gathered}$	$\begin{gathered} 31 \\ - \\ 37 \end{gathered}$	$\begin{gathered} 153 \\ - \\ 175 \end{gathered}$	2.1
Humid	Che Jusoh et al., (2016)	Start Average End	$\begin{gathered} 30 \pm 2,78 \pm 3 \\ 5.55 \end{gathered}$	27.8	Indoor	15min	Elapsed time every 3 mins .	39.1		-	1.7 ± 0.5
Humid	```Maia-Lima, et al., (2017)```	Start Average End	35,68,0.5	31.5	Indoor	30km	Visual elapse distance.	$\begin{gathered} 37.25 \\ -\quad \\ 39.5 \end{gathered}$	$\begin{gathered} \hline 35.1 \\ -\overline{2} \end{gathered}$	$\begin{gathered} 70 \\ -\overline{170} \end{gathered}$	$\begin{gathered} 1.92 \pm 0 . \\ 27 \end{gathered}$
Humid	Lei et al., (2020)	Start Average End	$\begin{gathered} 29.2 \pm 0.2^{\circ} \mathrm{C} \\ 69.4 \pm 1.0 \% \\ 5.27 \end{gathered}$	26	Indoor	30 min TT	Elapsed work done on completion of every 20%.	$\begin{gathered} 37.25 \\ - \\ 38.25 \end{gathered}$	$\begin{gathered} 32.2 \\ - \\ 34.2 \end{gathered}$		$\begin{gathered} 0.84 \pm 0 . \\ 21 \end{gathered}$

WBGT = wet bulb globe temperature

2.3.5. Perceptual Responses

2.3.5.1. Ratings of Perceived Exertion (RPE)

Only three articles reported the change in RPE in HD compared to CON in which all articles reported no difference in the change in RPE between conditions (Schlader et al., 2011d; VanHaitsma et al., 2015; Kent et al., 2018; Table 6). Collectively the change in RPE in HD ranged from $\sim 3(15 \%$) to $11(78 \%)$. The greatest change (11:78\%) was reported in Racinais et al., (2019).

Only two articles compared the change in RPE between CON and HH (Périard et al., 2011a; Périard and Racinais (2015a; Table 6). Périard et al., (2011a) reported a ~7\% greater change in RPE in CON (13-19) compared to HH (14-19; Table 6). Notably there was no difference in end RPE between conditions (19; 93\%; Table 6). Whereas, Périard and Racinais (2015a) reported no difference in the change in RPE between conditions (14-19; 36\%; Table 6). Collectively the change in RPE in HH ranged from $\sim 4(29 \%)-8(58 \%)$.

Only one article compared the change in RPE between HD and HH (Teunissen et al., 2013), reporting a $\sim 5 \%$ greater change in HH and $\sim 13 \%$ greater change in HH with wind compared to HD. Notably ratings of RPE were the same at the end of the TT (19:93\% of max).

2.3.5.2. Thermal Sensation (TS)

Only two articles compared TS in HD and CON (Schalder et al., 2011d; Kent et al., 2018; Table 6). Schlader et al., (2011d) reported a $\sim 8 \%$ greater change in HD (slightly warm (71\% of max) to hot (100% of max)) compared to CON (neutral (50% of max) to slightly warm (71\% of max)). Kent et al., (2018) also reported a $\sim 12 \%$ greater change in TS in HD (Hot (88% of max) to very hot (100% of max)) compared to CON (warm (75% of max) to warm (75% of max)). Collectively the change in TS in HD ranged from $\sim 15-33 \%$ (Table 6).

No articles compared TS in HH and CON. Teunissen et al., (2013) was the only article to report change in TS in HH , showing a $\sim 45 \%$ change in HH and $\sim 22 \%$ change in HH with
wind. The change in TS was $\sim 12 \%$ greater in HH ($\sim 45 \%$) compared to HD ($\sim 33 \%)$. Notably the ratings of TS at the end of the TT reached max (very hot) for both HH and HD. Whereas TS reached 88% of max (hot) in HH with wind, highlighting that wind speed may provide beneficial for TS in HH.

2.3.5.3. Thermal Comfort (TC)

Schlader et al., (2011d) was the only article to report change in TC in HD compared to CON, highlighting a $\sim 25 \%$ greater change in TS in CON (comfortable: 25% to uncomfortable 75%) compared to HD (uncomfortable: 75% to Very uncomfortable: 100\%; Table 6). This finding highlighted that the participants felt more uncomfortable in HD from the onset of cycling compared to CON. Collectively the change in TC in HD ranged from 25-75\%. The greatest change of 75% was reported in Lei et al., (2020) article in which participants started the TT feeling comfortable (0% of max) and finished the TT feeling slightly uncomfortable (75% of max).

Five articles compared the change in TC in HH and CON (Périard et al., 2011a; Périard and Racinais 2015a; Périard and Racinais, 2015b; Periard and Racianis, 2016; Maia-Lima, et al., 2017; Table 6). Périard et al., (2011a), Périard and Racinais (2015a) and ; Maia-Lima, et al., (2017) reported a $\sim 10 \%$, 14\%, and 28% greater change in TC in HH compared to CON, respectively. Whereas Periard and Racinais (2015b) and (2016) reported $\sim 1 \%$ differences between conditions. Collectively the change in TC in HH ranged from $\sim 10-75 \%$. The greatest change of 75% was reported in Teunissen et al., (2013) article in which participants felt very comfortable (25% of max) at the start of the TT and finished the TT feeling very uncomfortable (100% of max).

Teunissen et al., (2013) was the only study to compare the change in TC in HD to HH, reporting a $\sim 25 \%$ greater increase in HH compared to HD. Notably, TC finished at "very uncomfortable" (100\% of max) in HD, HH and HH with wind.

2.3.5.4. Affect (AF)

Only one article to report changes in AF in HD and CON (English et al., 2019). The findings showed that there was a $\sim 5 \%$ greater change in AF in HD compared to CON. AF is negatively affected by HD as AF decreased from good (83% of max) at the start of the TT to fairly good (77% of max) at the end of the TT. Whereas, AF was unaffected in CON and was maintained as good (83% of \max) throughout the TT. To date, not articles have investigated the effect of HH on AF during cycling, nor compared HH and HD .

2.3.5.5. Motivation (M)

Schmit et al., (2016) was the only article to measure motivation in HD compared to CON. Participants were asked to use a 5 -point Likert scale (5=strongly agree, 4=agree, 3=not sure, 2=disagree, $1=$ strongly disagree) to stated whether they were motivated or not to complete the TT prior to starting. There was no significant difference in motivation to complete the TT prior to HD (agree: 80\% of max) or CON (agree: 80% of max). Notably motivation was not measured during the TT and therefore it is unclear whether motivation was effected by the condition.

No articles measured motivation in HH. However, a recent review by Coudevylle et al., (2021) investigated the impact of HH conditions on motivational factors during aerobic performance highlighting that is a relatively under researched area of environmental perception. Coudevylle et al., (2021) suggested that this may be related to the difficulty in measuring motivation, and therefore proposed an integrative theoretical model to better understand the direct and indirect motivational mechanisms that can operate on athletic performances.

Table 6. Perceptual responses during cycling TTs in hot and dry (HD) and hot and humid (HH) conditions.

Con ditio n	Authors	Timing	Condition			Task		Perceptual Responses				
			```Environm ental condition( '0 m/s)```	$\begin{gathered} \text { WBG } \\ T \\ \left({ }^{\circ} \mathrm{C}\right) \end{gathered}$	Indoor/Outdoor	Exercise Length	Feedback given.	RPE   (\% of max)	$\begin{gathered} \text { TS } \\ \text { (\% of max) } \end{gathered}$	$\begin{gathered} \text { TC } \\ (\% \text { of } \max ) \end{gathered}$	$\begin{gathered} \text { AF } \\ \text { (\% of max) } \end{gathered}$	$\begin{gathered} \text { TM } \\ \text { (\% of max) } \end{gathered}$
Dry	$\begin{aligned} & \text { Schlader } \\ & \text { et al., } \\ & \text { (2011d) } \end{aligned}$	Start Average End	$\begin{gathered} 40,14,1.5 \\ (20.4 \pm 0.7 \\ { }^{\circ} \mathrm{C}, 24 \% \pm \\ 7 \%) \end{gathered}$	$\begin{aligned} & \text { 26.5(1 } \\ & 6.3) \end{aligned}$	Indoor	30min	Visual elapsed time.	$\begin{gathered} 15(75 \%) \\ (15(75 \%) \\ - \\ 18(90 \%) \\ (18(90 \%) \end{gathered}$	Slightly warm: $71 \%$ (neutra I: $50 \%$ ) - Hot: 100\%(slight ly warm: $71 \%$ )	uncomfortable: $75 \%$ (comfortable 25\%) Very uncomfortable: 100\%(uncomfortabl e 75\%)		-
Dry	Teunisse n et al., (2013)	Start Average End	33,40	26.5	Indoor	15 min at starting at 80 W and increased b y 20W every 3 min , followed by 15 km TT	Visual elapsed distance.	$\begin{gathered} 13: 50 \% \\ -\overline{9} \% \end{gathered}$	Slightly warm: 67\%   Very hot: 100\%	Comfortable:50\%   Very uncomfortable: 100\%	-	-
Dry	VanHaits ma et al., (2015)	Start Average End	$\begin{gathered} 35,25,0.5 \\ \left(21^{\circ} \mathrm{C}, \sim 20\right. \\ \%) \end{gathered}$	$\begin{gathered} 25.4(1) \\ 3.6) \end{gathered}$	Indoor	40km	Visual power output, speed, cadence and elapsed distance.	$\begin{gathered} 13: 50 \%( \\ 13: 50 \%) \\ 16.4: 71 \\ \%(15.5: 6 \\ 4 \%)^{*} \\ 18.86 \%( \\ 17: 79 \%) \\ \hline \end{gathered}$	Hot: 88\%(Slight warm to hot:66\%)	$\qquad$		
Dry	Schmit et   al., (2016)	Start Average End	$\begin{gathered} 35,50,12.5 \\ \left(21^{\circ} \mathrm{C},\right. \\ 50 \%, 12.5) \end{gathered}$	$\begin{gathered} 28.6 \\ (16.4) \end{gathered}$	Indoor	20km	Visual elapsed distance.					Agree:80\% (Agree:80\%)
Dry	Kent et al., (2018)	Start Average End	$\begin{gathered} 34.9 \pm \\ 0.3^{\circ} \mathrm{C}, 48.0 \\ \pm 1.9 \% \\ (21,52) \end{gathered}$	$\begin{gathered} \sim 29.2( \\ 17.2) \end{gathered}$	Indoor	14kj.kg-1	Not reported.	$\begin{aligned} & 15: 78 \%( \\ & 15: 78 \%) \\ & -\quad 19: 93 \%( \\ & 19: 93 \%) \end{aligned}$	Hot: 88\%(Warm $75 \%$ )- Very hot:100\%( Warm:75\%)			


Dry	English et al., (2019)	Start Average End	$\begin{aligned} & 36,50(21 \\ & \left.{ }^{\circ} \mathrm{C}, 50 \%\right) \end{aligned}$	$\begin{gathered} 30.4 \\ (17.1) \end{gathered}$	Indoor	30 min at $50 \%$ $\mathrm{VO}_{2 \text { max }}$ followed by a 5 min rest and 15 min TT	Verbal elapsed time from researcher at $5,10,12,13,14$, 14.30 and 14.50 min				Good:83\% (good:83\%)   Fairly good: 77\%(good:83\%)	
Dry	Racinais et al., (2019)	Start Average End	37,25	29.7	Outdoor TT	40km TT	Not reported.	$\begin{gathered} 7: 7 \% \\ \text { 18:85\% } \end{gathered}$				
Dry	$\begin{aligned} & \text { Lei et al., } \\ & (2020) \end{aligned}$	Start Average End	35,50, 5.27	28.7	Indoor	30 min TT	Elapsed work done on completion of every $20 \%$. (not stated whether it was visual or verbal).	$\begin{aligned} & 10: 29 \% \\ & \text { 17:79\% } \end{aligned}$	Slightly warm: 71\%   Too warm:86\%	Comfortable: 0\% -Slightly uncomfortable: 75\%	-	-
$\underset{d}{\text { Humi }}$	Roelands et al., (2008a)	Start Average End	$\begin{gathered} 30,50-60 \% \\ 0.5 \\ (18,50-16, \\ 0.5) \end{gathered}$	$\begin{gathered} 31.1 \\ (14.5) \end{gathered}$	Indoor	predetermined amount of work equal to 30 min at $75 \%$ Wmax as quickly as possible (13).	No feedback provided.					
$\underset{d}{\text { Humi }}$	Périard et al., (2011a)	Start Average End	$\begin{gathered} 35,60,3.47 \\ (20,40, \\ 3.47) \end{gathered}$	$\begin{gathered} 30.2(1 \\ 4.6) \end{gathered}$	Indoor	40km	verbal feedback at 95\%   to finish the time trial at maximal effort.	$\begin{gathered} 14: 57 \% \\ (13) \\ - \\ 19: 93 \% \\ (19: \\ 93 \%) \\ \hline \end{gathered}$	-	comfortably warm: 75\% (comfortable:42\%)   too warm:85\% (comfortable: 42\%)		
$\underset{d}{\text { Humi }}$	Teunisse n et al., (2013)							$\begin{gathered} 12 \\ -\overline{9} \% \end{gathered}$	warm:55\%   very hot: 100\%	very comfortable:25\% - very uncomfortable:100 $\%$		
$\underset{d}{\text { Humi }}$	Teunisse n et al., (2013)			wind				$\begin{gathered} 11 \\ -\quad \\ 19: 93 \% \end{gathered}$	slightly warm:66\% hot:88\%	very comfortable:25\% - very uncomfortable:100 $\%$		
	Périard a nd Racina is (2015a)	Start Average End	$\begin{gathered} 35^{\circ} \mathrm{C}, 60 \%, \\ 0.14 \mathrm{~m} / \mathrm{s} \\ (18,40 \%, \\ 0.14 \mathrm{~m} / \mathrm{s}) \end{gathered}$	$\begin{gathered} 30.7(1) \\ 3.5) \end{gathered}$	Indoor	$4 \times 16.5-\mathrm{min}$ time trials interspersed by 5 min of passive/active recovery ( $\sim 75$ W).	Visual elapse distance every 5 min and verbal encouragement was given, and visual display (power, heart rate, cadence, speed, elapsed distance) was revealed to in the last1.5min of each 16.5 min TT.	$\begin{gathered} 14: 57 \% \\ (14: 57 \% \\ - \\ 19: 93 \% \\ (19: \\ 93 \%) \end{gathered}$	-	Comfortably warm: 71\% (comfortably cool: 42\%)   Too warm:85\% (comfortably cool: 42\%)		



1308

### 2.3.6. Conclusion

- PO was progressively impaired throughout the trial in HD and HH compared to CON. Although, there was no significant difference in average PO in HD and HH, the decline in PO in HH occurred earlier compared to HD, especially if there was no wind.
- Thermoregulatory responses are impaired in HD and HH compared to CON. For example, more rapid increase in $\mathrm{Tc}_{\text {ore }} / \mathrm{T}_{\text {rectal }}$ and $\mathrm{T}_{\text {sk }}$, and greater average $H R$ and $S R$.
- There is a lack of research comparing perceptual responses in HD and CON, HH and $\mathrm{CON}, \mathrm{HD}$ and HH . Preliminary findings in the area show that HH results in a greater change in thermal perception (RPE, TS, TC) compared to CON and HD. Notably, end thermal perception values (RPE, TS, TC) are equivalent in HD and HH .
- There was limited research that compared performance in conditions that were matched for WBGT to ensure thermal stress and strain experienced were similar between conditions to enable more accurate comparisons and conclusions. Therefore, future research should aim to investigate cycling TT performance in HD and HH conditions were WBGT is matched. However, there is limited research that compares direct WBGT ensuring that thermal strain experienced is similar to be able to draw accurate conclusions. Therefore, future research should measure thermoregulatory responses such as $\mathrm{T}_{\text {core }} / \mathrm{T}_{\text {rectal }}, \mathrm{T}_{\text {sk }}$, HR and SR , and perceptual responses such as RPE, TS, TC, AF, M during cycling TT performance in conditions were WBGT is matched.
- Collectively these findings demonstrate that there is a difference in physical and mental performance, and thermoregulatory and perceptual responses in HD and HH . Therefore, it would be practical to assume that the heat alleviation strategies used in HD and HH would be different conditions.
- Additional findings from this review highlighted that multiple different scales are used to measure perceptual responses which makes it difficult to compare results between
studies. Future research should investigate the most practical and valid scale for each perceptual variable. It was also noted that the feedback provided in the eligible article's differed in type (verbal vs visual or performance vs physiological) and quantity (1-4) which could have also influenced performance by adding additional cognitive load.


### 2.4. Cycling performance in hot conditions (HD vs HH) with per-cooling (cold-water ingestion vs pouring).

To reduce the physiological strain experienced during cycling in hot conditions, numerous heat alleviation strategies have been developed, such as heat acclimation/acclimatization, hydration and cooling (Racinais et al., 2015a; Tyler et al., 2016). Each strategy will be discussed briefly before focusing on cooling as the main strategy in this review.

### 2.4.1. Heat Acclimation/acclimatization

Heat acclimation (artificial environment i.e. laboratory) and acclimatization (natural environment) involves repeated exposure to competition conditions in the weeks/days ( $\leq 14$ days) leading up to competition (Racinais et al., 2015a; Periard et al., 2015). Despite the benefits, heat acclimation/acclimatization protocols are often very time consuming (mediumlong term adaptation; Moss et al., 2020) and expensive to complete. The adaptation from this strategy can be maintained for $\sim 8$ weeks with intermittent heat training once a week (Sekiguchi et al., 2021). However, no intermittent heat training following heat acclimation/acclimatisation will result in a loss of adaptations after 4 weeks and even greater losses after 8 weeks (Sekiguchi et al., 2021). Whereas cooling and hydration can be applied easily and cost effectively prior to (pre-cooling) and during (per-cooling) competition in hot conditions (Racinais et al., 2015a).

### 2.5.2. Hydration

Periard and Racinais (2019) book included a chapter on hydration (Burke, Chapter 6, pp.113-138) which highlighted key hydration terminology, assessment of hydration states and, physiological and performance affects at different hydrated states. When measured via urine specific gravity, hydration is typically categorised into four states; Hyperhydated, euhydrated, hypohydrated and severely hypohydrated. Overall fluid balance and hydration state is affected by the fluid that is taken in and lost from the human body. Fluid out via sweat loss will vary according to features of the exercise, the environment and the athlete.

However, SR does vary from individual to individual ( $1 \mathrm{Lh}^{-1}$ to $4 \mathrm{Lh}^{-1}$ ) and depends upon a number of variables including; fitness level, environmental conditions (i.e. temperature, humidity, air velocity), and metabolism (Sawka, Cheuvront and Kenefick, 2015). To replace fluid lost via sweating, athletes can use "ad libitum drinking" (i.e. drink whenever you want) or "drinking to thirst" (i.e. drink when you are thirsty) or "programmed fluid intake" protocols (i.e. drink every 5 mins ). The best approach will vary according to the factors that influence the relative magnitude of sweat rates and opportunities to drink in the desired sport. Failure to replace fluid lost via sweating will result in hypohydrated/severely hypohydrated/dehydrated states. Dehydration can cause greater levels of fatigue and pain, influencing overall mood state and perceptual ratings during ultra-endurance cycling compared to euhydration (Moyen et al., 2015).

### 2.4.3. Cooling

Cooling can be administered internally or externally. Internal cooling can be conducted via cold-water or ice-slurry ingestion which activates central thermoreceptors. Whereas, external cooling can be conducted via cold-water immersion, cooling vests, cold-water pouring, etc which decreases tissue temperature and activates peripheral thermoreceptors (Tyler 2019 pp.139; Periard and Racinais, 2019).

### 2.4.3.1. Performance Response

Multiple reviews and meta-analysis have been conducted on cooling (Tyler et al., 2016; Ruddock et al., 2017; Best et al., 2018; Douzi et al., 2019; Alhadad et al., 2019; Zhang et al., 2019; Golbabei et al., 2020; Douzi et al., 2020; Rodriguez et al., 2020).

Tyler et al., (2016) conducted a meta-analysis on the effect of cooling prior to and during exercise on exercise performance and capacity in hot conditions (WBGT $=>26^{\circ} \mathrm{C}$ ). 28 articles were investigated ( 23 pre-cooling and 5 per-cooling). Overall, precooling had a moderate ( $\mathrm{d}=0.73$ ) effect on subsequent performance, but the magnitude of the effect is dependent on the nature of the test. For example, sprint performance was impaired
( $\mathrm{d}=-0.26$ ) but intermittent performance and prolonged exercise were both improved following cooling ( $\mathrm{d}=0.47$ and $\mathrm{d}=1.91$, respectively). In summary, precooling can improve subsequent intermittent and prolonged exercise performance and capacity in a hot environment, but sprint performance is impaired. Cooling during exercise also has a positive effect on exercise performance and capacity in a hot environment.

Douzi et al., (2019) systematic review with meta-analyses found that cooling during exercise enhances performance but the cooled body area matter. Specifically, internal cooling (cold fluid ingestion such as cold water and ice slurry/menthol beverage) and external cooling (face, neck, and torso) provide the greatest performance benefit for 'aerobic' performance with a moderate to large effect. For 'anaerobic' exercises, wearing a wholebody cooling garment is the best way to enhance exercise performance.

Best et al., (2018) review investigated topical and ingested cooling methodologies for endurance exercise performance in the heat. This systematic review and meta-analysis aimed to assess studies which have investigated cooling methodologies, their timing and effects, on endurance exercise performance in trained athletes (Category 3; $\mathrm{VO}_{2 \max } \geq 55$ $\mathrm{mL} \cdot \mathrm{kg} \cdot \mathrm{min}-1$ ) in hot environmental conditions ( $\geq 28^{\circ} \mathrm{C}$ ). Meta-analyses were performed to quantify the effects of timings and methods of application, with a narrative review of the evidence also provided. 10 articles were investigated. With respect to time trial performance, cooling was shown to result in small beneficial effects when applied before and throughout the exercise bout (Effect Size: $-0.44 ;-0.69$ to -0.18 ), especially when ingested $(-0.39$; -0.60 to -0.18 ). Current evidence suggests that whilst other strategies ameliorate physiological or perceptual responses throughout endurance exercise in hot conditions, ingesting cooling aids before and during exercise provides a small benefit, which is of practical significance to athletes' time trial performance. In line with this, Alhadad et al., (2019) meta-analysis investigated the efficacy of heat mitigation strategies on core temperature and endurance exercise. 118 articles were investigated and assessed
according to the intervention's ability to lower core temperature before exercise, attenuate the rise of core temperature during exercise, extend core temperature at the end of exercise and improve endurance. Aerobic fitness (AF) was found to be the most effective in terms of a strategy's ability to favourably alter $T_{\text {core }}$, followed by HA, PC and lastly, FI. Interestingly, a similar ranking was observed in improving endurance, with AF being the most effective, followed by HA, FI, and PC. Knowledge gained from this meta-analysis will be useful in allowing athletes, coaches and sport scientists to make informed decisions when employing heat mitigation strategies during competitions in hot environments.

Zhang, (2019) meta-analysis focused on strategies to optimise ice-slurry ingestion for endurance performance. 16 articles were investigated. Overall, ice-slurry ingestion moderately improved endurance performance in the heat ( $\mathrm{g}=0.54$ ). In line with this, Douzi et al., (2020) narrative review found that per-cooling (Using cooling systems during physical exercise) enhances physical and cognitive performances in hot environments. Specifically, the performance improvements from the per-cooling interventions tend to be larger in TTE (9-51\%) than in TTs (3-9\%). These results may be explained by the fact that participants in TTEs could not freely choose their self-paced intensity. Whereas, the effects of cooling on 'anaerobic' exercise depend on the duration of the cooling method and its impact on decreasing the core and skin temperatures. The efficacy of per-cooling depends on the participant's core temperature, and it has been hypothesized that a higher core temperature leads to a greater per-cooling impact on performance. Thus, the use of per-cooling should be recommended especially when the ambient temperature is high and/or the core temperature of the subject is expected to be elevated.

Rodriguez et al., (2020) systematic review evaluated the effects of different pre-cooling techniques on sports performance in highly-trained athletes under high temperature conditions. 26 articles were investigated. Overall, cooling prior to exercise concluded increases in distance covered (1.5-13.1\%), mean power output (0.9-6.9\%), TTE (19$31.9 \%$ ), work ( $0.1-8.5 \%$ ), and mean peak torque (10.4-22.6\%), as well as reductions in
completion time ( $0.6-6.5 \%$ ). Mixed strategies followed by cold water immersion seem to be the most effective techniques, being directly related with the duration of cooling and showing the major effects in prolonged exercise protocols. The present review showed that precooling methods are an effective strategy to increase sports performance in hot environments. This improvement is associated with the body surface exposed and its sensibility, as well as the time of application, obtaining the best results in prolonged physical exercise protocols.

### 2.4.3.2. Physiology Response

Golbabei et al., (2020) systematic review investigated the effect of cooling vests on physiological and perceptual responses. 63 articles were investigated. A statistically significant difference was observed in body temperature among hybrid cooling garments (HBCGs), phase-change materials (PCMs) and air-cooled garments (ACGs) at $31.56-37{ }^{\circ} \mathrm{C}$ ( $60 \%$ relative humidity), evaporative cooling garments at $25.8-28.1^{\circ} \mathrm{C}$ and liquid cooling garments at $35^{\circ} \mathrm{C}(49 \%$ relative humidity) compared to without cooling vests ( $p<0.001$ ). PCMs using ingredients such as water and other additives or compounds that have high latent heat, low melting temperature, low price, ease of use and portability can be used as an alternative to alleviate heat strain. Hence, they can have a beneficial effect on improving human body responses in very hot environments with low to high physical activities and heavy workload, which should be considered in future studies and in real work environments. The type of cooling vests used in different climate conditions and experimental procedures probably will have considerable influence on the result of the studies. In conclusion, future research should standardize the experimental procedure, climate condition, clothing ensemble, subjective ratings and body information based on the majority of occupational workers and working scenarios of the cooling vests.

Morris and Jay (2016) commentary piece discussed the differences between cooling via cold-water ingestion or pouring. Cold-water ingestion improves exercise performance and
feelings of thermal comfort independently of any differences in core and skin temperature. However, the effect of cold-water pouring has not been investigated, likely due to the mess that would ensue. More recently, Jay and Morris (2018) investigated whether cold-water or ice-slurry ingestion during exercise elicited a net body cooling effect in the heat. Internal cooling causes a reduction in sweating which results in a decrease in evaporative heat loss from the skin by a magnitude that at least negates the additional internal heat loss as a cold ingested fluid warms up to equilibrate with body temperature. Therefore explaining equivalent core temperature. Internal heat transfer with internal cooling is always 100\% efficient, therefore when a decrement occurs in the efficiency that sweat evaporates from the skin surface (i.e. sweating efficiency), a net cooling effect should begin to develop. Based on the relationship between activity, climate and sweating efficiency, the boundary conditions beyond which internal cooling can be beneficial in terms for increasing net heat loss can be calculated. The conditions are warmer and more humid for cycling relative to running because of the greater skin surface airflow, which promotes evaporation for a given metabolic heat production and thus sweat rate. Jay and Morris (2018) suggest that within these boundary conditions, athletes should apply internal cooling at the temperature that they find most palatable which likely varies from athlete to athlete and therefore best maintain hydration status.

### 2.4.3.3. Perceptual Response

Ruddock et al., (2017) found that cooling during fixed-intensity exercise, particularly before a self-paced exercise trial, improves endurance performance in hot environments by benefiting RPE and thermal perception (i.e. thermal comfort and thermal sensation), but does not appear to attenuate increases in body temperature.

Gibson et al., (2020) review and practitioner guidelines for Heat alleviation strategies for athletic performance included a section on cooling strategies. The review summarised the work discussed above, highlighting that per-cooling during exercise in hot conditions elicits beneficial performance effects and can be used addictively with pre-cooling. Cold-water
sprays, sipping and/or pouring, cold/wet/frozen towels or bags of ice may provide greater perceptual benefits (e.g. alleviate thermal discomfort) compared to physiological benefits (e.g. reduction in core temperature).

In contrast, Coudevylle et al., (2019) investigated conventional and alternative strategies to cope with the subtropical climates of Tokyo 2020. The review highlighted that alternative methods such as mental techniques/psychological skills (goal setting, arousal regulation, mental imagery, positive self-talk, mindfullness) have shown positive performance results (Barwood et al. 2008; Haase et al., 2015; Wallace et al., 2016).

Collectively the findings report that the benefit of cooling will depend on extent of heat stress (i.e. ambient temperature, humidity, radiation and wind speed), heat strain (i.e. physiological and perceptual responses), the type (i.e. external or internal), timing (pre-cooling and/or percooling), duration (i.e. how long the cooling is applied for), and magnitude (i.e. temperature of cooling). Notably the two most practical strategies during training and/or competing in hot conditions, cold-water ingestion and pouring, have received very little research attention. Therefore, the second aim of this thesis is to investigate the effectiveness of cold-water ingestion and pouring at minimising performance impairments during cycling TTs in HD and HH conditions.

### 2.4.4. Literature Search

To investigate the second aim of this thesis, a second literature search (Figure 2) was carried out in Google scholar, research gate, Scopus. The following search terms were combined to search for the full text of experimental articles published after 2000 and before January 2020: The following search terms were used: "Cycling" OR "Time-trial" OR "Selfpaced" OR "Pacing" AND "Heat" OR "Hot", "Humid", "Dry" AND "Cooling" OR "per-cooling" OR "Cooling" OR "Cold-water ingestion" OR "Cold-water pouring". Firstly, titles were assessed for relevance to the topic and selected if they met the inclusion criteria outlined in Table8. This process was repeated for abstracts and full texts. In addition to the literature
search, references were scanned for further relevant articles and were included if they met the inclusion criteria.

### 2.4.4.1. Inclusion/exclusion

Table 7. Table outlines literature search criteria for articles acceptance and rejection.

Inclusion	Exclusion
Published between 2000-2020	Published before 2000 and after 2020
Full text available	No full text available
Written in the English Language.	No English source available
Experimental peer-reviewed research article	Not original or peer-review article
Human population	Animal population
Healthy non-acclimated participants.	Clinical or occupational setting, notable mental or physical impairments (i.e. diseases, loss of motor function) and/or heat acclimatised population   (Exposure to $>30^{\circ} \mathrm{C}$ in the last 30 days)
Male	Female, transgender.
Assessment of at least one of the following parameters: $\mathrm{T}_{\text {rectal, }}, \mathrm{T}_{\text {core }}, \mathrm{T}_{\text {sk }}$, SR, HR, PO, completion time, DC.	No performance or physiological parameters measured
Self-paced cycling completed	No self-paced cycling completed
Inclusion of at least one task related and unmanipulated feedback variable (elapsed time, distance, HR, PO, cadence, or speed)	Manipulation of feedback, or irrelevant feedback to the task given
Adult participants ( $\geq 18 \mathrm{yrs}$ )	Children participants (<18yrs)
Ambient temperatures $\geq 28^{\circ} \mathrm{C}$	Ambient temperatures <280
Inclusion of one per-cooling method.	No per-cooling included.

$\mathrm{T}_{\text {rectal }}=$ rectal temperature, $T_{\text {core }}=$ core temperature, $T_{s k}$, skin temperature, $H R=$ heart rate,
$P O=$ power output, $D C=$ distance covered.

For the purpose of this review cold-water ingestion was defined as drinking water that was $\leq 10^{\circ} \mathrm{C}$ and pouring cold-water was defined as pouring water that was $\leq 10^{\circ} \mathrm{C}$ over the head, neck, shoulders, torso or back. Control conditions were defined as conditions in thermoneutral conditions.

### 2.4.4.2. Outcome Measures

The outcome measures extracted from the eligible articles were:

1. Article characteristics - Number of participants, sex ratio (M:F), Group $\mathrm{VO}_{2 \max }$
(mL.kg.min ${ }^{-1}$ )
2. Task and conditions - Task (duration or intensity), indoor/outdoor, ambient temperature $\left({ }^{\circ} \mathrm{C}\right)$, relative humidity $(\%)$, wind speed $(\mathrm{m} / \mathrm{s})$, WGBT $\left({ }^{\circ} \mathrm{C}\right)$, feedback given.
3. Intervention - Water temperature $\left({ }^{\circ} \mathrm{C}\right)$, amount of water ingested at each interval (L), water ingestion frequency (time or distance), total water ingested (L)
4. Physical performance - Power output (W, Completion time (min)/distance (km), PO improvement with intervention (\%), completion time improvement with intervention (\%)
5. Physiological responses - Rectal/core temperature $\left({ }^{\circ} \mathrm{C}\right)$, skin temperature $\left({ }^{\circ} \mathrm{C}\right)$, sweat rate (L.hr), heart rate (b. $\mathrm{min}^{-1}$ ).
6. Perceptual responses - Ratings of perceived exertion (\% of max), thermal sensation (\% of max), thermal comfort (\% of max), affect (\% of max), task motivation (\% of max)


Figure 2. Flowchart of literature search and screening process using PRISMA Protocol.

### 2.4.4.3. Article characteristics

Two articles were conducted in HD conditions at a fixed intensity (Mundel et al., 2006; Naito and Ogaki 2017). Both articles were conducted in HD conditions with no control condition.

Two articles included a self-paced cycling TT (Carvalho et al., 2016; Maunder et al., 2016) and one article included fixed intensity cycling in HH conditions (Lee et al., 2008a).

Table 8. Article characteristics from the literature search including sample, condition, task and intervention.

		Sample			Condition			Task		Intervention			
Condition	Authors	Particip ants (N)	Sex Ratio (M/F)	Group $\mathrm{VO}_{\text {2max }}$ (mL.kg. $\mathbf{m i n}^{-1}$ )	Ambient Temperatu re ( ${ }^{\circ} \mathrm{C}$ ) and humidity (\%) and wind speed ( $\mathrm{m} / \mathrm{s}$ )	WBGT   ( ${ }^{\circ} \mathrm{C}$ )	Indo   or/O   utdo   or	Exercise Task	Feedback Given	Water Temperature ( $\left.{ }^{\circ} \mathrm{C}\right)$	Amount of water ingestion at each interval	Water ingestion frequency	Total water ingested   (L)
Dry	Mundel et al., (2006)	8	8:0	$54 \pm 5$	$\begin{gathered} 34,27.9 \\ 0.5 \end{gathered}$	25.1	Indo or	$65 \%$ of $\mathrm{VO}_{\text {2peak }}$ until exhaustion	-	4	Ad libitum but had water every 15 euhy	300 mL of remain	$1.3 \pm 0.3$
Dry	Naito, and Ogaki, (2017)	9		$47.7 \pm 8.7$	35, 30	26.6	Indo or	$60 \%$ of $\mathrm{VO}_{2 \max }$ until exhaustion	-	4	130-160g	15, 30 and 45 min	$\begin{gathered} 0.316 \pm \\ 0.067 \mathrm{~L} . \mathrm{hr} \end{gathered}$
Humid	$\begin{aligned} & \text { Lee et al., } \\ & (2008 \mathrm{a}) \end{aligned}$	8		$57.8 \pm 5.6$	35, 60	$30^{\circ} \mathrm{C}$	Indo or	$65 \%$ of $\mathrm{VO}_{\text {2peak }}$ until exhaustion	-	4	100mL	Every 10min	-
Humid	Riera et al., (2014)	12	12:0	$\underset{4}{59.9 \pm 10}$	$\begin{gathered} 30.7 \pm 0.8 \\ 78 \pm 0.03 \end{gathered}$		indo or	$\begin{gathered} 20 \mathrm{~km} \text { at } \\ 335 \pm 90 \mathrm{~W} \end{gathered}$	-	3	190 mL of beverag 760 mL during the and 190 mL af	re exercise, (every 5km), recovery	$\sim 0.1$
Humid	Carvalho et al., (2016)	10	10:0	$67.2 \pm 1.8$	$\underset{\sim}{35,60,}$	30.5	Indo or	40km selfpaced TT	Elapsed distance every 2 km	10	$\begin{gathered} \text { Ad- libitum: 0-8km } \\ (\sim 100 \mathrm{~mL}), 16-24 \\ 32 \mathrm{~km}(\sim 230 \mathrm{~mL}), 3 \end{gathered}$	mL ), 8 -16km 60 mL ), 24-   m ( $\sim 180 \mathrm{~mL}$ )	$1.1 \pm 0.4 \mathrm{~L}$
Humid	Carvalho et al., (2016)	10	10:0	$67.2 \pm 1.8$	$\begin{gathered} 35,60 \\ \sim 0.5 \end{gathered}$	30.5	Indo or	40km selfpaced TT	Elapsed distance every 2 km	10	$\begin{aligned} & \text { Ad-libitum: 0-8km } \\ & (\sim 100 \mathrm{~mL}), 16-24 \mathrm{kr} \\ & \text { 32km }(\sim 230 \mathrm{~mL}), 32 \end{aligned}$	mL ), $8-16 \mathrm{~km}$   60 mL ), 24-   $\mathrm{m}(\sim 180 \mathrm{~mL})$	$1.1 \pm 0.4 \mathrm{~L}$

1563

### 2.4.4.4. Quality assessment

A modified scale to assess the methodological quality of the articles retrieved in this review was carried out following selection of full text articles. The modified version was applied due to the greater representation for experiments employing a training intervention, compared to the Delphi, PEDro and Cochrane scales (Paul et al., 2016). A 10 item quality rating guide included the criteria listed below and guided the assessment scoring of each article as follows: 0 = clearly no; 1 = maybe; 2 = clearly yes; range $=0$ (poor)-20 (excellent) reported in Table 9.

Table 9. Results from the article quality assessment based on the following criteria: $1=$ Inclusion criteria were clearly stated, $2=$ Subjects were randomly allocated to groups, 3=Intervention was clearly defined, 4=Groups were tested for similarity at baseline, 5=A control group was used (thermoneutral conditions), 6=Outcome variables were clearly defined, 7=Assessments were practically useful, 8=Duration of intervention was practically useful, 9=Between-group statistical analysis was appropriate, 10=Point measures of variability.

Condition	Intensity	Author	1	2	3	4	5	6	7	8	9	10	Total
Humid	Selfpaced	Carvalho et al., (2016)	1	2	2	2	0	2	2	2	2	1	16
Humid	Selfpaced	Maunder et al., (2016)	1	2	2	2	0	2	2	2	2	1	16
Humid	Fixed	Riera et al., (2014)	2	2	2	2	2	2	2	2	2	1	19
Humid	Fixed	Lee et al., (2008a)	1	2	2	2	0	2	2	2	2	1	16
Dry	Fixed	Mundel et al., (2006	1	2	2	2	0	2	2	2	2	1	16
Dry	Fixed	Naito, and Ogaki, (2017)	1	2	2	2	0	2	2	2	2	1	16

The results from Table 10 highlighted that the article quality was extremely high and therefore the results extracted from these articles contributed to the quality of the review.

### 2.4.5. Results and Discussion

### 2.4.5.1. Physical Performance in Hot and Dry and Hot and Humid

Cycling capacity was similar in HD conditions (Mundel et al., 2006) and HH conditions (Lee et al., 2008a) at a fixed intensity of $65 \%$ of $\mathrm{VO}_{2 \text { max }}$ when cold-water was provided ad libitum (Table 11). Whereas, cycling capacity was impaired in HD conditions at a lower intensity (60\% of $\mathrm{VO}_{2 \max }$ ) by $\sim 20 \mathrm{~min}$ when the cold-water was given every 15 min (Naito, and Ogaki, 2017; Table 11).

Cycling performance in a 40km TT was not significantly different when cold-water was drunk ad libitum and scheduled (matched to ad libitum; $93.0+3.5 \mathrm{~min}$ vs $93.4 \pm 4.0 \mathrm{~min}$ ) in HH conditions (Table 11; Carvalho et al., 2016). Notably, Carvalho et al., (2016) was the only article to use cold-water at $10^{\circ} \mathrm{C}$ compared to $4^{\circ} \mathrm{C}$ (Table 11). Carvalho et al., (2016) found no difference in CT of 40 km TT between cold-water and hotwater ( $93.0+3.5 \mathrm{~min}$ vs $94.4 \pm 12.9 \mathrm{~min}$ ). During self-paced cycling in HH conditions, Carvalho et al., (2016) reported no significant differences in thermoregulatory, cardiovascular and metabolic responses ( $p>0.05$ ) between ad-libitum cold-water ( $10^{\circ} \mathrm{C}$ ) and hot water ( $37^{\circ} \mathrm{C}$ ). The findings may have been related to the fact that water was provided ad libitum instead of periodically throughout the 40km TT, therefore, participants may not have consumed enough cold-water to effectively cause physiological benefits. For example, the number of aliquots ingested showed a significant main effect over time and a greater frequency of water consumed in time points 16 to $24(200 \mathrm{~mL})$ and 24 to $32 \mathrm{~km}(300 \mathrm{~mL})$ when compared with 0 to $8 \mathrm{~km}(100 \mathrm{~mL})$ and volume ingested per aliquots shows a significant effect for experimental manipulation and a greater volume ingested per aliquots.

Riera et al., (2014) found that 20 km cycling TT CT was $\sim 3 \min$ faster with cold menthol compared to cold-water only. This has been more recently supported by Jefferies and Waldron (2019) meta-analysis, demonstrating that exercise performance is improved with mentol if taken internally. Notably this also has percpetual benefit on measures such as thermal sensation during exercise.

Table 10. Cycling time-trial performance in hot and dry (HD) and hot and humid (HH) conditions with cold-water ingestion, adapted from Taylor

Conditio n	Authors	Task		Intervention				Performance			
		Exercise Task	Feedba ck Given	Water Temperat ure ( $\left.{ }^{\circ} \mathrm{C}\right)$	Amount of water ingestion at each interval	Water ingestion frequency	Total water ingested (L)	PO   (W)	Completio n time (min)/dista nce (km)	PO   improveme nt with interventio n (\%)	CT   improveme nt with interventio n ()
Dry	Mundel et al., (2006)	$65 \%$ of $\mathrm{VO}_{2 \text { peak }}$ until exhaustion	-	4	Ad libitum but had to drink 300 mL of water every 15 min to remain euhydrated.		$1.3 \pm 0.3$		$62 \pm 4 \mathrm{~min}$		-
Dry	Naito, and Ogaki, (2017)	$60 \%$ of $\mathrm{VO}_{2 \max }$ until exhaustion	-	4	130-160 g	15, 30 and 45 min	$\begin{gathered} 0.316 \pm 0.06 \\ 7 \mathrm{~L} . \mathrm{hr} \end{gathered}$		$\underset{\text { in }}{42.2 \pm 10.1 \mathrm{~m}}$		
Humid	$\begin{gathered} \text { Lee et } \\ \text { al., } \\ (2008 \mathrm{a}) \end{gathered}$	$65 \%$ of $\mathrm{VO}_{2 \text { peak }}$ until exhaustion	-	4	100 mL	Every 10min	-	-	$63.8 \pm 4.3$		-
Humid	Riera et al., (2014)	20 km at $335 \pm 90 \mathrm{~W}$		3	190 mL of bev exercise, 760 20 km (every 5 mL after th	age before during the m), and 190 ecovery	$\sim 1.14$	-	~38.33	-	-
Humid	Carvalho et al., (2016)	40km self-paced TT	Elapsed distanc e every 2 km	10	Ad- libitum: 0-8   8-16km (~100   (~260 mL), 24   mL ), 32-40km	$\begin{aligned} & \mathrm{m}(\sim 50 \mathrm{~mL}), \\ & \mathrm{L}), 16-24 \mathrm{~km} \\ & 32 \mathrm{~km}(\sim 230 \\ & (\sim 180 \mathrm{~mL}) \end{aligned}$	$1.1 \pm 0.4 \mathrm{~L}$		$\underset{\mathrm{n}}{93.0+3.5 \mathrm{mi}}$	-	-
Humid	$\begin{aligned} & \text { Carvalho } \\ & \text { et al., } \\ & (2016) \end{aligned}$	40km self-paced TT	Elapsed distanc e every 2km	10	Ad- libitum: 0-8   8-16km (~100   ( $\sim 260 \mathrm{~mL}), 24$   mL ), 32-40km	$\begin{aligned} & \mathrm{m}(\sim 50 \mathrm{~mL}), \\ & \mathrm{L}), 16-24 \mathrm{~km} \\ & 32 \mathrm{~km}(\sim 230 \\ & (\sim 180 \mathrm{~mL}) \end{aligned}$	$1.1 \pm 0.4 \mathrm{~L}$		$93.4 \pm$   4.0min	-	-

et al., (2016) review.

TT time trial, $T_{\text {rectal }} T_{\text {core }}$ core temperature, $T_{s k}$ skin temperature, HR heart rate, $S R$ sweat rate, VO2 volume of oxygen, $V O_{2 \text { max }}$ maximal volume.
*=significant difference between hot and control conditions.

WBGT was calculated from https://climatechip.org/excel-wbgt-calculator excel spreadsheet if not already stated in the article.

Percentages were calculated by $(X a-X b) / X b)$ then expressed as a percentage.

### 2.4.5.2. Physiological responses

### 2.4.5.2.1. Rectal/Core Temperature ( $\mathrm{T}_{\text {rectal }} / \mathrm{T}_{\text {core }}$ )

$\mathrm{T}_{\text {core }} / \mathrm{T}_{\text {rectal }}$ increased from baseline to end in both HD and HH and at a fixed intensity and self-paced intensity (Table 12). $\mathrm{T}_{\text {core }} / \mathrm{T}_{\text {rectal }}$ increased by $\sim 1.7-2.5^{\circ} \mathrm{C}$ at a fixed intensity of $60-$ $65 \%$ of $\mathrm{VO}_{2 \max }$ in HD , and by $\sim 2^{\circ} \mathrm{C}$ during a self-paced 40 km TT in HH .

The largest increase in $\mathrm{T}_{\text {core }} / \mathrm{T}_{\text {rectal }}\left(\sim 2.5^{\circ} \mathrm{C}\right)$ from start to end was reported in Lee et al., (2008a) article which may have been related to the environmental condition (HD vs HH ) and method of cooling (frequency and quantity). For example, Lee et al., (2008a) provided coldwater $\left(4^{\circ} \mathrm{C}\right)$ every 10 min in aliquots of 100 mL during a fixed cycling capacity test $(65 \%$ of $\mathrm{VO}_{\text {2peak }}$ ) in HH . Total water consumption was not reported however cycling capacity terminated at $63.8 \pm 4.3$ which infers that a minimum of 600 mL water was consumed during the trial. This condition and method resulted in a cycing capacity of $63.8 \pm 4.3 \mathrm{~min}$. Notably, within study, Lee et al., (2008a) compared water temperature, and found that mean $\pm$ SD $\mathrm{T}_{\text {rectal }}$ remained lower with cold-water $\left(37.7 \pm 0.4^{\circ} \mathrm{C}\right)$ compared to warm water $\left(38.0 \pm 0.4^{\circ} \mathrm{C}\right)$ throughout the TT (Lee et al., 2008a). However, compared to Mundel et al., (2006) article, who provided cold-water $\left(4^{\circ} \mathrm{C}\right)$ ad libitum (however 300 mL had to be consumed every 15 min to remain euhydrated $=1.3 \pm 0.3 \mathrm{~L} . \mathrm{hr}(2 x$ greater than Lee et al., (2008a)) during a fixed cycling capacity test ( $65 \%$ of $\mathrm{VO}_{\text {2peak }}$ ) in HD resulted in a similar capacity $62 \pm 4$ min but significantly smaller increase in $\mathrm{T}_{\text {core }} / \mathrm{T}_{\text {rectal }}\left(\sim 0.9^{\circ} \mathrm{C}\right)$. This therefore highlighted that the method of cooling used in Lee et al., (2008a) was not sufficient enough to reduce the rise in $\mathrm{T}_{\text {core }} / \mathrm{T}_{\text {rectal }}$ in HH .

### 2.4.5.2.2. Skin Temperature ( $\mathrm{T}_{\mathrm{sk}}$ )

$\mathrm{T}_{\text {sk }}$ increased by $\sim 2.4-3.5^{\circ} \mathrm{C}$ at a fixed intensity of $60-65 \%$ of $\mathrm{VO}_{2 \max }$ in HD , and by $\sim 2.1^{\circ} \mathrm{C}$ during a self-paced 40 km TT in HH . Similar to $\mathrm{T}_{\text {core }} / \mathrm{T}_{\text {rectal }}$ responses, the largest increase in $\mathrm{T}_{\text {sk }}\left(\sim 3.5^{\circ} \mathrm{C}\right)$ from start to end were reported in Lee et al., (2008a) article. Lee et al., (2008a) found that cold-water was more effective in attenuating the rise of $\mathrm{T}_{\text {sk }}$ with the value being
significantly lower from 20min onward when ingesting the cold-water compared to warm water. However, there was no significant difference in $\mathrm{T}_{\mathrm{sk}}$ at the point of exhaustion between the cold and warm, respectively $\left(36.6 \pm 0.2^{\circ} \mathrm{C}\right.$ vs $\left.36.9 \pm 0.3^{\circ} \mathrm{C}\right)$. This was similar for total heat storage, which was lower after ingestion of cold-water from 10-45min compared to ingestion of warm-water, however there was no significant difference between trials at exhaustion ( $8987 \pm 1024 \mathrm{vs} 8993 \pm 1032 \mathrm{~kJ} ; \mathrm{P}=0.812$ ). These findings further support the conclusion that the frequency and quantity of cooling was insufficient to elicit any physiological benefits to $\mathrm{T}_{\text {core }} / \mathrm{T}_{\text {rectal }}$ and $\mathrm{T}_{\text {sk }}$ whilst cycling at a fixed intensity in HH conditions.

### 2.4.5.2.3. Heart Rate (HR)

HR increased from baseline to end in both HD and HH and at a fixed intensity and selfpaced intensity (Table 12). The largest increases in HR was seen in Lee et al., (2008a) article whichincreased from $60 \mathrm{~b} \cdot \mathrm{~min}^{-1}$ at rest to $180 \mathrm{~b} \cdot \mathrm{~min}^{-1}$ at exhaustion. This increase in HR may be related to the exercise task. For example, Lee et al., (2008a) article was at a fixed intensity ( $65 \%$ of $\mathrm{VO}_{2 \text { peak }}$ ) until exhaustion and therefore HR would be near $\mathrm{HR}_{\max }$ or achieved $\mathrm{HR}_{\text {max }}$ at exhaustion. Whereas in a self-paced exercise such as a 40 km cycling time-trial where intensity is not controlled, HR would vary throughout depending on pacing adopted and would depend on the intensity at the end of the exercise bout which ranged from 165-170 b. $\mathrm{min}^{-1}$ in Carvalho et al., (2016) article.

### 2.4.5.2.4. Sweat Rate (SR)

Only two articles measured and reported SR. Regardless of condition or exercise intensity SR was ~1.4L.hr (Mundel et al., 2006; Carvalho et al., 2016; Table 12). Specifically, Mundel et al., (2006) reported a SR of $1.4 \pm 0.1 \mathrm{~L}$.hr during a cycling capacity test at $65 \%$ of $\mathrm{VO}_{\text {2peak }}$ until exhaustion in HD. Notably, $1.3 \pm 0.3 \mathrm{~L}$ was consumed during the trial inferring that the participants were able to replish most of the sweat that was lost during the trial which may explain why $\mathrm{T}_{\text {core }} / \mathrm{T}_{\text {rectal }}$ and HR only increased by $\sim 0.9^{\circ} \mathrm{C}$ and $\sim 23 \mathrm{~b} \cdot \mathrm{~min}^{-1}$ (Table 12).

Carvalho et al., (2016) reported a SR of $1.4 \pm 0.1$ and $1.3 \pm 0.1 \mathrm{~L} . \mathrm{hr}$ during a self-paced 40 km cycling time-trial in HH. Similarly, the participants were able to most of the sweat that was lost during the trial however, large increases were seen in $T_{\text {core }} / T_{\text {rectal }}\left(\sim 2^{\circ} \mathrm{C}\right)$ and $\mathrm{T}_{\text {sk }}\left(\sim 2^{\circ} \mathrm{C}\right)$. These findings may suggest that the cooling methods used in HH were not suffient in reducing physiological thermal strain (i.e increase in $T_{\text {core }} / T_{\text {rectal }} T_{\text {sk }}$ and HR).

Table 11. Physiological responses such as rectal ( $T_{\text {rectal }}$ /core ( $\mathrm{T}_{\text {core }}$ ) temperature, $\mathrm{T}_{\text {sk }}$, sweat rate (SR) and heart rate (HR).

Condition	Authors	Task		Intervention				Physiological			
		Exercise Task	Feedback Given	Water Temperatur e $\left({ }^{\circ} \mathrm{C}\right)$	Amount of water ingestion at each interval	Water ingestion frequency	Total water ingested   (L)	$\mathrm{Trectal}^{1} / \mathrm{T}_{\text {core }}\left({ }^{\circ} \mathrm{C}\right)$	$\mathrm{T}_{\text {sk }}\left({ }^{\circ} \mathrm{C}\right)$	SR (L/hr)	HR ( $\mathrm{b} . \mathrm{min}^{-1}$ )
Dry	Mundel et al., (2006)	$65 \%$ of $\mathrm{VO}_{2 \text { peak }}$ until exhaustion	-	4	Ad libitum but had water every 15 euhyd	k 300 mL of remain	$1.3 \pm 0.3$	$\begin{gathered} 37 \\ - \\ 37.9 \end{gathered}$	-	$1.4 \pm 0.1$	$\begin{gathered} 132 \\ - \\ 155 \end{gathered}$
Dry	Naito, and Ogaki, (2017)	$60 \%$ of $\mathrm{VO}_{2 \text { max }}$ until exhaustion	-	4	130-160 g	15,30 and 45 min		$\begin{gathered} 37.1 \\ 38.8 \end{gathered}$	$\begin{gathered} 34.6 \\ 37.2 \end{gathered}$	-	$\begin{gathered} 140 \\ -\quad \\ 189 \pm 5 \end{gathered}$
Humid	$\begin{aligned} & \text { Lee et al., } \\ & (2008 \mathrm{a}) \end{aligned}$	$65 \%$ of $\mathrm{VO}_{\text {2peak }}$ until exhaustion	-	4	100ml	Every 10min	-	$\begin{gathered} 36.5 \\ - \\ 39 \end{gathered}$	$\begin{gathered} 32.5 \\ - \\ 36 \end{gathered}$		$\begin{gathered} 60 \\ -\quad \\ 180 \end{gathered}$
Humid	Riera et al., (2014)	20km at $335 \pm 90 \mathrm{~W}$		3	190 mL of beverage before exercise, 760 mL during the 20 km (every 5 km ), and 190 mL after the recovery		$\sim 1.41$	$\begin{gathered} 37.5 \\ 39.2 \\ 39 \end{gathered}$	-	-	-
Humid	Carvalho et al., (2016)	40km self-paced TT	Elapsed distance every 2 km	10	Ad- libitum: 0-8km ( $\sim 50 \mathrm{~mL}$ ), $8-16 \mathrm{~km}$ ( $\sim 100 \mathrm{~mL}$ ), $16-24 \mathrm{~km}(\sim 260 \mathrm{~mL})$, $24-$ $32 \mathrm{~km}(\sim 230 \mathrm{~mL}), 32-40 \mathrm{~km}$ ( $\sim 180 \mathrm{~mL}$ )		$1.1 \pm 0.4 \mathrm{~L}$	$\begin{gathered} 37.0 \pm 0.1 \\ - \\ 38.9 \pm 0.2 \end{gathered}$	$\begin{aligned} & 34.7 \pm 0.1 \\ & - \\ & 36.6 \pm 0.2 \end{aligned}$	$1.4 \pm 0.1$	$\begin{gathered} 53.3 \pm 2.5 \\ -9 \\ 165.9 \pm 6.0 \end{gathered}$
Humid	Carvalho et al., (2016)	40km self-paced TT	Elapsed distance every 2 km	10	Ad- libitum: $0-8 \mathrm{~km}(\sim 50 \mathrm{~mL}), 8-16 \mathrm{~km}$ ( $\sim 100 \mathrm{~mL}$ ), $16-24 \mathrm{~km}(\sim 260 \mathrm{~mL}), 24-$ 32 km ( $\sim 230 \mathrm{~mL}$ ), $32-40 \mathrm{~km}$ ( $\sim 180 \mathrm{~mL}$ )		$1.1 \pm 0.4 \mathrm{~L}$	$\begin{gathered} 36.9 \pm 0.1 \\ 38.9 \pm 0.2 \end{gathered}$	$\begin{aligned} & 34.6 \pm 0.1 \\ & 36.7 \pm 0.2 \end{aligned}$	$1.3 \pm 0.1$	$\begin{gathered} 55.3 \pm 3.0 \\ -\bar{\circ}+6.6 \end{gathered}$

### 2.4.5.3. Perceptual Responses

### 2.4.5.3.1. Ratings of Perceived Exertion (RPE)

Max (100\%) RPE was achieved in Naito, and Ogaki, (2017) article which was conducted in HD conditions with no wind $\left(35^{\circ} \mathrm{C}, 30 \%\right)$ and less cold-water was consumed ( $0.316 \pm$ 0.067L.hr) which may explain why there was a greater increase in RPE and earlier termination in exercise compared to Mundel et al., (2006) article. In addition, Naito and Ogaki (2017) measured TS using Kashimura's (1986) 9-point scale in which TS increased from neutral ( $50 \%$ of $\max$ ) at the start to very hot ( $100 \%$ of $\max$ ) at termination with coldwater ingestion. This implies that cold-water ingestion in Naito and Ogaki (2017) article was not effective at minimising thermal perception as max TS and RPE was reached at exercise termination. However, the rate of rise in perceptual responses compared to no cooling is unknown.

### 2.4.5.3.2. Thermal Sensation (TS)

In HH, Carvalho et al., (2016) reported that affect decreased from good at the start to not good at the end. Maunder et al., (2016) reported that TC was greater (indicating greater thermal discomfort) with ice-slushy compared to cold-water at 10 km ( $5.4 \pm 2.1 \mathrm{vs} .4 .4 \pm 1.7$ ), and 15 km ( $5.9 \pm 1.6$ vs. $5.4 \pm 1.8$ ). Similarly, TS was greater (indicating greater sensation of warmth) with ice-slushy compared to cold-water at $5,15,25$, and 35 km , however data was only available for 15 km ( $10.1 \pm 1.9 \mathrm{vs} .9 .4 \pm 1.0$ ). TS values at the end of the TT were lower with ice-slushy compared to cold water ( $10.9 \pm 1.4 \mathrm{vs}$. $11.6 \pm 1.0$ ). In addition, AF was lower (indicating a worse feeling state) with ice slushy compared to cold-water at $5,15,25,30$, and 35 km , but this difference was unclear at the end of the TT. Overall mean AF was lower with ice slushy compared to cold-water ( $-2.4 \pm 1.1$ vs. $-1.8 \pm 0.9$ ). There was no significant difference between RPE between the two interventions. Therefore, Maunder et al., (2016) findings suggest that cold-water provided greater perceptual benefits compared to ice-slushy ingestion. Lee et al., (2008b) reported TS was significantly lowered with ingestion of cold-
water $(5 \pm 1)$ than with warm-water $(6 \pm 1)$ during the $T$. Similarly, RPE was lower during exercise when subjects ingested the cold-water (14 $\pm 1$ ) than when they ingested the warmwater (15 $\pm 1)$. At exhaustion, ratings of $T S(9 \pm 1 ; P=0.081)$ and RPE ( $20 \pm 1 ; P=0.170$ ) were similar between trials.

### 2.4.5.3.3. Thermal Comfort (TC)

Notably, Carvalho et al., (2016), Maunder et al., (2016) and Lee et al., (2008b) did not include a control condition (thermoneutral and no cooling) or an alternative conditions (hot and dry). Muhamed et al., (2019) previously stated that the efficiency of cold-water ingestion on alleviating thermoregulatory and circulatory stress during prolonged running is potentially dependent on the physical characteristics of the environment. To date, the only article that has taken this into consideration was Coudevylle et al., (2020) article which aimed to determine whether cold-water intake influences environmental perceptions, AF, and attention depending on the condition (HH vs thermoneutral). Coudevylle et al., (2020) administering cold-water $\left(15^{\circ} \mathrm{C}\right)$ every 10 min for 60 min run at $70 \%$ of $\mathrm{VO}_{2 \max }$ which failed to provide any ergogenic benefit in alleviating thermoregulatory and circulatory stress during exercise, or capacity in $\mathrm{HH}\left(30^{\circ} \mathrm{C}\right.$ and $\left.71 \% \mathrm{RH}\right)$ conditions. In addition, TC and attention performance were lower, TS was greater and AF scores were lower (indicating feeling worse) during HH conditions compared with thermoneutral conditions. However, drinking water at room temperature in HH conditions causes the worst scores which supports Lee et al., (2008b) and Carvalho et al., (2016) findings. Notably this article was conducted with runners, and these conditions are considered warmer and more humid for cycling relative to running by virtue of the greater skin surface airflow, promoting evaporation, for a given metabolic heat production (Jay and Morris 2018). Therefore, the relationship between coldwater ingestion on cycling performance and physiological and perceptual responses in HH conditions ( $\geq 28^{\circ} \mathrm{C}$ and $\geq 51 \%$ ) remain unknown.

### 2.4.5.3.4. Affect (AF)

Only one article measured affect (Carvalho et al., 2016). Affect decreased from "good" at the start of the time-trial to "not good" at the end of the time-trial in HH (Table 13). These findings show that the cooling method was not sufficient at reducing percpetual thermal strain experienced during a 40 km cycling time-trial in hot and humid conditions.

### 2.4.5.3.5. Motivation (M)

No articles measured motivation. As stated earlier, Coudeyville et al., (2021) review highlighted that motivation is an under researched area in environmental perception, especially in terms of the link between motivational factors and exercise performance in HH conditions. For instance, Craig (2003) indicated that perceptions play on the "emotion/motivation" complex. The ingestion of menthol as a cooling technique illustrates this type of relationship. Menthol does not reduce body or skin temperature in athletes (Barwood et al., 2015), but it does stimulate cold receptors (Cheung, 2010) and induces a sensation of coolness (Mündel and Jones, 2010), which alters thermal perceptions. Thus, the use of a psychological technique could favourably influence the motivation to maintain an effort.

Table 12. Perceptual responses reported during cycling TT performance in hot and dry and hot and humid conditions.

Condition	Authors	Task		Intervention				Perceptual Responses				
		Exercise Task	Feedback Given	Water Temperature ( ${ }^{\circ} \mathrm{C}$ )	Amount of water ingestion at each interval	Water ingestion frequency	Total water ingested   (L)	RPE   (\% of max)	$\begin{gathered} \text { TS } \\ \text { (\% of max) } \end{gathered}$	TC   (\% of max	$\begin{gathered} \text { AF } \\ \text { (\% of max) } \end{gathered}$	$\begin{gathered} \text { TM } \\ (\% \text { of } \max ) \end{gathered}$
Dry	Mundel et al., (2006)	$65 \%$ of $\mathrm{VO}_{\text {2peak }}$ until exhaustion	-	4	Ad libitum but had of water every 15 euhydr	drink 300 mL in to remain d.	$1.3 \pm 0.3$	$\begin{gathered} 12 \text { (42.85\%) } \\ 15 \text { ( } 64.28 \%) \end{gathered}$		-		
Dry	Naito, and Ogaki, (2017)	$60 \%$ of $\mathrm{VO}_{\text {2max }}$ until exhaustion	-	4	130-160 g	$\begin{gathered} 15,30 \\ \text { and } \\ 45 \mathrm{~min} \end{gathered}$	$\begin{gathered} 0.316 \pm \\ 0.067 \mathrm{~L} . \mathrm{hr} \end{gathered}$	$\begin{gathered} 12 \text { (42.85\%) } \\ 20 \text { (100\%) } \end{gathered}$	Neutral (50\%)   Very hot (100\%)			
Humid	Lee et al., (2008a)	$65 \%$ of $\mathrm{VO}_{\text {2peak }}$ until exhaustion	-	4	100 mL	Every 10min	-	$\begin{gathered} 11 \text { (35.71\%) } \\ 14 \pm 1 \\ (57.14 \%) \\ 16 \text { (71.42\%) } \end{gathered}$				
Humid	Riera et al., (2014)	$\begin{array}{r} 20 \mathrm{~km} \text { at } \\ 335 \pm 90 \mathrm{~W} \end{array}$		3	190 mL of beve exercise, 760 mL (every 5 km ), and recov	ge before ng the 20 km mL after the	$\sim 0.1$	increase	increase	-	-	-
Humid	Carvalho et al., (2016)	40km selfpaced TT	$\begin{aligned} & \text { Elapsed } \\ & \text { distance every } \\ & 2 \mathrm{~km} \end{aligned}$	10	$\begin{array}{r} \text { Ad- libitum: } 0-8 \mathrm{kn} \\ 16 \mathrm{~km}(\sim 100 \mathrm{~mL} \\ (\sim 260 \mathrm{~mL}), 24-32 \mathrm{~km} \\ 40 \mathrm{~km}(\sim 18 \end{array}$	$\begin{aligned} & (\sim 50 \mathrm{~mL}), 8- \\ & 16-24 \mathrm{~km} \\ & \sim 230 \mathrm{~mL}), 32- \\ & \mathrm{mL}) \end{aligned}$	$1.1 \pm 0.4 \mathrm{~L}$					
Humid	Carvalho et al., (2016)	40km selfpaced TT	$\begin{gathered} \text { Elapsed } \\ \text { distance every } \\ 2 \mathrm{~km} \end{gathered}$	10	$\begin{gathered} \text { Ad- libitum: } 0-8 \mathrm{kr} \\ 16 \mathrm{~km}(\sim 100 \mathrm{~mL} \\ (\sim 260 \mathrm{~mL}), 24-32 \mathrm{~km} \end{gathered}$	$\begin{aligned} & (\sim 50 \mathrm{~mL}), 8- \\ & 16-24 \mathrm{~km} \\ & \sim 230 \mathrm{~mL}), 32- \end{aligned}$	$1.1 \pm 0.4 \mathrm{~L}$				GoodNot good	

$R P E=$ ratings of perceived exertion, $T S=$ thermal sensation, $T C=$ thermal comfort, $A F=$ affect, $T M=$ task motivation.

### 2.4.6. Conclusion

- There is limited research that has been conducted on the effect of cold-water ingestion and pouring on self-paced cycling performance. This is surprising as coldwater ingestion and pouring are conventional and practical per-cooling methods. Based on the literature review both strategies have the potential to enhance cycling time-trial performance together with physiological and perceptual responses. However, the effectiveness of these strategies depends on quantity, frequency, magnitude of cooling and condition employed in.
- The optimal quantity and frequency of cold-water ingestion was discussed in Gibson et al., (2020) practitioner guidelines, highlighting that a balance must be found between delivering a large cooling impulse (typically in the region of $\sim 500-700 \mathrm{~mL}$ ) and athlete comfort, avoiding feelings of being bloated and gastrointestinal disturbances. Based on this understanding, Naito et al., (2017) suggests incorporating a smaller dose, relative to the athlete's body mass (7.5 g.kg-1 BM $=$ e.g. 525 g (or 525 mL ) for a 70kg individual). The benefit of spreading quantity out in small doses ( $1.25 \mathrm{~g} . \mathrm{kg}-1 \mathrm{BM}$ per $5 \mathrm{~min}=$ e.g. $100 \mathrm{~g}($ or 100 mL$)$ for a 70 kg individual), rather than drinking a single bolus, appears to offer greater cooling and is likely to be better tolerated by athletes (Naito et al., 2017).
- The optimal temperature of water used for this strategy was also discussed in Gibson et al., (2020) practitioner guidelines, highlighting that a range of $5-15^{\circ} \mathrm{C}$ would be sufficient enough to cause a cooling stimulus. One of the main take aways of this review was that it is unclear which strategy is more effective in hot and dry and hot and humid conditions due to the lack of research in this area. In order to answer these questions further research in this area is needed.
- Therefore, the two practical research question arising from this chapter are to investigate the effect of both cold-water ingestion and pouring on cycling TT
performance and associated physiological and perceptual responses in both hot and dry, and hot and humid conditions.
2.4.7. Research questions arising from narrative reviews.


Figure 3. Overview of the research question (black boxes) developed from the current literature review, and how the experimental studies
within the thesis (light grey boxes) will answer these questions.

- Four practical research questions have arisen from this chapter (Figure 3). For example, it was noted in Table 3 and 4 that researchers provide cyclists with different types (i.e. PO, elapsed time/distance, cadence etc) and quantities (1-5) of feedback during cycling TT in a laboratory setting. This confounding factor could also influence performance outcomes regardless of environmental conditions (i.e. increase in cognitive load) causing anomalies in the data. Therefore, the first study in this thesis investigated the effect of multiple feedback variables on cycling TT performance compared to a single feedback variable. This information was used to inform what feedback was provide during the main investigations of this thesis:
- The first literature review highlighted that despite the body of research that has been conducted on cycling in hot conditions, the differentiation between performance outcomes in hot and dry and hot and humid conditions are still unclear. Therefore, the second study aimed to characterise the physical (cycling TT) performance outcomes in CON, HD and HH conditions.
- The second literature review highlighted the benefits of using per-cooling strategies during training and/or competitions in hot conditions, however it is unclear from the literature what per-cooling strategies are currently employed by cyclists and triathletes and whether they are effective at minimising performance impairments and heat related illnesses. Therefore, the third study aimed to determine the type, quantity and timing of per-cooling used during training and competitions in HD and HH conditions and their effectiveness at minimising performance impairments and heat related illnesses.
- It was highlighted in the literature review that practical per-cooling strategies such as cold-water ingestion and pouring have received little research attention despite their potential to enhance physical performance. Therefore the final study in this thesis investigated the effect of both cold-water ingestion and pouring on physical (cycling TT ) performance in $\mathrm{CON}, \mathrm{HD}$, and HH conditions.


## Chapter 3. General Methodology

This chapter details the common methodologies carried out in this thesis. General information regarding exercise protocols, environmental conditions, procedures, techniques, and analysis are given. Additional information relating directly to individual studies are provided within each chapter where necessary. All studies were conducted at London South Bank University (LSBU).

### 3.1 Ethical approval

Ethical approval for experimental studies was obtained from the dedicated ethics committee: ETH1920-0002, ETH2021-0017*, ETH1920-0156*(School of Applied Science, LSBU). All studies referenced and adhered to the Human Rights Act (1998), Freedom of Information Act (2000), Human Tissue Act (2004), Declaration of Helsinki (2013), Global Data Protection Regulation (2018). Laboratory standard operating procedures were also made.

### 3.2 Participants

### 3.2.1 Recruitment

Volunteers for physical and online participation were recruited for each study via expression of interest in response to a recruitment advertisement poster posted online (social media channels e.g. Twitter, and Instagram), on LSBU campus, and through word-of-mouth with cycling and triathlon clubs.

### 3.2.2 Eligibility

Volunteers received a participant information sheet containing details of the study so that they could make an informed decision regarding participation. If they decided to participate, volunteers provided written informed consent before enrolling as a participant. For experimental studies including physical exercise, eligibility of participants was assessed in the familiarisation session $\left(\mathrm{VO}_{2 \text { max }}\right.$ test). Participants were advised that they could withdraw
from the study at any point without providing a reason, and there would be no negative implications in doing so.

Inclusion criteria were as follows:

## Study 1

Using pilot testing data, subsequent analysis revealed that 20 participants were required for effect size $=0.7$ ( $\mathrm{g}^{*}$ power 3.1.9.2). Therefore 20 participants were recruited for this study. Non-cyclists-triathletes (NC):

- Male and female
- Aged between 18-55years.
- Physically active individuals were recruited to the NC, who on average trained each week for a total of $\geq 5 \mathrm{~h}$, across a range of different sports (i.e., basketball, football, etc.).
- Performance level $\leq 2$ based on De Pauw et al., (2013; Appendix A).
- Non-smokers, no known history of gastric, digestive, cardiovascular, respiratory or renal disease.
- Healthy adults who have no lack of mental capacity to provide written consent.
- Health status of the participants was checked using the standardized LSBU health screening questionnaire (adapted from the American College of Sports Medicine Health Related Physical Fitness Assessment Manual, pp 10-23).


## Experienced cyclists-triathletes

- >2 yrs competing and training in cycling/triathlon events, with >5 events completed in either sport (Smits et al., 2016; Boya et al., 2017).
- $\mathrm{VO}_{2 \text { max }}$ of $>50 \mathrm{~mL} . \mathrm{kg} . \mathrm{min}^{-1}$ (assessed in the fist visit)
- Performance level $\geq 3$ based on De Pauw et al., (2013; Appendix A).
- Non-smokers, no known history of gastric, digestive, cardiovascular, respiratory or renal disease.
- Healthy adults who have no lack of mental capacity to provide written consent.
- Health status of the participants was checked using the standardized LSBU health screening questionnaire (adapted from the American College of Sports Medicine).


## Study 2

Using pilot testing data, subsequent analysis revealed that 24 participants were required for effect size $=0.7$ ( $\mathrm{g}^{*}$ power 3.1.9.2). However, recruitment was significantly impacted by UK COVID-19 lockdown restrictions and therefore only 12 participants participated.

Experienced cyclists-triathletes:

- Male
- Aged between $\geq 18$ - 55 years.
- $>2$ yrs competing and training in cycling/triathlon events, with $>5$ events completed in either sport (Smits et al., 2016; Boya et al., 2017).
- $\mathrm{VO}_{2 \text { max }}$ of $>50 \mathrm{~mL}$.kg.min ${ }^{-1}$
- Non-smokers, no known history of gastric, digestive, cardiovascular, respiratory or renal disease.
- Healthy adults who have no lack of mental capacity to provide written consent (Health status of the participants was checked using the standardized LSBU health screening questionnaire (adapted from the American College of Sports Medicine).


## Study 3

The questionnaire was open to male and female participants aged $\geq 18 y r s$. A minimum of 30 participants was required for effect size $=0.7$ ( $\mathrm{g}^{*}$ power 3.1.9.2). The participants were separated into 3 groups based on experience:

Recreational cyclists-triathletes:

- Recreational cyclists-triathletes were classed as active but not competitive (Sanderson et al., 2000) and have an average cycling speed of $26.0 \mathrm{~km} / \mathrm{h}$ during
training, and cycle an average distance of $164 \mathrm{~km} /$ week (Priego Quesada et al., 2018)
- Performance level $\leq 2$ based on De Pauw et al., (2013; Appendix A). Competitive cyclists-triathletes:
- Amateur cyclists-triathletes were classed as active and competitive.
- Cyclists have an average cycling speed of $28.5 \mathrm{~km} / \mathrm{h}$ during training, and cycle an average distance of $260 \mathrm{~km} /$ week (Priego Quesada et al., 2018)
- Triathletes who participate in competitions, have an average cycling speed of 29.2 $\mathrm{km} / \mathrm{h}$ during training, and cycle an average distance of $175 \mathrm{~km} /$ week (Priego Quesada et al., 2018)
- Performance level 3 based on De Pauw et al., (2013; Appendix A).


## Professional cyclists-triathletes:

- Professional race license.
- Performance level $\geq 4$ based on De Pauw et al., (2013; Appendix A).


## Study 4

Using pilot testing data, subsequent analysis revealed that 24 participants were required for effect size $=0.7$ ( $\mathrm{g}^{*}$ power 3.1.9.2). However, recruitment was significantly impacted by UK COVID-19 lockdown restrictions and therefore only 12 participants participated.

## Experienced cyclists-triathletes:

- Male
- Aged between $\geq 18$ - 55 years.
- $>2$ yrs competing and training in cycling/triathlon events, with $>5$ events completed in either sport (Smits et al., 2016; Boya et al., 2017)
- $\mathrm{VO}_{2 \max }$ of $>50 \mathrm{~mL} . \mathrm{kg} \cdot \min ^{-1}$ (assessed in the first visit)
- Performance level $\geq 3$ based on De Pauw et al., (2013; Appendix A).
- Non-smokers, no known history of gastric, digestive, cardiovascular, respiratory or renal disease.
- Healthy adults who have no lack of mental capacity to provide written consent (Health status of the participants was checked using the standardized LSBU health screening questionnaire (adapted from the American College of Sports Medicine).

Exclusion criteria for all experimental studies in this thesis were as follows:

- Musculoskeletal injuries and/or abuse of drugs, medicine or alcohol.
- Acclimatization or exposure to heat (no exposure to temperatures $>30^{\circ} \mathrm{C}$ in the month preceding commencement of the study).


### 3.3. Familiarisation Procedures.

Each experimental study included a familiarisation session. Volunteers received explanations and demonstrations of all equipment and procedures, as well as being familiarised with specialist equipment and measurement tools (i.e., turbo/wattbike, perceptual scales). This session permitted volunteers to ask questions regarding the study demands and requirements, which were answered by the investigator.

In study 3, volunteers were provided with an information page before starting the online questionnaire, which provided guidelines on the structure and how to complete it. Volunteers were also provided with the lead investigators email address which they could use if they had any questions before starting or throughout the completion of the questionnaire.

### 3.4. Experimental Trial Procedures

### 3.4.1. Experimental Trial Standardization

Prior to every trial across the experimental studies (1, 2 and 4), participants attended the laboratory after refraining from caffeine, alcohol and vigorous exercise for $\geq 48 \mathrm{hr}$. This was to minimise the impact of these factors on psycho-physiological responses assessed within the experimental studies. Participants completed all experimental trials at a similar time of day
( $\pm 1 \mathrm{hrs}$ ) to minimise the impact of circadian rhythm variation on measured parameters (Carrier \& Monk, 2000). Whilst enrolled in experimental studies, participants were asked to maintain their habitual daily routine of diet, sleep and exercise patterns.

Study 1, 2 and 4 were all conducted in the winter months to avoid seasonal heat acclimatisation (Brown et a., 2022).

### 3.4.2. Maximal Oxygen Uptake $\left(\mathrm{VO}_{2 \text { max }}\right)^{2,4}$

At least one week prior to commencement of experimental trials in study 2 and 4, volunteers strapped a HR monitor (polar) around their upper abdomen and then completed a $5-10 \mathrm{~min}$ self-paced warm-up before completing a maximal oxygen uptake $\left(\mathrm{VO}_{2 \text { max }}\right)$ test. The $\mathrm{VO}_{2 \text { max }}$ test started at 100 W and was increased by 40 W every 4 min . After 16 min , the load was increased by 30W every minute until volunteers reached volitional exhaustion. Inspired and expired air, and HR was measured during the last minute of each stage (Cortex, Leipzig, Germany). This measurement was used to determine whether volunteers fit the inclusion criteria. Volunteers were then allotted 30 min of rest.


Figure 4. Laboratory set-up of $\mathrm{VO}_{2 \max }$ test using a cycle ergometer.

### 3.4.3. Warm-up

All experimental trials in study 1,2 and 4 began with a standardised $10-\mathrm{min}$ warm-up (3min at $25 \%, 5 \mathrm{~min}$ at $60 \%$, and 2 min at $80 \%$ of maximal aerobic power calculated from the familiarisation visit) followed by a 5 min rest before starting the TT (Abbiss et al., 2010). This was completed outside the environmental chamber in laboratory conditions.

### 3.4.4. Steady-state (pre-load)

Following the 10 min warm-up, participants in study 2 and 4 completed a 45 min cycling preload at a fixed intensity ( $50 \%$ of maximal aerobic power), followed by a 10 min rest before completing any other exercise-based tasks. The purpose of this preload was to assess physiological ( $\mathrm{T}_{\text {rectal, }}, \mathrm{T}_{\text {sk }}, \mathrm{HR}$ ) responses at a fixed intensity and to induce modest heat storage based off Ely et al., (2010) protocol.
3.4.5. Time-trial

All experimental studies (1,2, and 4) required participants to complete a self-paced 30min cycling TT either directly after the 10 min warm-up (study 1 ) or after the steady-state preload (study 2 and 4; Figure 5). The task was to complete as much distance as possible within the 30min. The 30min TT duration was selected as this is a common format used in the UK and one in which the experienced cyclists-triathletes that volunteers for these studies were familiar with completing. In addition, Perrey et al., (2003) findings stated that an individual 30 min TT at a self-selected intensity is a good predictor of individual endurance capacity and may be used to estimate racing pace for training purposes.


Figure 5. Laboratory set up of the road bike for the steady state and time-trial in study 2 and 4.

### 3.4.6 Feedback provided during TT

In the last 2 decades, researchers have extensively investigated the impact of feedback highlighting that exercise performance is impaired with task irrelevant and inaccurate feedback (Nikolopoulos et al., 2001; Ansley et al., 2004; Paterson and Marino 2004; Albertus et al., 2005; Baden et al., 2005; Mauger et al., 2009; Morton 2009; Eston et al., 2012;

Williams et al., 2015; Davies et al., 2016). Moreover, a recent meta-analysis by Davies et al., (2016) provided an overview as to how manipulation of different extrinsic factors affects pacing strategy and exercise performance indicating that (a) pacing strategy selection is based on the perceived distance of a TT rather than the actual distance (Nikolopoulos et al., 2001); (b) athletes deceived of the actual distance completed the subsequent performance trial based on perceived effort rather than on actual distance (Paterson and Marino, 2004); (c) pacing is influenced by an interaction between feedback and previous experience (Micklewright et al., 2010); and (d) TT performance does not differ between accurate and inaccurate split-time feedback conditions (Wilson et al., 2012). Therefore, to minimise influence of feedback on performance only task relevant and accurate feedback was provided in the experimental studies in this thesis. In addition, Bayne et al., (2020) concluded that cyclists-triathletes 30min cycling time-trial performance (distance covered and average power output) was impaired with multiple feedback (elapsed time, elapsed distance, heart rate, power, cadence, and speed) compared to single feedback (time). Therefore, only time feedback was provided to participants during the TTs in this thesis (study 2 and 4).

### 3.4.7. Cooling Intervention

Study 4 incorporated per-cooling (cooling during exercise), in which participants completed two cooling interventions to compare interval versus external cooling: (i) cold-water ingestion, and (ii) cold-water pouring (head, neck and shoulders).

Fluid ingestion in the preload exercise matched the participant's specific sweat loss, calculated from the first visit (((pre-preload weight (kg) - post-preload weight (kg)) + fluid consumption $(\mathrm{mL})) /$ duration $(\mathrm{min})=$ sweat rate $(1 / \mathrm{min}))$. Required fluid volume was divided into 9 equal portions (mL) and provided at 5 -minute intervals. Fluid was maintained at the environmental temperature (measured with a kitchen thermometer; Houdian, Uk).

In addition to the 450 mL consumed in the preload, group $1(\mathrm{HD})$ and $2(\mathrm{HH})$ completed two cooling intervention which involved ingestion of cold-water $\left(4^{\circ} \mathrm{C}\right)$ and pouring of cold-water $\left(4^{\circ} \mathrm{C}\right)$. The timing and quantity of cooling interventions provided were informed from the findings of study 3 (cooling strategies used during training and competition in hot conditions) together with the familiarisation visit for study 4 . Therefore, the cold-water was given in quantities of 150 mL on completion of every 15 min in the 45 min preload and every 10 min in the 30 min TT , together with 1 L of room temperature water that participants could drink ad libitum.

To control for hydration status the same quantity of water was provided at the same intervals at room temperature in the cold-water pouring condition to match cold-water ingestion. Therefore, total volume of controlled water drunk (excluding ad libitum) would equate to 750 mL . All water was provided in a water bottle for ease of access and to replicate a competition setting.

### 3.4.8. Rest days

Due to the physical demand of each experimental study, participants were allocated rest days (5~7days) between experimental trials. In this period, participants were instructed to refrain from strenuous exercise, heat exposure (specific to study 2 and 4), and alcohol consumption to facilitate recovery and rehydration.

### 3.5. Environmental conditions

### 3.5.1 Laboratory conditions

Seated rest for the measurement of resting values and preliminary testing was performed in ambient laboratory conditions at $\sim 18^{\circ} \mathrm{C}$ and $\sim 30 \%$ RH with no wind speed.

### 3.5.2 Experimental conditions

Study 1 was completed in thermoneutral laboratory conditions $\left(\sim 18^{\circ} \mathrm{C}, \sim 30 \% \mathrm{rH}\right.$, no wind speed), whereas study 2 and 4 included a range of conditions listed below:

- Neutral/dry $\left(18^{\circ} \mathrm{C}, 30 \%, 2.2 \mathrm{~m} / \mathrm{s}\right.$, equating to a WBGT of $\left.\sim 20.5^{\circ} \mathrm{C}\right)$.
- $\mathrm{HD}\left(35^{\circ} \mathrm{C}, 30 \% 2.2 \mathrm{~m} / \mathrm{s}\right.$, equating to a WBGT of $\left.\sim 26^{\circ} \mathrm{C}\right)$.
- $\mathrm{HH}\left(30^{\circ} \mathrm{C}, 70 \% 2.2 \mathrm{~m} / \mathrm{s}\right.$, equating to a WBGT of $\left.\sim 27^{\circ} \mathrm{C}\right)$.

These conditions were based on WBGT recorded in Tokyo during the month of august (26.628.6; Vanos et al., 2020).

### 3.6. Heat Alleviation Strategy Questionnaire and interviews

### 3.6.1 Online Questionnaire

Athletes were invited to participate in a questionnaire (onlinesurvey.ac.uk), which aimed to:

1. determine the level of perceived heat strain elite athletes experience during competitions in hot conditions,
2. investigate which heat alleviation strategies athletes use during training and/or competitions in hot conditions, if any, and
3. investigate whether the heat alleviation strategies used change depending on whether the competition is in a HD condition compared to a HH condition.

### 3.6.2 Case Study Style Interviews

A single case study approach was selected to provide in-depth understanding of the participants experiences and therefore produce high quality theory for future work to expand on. To achieve this, multiple case studies were designed and reported in accordance with McKay and Marshall's (2000) checklist and Keegan's et al., (2017) guidelines. The single case studies consisted of one to one to interviews that were conducted online via zoom (lasting ~20-30min with cameras on). Participants were informed that the interviews were informal, semi-structured, followed a discussion format and that there were no wrong or right answers.

Full list of questions for the questionnaire and interview are provided in Appendix B.

The findings from the questionnaire and interviews, together with the findings of Racinais et al., (2021) questionnaire from 2019 IAAF World championships were used to determine which per-cooling methods were provided in study 4.

### 3.7 Materials and measurements

### 3.7.1 Cycle ergometers/bikes

Different ergometers were selected to optimally suit the requirements of the testing procedure. Specific details of the testing procedure are provided in the relevant chapters.

### 3.7.1.1 Turbo

CPTs and TTs were performed using a stationary bike fitted to a turbo (RacerMate, CompuTrainer, Seattle, WA or Wahoo Kickr). Therefore, cyclists-triathletes were able to fit their own bicycle to the turbo which minimises any influence on performance from using different equipment from a competition setting.

### 3.7.1.2 Lode Excalibur

$\mathrm{VO}_{2 \text { max }}$ tests were performed using a Lode Excalibur using a pre-programmed incremental file on the Lode software (Lode Ergometer Manager v9.1).

### 3.7.2 Physiological responses

### 3.7.2.1 Anthropometric assessment

### 3.7.2.1.1. Height

Height was measured using a fixed stadiometer (Seca, Germany). Participants were required to stand vertically in the anatomical position facing away from the stadiometer scale into the laboratory. The stadiometer arm was lowered until it rested horizontally on the most superior aspect of the head. The scale was then read to the nearest 0.5 cm .

### 3.7.2.1.2. Body mass

Nude body mass (NBM) was recorded in Kg using electronic scales (Seca, Germany). The scales were calibrated prior to use, using a 20kg weight. Participants were required to stand nude on the plate until the digital display stabilised. This procedure was carried out by participants in a private room, participants self-reported their body mass.

As outlined above study 2 and 4 involved participants cycling in hot conditions. The change in heat storage required to alter $\mathrm{T}_{\text {core }} / \mathrm{T}_{\text {rectal }}$ is dependent on biophysical factors such as BM . An individual's $B M$ represents their heat sink, meaning that changes in $T_{\text {core }} / T_{\text {rectal }}$ for an absolute amount of heat stored in the body are negatively correlated I.e. a smaller rise is observed with a larger BM for a fixed heat storage (Cramer and Jay, 2014; Ravanelli et al., 2017). In study 2 and 4 participants were separated into different groups in which participants BM was measured and matched (less than $\sim 20 \%$ difference between groups; Dervis et al., 2016).

### 3.7.2.2 Heart rate

In the familiarisation visits, HR was monitored telemetrically with a chest strap (H10, Polar, Finland) connected via Bluetooth to a watch (M400, Polar, Finland) and gas analyser (Cortex Metanalyzer 3b) which manually recorded every 30s. In the experimental trials, HR was monitored telemetrically with a chest strap (Garmin) connected via ANT+ to PerfPRO software (PerfPRO Studio, Dynastream Innovations Inc., Canada), which was continuously recorded throughout each trial and subsequently exported into Excel.

### 3.7.2.3. Hydration assessment

In study 2 and 4, hydration assessments were completed upon arrival to the laboratory on all visits to the laboratory to ensure equal and adequate hydration between trials. A urine specific gravity (USG) of $\leq 1.020$ (Euhydrated; Table 13; Sawka et al., 2007) needed to be achieved for participants to enter the environmental chamber. If this value was not met participants were required to drink 100 mL of water and to go to the toilet to provide another urine sample until this value was achieved.

USG was assessed using a visual handheld refractometer (Index Instruments Ltd., Cambridge, UK). The refractometer was calibrated prior to every sample using distilled water (USG 1.000). Approximately 2 mL of urine was placed onto a glass lens of the refractometer.

Table 13. Ranges of urine specific gravity, urine osmolality and interpretation adapted from Cheuvron and Sawka (2005).

Urine Specific   Gravity	Urine Osmolality   (mOsm/kg)	Interpretation
$1.001-1.010$	$<350$	Well hydrated/hyper-   hydrated
$1.011-1.020$	$350-700$	Euhydrated
$1.021-1.030$	$700-1050$	Hypohydrated
$>1.031$	$>1050$	Severely   hypohydrated

### 3.7.2.4 Rectal temperature ( $\mathrm{T}_{\text {rectal }}$ )

In all experimental trials (study 2 and 4), $\mathrm{T}_{\text {rectal }}$ was measured using the e-celcius pill and eviewer monitor (BodyCap, Caen, France). The pill was self-inserted $\sim 9 \mathrm{~cm}$ into the anal sphincter $\sim 5$ min prior to entering the chamber and recorded continuously (Bongers et al., 2018; Travers et al., 2016; Figure 6).


Figure 6. Picture of body cap pill and wireless monitor used to measure rectal temperature during study 2 and 4.

### 3.7.2.5 Sweat rate (SR)

SR was calculated in absolute (L) and relative (L/Hr). The 6 step process outlined in Periard and Racinais (2020 pp.123) book was used to assess fluid balance and sweat rate across an exercise session:

1. Weigh athlete's body mass (BM) before session, using reliable digital scales (ideally measuring to 0.01 kg . This should be done wearing minimal clothing and after the athlete has gone to the toilet
2. Weigh athlete again after session in the same clothing, and after towelling dry
3. Weigh athlete's drink bottle before and after the session (ideally measuring to 1 g using kitchen scales) to calculate the volume ( $\mathrm{g} / \mathrm{mL}$ ) of fluid consumed


#### Abstract

4. Note the mass (g) of any foods or sports products (e.g. gels) consumed during the session Extra steps for further accuracy


5. If the athlete has to go to the toilet during the session, weigh in before and after, or collect urine in a beaker to measure the volume/mass
6. Estimate total urine losses during the session by having athlete weigh in post-session, go to the toilet, and reweigh (alternatively, collect urine in beaker and measure the volume). Add this to the volume/mass of urine produced at any mid-session toilet stops.

The following equations were used to determine fluid intake, urine loss and sweat rate:

Fluid intake $(\mathrm{mL})=$ drink bottle before - drink bottle after $(\mathrm{g}) 705 \mathrm{~g}-104 \mathrm{~g}=601 \mathrm{~g}$ or 601 mL Urine losses $(\mathrm{mL})=$ change in BM due to toilet stops during and/or after the session: $\mathrm{kg} \times 1000$ or g e.g. weight change: $60.25-60.00=0.25 \mathrm{~kg}=250 \mathrm{~mL}$ or 251 g urine in beaker

Fluid deficit $(\mathrm{mL})=$ Pre-session BM -Post-session BM $(\mathrm{kg}) \times 1000$. (Note: to measure total fluid deficit which includes sweat and urine losses, use post-session value taken after the toilet visit) $60.50-59.05=1.45 \mathrm{~kg}=1450 \mathrm{~mL}$ Fluid deficit $(\% \mathrm{BM})=($ Fluid deficit [in kg] $\times 100) /$ pre-session BM $(\mathrm{kg})(1.45 \times 100) /(60.50)=$ 2.4\%

Total sweat losses over the session = Fluid deficit $(\mathrm{g})+$ fluid intake $(\mathrm{g})+$ food intake $(\mathrm{g})^{-}$ urine losses (g) 1450+601 +40 g (sports gel) $-250=1841 \mathrm{~mL}$

Sweat rate over the session = sweat losses converted to mL per hr

Session lasted for 90 min : sweat rate $=1841 \times 60 / 90=1227 \mathrm{~mL}$ or $1.23 \mathrm{~L} / \mathrm{h}$

### 3.7.2.6 Skin temperature (Tsk)

$\mathrm{T}_{\text {sk }}$ was recorded continuously in study 2 and 4 using four skin thermistors (DS1921H-F5 ibutton, Maxim, USA) placed on the right side at the following sites: mid-calf, midthigh, upper chest/sternal notch, and mid-shin (Ramanathan, 1964). T Tsk was combined to give an overall $\mathrm{T}_{\text {sk }}=0.3$ Tchest +0.3 Tarm, +0.2 Tthigh +0.2 Tleg (Ramanathan, 1964). All skin thermistors were attached via a transparent dressing (Tegaderm, 3M Health Care, USA) and water-proof tape (Transpore, 3M Health Care, USA).

### 3.7.3 Perceptual responses

### 3.7.3.1 Ratings of perceived exertion (RPE)

RPE was assessed using a subjective scale 6-20 ranging from no exertion to maximal exertion (Borg, 1982; Figure 7). Participants were asked, "How would you rate your exertion right now?". All subjects were familiarised with the RPE scale, which was administered in accordance with published standardized instructions (Borg, 1998; Figure 7).

### 3.7.3.2 Thermal comfort (TC)

As stated in the literature review (Chapter 2), numerous TC scales have been developed (Bedford, 1936; Gagge et al. 1967). Therefore, it is difficult to compare between studies. The most commonly used TC scale involves rating TC from " $0=$ very comfortable" to " $4=$ very uncomfortable" (Gagge et al., 1967). However, participants ratings on a numbered scale are often influenced by the prior rating (i.e. increase in incremental stages) independently of the real/true feeling of perception. Therefore, it could be argued that the coloured VAS scales are more representative of true perceptual ratings (Gaoua et al., 2011a; 2011b; Gaoua et al., 2012). Therefore, TC was assessed in this thesis by using a VAS which ranged from black to white equating to a rating of $1-20,1=$ very comfortable to $20=$ very uncomfortable (Gaoua et al., 2011a; 2011b; Figure 7). Participants were asked "How comfortable do you feel in this environment?". Participants would give their rating by pinching the scale at the point that corresponded to their thermal comfort which then corresponded to a number on the back.

### 3.7.3.3 Thermal sensation (TS)

As stated in the literature review (Chapter 2), numerous TS scales have been developed (Bedford, 1936; ASRAE 55, 1966; Rohles and Levins 1971; Toner et al., 1986; Young et al. 1987; Gaoua et al., 2011a; 2011b). The most commonly used TS scale involves rating TS from " -3 cold" to " +3 hot" with the centre of the scale representing neutral conditions (0) (Young et al. 1987). However, participants ratings on a numbered scale are often influenced by the following rating (i.e. increase in incremental stages) independently of the real/true feeling of perception. Therefore, it could be argued that the coloured VAS scales are more representative of true perceptual ratings (Gaoua et al., 2011a; 2011b; Gaoua et al., 2012). Therefore, TS was assessed in this thesis by using a VAS which ranged from blue to red equating to a rating of $1-20,1=$ very cold to $20=$ very hot (Gaoua et al., 2011a; 2011b; Figure 7). Participants will be asked, "How hot or cold do you feel in this environment?". Participants would give their rating by pinching the scale at the point that corresponded to their thermal sensation which then corresponded to a number on the back.

### 3.7.3.4 Affect (AF)

A well-cited assessment of mood in physical activity/sport setting is the profile of mood state (POMS) (Berger and Motl, 2000). POMS is used to assess the relationship between exercise and acute mood changes however, this does not assess AF explicitly. To evaluate affective state during exercise, researchers commonly use "the feeling scale" (Appendix C: Hardy \& Rejeski, 1989). This is an 11 -point scale ranging from -5 "Very bad" to +5 "Very good", with 0 as a neutral midpoint (Hardy \& Rejeski, 1989; Figure 7). Participants were asked "How do you feel right now?'" and were asked to respond using the 11-point scale (Hardy \& Rejeski, 1989). Participants were informed that their response should reflect the affective or emotional components of the exercise and not the physical sensations of effort or strain. Measuring AF using this scale has been considered a reliable and valid measure of affective valence in the exercise domain. Therefore, it has been used in recent investigations examining affect during acute exercise bouts (Rose \& Parfitt, 2012) and has been recommended as an appropriate measure of valence in the exercise context (Ekkekakis \& Petruzzello, 2002).

### 3.7.3.5. Task motivation (TM)

Coudevylle et al., (2020) review highlighted that motivation may be a key factor in aerobic performance in tropical climates (for example HH ) and therefore, perceived motivation to exercise was assessed via a 20cm VAS (Crewther et al., 2016 Figure 7). Participants were asked 'how motivated do you feel to exercise right now?' to which they answered by adjusting the level on the scale between $0=$ 'not very motivated' (white-coloured) and $20=$ 'very motivated' (black-coloured).Participants would give their rating by pinching the scale at the point that corresponded to their motivation which then corresponded to a number on the back.


Figure 7. Perpetual scales included in study 2 and 4 from left to right (AF, RPE, TC, TM and TS).

### 3.7.3.6. Situation motivation (SIMS)

Before each experimental trial in study 1,2, and 4, participants completed a questionnaire titled Situational Motivation Scale (SIMS; 16 Item Scale). This questionnaire was used to measure motivation to exercise before each cycling TT. "Why are you currently engaged in this activity?" to which participants answered 16 items. The items were separated into four categories: Intrinsic motivation: Items 1, 5, 9, 13; Identified regulation: Items 2, 6, 10, 14; External regulation: Items 3,7, 11, 15; Amotivation: Items 4, 8, 12, 16. (Guay et al., 2000),

### 3.7.3.7. Markers of overtraining and recovery.

Before each experimental trial in study 2, and 4, participants completed a questionnaire (Hooper et al., 1995; Figure 8) which included subjective ratings of quality of sleep (1-very, very good to 7 -very, very bad ), fatigue (1- very, very low to 7 - very, very high), stress (1very, very low to 7 - very, very high) and muscle soreness (1- very, very low to 7 - very, very high).

## Hooper et al. 1995 Original 1-7 Scale

SUBEECTIVE RATINGS OF QUALITY OF SLEEP, FATIGUE, STRESS AND MUSCLE SORENESS
Determine your rating for each category every morning before any training or other activity

SLEEP	STRESS
1- VERY, VERY GOOD	1- VERY, VERY LOW
2- VERY GOOD	2- VERY LOW
3-GOOD	3- LOW
4- AVERAGE	4- AVERAGE
5- BAD	5- HIGH
6- VERY BAD	6- VERY HIGH
7- VERY, VERY BAD	7- VERY, VERY HIGH
FATIGUE	MUSCLE SORENESS
1- VERY, VERY LOW	1- VERY, VERY LOW
2- VERY LOW	2- VERY LOW
3- LOW	3- LOW
4- AVERGGE	4- AVERAGE
5- HIGH	5- HIGH
6- VERY HIGH	6- VERY HIGH
7- VERY, VERY HIGM	7- VERY, VERY HIGH

Figure 8. Hooper et al., (199) original 1-7 scale for sleep, stress, fatigue and muscle soreness.

### 3.7.4 Eye Tracker

Prior to starting the TT in study 1, participants were fitted with a head-mounted eye tracker (Dikablis Professional wireless Eye-Tracking, Ergoneers) which was worn like glasses. The system consists of three cameras: two that record the eye position of the participant and one forward-looking camera that records the scene at which the participant is looking. The eye position was recorded at 50 Hz , as recommended by the manufacturers. The system tracks eye movements using pupil and corneal reflex so that each participant's object of regard (OOR) can be superimposed onto the recorded scene, thus enabling timed measurements
to be made of eye fixations. OOR can be defined as the main object/variable of focus/being looked at.

Participants were told that this device was used to measure the dilation of their pupils which will be used as an indicator of physical stress on the body to avoid influencing where the cyclists looked during the TT.

The laboratory set up previously used by Boya et al., (2017) was adopted for all studies in this thesis. The monitor was 93 cm in width and 52 cm in height with the bottom border of the monitor running 2 m above and parallel to the floor. The turbo bike was positioned such that the handlebars stem riser was 1 m perpendicular to the plane of the screen which itself was offset to the right of the natural forward field of vision of the cyclists with a sector displacement of $8^{\circ}$ at 3.03 m for the left border of the projection and $40^{\circ}$ at 3.91 m for the right border (visual arc $32^{\circ}$ ). Offsetting the screen in this way required participants to rotate their neck to look at the projected information, thus adding confidence that the eye-tracking measurements constituted deliberate attempts to acquire information, rather than information glances just because it happened to fall naturally within participants forward field of vision.


Figure 9. Head mounted eye tracker which was worn like glasses.

### 3.7.5 Debrief

A debrief was provided to the participants at the end of study 1 . Originally participants were disclosed a different title in the information sheet to the actual title of the study to prevent participants from influencing their outcome performance (e.g. focusing on distance over speed because the volunteer believes this may be the more desirable variable for cyclists
performance). The debrief revealed the true purpose of the study; The aim of the study was to investigate the differences in pacing strategies with full feedback and time only feedback in novice and experienced cyclists during 30min cycling TT.

### 3.7.6. Equipment cleaning and control of substances hazardous to health

To avoid contamination all apparatus was cleaned before and after use. Metabolic gas collection equipment such as face-masks, falconia tubing, mouthpieces and nose clips were soaked in Virkon disinfectant (1\% Antec Int. Suffolk, UK) for a minimum of 10 minutes, followed by a thorough rinse in cold water and drying prior to use as per manufacturer guidelines. Heart rate monitor straps were soaked for 10 minutes in 1\% Virkon disinfectant, rinsed and dried following use.

In order to test under the COVID-19 guidelines, participation in the research studies included in this thesis were not open to:

1. Clinically extremely vulnerable or clinically vulnerable people or individuals who live with such people.
2. People who have travelled abroad in the last 14 days.
3. People who are displaying COVID-19 symptoms or have in the last 7 days.
4. People living in a household where someone else has displayed symptoms in the last 14 days.

In addition, the following procedures were taken to ensure safety to participants and investigators during testing:

1. Social distancing was maintained throughout the testing process. Therefore, there was no physical contact between individuals (i.e. handshakes etc). This infers that all laboratory equipment, such as heart rate monitors and thermal sensors was selfapplied by participants. Participants received verbal instructions by the investigator on how to apply equipment in a safe manner.
2. Face masks, eye protection, gloves and gowns were worn during testing to NHS standards as a control measure.

### 3.7.6.1 Waste disposal

Biological material and waste were handled and disposed of in line with relevant guidelines. Control of Substances Hazardous to Health (COSHH) sheets were completed for the study. Risk assessments were also completed for use of all laboratories, exercise and invasive techniques.

All other non-reusable waste was disposed of by immediate placement in marked biohazard waste containers and incinerated. Sharps, such as venepuncture needles, were also disposed of in marked sharps containers and subsequently incinerated. Electrical equipment contacting the body such as heart rate monitors were cleaned using warm water and soap, followed by alcohol cleaning wipe.

### 3.7.7. Criteria for termination of experiments

Experiments were stopped if any of the following criteria were met:

- The participant asked to stop the test at any point (participants were not required to give any reason for this).
- The investigator felt it appropriate to stop the test whether it be for equipment issues, or the participant displaying signs of discomfort or illness, including, but not limited to chest pain, dypsnea, nausea, vomiting, generic pain/discomfort, faintness or dizziness.
- $\mathrm{A} \mathrm{T}_{\text {rectal }}$ value of $\sim 39.5^{\circ} \mathrm{C}$ was reached.


### 3.7.8. Data processing

Procedures for data processing are detailed within each experimental study chapter.

### 3.7.9. Eye-Tracking and Video Analysis ${ }^{1}$

Gaze behaviour was evaluated using the following categories: Number of glances, number of glances >2s, and time to first glance. This was calculated participant-by-participant basis for the whole TT and in 5min intervals. The eye gaze was coded by recording the start and end frame of each entry into a new area of interest. This allowed us to determine the periods spent inspecting each of the variables. Eye fixation times were recorded in milliseconds against the six predetermined categories in FF. The total number of glances was defined as the number of separate eye fixations $(\geq 100 \mathrm{~ms})$ for each variable. Mean glance was defined as the mean number of eye fixations for each variable. Time to first glance derived from the duration between the beginning of the trial until the first glance to an OOR.

Gaze frequency was reported as total, defined as the accumulated time of all eye fixations and mean glance time for each category. Total glance times were then used to determine what information source that each participant looked at for longest accumulated time (primary), second-longest accumulated time (secondary), third-longest accumulated time (tertiary) and so on until quaternary (4th), quinary (5th), and senary (6th), had all been established.

### 3.7.10. Data Analysis

Perfpro file including performance (power output, distance, speed, cadence) and physiological responses (heart rate) was downloaded into an excel spreadsheet after each trial.

### 3.7.11. Statistical analysis

Power analyses were carried out prior to data collection to determine appropriate sample sizes for each experimental study (G*Power 2, HHU, Germany). Please see each chapters statistical analysis section for specific details. In general, sphericity was assessed via a Mauchly test, to consider that variations of differences are equal (Field, 2013). If sphericity was violated, a Greenhouse Geisser correction was applied. Partial eta-squared was calculated as an estimation of effect size (ES). Values of $0.01,0.06$ and above 0.14 were
considered as small, medium and large, respectively (Cohen, 2013). If data were not normally distributed, a related-samples nonparametric Friedman's test was used. If any significant effects were found, a further post-hoc analysis was carried out via Bonferroni pairwise comparisons to assess where the significance lay. Pearsons Correlation was conducted between the main performance variable (power output) and main physiological (core temperature) and main percpetual variables (thermal comfort and thermal sensation). Categories for $r$ values (correlation coefficients) $\leq 0.35=$ low/weak correlations, 0.36-0.67 = modest/moderate correlations, $0.68-0.90=$ strong/high correlation and, $>0.90=$ very high/very strong correlations (Taylor, 1990). All statistical testing was carried out in SPSS (v21, IBM, Cambridge). All data are presented as mean $\pm$ standard deviation (SD) and considered statistically significant if $p<0.05$ and a trend for significance if $p<0.07$.

# 4.Chapter 4. Methodological Study: Less is more - Cyclists-triathletes 30min cycling time-trial performance is impaired with multiple feedback compared to a single feedback. 

### 4.1. Abstract

Purpose: The purpose of this article was to (i) compare different modes of feedback (multiple vs. single) on 30 min cycling time-trial performance in non-cyclist's and cycliststriathletes, and (ii) investigate cyclists-triathlete's information acquisition.

Methods: 20 participants ( 10 non-cyclists, 10 cyclists-triathletes) performed two 30 min selfpaced cycling time-trials (TT, $\sim 5-7$ days apart) with either a single feedback (elapsed time) or multiple feedback (power output, elapsed distance, elapsed time, cadence, speed, and heart rate). Cyclists-triathlete's information acquisition was also monitored during the multiple feedback trial via an eye tracker. Perceptual measurements of task motivation, ratings of perceived exertion (RPE) and affect were collected every 5 min . Performance variables (power output, cadence, distance, speed) and heart rate were recorded continuously.

Results: Cyclists-triathletes average power output was greater compared to noncyclists with both multiple feedback ( $227.99 \pm 42.02 \mathrm{~W} ; 137.27 \pm 27.63 \mathrm{~W} ; \mathrm{P}<0.05$ ) and single feedback $(287.90 \pm 60.07 \mathrm{~W} ; 131.13 \pm 25.53 \mathrm{~W})$. Non-cyclist's performance did not differ between multiple and single feedback ( $p>0.05$ ). Whereas, cyclists-triathletes 30 min cycling time-trial performance was impaired with multiple feedback ( $227.99 \pm 42.02 \mathrm{~W}$ ) compared to single feedback (287.9 $\pm 60.07 \mathrm{~W} ; \mathrm{p}<0.05$ ), despite adopting and reporting a similar pacing strategy and perceptual responses ( $p>0.05$ ). Cyclists-triathlete's primary and secondary objects of regard were power ( 64.95 s ) and elapsed time ( 64.46 s ). However, total glance time during multiple feedback decreased from the first $5 \mathrm{~min}(75.67 \mathrm{~s})$ to the last 5 min (22.34 s).

Conclusion: Cyclists-triathletes indoor 30 min cycling TT performance was impaired with multiple feedback compared to single feedback. Whereas non-cyclist's performance did not differ between multiple and single feedback. Cyclists-triathletes glanced at power and time which corresponds with the wireless sensor networks they use during training. However, total glance time during multiple feedback decreased over time, and therefore, overloading athletes with feedback may decrease performance in cyclists-triathletes.

### 4.2. Introduction

It was highlighted in chapter 2 (literature review) that articles investigating cycling performance in hot conditions provide participants with different types (i.e. elapsed distance, time, PO, cadence, speed, HR) and amounts of feedback (i.e. 1-5). One reason for this may be related to the global use of power meters and cadence sensors within the sport of cycling and triathlon (Gharghan et al., 2015). Wireless sensor networks (WSN) such as these provide cyclists-triathletes with easy access to not only end point knowledge (i.e. elapsed time and distance) but also performance (i.e power output, cadence, speed) and physiological variables (i.e. heart rate; Gharghan et al., 2015).

Within the feedback literature, it has been established that task relevant feedback is needed for optimal performance (Bertollo et al., 2015; Smit et al., 2016). For example, end-point knowledge is essential to inform pace and tactics in sports such as cycling (Bertollo et al., 2015; Smit et al., 2016; Wingfield et al., 2018). Without end point knowledge experienced cyclists pacing decisions are based off physiological and perceptual-driven stimuli alone, which results in adopting a conservative pacing strategy causing the end spurt of a TT to be missed and/or not using all available physiological resources available (Marcora, 2008; Smit et al., 2014; 2016; Wingfield et al., 2018). Despite this understanding, it is currently unknown whether end-point knowledge is one of the main feedback variables used by cycliststriathletes or whether multiple feedback variables are used simultaneously to inform pace.

Using feedback whilst cycling may be classed as a dual task (motor task combined with a cognitive task). The effect of adding a cognitive load such as attention to a motor task such as walking has been widely explored (Bradford et al., 2019). The findings have shown that pace (i.e. stride or gait velocity) changes when two tasks are performed simultaneously compared to separate task execution (Beauchet et al., 2005; Beurskens and Bock, 2012; Bradford et al., 2019). In tasks such as prolonged cycling, athletes experience neuromuscular fatigue originating from both central (i.e., spinal or supraspinal) and peripheral sites (i.e., within the muscle), which will eventually lead to a reduction in work rate (Chatain et al., 2019). Similarly, prolonged cognitive tasks (i.e., sustained attention) can induce a state of mental fatigue and may also have a detrimental effect on exercise completed after the task (Van Cutsem et al., 2017). Contemporary research showed that the addition of a cognitive task to a motor task impaired endurance capacity (Mehta and Agnew, 2012; Keller-Ross et al., 2014; Pereira et al., 2015). The impairment in endurance capacity may results from limited attentional resources making humans unable to complete two different types of task (i.e. motor and cognitive) to the same standard when performed simultaneously (Pashlet, 1994; Dietrich and Audiffren, 2011). Although this impairment in capacity is well documented during time to exhaustion models, it is unclear if the same responses occurred during a self-paced model similar to competition. An investigation into the effect of multiple feedback variables on cycling performance using a self-paced model would be an ecologically valid method to determine whether there is an overload effect (i.e. increase mental load) experienced by cyclists-triathletes during competition.

Therefore, posing the question as to whether using single feedback (i.e., time only, distance only) may offer greater cycling performance outcomes compared to multiple feedback as there is less chance of developing a cognitive overload. To our knowledge only one article has considered the quantity and type of visual feedback on self-paced cycling performance, which incorporated eye-tracker technology to identify object(s) of regard (OOR; main variable glanced at) during a 10 mile ( 16.1 km ) cycling TT.

Boya et al., (2017) provided cyclists with multiple feedback (i.e., power, cadence, speed, heart rate, video simulation, presence of competitor, RPE scale, elapsed distance and time) during a 10 mile TT (complete the distance as quickly as possible). The experienced cyclists (EC) completed the 10 mile TT significantly faster ( $27.71 \pm 1.5 \mathrm{~min}$ ) than the novice cyclists ( $30.26 \pm 2.93 \mathrm{~min}$ ). Boya et al., (2017) determined that NC had a greater dependence upon distance feedback, which they looked at for shorter and more frequent periods of time than EC. Whereas, EC were more selective and consistent in attention to feedback, glancing at speed feedback the most. This study challenged the importance placed on knowledge of the endpoint to pacing in previous models, especially for EC for whom distance feedback was looked at secondary to, but in conjunction with, information about speed. Boya et al. (2017) findings may be related to task type as professional individual TTs are not only distance based (i.e., complete 10 miles as quickly as possible) but can also be time-based (i.e., complete as much distance as possible within 30 min ). This therefore poses the question as to whether cyclists information acquisition differs depending on the endpoint knowledge provided.

Therefore, the first aim of the current study was to compare multiple vs. single feedback on 30 min cycling performance to explore whether overload may impair performance. The second aim of the current study was to investigate cyclists-triathletes (CT) information acquisition during a 30 min cycling time-trial. Our first hypothesis was that CT would perform better with single vs. multiple feedback due to the possibility of overload during the dual-task. Based on the previous literature the second hypothesis of the current study was that CT's primary OOR would be one of the cycling specific feedbacks provided (i.e., speed, power, or cadence).

### 4.3. Methods

### 4.3.1. Participants

20 participants ( $\mathrm{NC}=10, \mathrm{CT}=10$ ), were recruited for this study (effect size $=0.7 ; \mathrm{g}$ *power 3.1.9.2).

Table 14. Mean $\pm$ SD differences in cyclists-triathletes and non-cyclist's sex ( $F: M$ ), age (yrs), stature $(\mathrm{cm})$, body mass ( kg ), body mass index ( $\mathrm{kg} / \mathrm{m} 2$ ), $\mathrm{VO}_{\text {2peak }}\left(\mathrm{mL} . \mathrm{kg} . \mathrm{min}^{-1}\right)$, critical power (w) and prior experience (yrs).

Variables	Non-cyclists (NC)	Cyclists-triathletes (CT)
Participants	10	10
Sex Ratio (F:M)	$1: 9$	$0: 10$
Age (yrs)	$24.2 \pm 3.7$	$25.9 \pm 3.6$
Stature $(\mathbf{c m})$	$174.1 \pm 10.4$	$181.5 \pm 6.2$
Body Mass $(\mathbf{k g})$	$76.9 \pm 15.8$	$75.5 \pm 7.8$
Body Mass Index (kg/m2)	$25.1 \pm 3.5$	$22.8 \pm 1.8$
VO2peak (mL.kg.min-1)	$39.4 \pm 74.2$	$55 \pm 6.5^{\star}$
Critical Power (w)	$170.8 \pm 63.3$	$213.7 \pm 88.9^{*}$
Prior Experience (yrs)	$0 \pm 0$	$10 \pm 6^{*}$

*Significant difference between groups.

### 4.3.2. Experimental design

A three-way mixed experimental design was used to investigate experience (experienced vs. non) $\times$ condition (multiple vs. single) $\times$ time interval (six 5 min blocks (B), i.e., B1: 0-5 min, B2: 5-10 min, B3: 10-15 min, B4: 15-20 min, B5: 20-25 min, and B6: 25-30 min). This design required participants to visit the laboratory on 3 separate occasions (Figure 10). The initial visit included a familiarisation in which the study procedures/measures involved, and eligibility was determined (see familiarization section below). Eligible participants were invited to return for 2 more visits which were separated by 5 days to allow for sufficient recovery time (Jones et al., 2013). All trials were performed at the same time of day, $\pm 2 \mathrm{hr}$, to control for circadian variation. The two experimental trials included a 30min cycling TT, in which participants were either provided with multiple feedback variables (elapsed distance, elapsed time, heart rate, power-output, speed, cadence) or with a single feedback variable (elapsed time), in a counterbalanced order. To control for the effect of competition all trials were completed individually. To control for the effect of environmental condition all trials were performed in a thermoneutral environment $\left(18{ }^{\circ} \mathrm{C}, 40 \% \mathrm{rH}\right)$ with headwind $\left(2.23 \mathrm{~m} . \mathrm{s}^{-1}\right)$
provided by an electrical fan, positioned 0.5 m in front of the bike in line with the participant's torso. To prevent any influence on pacing and eye tracking data participants were originally informed of a different study title and purpose in the information sheet: "The reproducibility of 30 min cycling TT performance on a turbo-trainer" In addition, participants were told that the eye tracker device was used to measure the dilation of their pupils, which was a noninvasive indicator of physical stress on the body. This, again was to avoid influencing eye tracking data. A debrief was provided to the participants at the end of the study that revealed the true purpose of the study.


Figure 10. Illustrated structure of study design.

### 4.3.3. Familiarization, Critical Power Test, and $\mathrm{VO}_{\text {2peak }}$

In the initial visit to the laboratory, participants were briefed to the requirements of the study, were given detailed instructions of how to use all perceptual scales and completed a short health screening questionnaire and the consent form. Following this, each participant had their body mass and stature measured. Participants then completed CPT (see general methodology).

### 4.3.4. Experimental Trials

Participants initiated the second and third visit by performing a standardized warm-up (see general methodology). Participants were then given the following verbal instruction before starting the TT: "This is a maximal effort time-trial which requires you to complete as much distance as possible within the 30 min. ." Participants were then allowed to ask any further questions before starting the TT. During the TT with a single feedback variable, participants were provided with information of the elapsed time ( min ) only (Figure 11, panel B). Whereas, with multiple feedback variables, participants were informed of their real time (updated every 0.3 ms ) speed (mph), elapsed distance (miles), elapsed time (min) power output (W), pedal cadence (rpm) and heart rate (HR; b. $\mathrm{min}^{-1}$ ) continuously throughout the TT (Figure 11, panel A). All participants were fitted with a head-mounted eye tracker (Ergoneers Dikablis, Germany) which was light weight and worn like glasses (Figure 11; see general methodology for more details).


A

## B



Figure 11. (A) multiple feedback (power, cadence, heart rate, elapsed time, speed, elapsed distance) and (B) single feedback (elapsed time) visual monitors provided throughout the time-trial.

### 4.3.5. Performance Measurements

Performance variables such as power-output and distance were obtained using PerfPro Software that connected to the turbo-trainer (RacerMate Software, Version 4.0.2, Seattle, United States).

### 4.3.6. Physiological Measurements

HR was recorded continuously using a chest strap HR monitor (Garmin 705 Edge, Garmin, Southampton, United Kingdom) connected wireless to the PerfPro software (Hartman Technologies, Rockware, Michigan, United States) using an ANT + device.

### 4.3.7. Percpetual Measurements

Before all TT's participants completed a situational motivation scale. TM and AF were measured at baseline, and TM, AF and RPE were measured every 5 min (at $5,10,15,20$, 25 , and 30 min ).

### 4.3.8. Statistical Analysis

All statistical analysis was completed using SPSS (version 21, IBM Corporation, Armonk, NY). Shapiro-Wilk's test revealed that all physiological, information acquisition and performance data were normally distributed ( $\mathrm{P}<0.05$ ). Variables that were normally distributed were analyzed using separate twoway mixed ANOVAs for condition (multiple vs. single) and group (experienced vs. non) across the whole TT. Separate three-way mixed (experience x condition x time) ANOVAs was used to test for significant differences, main and interactions effects at time intervals [6 blocks (B) of 5 min each]. To analyze pacing, power output in each 5 min block was expressed as a percentage of the average power during the whole TT. Partial eta-squared ( $\eta$ 2) was calculated as a measure of effect size.

Values of $0.01,0.06$ and above 0.14 were considered as small, medium and large, respectively (Cohen, 1988). A related samples Friedman's non-parametric test (TM, AF, and RPE) was used for data not normally distributed. Bonferroni post hoc pairwise comparisons were used to identify locations of significant effects. Data was considered significant if $p \leq$ 0.05 . All data are presented as group means $\pm$ SD.

### 4.4. Results

### 4.4.1. Performance Responses

Table 15. Mean $\pm$ SD total distance and power output during the 30 min cycling time-trial.

Group and   Condition	CTMF	CTSF	NCMF	NCSF
Total Distance   Covered (km)	$8.1 \pm 0.9$	$8.7 \pm 0.7$	$6.1 \pm 1.2$	$6.0 \pm 1.2$
Power Output (W)	$204.32 \pm 41.74$	$247.13 \pm 51.26$	$137.27 \pm 27.36$	$131.13 \pm 25.53$

CTMF = cyclists-triathletes multiple feedback, CTSF = cyclists-triathletes single feedback, NCSF = non-cyclists' single feedback, NCMF = non-cyclists multiple feedback.

Overall, CT completed a significantly greater distance than NC with both multiple (8.1 $\pm 0.9$ km vs. $6.1 \pm 1.2 \mathrm{~km} ; 20 \% ; \mathrm{P}<0.05$ ) and single ( $8.7 \pm 0.7 \mathrm{~km}$ vs. $6.0 \pm 1.2 \mathrm{~km} ; 32 \% ; \mathrm{P}<$ 0.05 ) feedback. Mean power output ( $204.32 \pm 41.74$ vs $247.13 \pm 51.26 \mathrm{~W}$; $\mathrm{P}<0.05, \eta 2=25 \%$ ) and $\operatorname{HR}(P<0.001, \eta 2=78 \%)$ were significantly greater in CT than NC at all-time points in with multiple and single feedback (all $0.0001<\mathrm{P}<0.028$; 30 and $44 \%$; Figure 16). CT covered a significantly greater distance with single ( $8.7 \pm 0.7 \mathrm{~km}$ ) compared to multiple feedback ( $8.1 \pm 0.9 \mathrm{~km} ; \mathrm{P}<0.05$ ). There was no main effect of condition on power output in CT from B1 to B5, however, there was a significantly greater increase in power output with single compared to multiple feedback in $B 6(P<0.01, \eta 2=77 \%$; Figure 16). Moreover, there was no main effect of condition on CT's HR (multiple: $158 \pm 14$ vs. single: $152 \pm 16$ b. $\left.\min ^{-1} ; P>0.05, \eta 2=17 \%\right)$. There was no main effect of condition on NC's distance (multiple: $6.1 \pm 1.2 \mathrm{~km}$ vs. single: $6.0 \pm 1.2 \mathrm{~km} ; \mathrm{P}>0.05, \mathrm{\eta} 2=15$ or HR (multiple: $135 \pm 16$ vs. single: $141 \pm 17$ b. $\mathrm{min}^{-1} ; ~ P>0.05, \eta 2=17 \%$ ). Notably, there was $>5 \%$ difference in CTs
power output between conditions and therefore individual differences were explored (Figure 16, Panel B; NC are also represented for clarity of data). All CTs mean $\pm$ SD PO was greater with single feedback compared to multiple feedback (20\%). The average increase with multiple compared to single was $\sim 116 \mathrm{~W}$ ( $\sim 11-187 \mathrm{~W}$ ).



Figure 12. A) Cyclists-triathletes (CTSF, cyclists-triathletes single feedback; CTMF, cycliststriathletes multiple feedback) and non-cyclists (NCSF, non-cyclists' single feedback; NCMF, non-cyclists multiple feedback) 5min segment mean $\pm$ SD power output and pacing used with permission of Bayne et al., (2020). *denotes $P<0.05$ between groups for both conditions, $\$$ denotes $P<0.05$ between groups and conditions at a specific time point. B) Cycliststriathletes (CTSF, cyclists-triathletes single feedback; CTMF, cyclists-triathletes multiple feedback) and non-cyclists (NCSF, non-cyclists' single feedback; NCMF, non-cyclists multiple feedback) mean $\pm$ SD power output for the whole 30min time-trial with individual data points. White bar = multiple feedback and Grey Bar = Single feedback.

### 4.4.2. Psychoperceptual Responses

There was no significant difference in participants SMS scores between visits (Amotivation, identified and external regulation, $\mathrm{P}>0.05$ ) except for intrinsic motivation between groups implying that CT were more intrinsically motivated to cycle in the first trial compared to NC (P < 0.05).

CT perceived to be exerting more effort than NC with both multiple and single feedback between B2-6 ( P < 0.05; Table 17).

However, NC affect scores were lower and therefore perceived to have felt significantly worse than CT with both multiple and single feedback at B 1 ( $\mathrm{P}<0.05$; Table 17). At B2 NC affect had improved with single feedback, reporting values that were significantly better than CT ( $\mathrm{P}<0.05$; Table 17). Whereas with multiple feedback, NC reported feeling worse than CT from B1-B3 ( $\mathrm{P}<0.05$; Table 17). Notably, there was a strong negative correlation between affect and power output for EC with mutlitple feedback inferring that the lower power output exerted with multiple feedback was related to feeling worse throughout the time-trial.

NC felt more motivated than CT with single feedback at $\mathrm{B} 1-5$ ( $\mathrm{P}<0.001$; Table 17). Whereas CT felt more motivated than NC with multiple feedback at all-time points ( $\mathrm{P}<$ 0.001; Table 17). However, overall, there was no significant difference between mean perceptual response and condition in either group ( $P>0.05$; Table 17).

Table 16. Cyclists-triathletes and non-cyclists overall mean $\pm$ SD and 5 min segments for perceived exertion, affect, task motivation used with permission of Bayne et al., (2020).

*=Denotes a significant difference between groups, red = low correlation with power, yellow =moderate correlation with power, green = strong correlation with power.

### 4.4.3. Information Acquisition

In the multiple feedback trial CT glanced significantly more often at the feedback variable "power output" throughout the TT (P < 0.05) compared to "speed," "time," "distance," "HR," and "cadence" ( $\mathrm{P}>0.05$; Table 18). CT also spent the most time glancing at power (total glance time: 64.95 s) followed by time ( 64.46 s ; Figure 13). However, there was no significant difference in overall OORs ( $\mathrm{P}>0.05$; Figure 13). In contrast to the information acquisition data gathered by the eye tracker, the CT post TT perceived OORs were speed, followed by power. Whereas, NC perceived OORs were distance, followed by HR. Segmental analysis on the top two OOR(s) revealed that CT's total glance time in each time block at power was consistent throughout the TT (Figure 14), which corresponds with the number of glances at power (Table 18). Whereas the total glance time at time peaked in B3 and B4 (Figure 14), which also corresponds with the number of glances at time (Table 3). Notably, CT only spent $15 \%$ ( 265.39 s ) of the overall time available in the $30 \mathrm{~min}(1,800 \mathrm{~s})$ TT looking at multiple feedback (Table 19). Moreover, total glance time(s) at multiple feedback decreased from B1 (75.67 s; 25.22\%) to B6 (22.34 s; 3.30\%; Table 19).

Table 17. Cyclists-triathletes $(\mathrm{N}=6)$ overall mean $\pm$ SD number of glances and in 5 min segments used with permission of Bayne et al., (2020). .

Eye tracker variables	Block 1   (0-5 min)	Block 2   (5-10 min)	Block 3 (10-15 min)	Block 4   (15-20 min)	Block 5 (20-25 min)	Block 6 (25-30 min)	average glances across whole TT
Speed	$27 \pm 31.67$	$17 \pm 27.57$	$3.33 \pm 3.61$	$12.5 \pm 16.22$	$8.5 \pm 15.55$	$15 \pm 15.55$	$13.89 \pm 7.36$
Power	$34.37 \pm 30.96$	$22.75 \pm 44.05$	$27.75 \pm 40.23$	$32.87 \pm 43.96$	$20 \pm 34.88$	$21.5 \pm 39.23$	$26.54 \pm 5.56$
Distance	$6.14 \pm 7.43$	$2.85 \pm 3.48$	$2.14 \pm 2.54$	$4.42 \pm 5.38$	$7.42 \pm 9.55$	$7.57 \pm 9.86$	$5.10 \pm 2.12$
Time	$27 \pm 32.32$	$13.16 \pm 26.10$	$29.66 \pm 46.06$	$33.66 \pm 59.36$	$10.83 \pm 16.99$	$6.33 \pm 9.56$	$20.11 \pm 10.38$
Heart Rate	$47 \pm 69.6$	$7.16 \pm 9.33$	$12.83 \pm 22.75$	$22.66 \pm 38.19$	$11.16 \pm 25.42$	$9.83 \pm 22.18$	$18.44 \pm 3.84$
Cadence	$2.28 \pm 2.93$	$2.85 \pm 3.13$	$1.57 \pm 1.27$	$0.28 \pm 0.49$	$0.28 \pm 0.49$	$11.42 \pm 29.36$	$3.12 \pm 4.91$
Total glance in each block	$23.97 \pm 15.52$	$10.97 \pm 7.37$	$12.88 \pm 11.81$	$17.74 \pm 13.01$	$9.7 \pm 5.84$	$11.94 \pm 5.10$	

Table 18. Cyclists-triathletes $(\mathrm{N}=6)$ mean $\pm$ SD time spent looking at multiple feedback represented as a percentage (\%) of overall time available in each 5 min block and 30min time-trial used with permission of Bayne et al., (2020). .

Time spent looking at multiple feedback	Block 1 (0-5 min)	Block 2 (5-10 min)	Block 3 (10-15 min)	Block 4 (15-20 min)	Block 5 (20-25 min)	Block 6 (25-30 min)	$\begin{gathered} \text { Whole TT (30 } \\ \text { min) } \end{gathered}$
(s)	75.67	69.54	42.58	37.14	18.12	22.34	265.39
(\% of each Block)	25.22\%	23.18\%	14.19\%	12.38\%	6.04\%	3.30\%	
(\% of whole TT)	29	26	16	14	7	8	15



Figure 13. Cyclists-triathletes $(N=6)$ overall mean $\pm S D$ total glance time (s) at power, time, heart rate, speed, distance and cadence. White circle markers denote group mean. Black diamond makers denote individual differences within the group used with permission of Bayne et al., (2020). .


Figure 14. Cyclists-triathletes ( $N=6$ ) mean $\pm S D$ total glance time(s) in 5min segments at power (A) and time (B). White circle markers denote group mean. Black diamond markers denote individual differences within the group used with permission of Bayne et al., (2020)..

### 4.5. Discussion

### 4.5.1. Main findings

- Cyclists-triathletes mean power output was impaired with multiple feedback compared to single feedback.
- Cyclists-triathletes mean power output was significantly greater compared to noncyclists with both feedback types.
- Feedback type had no effect on non-cyclists 30 min cycling time-trial performance.
- Cyclists-triathletes glanced at power the most followed by time to inform pace.
- The impairment may be related to a mental overload from the multiple feedback variables as information acquisition decreased over time.

Cyclists-triathletes mean power output was significantly greater compared to non-cyclists in both multiple feedback ( $227.99 \pm 42.02 \mathrm{~W} ; 137.27 \pm 27.63 \mathrm{~W} ; \mathrm{P}<0.05$; Figure 2 ) and single feedback trials ( $287.9 \pm 60.07 \mathrm{~W}$; $131.13 \pm 25.53$. W; Figure 2 ). Therefore, the cycliststriathletes covered a greater distance compared to non-cyclists with both multiple (8.1 $\pm 0.9$ vs. $6.1 \pm 1.2 \mathrm{~km}$ ) and single feedback ( $8.7 \pm 0.7 \mathrm{~km}$ vs. $6.0 \pm 1.2 \mathrm{~km}$ ). However, the cycliststriathlete's 30 min cycling time-trial performance (power output and distance) was impaired with multiple feedback compared to single feedback ( $\mathrm{P}<0.05$; Figure 2 ). Whereas, the feedback condition had no effect on non-cyclists 30 min cycling time-trial performance (Figure 2). Therefore, the first hypothesis stating that multiple feedback impairs cycliststriathletes time-trial performance compared with single feedback was accepted.

Cyclists-triathletes average task motivation, RPE and affect with similar with multiple (18.02 $\pm 0.11 ; 14.36 \pm 1.82 ; 2.99 \pm 1.77 ; \mathrm{P}>0.05$; Table 2 ) and single feedback ( $16.64 \pm 0.20$;
$14.25 \pm 1.91 ; 2.66 \pm 1.93 ; P>0.05$; Table 2). This was most likely as a result of their
previous experience and fitness status (Tucker and Noakes, 2009). Given the absence of differences in task motivation, RPE and affect reported by the cyclists-triathletes, the difference in performance between feedback conditions was not related to their perceptual responses or to different levels of fatigue.

It is evident that the cyclists-triathletes were using the multiple feedback variables during the time-trial (Figures 3, 4and Table 4). However, as exercise duration and rating of perceived exertion increased, the time spent looking at multiple feedback decreased (B1:75.67 s to B6: 22.34 s; Table 4). A possible explanation for this could be that in B6, the cycliststriathletes were concentrated on internal cues (e.g., the level of psychophysiological resources available) to prepare the end sprint (St Clair Gibson and Noakes, 2004). Alternatively, this could be due to the accumulated mental fatigue from the physical (cycling time-trial) and cognitive load (multiple visual feedback) causing a decrease in performance at the end of the time-trial. Bradford et al., (2019) previously demonstrated in tasks such as walking with a rucksack ( $40 \%$ of body weight), the brain can successfully reallocate resources to perform both motor task and cognitive tasks without any performance hindering accumulation in mental fatigue. Similarly, Kan et al., (2019) demonstrated that in short 20 min eccentric and concentric cycling, aerobic exercise appears to add to the maintenance of vigilance and attention in choice reaction time, and the NASA-task load index tasks after exercise. However, in more physically and mentally demanding dual-tasks such as endurance cycling time-trials ( $\geq 30 \mathrm{~min}$ ) and complex cognitive tasks, mental fatigue can occur more rapidly causing a reduction in exercise intensity and/or a reduction in cognitive performance/attention (Pashler, 1984; McCann and Johnston, 1989, 1992; Dietrich and Audiffren, 2011). For example, Holgado et al. (2019) reported an impairment in accuracy and reaction time with a high cognitive load (2-back) compared to a low cognitive load (1-back) despite no impairments in power-output ( $217 \mathrm{~W}: 222 \mathrm{~W}$ ) and RPE during a 20 min self-paced cycling time-trial. Moreover, numerous studies have reported a decline in visual attention when mental load is increased which corresponds with the findings in the current study
(Hancock and McNaughton, 1986; Vickers et al., 1999; Pesce et al., 2003; Bundesen et al., 2005; Diekfuss et al., 2017; Mancioppi et al., 2019). The accumulation in mental fatigue with multiple feedback as the exercise progressed resulted in a lower average power-output $(227.99 \pm 42.02 \mathrm{~W})$ compared to single feedback ( $287.9 \pm 60.07 \mathrm{~W}$; Figure 2 ).

Unlike the cyclists-triathletes for whom cycling and looking at feedback are automated and therefore not high in terms of cognitive load, this exercise can be more cognitively challenging for the non-cyclists. However, the non-cyclists did not experience a decrement in performance with multiple feedback which supports the cognitive load theory. Findings such as this have been reported in different domains suggesting that subjects with better skill proficiency and familiarity with the task are less vulnerable to performance decrements in stressful situations or under fatigue. For example, inexperienced drivers are affected more by fatigue (Brown, 1994), and skilled workers appear to be troubled less by stress because of task familiarity (Hancock, 1982). Performing a new task can be cognitively challenging; however, with experience and better skills, the task becomes attention free, automated and performance decrements are reduced (Schneider and Shiffrin, 1977). Given the limited working memory (Miller, 1956) capacity, it is possible that the non-cyclists working memory was already overloaded in the single feedback trial and therefore no differences in performance were observed between the two trials.

The cyclists-triathletes primary and secondary objects of regard were power ( 64.95 s) and time ( 64.46 s ; Figure $3 ; \mathrm{p}>0.05$ ). Therefore, the second hypothesis stating that the cycliststriathletes would select a cycling specific feedback such as speed, power or cadence as their primary objects of regard was accepted. In addition to this, the cyclists-triathletes in study 1 similarly glanced at a cycling specific feedback in conjunction with end-point knowledge which supports Boya et al. (2017) findings. However, the cycling specific object of regard glanced at were different, which may be related to differences in task and subsequent endpoint knowledge (i.e., 10 mile vs. 30 min ) or familiarities with different wireless sensor networks. For example, wireless sensor networks (i.e., power meters and cadence sensors
and speed sensors) are among the most commonly used cycling accessories for monitoring the physiological and biomechanical parameters of the athlete and bike, respectively, in order to assess cycling performance (Gharghan et al., 2015). Amongst these, power output (Hettinga et al., 2012) is deemed one of the most important variables for cycling performance. All of the cyclists-triathletes in study 1 reported frequently using power meters for training purposes and thus may explain why they spent the majority of their time glancing at power output, in conjunction with elapsed time.

Notably, the cyclists-triathletes also perceived their primary and secondary object of regards as information that wireless sensor networks commonly provide. These findings highlight the importance of using feedback information that is readily available to cyclist-triathletes in the laboratory to bridge the gap between theory and application. Study 1 used an ecological scenario by using feedback that cyclists-triathletes use frequently during training and competition to investigate the type of feedback used and its effect on performance. Based on these findings, power output and time were the most favoured feedback types by experienced cyclists-triathletes to inform pace during a 30 min time-trial. However, further research needs to be conducted to determine which type of feedback (Power or Time) contributes to optimal performance. Finally, feedback is important but overloading athletes with multiple feedback is not recommended for cycling performance. Especially, during roadbased competitions where athletes are also required to focus on additional external factors.

### 4.5.2. Limitations and Perspectives

- In real-world field-based settings, information acquisition focuses on faraway objects such as racecourse turn/road signs (Foulsham et al., 2011), whereas laboratory information acquisition focuses on closer objects such as computer screen (Foulsham et al., 2011). Road races are commonly based on distance (e.g. 40km), however, study 1 was time-based to determine whether objects of regard changed with end-point knowledge in comparison to Boya et al., (2017). Therefore, future research should investigate information acquisition in real road-based cycling events.
- In addition, during competition experienced cyclists-triathletes may prefer to ride blind (i.e., no wireless network sensors) and rely on concurrent feedback from their coach via an earpiece. However, the benefit of this type of feedback on performance is yet to be explored in a laboratory or real road-based setting.
- A third limitation of the present study was the sample size used for the eye tracker analysis. However, the number of glances reported across the whole TT provide a representative sample of the OOR of cyclists-triathletes exercising in a laboratory. Notably, a larger sample size and an outdoor setting will be required to translate this observation in a competitive setting. In addition, the present study investigated information acquisition during cycling with multiple feedback compared to time only feedback. Moreover, it was clear in the present study that experienced cycliststriathletes primary and secondary OOR were power and elapsed time during the time-trial. Therefore, future studies should investigate the effect of providing power only, and elapsed time only, as this might provide greater performance outcomes than seen in the current study.
- A recent study by Massey et al., (2020) highlighted the benefit of using think aloud (TA) protocol (continuously verbalise thoughts over the duration of a task; Ericsson \& Simon, 1980) together with eye tracking technology to capture the dynamic and complex cognitive processes that underpin decisions in real time. Future research should aim to incorporate this protocol to enhance our understanding of the interaction between visual and cognitive processes that are occurring during an exercise bout. Specifically, the active and overt efforts to acquire and use information from the visual environment.


### 4.6. Conclusion

Cyclists-triathletes indoor 30min cycling TT performance was impaired with multiple feedback compared to single feedback. Whereas non-cyclist's performance did not differ between multiple and single feedback. Cyclists-triathletes glanced at power and time which
corresponds with the wireless sensor networks they use during training. The impairment may be related to a mental overload from the multiple feedback variables as information acquisition decreased over time. Overloading athletes with feedback is not recommended for cycling performance. Thus, cyclists-triathletes may find benefit from selecting a single feedback variable to inform performance during training and competition compared to using multiple feedback variables together.

### 4.7. Importance of Findings for Subsequent Chapter and Thesis

The findings from this study were used to inform the subsequent studies in this PhD in an attempt to minimise any external impact on performance. Therefore, participants in study 2 and 4 were only given feedback on elapsed time whilst completing the cycling TT.

## 5. Chapter 5. Study 2: Hot and humid conditions result in a greater impairment in 30min cycling time-trial performance compared to hot and dry conditions.

### 5.1. Abstract

Purpose: To investigate the effect of heat (hot vs thermoneutral) and humidity (dry vs humid) on physiological and perceptual responses during a 30min cycling time-trial.

Methods: 12 participants (Group 1: N=6, 29 $\pm 2 \mathrm{yrs}, 187 \pm 9 \mathrm{~cm}, 78 \pm 6 \mathrm{~kg}, 53 \pm 4 \mathrm{~mL} . \mathrm{kg} . \mathrm{min}^{-1}$, and Group 2: $\mathrm{N}=6,29 \pm 2 \mathrm{yrs}, 186 \pm 10 \mathrm{~cm}, 78 \pm 6 \mathrm{~kg}, 54 \pm 4 \mathrm{~mL} . \mathrm{kg} . \mathrm{min}^{-1}$ ) visited the laboratory for 1 familiarisation and 2 experimental trials. Participants were assigned randomly into 2 groups: Group 1 - Hot and Dry, and Group 2 - Hot and Humid. Within their groups participants completed $2 \times 30 \mathrm{~min}$ cycling time-trials in thermoneutral and hot (dry or humid depending on group) separated by $\sim 5-7$ days. Performance, physiological, perceptual measurements were recorded throughout the preload and TT.

Results: Mean $\pm$ SD power was significantly impaired in hot and dry conditions compared to thermoneutral/control conditions ( $177.35 \pm 1.68 \mathrm{~W}$ vs $236.86 \pm 1.83 \mathrm{~W} ; \mathrm{p}=0.014$ ). This impairment was accompanied by an increase in $\mathrm{T}_{\text {rectal }}$ and thermal discomfort ratings during the TT . $\mathrm{T}_{\text {rectal }}$ was significantly greater in hot $\left(38.05 \pm 0.15^{\circ} \mathrm{C}\right)$ compared to control $\left(38.55 \pm 0.04^{\circ} \mathrm{C}\right)$ throughout the TT $\left.\mathrm{p}=0.001\right)$. Thermal comfort ratings were also significantly lower in thermoneutral/control $(0 \pm 0(0 \%))$ compared to hot $(12 \pm 2(60 \%))$ during the TT $(\mathrm{p}=$ 0.003 ).

Mean $\pm$ SD power was significantly impaired in hot and humid compared to thermoneutral/control conditions ( $160.12 \pm 3.43 \mathrm{~W}$ vs $235 \pm 2.48 \mathrm{~W} ; \mathrm{p}=0.001$ ). This impairment was accompanied by an increase in $\mathrm{T}_{\text {rectal }}$ and thermal discomfort ratings during the TT . $\mathrm{T}_{\text {rectal }}$ was significantly greater in hot $\left(38.85 \pm 0.09^{\circ} \mathrm{C}\right)$ compared to control $\left(38.55 \pm 0.12^{\circ} \mathrm{C}\right)$ throughout the TT $(p=0.004)$. Thermal comfort ratings were also significantly lower in thermoneutral/control $(0 \pm 0(0 \%))$ compared to hot $(19 \pm 3(95 \%))$ during the time-trial ( $\mathrm{p}=$ 0.001 ).

Mean $\pm$ SD power was significantly impaired in hot and humid compared to hot and dry ( $160.12 \pm 3.43 \mathrm{~W}$ vs $177.35 \pm 1.68 \mathrm{~W}, \mathrm{p}=0.038$ ). This impairment was accompanied by an increase in $\mathrm{T}_{\text {rectal }}$ and thermal discomfort ratings during the TT. $\mathrm{T}_{\text {rectal }}$ was significantly greater throughout the TT in hot and humid $\left(38.7 \pm 0.09^{\circ} \mathrm{C}\right)$ compared to hot and dry $\left(38.49 \pm 0.07^{\circ} \mathrm{C}\right.$; $p=0.043$ ). Thermal comfort ratings were significantly higher in hot and humid compared to hot and dry during the $\mathrm{TT}(19 \pm 3(95 \%))$ vs $12 \pm 2(60 \%)) ; \mathrm{p}=0.029)$.

Conclusion: Cycling power output was significantly impaired in hot and dry and hot and humid conditions compared to thermoneutral conditions. Hot and humid conditions caused a greater impairment to cycling power output compared to hot and dry conditions. All impairments were accompanied by a greater thermal strain (physiological (rectal temperature) and/or perceptual responses (thermal comfort)).

### 5.2. Introduction

As noted in chapter 2 (literature review), performance (power output/pacing, distance covered/completion time), physiological ( $\mathrm{T}_{\text {core }} / \mathrm{T}_{\text {rectal }}, \mathrm{T}_{\text {sk }}, \mathrm{HR}, \mathrm{SR}$ ) and perceptual (RPE, TC, TS, AF) responses are often reported in thermoregulation literature. Common acute trends have been established within the literature for these responses. For example, cycling performance is impaired (power output/distance covered/completion time) in both HD, and HH conditions compared to thermoneutral/control conditions (Peiffer and Abbiss, 2011; Periard and Racinais, 2016). Factors contributing to this impairment were related to the strain experienced (Physiological and perceptual responses). Despite this understanding, few studies have investigated the effect of HH conditions on cycling TT performance compared to HD. This is because a large proportion of previous literature focuses on the difference between a hot ambient temperature alone compared to thermoneutral/control, instead of investigating the specific dose response of ambient temperature and humidity on performance. By quantifying the impact of HD , and HH conditions on cycling TT performance, scientists/researchers will be able to provide athletes and coaches with a more
informed understanding of what to expect when training and/or competing in these two very different conditions.

Vanos and Grundstein, (2020) reported that HD offers a ~13-17\% greater ability to cool compared to HH at an equivalent WBGT value of $32.38^{\circ} \mathrm{C}$ and activity velocity of $0.3-0.7$ $\mathrm{ms}^{1}$. When humidity is low and skin temperature $\left(\mathrm{T}_{\mathrm{sk}}\right)$ is high, sweat secreted onto bare skin is readily evaporated and heat can be transferred at high rates from the body to the environment (Maughan et al., 2012). However, when the humidity of the environment is high, the rate at which sweat evaporates from the skin is lower than it would be under HD conditions (Maughan et al., 2012). This impairment in SR results in a rise in core/rectal temperature ( $\mathrm{T}_{\text {core }} / \mathrm{T}_{\text {rectal }}$ ) causing a greater imbalance between heat gain (i.e. metabolic and environmental) and heat loss (i.e. evaporation) during exercise in HH conditions. Based on previous TT literature conducted in hot conditions it could be hypothesised that the extent of performance impairment (reduction in power output) would be greater in HH compared to HD.

Therefore, the aim of this study was to investigate the effect of heat (hot vs thermoneutral) and humidity (dry vs humid) on physiological and perceptual responses during a 30min cycling time-trial.

### 5.3. Methods

### 5.3.1.Participants

Pre-recruitment Gpower analysis (Gpower 3.1) revealed that 24 participants were needed for this study to ensure a for a large effect size in t-tests (0.8) and ANOVAs (0.4; Cohen, 1988). 12 participants completed study 2 and were recruited using the recruitment methods and inclusion and exclusion criteria outlined in Chapter 3 (general methods). If the inclusion criteria were met, participants were randomly separated into a group (1 or 2) that were matched for age, stature, body mass, experience, training and $\mathrm{VO}_{2 \max }$ (Table 19).

Table 19. Mean $\pm$ SD differences in cyclists-triathletes in each group for sex, age, stature, body mass, $\mathrm{VO}_{2 \text { max }}$, prior experience and weekly training.
$\left.\begin{array}{|c|c|c|}\hline \text { Groups } & \mathbf{1} & \mathbf{2} \\ \hline \text { Participants (N) } & 6 & 6 \\ \hline \text { Sex Ration (M:F) } & 6: 0 & 6: 0 \\ \hline \text { Age (Years) } & 29 \pm 2 & 29 \pm 2 \\ \hline \text { Stature (cm) } & 187 \pm 9 & 186 \pm 10 \\ \hline \text { Body Mass (Kg) } & 78 \pm 6 & 78 \pm 6 \\ \hline \begin{array}{c}\text { Body Mass Index } \\ \text { (kg/m2) }\end{array} & 22 \pm 2 & 21 \pm 2 \\ \hline \mathbf{V O}_{\text {2max }}(\mathbf{m L . k g . m i n} \\ \text { 1) }\end{array}\right)$
*Significant difference between groups.

### 5.3.2. Experimental Design

All data was collected at LSBU, outside of the summer months (June to September) to prevent any heat acclimatization effect.

Each participant was invited to visit the laboratory on 3 occasions to complete 1 familiarisation session and 2 experimental trials completed in the environmental condition related to their randomised group allocation and another in thermoneutral conditions (Figure 15).


Figure 15. Illustrated structure of Study 2 design outlining that participants were invited to the laboratory for 3 visits.

### 5.3.3. Familiarisation and Standardization

Upon arrival to the laboratory volunteers received information and explanation regarding the study aims, structure and measurements. Specifically, volunteers received explanations and demonstrations of all equipment and procedures included in the study, as well as being familiarised with specialist equipment and measurement tools (i.e., turbo/wattbike, perceptual scales). All trials were conducted on a turbo, which allowed each participant to bring in and use their own bicycle, or alternatively use the bicycle London South Bank University provided (2019 Specialized Allez Elite). In this time and throughout the study volunteers were permitted to ask questions regarding the study demands and requirements, which were answered by the investigator. If the volunteer was interested and willing to participate then they would complete a health screening questionnaire using a standardised LSBU health screening questionnaire (adapted from the American College of Sports Medicine) and signed an informed consent form.

Volunteer's anthropometric measurements of stature (cm) and body mass (kg) was then collected before completing a $\mathrm{VO}_{2 \text { max }}$ test. Participants were strapped with a HR monitor
(polar) and then completed a 5 -10min self-paced warm up. The $\mathrm{VO}_{2 \max }$ test started at 100 W and was increased by 40 W every 4 min . After 16 min , the load was increased by 30 W every minute until participants reached volitional exhaustion. Expired air and HR were measured during the last minute of each stage. After 30 min of rest, participants completed a familiarisation with the experimental protocol under the experimental conditions (depending on group allocation).

Prior to every trial across the experimental studies, participants attended the laboratory after refraining from caffeine, alcohol, heat exposure and vigorous exercise for $\geq 48 \mathrm{hr}$ to facilitate recovery and rehydration. In the preliminary visit, all participants completed a food record for the day (24hrs prior to initial familiarisation trial). They were then asked to adopt the same diet on the day before each subsequent trial. In addition, all experimental trials at a similar time of day ( $\pm 1 \mathrm{hrs}$ ) to minimise the impact of circadian rhythm variation on measured parameters (Carrier \& Monk, 2000). Whilst enrolled in the study, participants were asked to maintain their habitual daily routine of diet, sleep and exercise patterns in a training diary to calculate daily workload (Kj). Finally, to control for hydration status during the preload, participants were required to drink 500 mL of thermoneutral room temperature water in all trials. This was all to minimise the impact of these factors on psycho-physiological responses assessed within the experimental studies.

### 5.3.4. Experimental Trials




Figure 16. Illustrated figure of experiment trials in study 2 with key. $\mathrm{T}_{\text {rectal }}=$ rectal temperature, $T_{s k}=$ skin temperature, $H R=$ heart rate, $U S G=$ urine specific gravity, map = mean aerobic power, subjective measures = Ratings of perceived exertion, thermal sensation, thermal comfort, and affect.

Experimental trials started with a 10 min standardized warm-up (outside the environmental chamber), followed by a 45 min cycle preload at a fixed intensity ( $50 \%$ of maximal aerobic power). On completion of the preload, there was a $10-\mathrm{min}$ rest before completing a 30 min self-paced performance test on a turbo. Within this 10-minute rest participants had a nude body mass measurement. The investigator then gave verbal standardised instructions to all participants to complete the greatest distance $(\mathrm{km})$ possible during the 30 min TT. From the onset of the TT participants were able to freely increase or decrease PO. There was no motivation given and the only visual feedback was the time they had left to complete the 30 min performance test. Distance covered by participants was not revealed until all 3 of the experimental trials were completed. Participants were able to ask any questions before they began. Throughout the experimental trial air flow was provided by a fan $(2.2 \mathrm{~m} / \mathrm{s})$ that was in line with the participants torso (shoulder to waist) providing a headwind effect.

During the performance test, 1 L of room temperature water was provided for the participants to drink ad libitum.

### 5.3.5. Performance measurements

Power output and distance covered were continuously measured using PerfPRO during the experimental trials.

### 5.3.6. Physiological measurements

Prior trial measurements of USG and NBM were taken before entering the environmental chamber. Throughout the trial, $\mathrm{T}_{\text {rectal, }} \mathrm{T}_{\mathrm{sk}}$, HR were recorded continuously. In the 10 min rest between preload and TT a second NBM was taken. Post TT a final NBM measurement was taken after wiping down the sweat on the body using a dry towel. NBM together with fluid intake were used to calculate SR.

### 5.3.7. Perceptual measurements

Upon arrival to the laboratory for all experimental trials, participants completed a Situational Motivation Scale (Guay et al., 2000) to access for any changes in situational motivation to participate in this study between visits which may influence performance. Participants then sat quietly post warm-up and pre-TT for 2 min before baseline measurements of $H R, A F$, RPE, and TM were assessed. In the 45 min preload, RPE, TM, TS, TC and AF were recorded every 15 mins (i.e. $0,15,30$, and 45 min ), and every 15 min in the 30 min cycling TT (i.e. 0,15 and 30 min ).

### 5.3.8. Statistical Analysis

All statistical analysis was completed using SPSS (version 21, IBM Corporation, Armonk, NY). Shapiro-Wilk's test revealed that all physiological and performance data were normally distributed $(P>0.05)$. Variables that were normally distributed were analyzed using a threeway repeated measures ANOVA (group (1 or 2) x condition (thermoneutral, hot and dry, and hot and humid) $x$ time ( $0,5,10,15,20,25,30,35,40,45 \mathrm{~min})$ ) to test for significant differences,
main and interactions effects at time intervals (preload= 10 blocks (B) of 5 min $(0,5,10,15,20,25,30,35,40,45 \mathrm{~min})$ and $T \mathrm{~T}=7$ blocks $(B)$ of $5 \min (0,5,10,15,20,25,30 \mathrm{~min}))$. Partial eta-squared ( $n 2$ ) was calculated as a measure of effect size. Values of 0.01, 0.06 and above 0.14 were considered as small, medium and large, respectively (Cohen, 1988). A related samples Friedman's non-parametric test (TM, AF, RPE, TS and TC) was used for data not normally distributed. Bonferroni post hoc pairwise comparisons were used to identify locations of significant effects. Data was considered significant if $p \leq 0.05$. All data are presented as group means $\pm$ SD.

### 5.4. Results

### 5.4.1. The effect of heat and humidity on performance

### 5.4.1.1. Power Output in Hot and Dry (Group 1)



Figure 17. 5 min mean $\pm S D$ power output during 30min cycling time-trial in hot and dry conditions $(A)$ and hot and humid conditions $(B)$. Con = thermoneutral, hot $=$ hot and dry or hot and humid, and (C) mean $\pm$ SD power output during 30min cycling time-trial in hot and dry and hot and humid conditions (white = group 1 (hot and dry), grey = group 2 (hot and humid).

Panels A\&B *on y axis = significant difference between conditions.

Panels A\&B * on x axis = significant difference over time.

Panels $A \& B £=$ difference between groups in the hot conditions only.

Panel $C$ * $=$ difference between conditions within group.

Panel C ** = difference between groups in hot condition only.

There was a significant interaction between condition and time for power output (f) $(4,40)=$ 224.412, $p=0.019, n^{2}=0.67$ ). There was a significant main effect for time for power output ( $f$ $(4,40)=202.871, \mathrm{p}=0.003, \eta 2=0.878)$ with average power output increasing from start to finish (Figure 17). Post-hoc analysis indicated that in thermoneutral, there was a significant difference between B1 (0 to 5 min ), B2 (5 to 10 min ), B3 (10 to 15 min ) and B4 (15 to 20min), B5 (20 to 25 min ), B6 (25 to 30 min ; $\mathrm{p}=0.046$ ). In hot, there was a significant difference between B1 (0 to 5 min ), and B4 (15 to 20min), B5 (20 to 25 min ), B6 ( 25 to $30 \mathrm{~min} ; \mathrm{p}=0.003$; Figure 17).

There was a significant difference in power output between conditions $f(4,40)=433.521, p=$ 0.004 and an interaction between condition and time $\left(f(4,40)=47.92, p=0.001, n^{2}=0.631\right)$. Post hoc analysis indicated that average power output in thermoneutral/control ( $236.86 \pm 1.83 W$ ) was significantly greater throughout the TT compared to hot (177.35 $\pm 1.68 \mathrm{~W}, \mathrm{p}=0.014 ; 33 \%$; Table 21 and Figure 17 Panel C).

### 5.4.1.2. Power Output in Hot and Humid (Group 2)

There was a significant interaction for power output $\left(f(4,40)=323.613, p=0.031, n^{2}\right.$ $=0.541$ ). There was a significant main effect for time for power output $(f(4,40)=341.245, p=$ $0.011, \eta 2=0.756$ ) with average power output increasing from start to finish (Figure 17). Post hoc analysis indicated that in thermoneutral/control, there was a significant difference between B1 (0to5min), B2(5to10min), B3(10to15min) and B4(15to20min), B5(20to25min), B6(25to30min; $p=0.003$ ). In hot, there was a significant difference between B1 (0to5min), and $\mathrm{B} 4(15 \mathrm{to} 20 \mathrm{~min}), \mathrm{B} 5(20 \mathrm{to} 25 \mathrm{~min}), \mathrm{B} 6(25 t o 30 \mathrm{~min} ; \mathrm{p}=0.013)$.

There was a significant difference in power output between conditions $f(4,40)=455.671, p=$ 0.006 and an interaction between condition and time $(f(4,40)=42.716, p=0.004)$. Post hoc analysis indicated that average power output in thermoneutral/control ( $235 \pm 2.48 \mathrm{~W}$ ) was significantly greater throughout the time-trial compared to hot (160.12 $\pm 3.43 \mathrm{~W} p=0.001 ; 46 \%$; Table 21 and Figure 17 Panel C).

### 5.4.1.3. Power Output in Hot and Dry and Hot and Humid (Group Comparison)

There was a significant interaction between condition and group $f=(3,30) 224.134, p=$ 0.003 , as well as condition, time and group $f=(16,160) 15.761, p=0.004)$. Average power output in the hot and dry ( $177.35 \pm 1.68 \mathrm{~W}$ ) condition was significant greater compared to hot and humid (160.12 $\pm 3.43 \mathrm{~W}, \mathrm{p}=0.038$; 10\%; Table 21 and Figure 17 Panel C).

### 5.4.1.4. Distance Covered in Hot and Dry (Group 1)

There was a significant interaction between condition and time for distance covered (f $(4,8)=$ 102.34, $\left.p=0.042, n^{2}=0.584\right)$.

There was a significant difference between conditions $\left(f(4,8)=211.87, p=0.041, n^{2}=\right.$ 0.403). However, the cyclists-triathletes were able to cover a significantly greater distance in thermoneutral/control compared to hot ( $10.60 \pm 0.89$ vs $9.55 \pm 0.62 \mathrm{~km} ; \mathrm{p}=0.039$; Table 21 ).

### 5.4.1.5. Distance Covered in Hot and Humid (Group 2)

There was a significant interaction between condition and time for distance covered $(f(4,8)=$ 106.77, $\left.\mathrm{p}=0.041, \mathrm{n}^{2}=0.588\right)$.

There was a significant difference between conditions $\left(f(4,8)=211.35, p=0.038, n^{2}=\right.$ $0.266)$. Post-hoc analysis indicated that the cyclists-triathletes were able to cover a significantly greater distance in thermoneutral/control compared to hot ( $10.96 \pm 0.89 \mathrm{vs}$ $9.23 \pm 0.68 \mathrm{~km} ; \mathrm{p}=0.036$; Table 21).

### 5.4.1.6. Distance Covered in Hot and Dry and Hot and Humid (Group Comparison)

There was no significant interaction between condition and group for distance covered (f $\left.(4,8)=123.51, \mathrm{p}=0.217, \mathrm{n}^{2}=0.534\right)$.

Table 20. Mean $\pm$ SD total distance and power output during the 30min cycling time-trial.

Group	1		2	
Condition	Thermoneutral	Hot	Thermoneutral	Hot


Total   Distance   Covered   (km)	$10.60 \pm 0.89$	$9.55 \pm 0.62$	$10.96 \pm 0.89$	$9.23 \pm 0.68$
Power   Output (W)	$236.86 \pm 2.83$	$177.35 \pm 6.68$	$235 \pm 2.48$	$160.12 \pm 5.43$

5.4.3. The effect of heat and humidity on Physiological Responses
5.4.3.1. Rectal Temperature ( $\mathrm{T}_{\text {rectal }}$ )


Figure 18. Mean $\pm S D$ rectal temperature ( ${ }^{\circ} \mathrm{C}$ ) values during the 45 min preload and 30 min time-trial in $A$ ) hot and dry conditions and B) hot and humid conditions. CON = Control condition, HOT = hot condition (dry or humid)

* on y axis = Significant difference between conditions during time-trial.
* on the $x$ axis $=$ significant difference between conditions over time.
** - Significant difference at a specific time block (i.e. 0-5min).
$£$ - Significant difference between groups in hot condition in time-trial only.
£££ - Significant difference between groups in HOT at all time blocks

There was a significant interaction for average $T_{\text {rectal }}$ during the preload ( $f=(4,8) 3.146, p=$ $0.007, \mathrm{n}^{2}=0.514$ ) and the TT $\left(\mathrm{f}=(4,8) 2.901, \mathrm{p}=0.003, \mathrm{n}^{2}=0.673\right.$ ). There was a significant main effect for time where average $\mathrm{T}_{\text {rectal }}$ increased linearly from the start of the preload to the end of the preload $\left(f=(4,8) 2.719, p=0.005, n^{2}=0.654\right.$ Figure 18 ) and from the start of the TT to the end of the time-trial in both groups and all conditions ( $\mathrm{f}=(4,8$ ) $2.145, \mathrm{p}=0.001$, $\mathrm{n}^{2}=0.764 ;$ Figure 18).

### 5.4.3.1.1. Rectal Temperature ( $\mathrm{T}_{\text {rectal }}$ ) in Hot and Dry (Group 1)

There was no significant difference in average $\mathrm{T}_{\text {rectal }}$ between conditions (thermoneutral vs hot) during the preload $\left(37.7 \pm 0.12^{\circ} \mathrm{C}\right.$ vs $38.1 \pm 0.15^{\circ} \mathrm{C} ; \mathrm{f}=(4,8) 3.647, \mathrm{p}=0.056$; Table 22 ). However, there was a significant interaction between condition and time at Block 8 (30$35 \mathrm{~min}), 9$ ( $35-40 \mathrm{~min}$ ) and 10 (40-45min) where $\mathrm{T}_{\text {rectal }}$ was significantly greater in hot compared to thermoneutral $\left(p=0.037, p=0.034\right.$ and $p=0.029$; Figure 18). $\mathrm{T}_{\text {rectal }}$ was significantly greater in hot $\left(38.05 \pm 0.15^{\circ} \mathrm{C}\right)$ compared to control $\left(38.55 \pm 0.04^{\circ} \mathrm{C}\right)$ throughout the $\mathrm{TT}\left(\mathrm{f}=(3,10), 52.656, \mathrm{p}=0.001, \mathrm{n}^{2}=0.768\right.$; Table 22).

There was a positive correlation between core temperature and power output in both conditions infering that core temperature increased together with the increase in power output (Table 22). The strongest correlation was reported in hot and dry ( $\mathrm{r}=0.79$ ).

### 5.4.3.1.2. Rectal Temperature ( $\mathrm{T}_{\text {rectal }}$ ) in Hot and Humid (Group 2)

There was no significant difference in average $\mathrm{T}_{\text {rectal }}$ between conditions (thermoneutral vs hot) during the pre-load $\left(37.75 \pm 0.12^{\circ} \mathrm{C}\right.$ vs $37.86 \pm 0.22^{\circ} \mathrm{C}$; $f=(4,8) 2.922, p=0.058, n^{2}=$ 0.634; Table 22). However, there was a significant interaction between condition and time at Block 99 (35-40min) and 10 (40-45min) where $\mathrm{T}_{\text {rectal }}$ was significantly greater in hot compared to thermoneutral ( $\mathrm{p}=0.036$ and $\mathrm{p}=0.032$; Figure 18).
$\mathrm{T}_{\text {rectal }}$ was significantly greater in hot $\left(38.85 \pm 0.09^{\circ} \mathrm{C}\right)$ compared to control $\left(38.55 \pm 0.12^{\circ} \mathrm{C}\right)$ throughout the TT $\left(\mathrm{f}=(4,8), 50.211, \mathrm{p}=0.004, \mathrm{n}^{2}=0.789\right.$; Table 22).

There was a positive correlation between core temperature and power output in both conditions infering that core temperature increased together with the increase in power output (Table 22). The strongest correlation was reported in hot and dry (r=0.79).

### 5.4.3.1.3. Rectal Temperature ( $T_{\text {rectal }}$ ) in Hot and Dry and Hot and Humid (Group Comparison)

Notably there was also a difference in average $\mathrm{T}_{\text {rectal }}$ between groups during the TT only ( $\mathrm{f}=$ $(6,18) 15.334, \mathrm{p}=0.005$. $\mathrm{T}_{\text {rectal }}$ was significantly greater throughout the TT in hot and humid (38.7 $\pm 0.09)$ compared to hot and dry $\left(38.49 \pm 0.07^{\circ} \mathrm{C} ; \mathrm{p}=0.043, \mathrm{n}^{2}=0.362\right.$; Figure 18).

Table 21. Mean $\pm$ SD rectal temperature $\left({ }^{\circ} \mathrm{C}\right)$ during the preload and time-trial.

Group	$\mathbf{1}$		2	
Condition	Thermoneutral	HD	Thermoneutral	HH
Preload	$37.5 \pm 0.16$	$37.5 \pm 0.28$	$37.6 \pm 0.19$	$37.4 \pm 0.38$
Time-trial	$37.8 \pm 0.12$	$38.49 \pm 0.07$	$38.2 \pm 0.17$	$38.7 \pm 0.09$
Correlation   coefficent with   power output   (significance)	$0.66(0.05)$	$0.79(0.03)$	$0.67(0.05)$	$0.77(0.03)$

Red = low correlation, yellow = moderate correlation, green = strong correlation, blue = very strong correlation

### 5.4.2.2. Heart Rate

There was no significant interaction between condition, group and time for $\operatorname{HR}(\mathrm{F}(4,8)=$ $\left.3.409, p=0.376, n^{2}=0.398\right)$. However, there was a significant main effect for time where average HR increased linearly from the start of the preload to the end of the preload ( $\mathrm{f}(4,8=$ $1.325, \mathrm{p}=0.032, \mathrm{n}^{2}=0.477$ ) and from the start of the time-trial to the end of the time-trial in both groups and all conditions ( $\left(4,8=1.267, \mathrm{p}=0.029, \mathrm{n}^{2}=0.401\right)$.

### 5.4.2.2.1. Heart Rate (HR) in Hot and Dry (Group 1)

There was no significant difference in mean $\pm$ SD HR between conditions during the preload ( $151 \pm 10$ b. $\mathrm{min}^{-1}(79.47 \%)$ vs $167 \pm 7$ b. $\left._{\mathrm{min}}{ }^{-1}(87.89 \%) ; f=(4,8) 3.091, p=0.134, n^{2}=0.396\right)$

Group	1		2	
Condition	Thermoneutral	Hot	Thermoneutral	Hot
Preload	$151 \pm 10$   $(79.47 \%)$	$167 \pm 7(87.89 \%)$	$158 \pm 9(82.29 \%)$	$173 \pm 7$
				$(90.10 \%)$
Time-trial	$166 \pm 10(87.36 \%)$	$178 \pm 8$	$171 \pm 8(89.06 \%)$	$182 \pm 6$
		$(93.68 \%)$		$(94.79 \%)$

### 5.4.2.3. Hydration Status (Urine Specific Gravity and Sweat Rate)

Table 23. Mean $\pm$ SD Urine Specific Gravity (USG) and sweat rate (L.hr) values across all experimental trials.

Group	Condition	Urine Specific   Gravity	Sweat Rate   (L.hr)
1	Thermoneutral	$1.005 \pm 0.4$	$1.4 \pm 0.4$
	Hot	$1.004 \pm 0.3$	$1.8 \pm 0.3$
2	Thermoneutral	$1.003 \pm 0.4$	$1.2 \pm 0.3$
	Hot	$1.004 \pm 0.2$	$1.0 \pm 0.2$

USG of $<1.020=$ Euhydrated.

USG of >1.021 = Hypohydrated.

All USG values regardless of group or condition fell between the ranges of 1.001-1.010 which meant that all participants started the experimental trial in a well hydrated/hyperhydrated state (Table 24). There was no significant difference in USG between conditions or groups ( $f(4,8), 1.878, p=0.344, n=0.593)$ which meant that any changes reported in physiological, perceptual or performance were not a result of participants hydration status at the start of the experimental trial.

### 5.4.2.3.1. Hydration Status in Hot and Dry (Group 1)

There was no significant difference in sweat rate between conditions (thermoneutral vs hot) during the time-trial ( $1.4 \pm 0.4$ vs $1.8 \pm 0.3 \mathrm{Lhr} ; \mathrm{f}=(4,8) 1.344, \mathrm{p}=0.237, \mathrm{n}^{2}=0.456 ;$ Table 24 ).

### 5.4.2.3.2. Hydration Status in Hot and Humid (Group 2)

There was no significant difference in sweat rate between conditions (thermoneutral vs hot) during the time-trial ( $1.2 \pm 0.3$ vs $1.0 \pm 0.2 \mathrm{Lhr} ; f=(4,8) 1.458, \mathrm{p}=0.263, \mathrm{n}^{2}=0.468$; Table 24 ).

### 5.4.2.3.3. Hydration Status in Hot and Dry and Hot and Humid (Group Comparison)

There was a significant interaction between group and condition for $\operatorname{SR}(\mathrm{f}(4,8) 1.030, p=$ $\left.0.031, \mathrm{n}^{2}=0.698\right)$. Sweat rate was significantly greater in hot and dry conditions compared to hot and humid ( $1.8 \pm 0.3$ vs $1.0 \pm 0.2 \mathrm{Lhr} ; \mathrm{f}=(8,16), 1.231, \mathrm{p}=0.038, \mathrm{n}^{2}=0.656$; Table 24).

### 5.4.3. The Effect of Heat and Humidity on Perceptual Responses

### 5.4.3.1. Perceptual Responses Prior to Experimental Trials

There were no significant differences in participants SMS (instrinstic, amotivation, identified and external regulation) scores between visits within group $1(p=0.245)$, group $2(p=0.277)$ or between groups $(p=0.189)$.

Table 24. Mean $\pm$ SD hours of sleep(hrs), quality of sleep, stress, fatigue and muscle soreness ratings across all trials using Hooper et al., (1995) markers for monitoring overtraining and recovery scale.

Group	Condition	Hours of   Sleep   (hrs)	Sleep   quality	Stress	Fatigue	Muscle   soreness
1 - Hot   and Dry	Thermoneutral	$6.3 \pm 0.4$	$3 \pm 0.1$	$2 \pm 0.2$	$2.2 \pm 0.4$	$1.1 \pm 0.1$
	Hot with no   cooling	$6.3 \pm 0.6$	$3.2 \pm 0.2$	$2.2 \pm 0.2$	$2.1 \pm 0.5$	$1.3 \pm 0.4$
2 - Hot   and   Humid	Thermoneutral   Hot with no   cooling	$6.8 \pm 0.1$	$6.8 \pm 0.2$	$3.6 \pm 0.1$	$3.1 \pm 0.1$	$2.8 \pm 0.4$

There were no significant interactions between groups or condition for hours of sleep ( $f$ $\left.(4,10) 2.343, p=0.641, n^{2}=0.611\right)$, quality of sleep ( $f(4,10) 2.098, p=0.589, n^{2}=0.601$ ), stress ( $\left.f(4,10) 2.374, p=0.412, n^{2}=0.678\right)$, fatigue and muscle soreness $(f(4,10) 2.547, p$ $\left.=0.628, \mathrm{n}^{2}=0.578\right)$. Therefore, any differences reported in performance, physiological responses or perceptual responses during the experimental trials were not a result of differences in hours slept, quality of sleep, stress, fatigue or muscle soreness.

Table 25．Mean $\pm S D$ ratings of perceived exertion（RPE），thermal comfort（TC），thermal sensation（TS），task motivation（TM）and affect（AF） during the 45 min preload and 30 min cycling time－trial（A．U．（\％of max value on the scale）．

Variables	Group	Intervention	Preload					Time－Trial						
			0	15	30	45	Mean $\pm$ SD	0	10	20	30	Mean $\pm$ SD	Correlation with Power	Correlation with Core Temperature
RPE	$\begin{gathered} 1 \text { - Hot } \\ \text { and } \\ \text { Dry } \end{gathered}$	Thermoneutral	6 $\pm 0$（0\％）	$8 \pm 1$（14．28\％）	10 $\pm 1$（28．57\％）	13さ2（50\％）	10さ3（28．57\％）	6 $\pm 0$（0\％）	11 $\pm 1$（35．71\％）	$\begin{array}{r} 15 \pm 1 \\ (64.28 \%) \\ \hline \end{array}$	$18 \pm 2$（85．71\％）	13 $\pm 5$（50\％）	0.32 （0．24）	0.63 （0．07）
		Hot	6 $\pm 0$（0\％）	10 $\pm 2$（28．57\％）	12 $\pm 3(42.85 \%)$	14さ2（57．14\％）	12さ2（42．85\％）	6士0（0\％）	12 $\pm 2$（42．85\％）	16さ1（71．42\％）	20 2 （100\％）	$16 \pm 2$（71．42\％）	0.78 （0．04）	0.98 （0．02）
	$\begin{gathered} 2-\text { Hot } \\ \text { and } \\ \text { Humid } \end{gathered}$	Thermoneutral	6 $\pm 0$（0\％）	10 $\pm 1$（28．57\％）	13 $\pm 1$（50\％）	15士1（64．28\％）	11 $\pm 4$（35．71\％）	6 $\pm 0$（0\％）	12 $\pm 1$（42．85\％）	13 $\pm 1$（5）\％）	18さ2（85．71\％）	12 $\pm 5$（42．85\％）	0.32 （0．22）	0.53 （0．10）
		Hot	6士0（0\％）	10さ2（28．57\％）	14さ1（57．14\％）	16さ2（71．42\％）	12さ4（42．85\％）	6 $\pm 0$（0\％）	14 $\pm 2$（57．14\％）	16さ2（71．42\％）	20 $\pm 0$（100\％）	14 $\pm 6$（57．14\％）	0.52 （0．10）	0.70 （0．03）
TC	$\begin{gathered} 1-\text { Hot } \\ \text { and } \\ \text { Dry } \end{gathered}$	Thermoneutral	0 $\pm 0$（0\％）	0.00 （0．98）	0.00 （0．98）									
		Hot	10さ0（50\％）	10さ1（50\％）	$12 \pm 1$（60\％）	15士1（75\％）	12さ2（60\％）	10さ0（50\％）	15士1（75\％）	15士1（75\％）	20 $\pm 1$（60\％）	15士4（75\％）	－0．55（0．06）	0.81 （0．02）
	$\begin{gathered} 2-\text { Hot } \\ \text { and } \\ \text { Humid } \end{gathered}$	Thermoneutral	0 $\pm 0$（0\％）	0.00 （0．98）	0.00 （0．98）									
		Hot	10士0（50\％）	10 $\pm 1$（50\％）	12 $\pm 1$（60\％）	15さ2（75\％）	12さ2（60\％）	15士1（75\％）	20さ1（100\％）	20 1 （100\％）	20さ1（100\％）	19さ3（95\％）	－0．52（0．06）	0.84 （0．01）
TS	$\begin{gathered} \hline 1-\text { Hot } \\ \text { and } \\ \text { Dry } \\ \hline \end{gathered}$	Thermoneutral	10 $\pm 0$（50\％）	10 $\pm 0$（50\％）	10 $\pm 0$（50\％）	12さ1（60\％）	11 $\pm 1$（55\％）	10 $\pm 0$（50\％）	10 $\pm$（50\％）	10さ1（50\％）	$12 \pm 1(60 \%)$	11 $\pm 1$（55\％）	0.32 （0．25）	0.38 （0．27）
		Hot	10 $\pm 0$（50\％）	15士1（75\％）	$15 \pm 1$（75\％）	15 $\pm 1$（75\％）	14 $\pm 3(70 \%)$	10 $\pm 0(50 \%)$	15 $\pm 2(75 \%)$	15 $\pm 2(75 \%)$	$16 \pm 1(80 \%)$	14さ3（70\％）	0.35 （0．27）	0.52 （0．06）
	$\begin{aligned} & \hline 2-\text { Hot } \\ & \text { and } \\ & \text { Humid } \end{aligned}$	Thermoneutral	10 $\pm$（50\％）	10 $\pm$（50\％）	10 $\pm$（50\％）	12 $\pm 1$（60\％）	11 $\pm 1$（55\％）	10 $\pm 0$（50\％）	10 $\pm$（50\％）	$10 \pm 0$（50\％）	$12 \pm 1(60 \%)$	$11 \pm 1$（55\％）	0.10 （0．87）	0.38 （0．27）
		Hot	10 $\pm$（50\％）	15士1（75\％）	15さ1（75\％）	17 $\pm 1$（70\％）	14 $\pm 3$（70\％）	15さ2（75\％）	15さ1（75\％）	18さ1（90\％）	20さ2（100\％）	17さ2（85\％）	0.10 （0．87）	0.49 （0．07）
TM	$\begin{gathered} 1 \text { - Hot } \\ \text { and } \\ \text { Dry } \end{gathered}$	Thermoneutral	20 $\pm$（100\％）	20 $\pm 0$（100\％）	20 $\pm$（100\％）	20 $\pm$（100\％）	20 $\pm 0$（100\％）	20 $\pm 0$（100\％）	20士0（100\％）	20 0 （100\％）	20 $\pm$（100\％）	20 $\pm 0$（100\％）	0.00 （0．98）	0.00 （0．98）
		Hot	20 0 （100\％）	20 0 （ $100 \%$ ）	20 $\pm$（100\％）	20 $\pm 0$（100\％）	20 0 （ $100 \%$ ）	20 $\pm 0$（100\％）	20 $\pm 0$（100\％）	20 0 （100\％）	20 $\pm 0$（100\％）	20 0 （ $100 \%$ ）	0.00 （0．98）	0.00 （0．98）
	$\begin{aligned} & \hline 2-\text { Hot } \\ & \text { and } \\ & \text { Humid } \end{aligned}$	Thermoneutral	20 0 （100\％）	20 $\pm 0$（100\％）	20 $\pm$（100\％）	20さ0（100\％）	20 $\pm 0$（100\％）	20 $\pm 0$（100\％）	20 $\pm 0$（100\％）	20 0 （100\％）	20 0 （100\％）	20 $\pm 0$（100\％）	0.00 （0．98）	0.00 （0．98）
		Hot	20 0 （100\％）	20 0 （100\％）	20 $\pm$（100\％）	20 $\pm 0$（100\％）	20 0 （100\％）	20 $\pm 0$（100\％）	20 $\pm 0$（100\％）	20 0 （100\％）	20 $\pm 0$（100\％）	20 0 （100\％）	0.00 （0．98）	0.00 （0．98）
AF	$\begin{gathered} 1-\text { Hot } \\ \text { and } \\ \text { Dry } \end{gathered}$	Thermoneutral	$3 \pm 1$（81．81\％）	$3 \pm 1$（81．81\％）	$3 \pm 1$（81．81\％）	2 $\pm 1$（72．72\％）	$3 \pm 1$（81．81\％）	$3 \pm 1$（81．81\％）	$3 \pm 1$（81．81\％）	2土1（72．72\％）	$1 \pm 1$（63．63\％）	2 $\pm 1$（72．72\％）	0.35 （0．19）	－0．33（0．22）
		Hot	2 $\pm 1$（72．72\％）	$1 \pm 1$（63．63\％）	0 $\pm 1(54.54 \%)$	－1 $\pm 1$（45．45\％）	1 $\pm 1$（63．63\％）	1 $\pm 1$（63．63\％）	0 $\pm 1$（54．54\％）	－1 $\pm 1$（45．45\％）	$-2 \pm 1(36.36 \%)$	$-1 \pm 1(45.45 \%)$	0.40 （0．11）	－0．45（0．9）
	$\begin{aligned} & \hline 2-\text { Hot } \\ & \text { and } \\ & \text { Humid } \end{aligned}$	Thermoneutral	$3 \pm 1$（81．81\％）	$3 \pm 1$（81．81\％）	$3 \pm 1(81.81 \%)$	$2 \pm 1$（72．72\％）	$3 \pm 1$（81．81\％）	$3 \pm 1$（81．81\％）	$3 \pm 1$（81．81\％）	$3 \pm 1$（81．81\％）	$2 \pm 1$（72．72\％）	$3 \pm 1(81.81 \%)$	－0．51（0．06）	－0．40（0．11）
		Hot	3 $\pm 1$（81．81\％）	2 $\pm 1(72.72 \%)$	1 $\pm 1(63.63 \%)$	0 $\pm 1(54.54 \%$ ）	2 $\pm 1$（72．72\％）	1 $\pm 1$（63．63\％）	0 $\pm 1$（54．54\％）	－1 $\pm 1$（45．45\％）	$-2 \pm 1(36.36 \%)$	$-1 \pm 1(45.45 \%)$	0.52 （0．06）	－0．67（0．05）

$R P E=$ ratings of perceived exertion, thermal sensation $=T S, T C=$ thermal comfort, $T M=$ task motivation, $A F=$ affect, red $=$ low correlation, yellow =moderate correlation, green $=$ strong correlation, blue $=$ very strong correlation .

### 5.4.3.2.1. Ratings of Perceived Exertion (RPE)

There was significant interaction between group, condition and time $(f=(4,16) 3.401, p=$ $\left.0.023, \mathrm{n}^{2}=0.615\right)$. There was a main effect for time where ratings of perceived exertion increased from the start of the preload to the end of the preload $(f=(4,16) 2.976, p=0.003$, $n^{2}=0.754$; Table 26) and from the start of the time-trial to the end of the time-trial ( $f(4,16), p$ $=0.003, \mathrm{n}^{2}=0.723 ;$ Table 26).

### 5.4.3.2.1.1. Ratings of Perceived Exertion (RPE) in Hot and Dry (Group 1)

Ratings of perceived exertion were significantly lower throughout the preload in thermoneutral/control compared to hot (10 $\pm 3(28.57 \%)$ vs $12 \pm 2(42.85 \%) ; p=0.03$; Table 26$)$. Ratings of perceived exertion were also significantly lower throughout the time-trial in thermoneutral/control compared to hot (13 $\pm 5(50 \%)$ vs $16 \pm 2$ ( $71.42 \%$ ); p $=0.02$; Table 26 ). Ratings of perceived exertion increased together with the increase in core temperature in both thermoneutral and hot conditions ( $\mathrm{r}=0.63$ and 0.98 ; Table 26). Similarly, ratings of perceived exertion increased together with the increase in power output in both thermoneutral and hot conditions, however the correlation was stronger in hot compared to thermoneutral ( $\mathrm{r}=0.78$ and 0.32 ; Table 26).

### 5.4.3.2.1.2. Ratings of Perceived Exertion (RPE) in Hot and Humid (Group 2)

There was no significant difference in mean $\pm$ SD ratings of perceived exertion between conditions in the preload (11 $\pm 4(35.71 \%)$ vs $12 \pm 4(42.85 \%)$; $p=0.070$ ) or time-trial ( $12 \pm 5(42.85 \%$ ) vs $14 \pm 6(57.14 \%) ; p=0.92$; Table 26 ).

Ratings of perceived exertion increased together with the increase in core temperature in both thermoneutral and hot conditions ( $\mathrm{r}=0.53$ and 0.70 ; Table 26). Similarly, ratings of perceived exertion increased together with the increase in power output in both thermoneutral and hot conditions, however the correlation was stronger in hot compared to thermoneutral ( $r=0.52$ and 0.32; Table 26).

### 5.4.3.2.1.3. Ratings of Perceived Exertion (RPE) in Hot and Dry and Hot and Humid (Group Comparison)

There was no significant difference between groups (dry vs humid) in the hot condition during the preload ( $12 \pm 2(42.85 \%)$ vs $12 \pm 4(42.85 \%)$; $p=0.246$; Table 26). However, ratings of perceived exertion were significantly greater during the time-trial in hot and dry compared to hot and humid conditions ( $16 \pm 2$ ( $71.42 \%$ ) vs $14 \pm 6(57.14 \%)$; $p=0.014$; Table 26).

### 5.4.3.2.2. Thermal Comfort (TC)

There was significant interaction between group, condition and time $(f=(4,16) 2.560, p=$ $\left.0.011, \mathrm{n}^{2}=0.788\right)$. There was a main effect for time where thermal comfort increased from the start of the preload to the end of the preload $\left(f=(4,16) 2.435, p=0.031, n^{2}=0.668\right.$; Table 26) and from the start of the time-trial to the end of the time-trial ( $\mathrm{f}\left(4,16\right.$ ), $\mathrm{p}=0.037, \mathrm{n}^{2}$ = 0.692; Table 26).

### 5.4.3.2.2.1. Thermal Comfort (TC) in Hot and Dry (Group 1)

Thermal comfort ratings were significantly lower in thermoneutral/control ( $0 \pm 0(0 \%)$ ) compared to hot $(12 \pm 2(60 \%))$ during the preload ( $p=0.003$; Table 26). Notably, thermal comfort was unchanged throughout the preload ( $(0 \pm 0(0 \%)$; Table 26). Thermal comfort ratings were also significantly lower in thermoneutral/control ( $0 \pm 0(0 \%)$ ) compared to hot $(12 \pm 2(60 \%)$ ) during the time-trial $(p=0.003$; Table 26). Notably, thermal comfort was unchanged throughout the preload ( $(0 \pm 0(0 \%)$; Table 26 ).

There was no correlation between core temperature and thermal comfort, and power output and thermal comfort in hot and dry conditions (both $\mathrm{r}=0.00$; Table 26). However, thermal comfort increased (felt worse) as core temperature increased ( $\mathrm{r}=0.81$; Table 26). This was supported by correlations with power output, as thermal comfort decreased together with the decrease in power output $(r=-0.55)$.

### 5.4.3.2.2.2. Thermal Comfort (TC) in Hot and Humid (Group 2)

Thermal comfort ratings were significantly lower in thermoneutral/control ( $0 \pm 0(0 \%)$ ) compared to hot $(15 \pm 4(75 \%)$ ) during the preload ( $\mathrm{p}=0.002$; Table 26 ). Notably, thermal comfort was unchanged throughout the preload ((0£0(0\%); Table 26). Thermal comfort ratings were also significantly lower in thermoneutral/control ( $0 \pm 0(0 \%)$ ) compared to hot $(19 \pm 3(95 \%))$ during the time-trial ( $p=0.001$; Table 26). Notably, thermal comfort was unchanged throughout the preload ( $(0 \pm 0(0 \%)$; Table 26$)$.

There was no correlation between core temperature and thermal comfort, and power output and thermal comfort in hot and dry conditions (both $r=0.00$; Table 26). However, thermal comfort increased (felt worse) as core temperature increased ( $\mathrm{r}=0.84$; Table 26). This was supported by correlations with power output, as thermal comfort decreased together with the decrease in power output ( $r=-0.52$ ).

### 5.4.3.2.2.3. Thermal Comfort (TC) in Hot and Dry and Hot and Humid (Group Comparison)

There were no significant differences between groups in the thermoneutral/control condition during the preload ( $0 \pm 0(0 \%)$ vs $0 \pm 0(0 \%) p=0.167$ ) or time-trial ( $0 \pm 0(0 \%)$ vs $0 \pm 0(0 \%) ; p=$ 0.167 ; Table 26). Whereas thermal comfort ratings were significantly higher in hot and humid compared to hot and dry during the preload ( $15 \pm 4(75 \%)$ vs $12 \pm 2(60 \%) ; p=0.037$ ) and the time-trial (19 $\pm 3(95 \%))$ vs $12 \pm 2(60 \%)) ;$ p $=0.029$; Table 26).

### 5.4.3.2.3. Thermal Sensation (TS)

There was significant interaction between group, condition and time (f $(8,24), \mathrm{p}=0.012, \mathrm{n}^{2}=$ 0.701). There was a main effect for time where thermal sensation increased from the start of the preload to the end of the preload (f (8,24), $\mathrm{p}=0.018, \mathrm{n}^{2}=0.796$; Table 26) and from the start of the time-trial to the end of the time-trial ( $f(8,24), \mathrm{p}=0.017, \mathrm{n}^{2}=0.713$; Table 26). This inferred that the participants felt hotter over time.
5.4.3.2.3.1. Thermal Sensation (TS) in Hot and Dry (Group 1)

Thermal sensation ratings were significantly lower in thermoneutral/control compared to hot during the preload ( $11 \pm 1(55 \%)$ vs $14 \pm 3(70 \%) ; p=0.034 ;$ ) and the time-trial ( $11 \pm 1(55 \%)$ vs $14 \pm 3(70 \%) ; p=0.034 ;$ Table 26).

Thermal sensation increased together with the increase in core temperature in both conditions (Table 26). The correlation was strongest in hot with no cooling ( $\mathrm{r}=0.52$ ). Similarly, thermal sensation increased together with the increase in power output in both conditions, however the correlation was similar between thermoneutral and no cooling ( $\mathrm{r}=0.32$ vs 0.35 ; Table 26 ).

### 5.4.3.2.3.2. Thermal Sensation (TS) in Hot and Humid (Group 2)

Thermal sensation ratings were significantly lower in thermoneutral/control compared to hot during the preload ( $11 \pm 1(55 \%)$ vs $14 \pm 3(70 \%)$; $p=0.034 ;$ ) and the time-trial ( $11 \pm 1(55 \%)$ vs $17 \pm 2(85 \%) ; p=0.021$; Table 26).

Thermal sensation increased together with the increase in core temperature in both conditions (Table 26). The correlation was strongest in hot with no cooling ( $\mathrm{r}=0.49$ ). Similarly, thermal sensation increased together with the increase in power output in both conditions, however the correlation was similar between thermoneutral and no cooling ( $\mathrm{r}=0.10$ vs 0.10 ; Table 26 ).

### 5.4.3.2.3.3. Thermal Sensation (TS) in Hot and Dry and Hot and Humid (Group Comparison)

There were no significant differences between groups in the thermoneutral/control condition during the preload ((11 $\pm 1(55 \%)$ vs $11 \pm 1(55 \%) ; p=0.178)$ or time-trial ( $11 \pm 1(55 \%)$ vs $11 \pm 1(55 \%) ; p=0.178$; Table 26). There was no significant differences between groups in hot (dry vs humid) conditions during the preload ( $14 \pm 3(70 \%)$ vs $14 \pm 3(70 \%)$; $p=0.231$; Table 26). However, thermal comfort ratings were significantly higher in hot and humid compared to hot and dry during the time-trial ( $17 \pm 2(85 \%$ ) vs $14 \pm 3(70 \%) ; p=0.037$; Table 26 ).

### 5.4.3.2.4. Task Motivation (TM)

There was no significant interaction between group, condition and time for task motivation ( $f$ $\left.(4,16), \mathrm{p}=0.367, \mathrm{n}^{2}=689\right)$. Task motivation remained $20 \pm 0(100 \%)$ throughout the preload and time-trial in both groups and all conditions (Table 26). This infers that the participants were highly motivated throughout the preload and the time-trial regardless of heat (hot vs con) or humidity (dry vs humid).

### 5.4.3.2.5. Affect (AF)

There was significant interaction between group, condition and time $(f=(4,16) 3.011, p=$ $\left.0.019, \mathrm{n}^{2}=0.746\right)$. There was a main effect for time where affect increased or decreased from the start of the preload to the end of the preload $\left(f=(4,16) 3.241, p=0.035, n^{2}=0.620\right.$; Table 26) and from the start of the time-trial to the end of the time-trial $(f=(4,16) 3.679, p=$ $0.033, \mathrm{n}^{2}=0.645$; Table 26).

There was no correlation between core temperature and motivation or power output and motivation because motivation remained unchanged in all conditions ( $r=0.00$; Table 26).

### 5.4.3.2.5.1. Affect (AF) in Hot and Dry (Group 1)

Affect ratings were significantly greater in thermoneutral/control compared to hot during the preload ( $3 \pm 1$ ( $81.81 \%$ ) vs $1 \pm 1$ ( $63.63 \%$ ); $p=0.011$;) and the time-trial ( $3 \pm 1(81.81 \%$ ) vs $2 \pm 1(72.72 \%) ; p=0.028 ;$ Table 26).

There was a negative low and moderate correlation between affect and core temperature in thermoneutral and no cooling ( $r=-0.33$ vs -0.45 ; Table 26 ). There was also a low negative correlation between affect and power output ( $\mathrm{r}=-0.35$ ) and moderate positive correlation between power output and no cooling ( $r=0.40$ ).

### 5.4.3.2.5.2. Affect (AF) in Hot and Humid (Group 2)

Affect ratings were significantly greater in thermoneutral/control compared to hot during the preload ( $2 \pm 1$ ( $72.72 \%$ ) vs $-1 \pm 1$ ( $45.45 \%$ ); $p=0.006$;) and the time-trial ( $3 \pm 1$ ( $81.81 \%$ ) vs $1 \pm 1(45.45 \%) ; p=0.002 ;$ Table 26).

There was a negative moderate and large correlation between affect and core temperature in both thermoneutral and no cooling ( $r=-0.40$ vs -0.67 ; Table 26). There was also a moderate negative correlation between affect and power output ( $r=-0.51$ ) and moderate positive correlation between power output and no cooling ( $r=0.52$ ).

### 5.4.3.2.5.3. Affect (AF) in Hot and Dry and Hot and Humid (Group Comparison)

There was no significant difference in mean $\pm$ SD affect ratings between groups (dry vs humid) in thermoneutral/control during the preload ( $3 \pm 1$ ( $81.81 \%$ ) vs $2 \pm 1(72.72 \%$ ); $p=0.247$ or time-trial ( $3 \pm 1$ ( $81.81 \%$ ) vs $3 \pm 1(81.81 \%) p=0.345$; Table 26 ). There was no significant difference in mean $\pm$ SD affect ratings between groups (dry vs humid) in hot during the preload ( $1 \pm 1$ ( $63.63 \%$ ) vs $-1 \pm 1(45.45 \%) ; p=0.069$; Table 26 ). However hot and humid had a significantly lower rating of affect during the time-trial compared to hot and dry ( $2 \pm 1$ ( $72.72 \%$ ) vs $-1 \pm 1(45.45 \%) ; p=0.39$; Table 26).

### 5.4. Discussion

### 5.4.1. Main findings:

- Cyclists covered a significantly lower distance and significantly lower power output in hot conditions (independently on humidity) compared to thermoneutral conditions. This was accompanied by greater average rectal temperature as well as thermal discomfort in hot conditions compared to thermoneutral conditions.
- Humidity level had no significant impact on distance covered, however cyclists retained significantly greater power in hot and dry compared to hot and humid. This was accompanied by lower average rectal temperature as well as thermal discomfort in hot and dry compared to hot and humid.


### 5.4.2 The Effect of Humidity on Performance Response (dry vs control)

In the current study, group 1 was exposed to hot and dry conditions $\left(35^{\circ} \mathrm{C}, 30 \%, 2.2 \mathrm{~m} / \mathrm{s}^{1}\right.$, equating to a WBGT of $\sim 27^{\circ} \mathrm{C}$ ). Average power output was significantly impaired in hot and dry conditions compared to thermoneutral conditions $(177.35 \pm 1.68 \mathrm{~W}$ vs $236.86 \pm 1.83 \mathrm{~W} ; \mathrm{p}=$ 0.014; 33\%; Table 21). This impairment was accompanied by increased $\mathrm{T}_{\text {rectal }}$ and thermal discomfort during the TT. For example, $\mathrm{T}_{\text {rectal }}$ was significantly greater in hot $\left(38.05 \pm 0.15^{\circ} \mathrm{C}\right)$ compared to thermoneutral $\left(38.55 \pm 0.04^{\circ} \mathrm{C}\right)$ throughout the TT $\left(\mathrm{f}=(3,10), 52.656, \mathrm{p}=0.001, \mathrm{n}^{2}\right.$ $=0.768$; Table 21). Thermal comfort ratings were also significantly lower in thermoneutral $(0 \pm 0(0 \%))$ compared to hot $(12 \pm 2(60 \%))$ during the TT $(p=0.003$; Table 20$)$. Thermal comfort increased (felt worse) as core temperature increased ( $\mathrm{r}=0.81$; Table 26).

This supported Racinais et al., (2015) findings which found a decrement in power output of $\sim 16 \pm 5 \%(256 \pm 19$ vs $304 \pm 9 \mathrm{~W})$ during a 43.4 km cycling time-trial in hot and dry $\left(36.0 \pm 0.4^{\circ} \mathrm{C}\right.$, $13 \pm 1 \%)$ compared to thermoneutral $\left(8.2 \pm 3.5^{\circ} \mathrm{C}, 30 \pm 8 \%\right)$ conditions. This was accompanied by a significantly greater finishing $\mathrm{T}_{\text {rectal }}$ in hot and dry compared to thermoneutral conditions ( $40.2 \pm 0.4 \mathrm{vs} 38.5 \pm 0.6^{\circ} \mathrm{C} ; \mathrm{p}=0.001$ ).
5.4.3. The Effect of Humidity on Performance Response (humid vs con).

In the current study, group 2 were exposed to hot and humid conditions $\left(30^{\circ} \mathrm{C}, 70 \%, 2.2 \mathrm{~m} / \mathrm{s}\right.$, equating to a WBGT of $\sim 26^{\circ} \mathrm{C}$ ). Average power was significantly impaired in hot and humid compared to thermoneutral/control conditions (160.12 $\pm 3.43 \mathrm{~W}$ vs $235 \pm 2.48 \mathrm{~W} ; \mathrm{p}=0.001 ; 46 \%$; Table 21). This impairment was accompanied by an increase in $\mathrm{T}_{\text {rectal }}$ and thermal discomfort ratings during the TT . $\mathrm{T}_{\text {rectal }}$ was significantly greater in hot $\left(38.85 \pm 0.09^{\circ} \mathrm{C}\right)$ compared to control $\left(38.55 \pm 0.12^{\circ} \mathrm{C}\right)$ throughout the $\mathrm{TT}\left(\mathrm{f}=(4,8), 50.211, \mathrm{p}=0.004, \mathrm{n}^{2}=0.789\right.$; Table 21$)$. Thermal comfort ratings were also significantly lower in thermoneutral/control ( $0 \pm 0(0 \%)$ ) compared to hot $(19 \pm 3(95 \%)$ ) during the time-trial ( $p=0.001$; Table 21 ). Thermal comfort increased (felt worse) as core temperature increased ( $r=0.84$; Table 26).

Previous literature supports these findings, showing an impairment in cycling power output in hot ( $35^{\circ} \mathrm{C}, 60 \% \mathrm{RH}$ ) compared to thermoneutral ( $20^{\circ} \mathrm{C}, 40 \% \mathrm{RH}$ ) conditions during a 40 km TT, respectively ( $242.1 \pm 27.3 \mathrm{~W}$ vs $279.4 \pm 22.0 \mathrm{~W} ; \mathrm{P}<0.01$; Periard et al., 2011). At TT completion, $\mathrm{T}_{\text {rectal }}$ was significantly greater in hot compared to thermoneutral conditions (39.8 $\pm 0.3$ vs $38.9 \pm 0.2^{\circ} \mathrm{C} ; \mathrm{P}<0.01$; Periard et al., 2011). Similar values were reported in the current study showing a greater $\mathrm{T}_{\text {rectal }}$ in hot compared to thermoneutral $\left(39.3 \pm 0.1^{\circ} \mathrm{C}\right.$ vs $38.6 \pm 0.2^{\circ} \mathrm{C}$; Table 21). Similar to the current study, Periard et al., (2011) reported a significantly greater thermal discomfort in hot compared to thermoneutral throughout the TT ( $\mathrm{P}<0.01$ ).

### 5.4.4. The Effect of Humidity on Performance Response (humid vs dry).

Average power output was significantly impaired in hot and humid compared to hot and dry ( $160.12 \pm 3.43 \mathrm{~W}$ vs $177.35 \pm 1.68 \mathrm{~W}, \mathrm{p}=0.038 ; 10 \%$; Figure 17). This impairment was accompanied by an increase in $\mathrm{T}_{\text {rectal }}$ and thermal discomfort ratings during the TT. Specifically, $\mathrm{T}_{\text {rectal }}$ was significantly greater throughout the TT in hot and humid $\left(38.7 \pm 0.09^{\circ} \mathrm{C}\right)$ compared to hot and dry $\left(38.49 \pm 0.07^{\circ} \mathrm{C} ; \mathrm{p}=0.043, \mathrm{n}^{2}=0.362\right.$; Figure 22$)$. Thermal discomfort ratings were significantly higher in hot and humid compared to hot and dry during the $\mathrm{TT}(19 \pm 3(95 \%))$ vs $12 \pm 2(60 \%)) ; \mathrm{p}=0.029$; Table 25$)$.

Teunissen et al., (2022) investigated the impact of 8 different climatic conditions specific to Tokyo (best case ( $25.1^{\circ} \mathrm{C}, 39 \%, 0.2 \mathrm{~m} / \mathrm{s}$ ) to worse case ( $37.5^{\circ} \mathrm{C}, 79 \%, 0.2 \mathrm{~m} / \mathrm{s}$ )) on peak $\mathrm{T}_{\text {core }}$ of elite athletes during cycling. In control conditions a peak $\mathrm{T}_{\text {core }}$ of $38.9 \pm 0.5^{\circ} \mathrm{C}$ was achieved. This was similar to the peak $\mathrm{T}_{\text {rectal }}$ values found in the control conditions for both groups (dry and humid) in the current study ( $38.05 \pm 0.17^{\circ} \mathrm{C}$ and $38.6 \pm 0.2^{\circ} \mathrm{C}$; Figure 22). At greater simulations with a higher ambient temperature $\left(38^{\circ} \mathrm{C}\right)$, there was a higher peak $\mathrm{T}_{\text {core }}$ compared with control ( $\sim 39.5 \pm 0.3^{\circ} \mathrm{C}$ vs $38.9 \pm 0.5^{\circ} \mathrm{C}$ ), whereas a higher $\mathrm{RH}(90 \%)$ hardly affected peak $\mathrm{T}_{\text {core }}\left(\sim 39 \pm 0.1^{\circ} \mathrm{C}\right.$ ) but it still increased. Similar to Teunissen et al., (2022), a greater ambient temperature caused a greater peak $\mathrm{T}_{\text {rectal }}$ in hot and dry $\left(38.8 \pm 0.11^{\circ} \mathrm{C}\right)$ compared to thermoneutral $\left(38.05 \pm 0.17^{\circ} \mathrm{C}\right)$ in the current study (Table 21). However, unlike Teunissen et al., (2022), a greater humidity caused a significantly greater peak $\mathrm{T}_{\text {rectal }}$ compared to dry and thermoneutral conditions, respectively $\left(39.3 \pm 0.1^{\circ} \mathrm{C}\right.$ vs $38.8 \pm 0.11^{\circ} \mathrm{C}$ and $38.6 \pm 0.2^{\circ} \mathrm{C}$; Table 21). In addition, greater sweat rates were achieved in hot and dry ( $1.8 \pm 0.3 \mathrm{Lhr}$ ) compared to hot and humid ( $1.0 \pm 0.2 \mathrm{Lhr}$ ) which allowed for greater heat loss via evaporation, and therefore attenuated the rise in $\mathrm{T}_{\text {rectal }}$ in hot and dry conditions compared to hot and humid (Table 22 and Figure 18).

### 5.4.5.. Limitations and Perspectives

- The number of recruited participants was below the amount needed for an effect size of 0.7 because data collection of study 2 and 4 were combined and therefore the results may have changed if a larger sample size was used.
- The study design required participants to be separated into two groups (dry vs humid). If participants completed both dry and humid conditions then the comparisons between conditions and conclusions made would be stronger.
- Future research should investigate this comparison further with a repeated measures design including both hot conditions to be able to form stronger conclusion on which conditions causes a greater strain (performance, physiological and perceptual responses).


### 5.5. Conclusion

Cycling performance is significantly impaired in HD and HH conditions compared to thermoneutral conditions. This impairment was associated with a significantly greater increase in $\mathrm{T}_{\text {rectal }}$ and thermal discomfort in both hot conditions compared to thermoneutral. Cycling performance is significantly impaired in HH compared to HD conditions. This impairment was associated with a significantly greater increase in $\mathrm{T}_{\text {rectal }}$ and thermal discomfort in HH compared to HD.

### 5.6. Importance of Findings for Subsequent Chapter and Thesis

- The findings from the current study contributed to the environmental physiology literature on the effect of HD and HH conditions as an external stressor on physical (cycling TT) performance.
- The novel finding of the current study highlighted that cyclists in the HH condition experienced greater impairments in cycling (e.g. power out put and pacing) performance, which were related to physiological (i.e. $\mathrm{T}_{\text {rectal }}$ ), and perceptual responses (i.e. TC).
- Therefore competing in HH conditions poses two potential issues (i) performance impairment (i.e. missing out on a potential medal placing), and (ii) health related risks (i.e. heat related illnesses caused by a rise in $\mathrm{T}_{\text {rectal) }}$. Therefore, a means for alleviating these heat related challenges is needed.


# Chapter 6. Study 3 - Cyclists-triathletes use cold-water ingestion during training and/or competitions in hot and dry conditions compared to cold-water ingestion and 

 pouring in hot and humid conditions.
### 6.1 Abstract

Purpose: To investigate the type, timing, justification and perceived effectiveness of percooling strategies employed by cyclists-triathletes during training and/or competition in HD and HH .

Methods: 35 cyclists-triathletes completed an online questionnaire on the type, timing and justification of per-cooling strategies employed during past training and/or competitions in HD and HH. 3 cyclists-triathletes completed a one to one follow up interview.

Results: Comparisons between strategies employed in all conditions were based on $\mathrm{N}=14$ ( $40 \%$ ). Cold-water pouring was the most employed ( $\mathrm{N}=4 ; 21 \%$ ) strategy during training and/or competing in hot conditions. The timing of the strategies employed were based on pitstops only ( $\mathrm{N}=7 ; 50 \%$ ). The justification for strategies employed were based on trial and error ( $\mathrm{N}=9,42.85 \%$ : $\mathrm{N}=10,47.61 \%$ ). All cyclists-triathletes rated strategies employed as 1 ("not effective for minimizing performance impairments and heat related illnesses). Comparisons between HD and HH were based on $\mathrm{N}=21$ ( $60 \%$ ) who employed different percooling strategies based on condition (HD or HH). Cold-water ingestion was the most employed ( $\mathrm{N}=9,43 \%$ ) strategy in HD, whereas a combination of cold-water ingestion and pouring was the most employed ( $\mathrm{N}=9,43 \%$ ) strategy in HH . The timing of strategies employed in HD were split; pre-planned by distance but were modified based on how athletes felt during ( $\mathrm{N}=8,38 \%$ ), and pre-planned by distance and pit stops $(\mathrm{N}=8,38 \%)$. The timing of strategies employed in HH were pre-planned based on distance and how athletes felt during $(N=9,42 \%) .57 \%(N=12)$ of the $60 \%(N=21)$ perceived effectiveness in HD and HH as 3 ("Sometimes effective and sometimes not effective") whereas, $43 \%(\mathrm{~N}=9)$ of the

60\% ( $\mathrm{N}=21$ ) perceived effectiveness in HD and HH as 4 ("Effective for minimizing performance impairments").

Conclusion: Cold-water ingestion is the preferred strategy by cyclists-triathletes in HD compared to a combination of cold-water ingestion and pouring in HH conditions. All strategies were pre-planned and trialled based on distance and how cyclists-triathletes felt during training and/or competition. These strategies were perceived as effective for minimizing performance impairments but not heat related illnesses. This may suggest that aspects of these per-cooling strategies have yet to be mastered to ensure optimal effectiveness (minimizing performance impairments and heat related illnesses). Therefore, future research should evaluate the effectiveness of these per-cooling strategies on performance and thermoregulatory responses in HD and HH to inform future employment during training and/or competition.

### 6.2 Introduction

As outlined in chapter 4 (study 2), the physiological and perceptual responses followed similar trends in both HD and HH conditions however the thermal strain was greater in HH compared to HD. This was shown with a greater average $\mathrm{T}_{\text {rectal }}$ and thermal discomfort reported in HH compared to HD. This resulted in an impairment to performance, specifically power output during the 30min TT.

Athletes can incorporate heat mitigation strategies, such as heat acclimation/acclimatisation (chronic heat mitigation strategies), cooling (acute heat mitigation strategies), and/or hydration before or during training and/or competition (acute heat mitigation strategies; Gibson et al., 2020). Due to the length, nature, and cost of chronic heat mitigation strategies, some athletes opt for acute heat mitigation strategies, such as cooling and/or hydration that can be applied easily and cost-effectively during training and/or competition (Gibson et al., 2020). However, it is unclear what type and timing of acute strategies that are currently being employed by cyclists-triathletes during training and/or competition in hot conditions.

Internal cooling was the most commonly planned for cooling strategy by athletes prior to the 2015 IAAF World Championships in Beijing (Periard et al., 2017). Ice slurry ingestion was the most employed strategy for long distance sports specifically. This is supported by Morris and Jay (2016) findings, showing that cold-water ingestion should provide mechanistic benefits (greater heat loss than gain) in hot and humid conditions. This paper focused on pre-cooling only and therefore it is unclear what strategies currently used for per-cooling. An investigation of the hydration and cooling strategies employed during the Doha 2019 IAAF World Athletics Championships (Hot and Dry conditions), revealed that $93 \%$ of endurance athletes employed a pre-planned drinking strategy including water ( $85 \%$ ), electrolytes (83\%), and carbohydrates (81\%; Racinais et al., 2021). Moreover, 80\% of endurance athletes employed pre-cooling (mainly ice-vest 53\% and cold-towel 45\%), and 93\% employed per-cooling [mainly head/face water dousing/pouring (65\%) and cold-water ingestion (52\%)], which were widely pre-planned by athletes. Ice-slurry ingestion (11-21\%) and menthol-based interventions ( $1-2 \%$ ) were less common. The strategies employed by this elite population in HD coincide with Morris and Jay's (2016) recommendations that coldwater pouring/dousing provides mechanistic benefits (e.g. greater heat loss than gain) in HD conditions. This paper provides an insight into the type and timing of strategy, however there could still be interpersonal differences in regard to timing e.g. every 10 km , when they felt thirsty, when pitstops were available etc.

It is not only important to understand what and when strategies are being used but also why they are being used. Racinais et al., (2021) found that strategies were based on personal experience (e.g trial and error) rather than evidence-based (e.g. scientific papers), which suggests a gap between theory and application. If an athlete chooses to use a specific type of strategy that goes against evidence-based practice it may relate to the practicality of that strategy (e.g. easier to pour water over yourself whilst cycling compared to putting on a cooling vest) or its perceived effectiveness. Perceptual responses such as TC, TS, RPE can
offer an insight into the perceived effectiveness of cooling strategies during training and/or competition. For example, a review by, Douzi et al. (2020) stated that per-cooling strategies improved perceptual measures such as thermal perception and RPE, thereby inducing better self-selected intensities during TTs.

Therefore, the purpose of this study was to investigate the type, timing, justification and perceived effectiveness of per-cooling strategies currently employed by cyclists-triathletes during training and/or competitions in HD and HH.

### 6.3. Methods

### 6.3.1. Participants

This study was aimed at cyclists and triathletes who have trained or competed in hot conditions. The questionnaire was sent via email to cycle and triathlon clubs and advertised on social media channels, such as Twitter®, Instagram®, and Facebook®. Participation in the questionnaire was open to all genders, all levels of participation, and ages (Table 27). It was advised that participation was not permitted, or data was rejected if the participant had not trained or competed in hot conditions before $\left(\geq 28^{\circ} \mathrm{C}\right.$; Table 27$)$.

The 35 participants were separated into three categories: recreational, competitive, and professional. Recreational athletes were classed as individuals that participate in the sport for enjoyment, fitness, and/or social reasons ( $\mathrm{N}=10$; Table 28). Competitive athletes were classed as individuals who competitively participate in and train for competition $(N=15$; Table 28); whereas. professional athletes held a pro licence and participated in competitions for fiscal rewards and/or representation of their country ( $\mathrm{N}=10$; Table 28). $37 \%$ of participants reported experiencing symptoms of HRI during training and/or competing in hot conditions (Table 28). HRI were most prevalent in the competitive group (Table 28).

Table 26. Participant Inclusion and Exclusion Criteria.

Inclusion	Exclusion		
Train and/or compete in hot conditions ( $\geq 28^{\circ} \mathrm{C}$ WBGT)	Do not train and/or compete in hot conditions ( $\geq 28^{\circ} \mathrm{C}$ WBGT)		
Live in countries that are not hot $\left(<28^{\circ} \mathrm{C}\right.$ WBGT) more than half of			
the year.			Live in countries that are hot $\left(\geq 28^{\circ} \mathrm{C}\right.$ WBGT) more than half of the
:---:			
year (acclimatization effect).			

WBGT = Wet-bulb globe temperature .

Table 27. Participant characteristics including number of participants, sex ratio (M:F), country participants live in, years of experience (yrs), number of competitions competed in, number of training sessions in hot conditions, percentage of group that have experienced symptoms related to heat related illnesses (\%).

Category	No. of Participants	Sex ratio (\% of M:F)	Age (yrs)	Country participants live in	Experience   (yrs) (N=13)	No. of competitions competed in		Percentage of group that have experienced symptoms related to heat related illnesses (\%)
All	35	$\begin{gathered} \hline 71(30 \% \\ \text { was T):29 } \end{gathered}$	$35 \pm 12$	$\begin{gathered} \text { UK }=89 \% \\ \text { Germany }= \\ 7 \% \\ \text { Romania }=2 \% \\ \hline \end{gathered}$	$8 \pm 5$	$18 \pm 15$	$4 \pm 2$	37


				Slovenia = 2\%				
Recreational	10	$\begin{gathered} 80(10 \% \\ \text { was T):20 } \end{gathered}$	$43 \pm 17$	$\begin{gathered} \text { UK=80\% } \\ \text { Germany }= \\ 10 \% \\ \text { Romania = } \\ 10 \% \\ \hline \end{gathered}$	$9 \pm 6$	0	$2 \pm 1$	40
Competitive	15	74:26	$33 \pm 10$	$\begin{gathered} \text { UK=87\% } \\ \text { Slovenia }=7 \% \\ \text { Germany=7\% } \end{gathered}$	$8 \pm 6$	$26 \pm 15$	$3 \pm 1$	53\%
Professional	10	60:40	$30 \pm 4$	UK=100\%	$6 \pm 2$	$28 \pm 2$	$6 \pm 4$	10\%

### 6.3.2. Experimental Design

The study had a mixed-methods design. To meet the aim of the current study, 35 participants $($ Recreational $=10$, Competitive $=15$, and Professional $=10 ;$ Table 2) completed an online questionnaire (Figure 1). To support the questionnaire findings and gain an in-depth understanding of the participant's experience, the investigators "deliberately sought out individuals or groups who fit the bill" (Greenhalgh, 1997; p.157). Therefore, convenience sampling was employed to select 3 of the 35 athletes who best represented their sub-groups ( $1=$ Recreational, $1=$ Competitive, and $1=$ Professional). For the 3 case studies, a follow-up focused interview was used (Figure 19).


Figure 19. Methodological flow chart of the study design. Grey boxes = data collection; white boxes $=$ participants.

### 6.3.3. Design of Questionnaire

The questionnaire was created using the online platform https:// www.onlinesurveys.ac.uk/ (Figure 20). The scope of the questionnaire was to identify heat mitigation strategies type, the timing of application, justification for type and timing, and perceived effectiveness in HD and HH conditions. All questions allowed for text box answers for participants to describe strategies in more detail. The questionnaire was piloted and reviewed by two members of staff at LSBU (external to the research project) who were familiar with both cycling exercises
and conducting and interpreting questionnaires. It was suggested to adapt questions from a previous questionnaire used in the literature (Racinais et al., 2021) to allow for reflective practise. Briefly, reflective practice is an active and deliberate cognitive process involving sequences of interconnected ideas that take account of underlying beliefs and knowledge and typically addresses practical problems, allowing for doubt and perplexity before possible solutions are reached (Edwards, 1999). While the focus of the study of Racinais et al. (2021) was to investigate heat mitigation strategies before and during the 2019 Doha World Championships in HD, our study investigated per-cooling strategies (only) during training and/or competition in both HD and HH. Type: Racinais et al. (2021) asked "what pre-cooling method(s) are you planning on using during the time-trial?" which was adapted to "What percooling method(s) did you use during training and/or competition in hot and dry conditions?" Timing: When was this (these) strategy (ies) applied during hot and dry conditions? Justification: What was your justification ("why?") for using this type of strategy and the timing of application in hot and dry conditions? Perceived effectiveness: Please rate the effectiveness of the strategy employed (type and timing together) in hot and dry conditions on a scale from 1 to 5 ( $1=$ Not effective for minimising performance impairments and suffering heat-related illnesses, 2 = Not effective for minimising performance impairments, 3 = Sometimes effective and sometimes not effective, 4 = Effective for minimising performance impairments, 5 = Effective for minimising both performance impairments and suffering from any heat-related illnesses). Perceived effectiveness was defined as the athlete's opinion based on their own experiences without an objective measure of performance of heatrelated illness. Participants were also asked to respond to these questions for hot and humid $(\mathrm{HH})$ conditions or hot conditions in general if no difference in condition was perceived at the start of the questionnaire.


Figure 20. Question design outlining the page by page flow. Blue boxes = page number, section number and focus. Dashed lines =custom pathways between pages, for example in 'page 4, section 3 - prior knowledge in the area' if the participants selected that they used the same strategy regardless of environmental condition they would be taken on a different pathway and answer the questions on 'heat alleviation strategies in all hot conditions' rather
than hot and dry and hot and humid.

### 6.3.4. Design of Case Study Interviews

A single case study approach was selected to provide an in-depth understanding of the participant's experiences and therefore produce a high-quality theory for future work to expand on. To achieve this, the single case studies were designed and reported in accordance with McKay and Marshall's (2000) checklist and Keegan et al. (2017) guidelines. The single case study consisted of one-to-one interviews that were conducted online via
zoom (lasting ~30min with cameras on). Participants were informed that the interviews were informal, semi-structured, followed a discussion format, and that there were no wrong or right answers. The interview questions were developed based on answers reported in the questionnaires together with information gathered from a pilot interview conducted with members of staff at LSBU who were familiar with conducting interviews. Therefore, the questions related to the research topic (type, timing, justification, and perceived effectiveness of heat mitigation strategies in HD and HH ) are based on the reviewer's feedback. It was also highlighted that the questions needed to be reworded for clarification of different conditions that are related to the interviewee: Therefore, the interviewer gave examples of locations and events that the athletes may have trained or competed in to ensure the interviewee's understanding of environmental conditions.

Based on this information the participants selected specific training sessions and/or competitions to discuss for the interview. If known, dates of training and/or competitions were provided by participants, and weather conditions were cross-referenced by two investigators using https://www.metoffice.gov.uk/ and databases (scopus) were searched for any journal articles published from the selected competitions.

Key terminology was also defined at the start of the questionnaire and interview. For example, cold water was defined as water at $9{ }^{\circ} \mathrm{C}$ (Gibson et al., 2020) and represented temperature at the start of ingestion and not throughout the exercise entirety.

### 6.3.5. Data Analysis

The questionnaire was analysed using the analyse function on https://www.onlinesurveys.ac.uk/, which expressed values as percentages. This was subsequently extracted into Excel. The outcome variables from the questionnaire were:

1. Percentage of participants that employed a specific type of strategy (for example, coldwater ingestion, cold-water pouring, ice packs, ice vests, cooling collars, ice slushy ingestion, menthol, etc.).
2. Percentage of participants that employed a specific time to apply strategies (for example, pre-planned based on distance, pre-planned based on time, pit stops, and how they felt during, etc.).
3. Percentage of participants that had specific justifications for type and timing of strategy (for example, personal reading, sports scientist, previous experience, etc.).
4. Percentage of participants based on ratings of perceived effectiveness ( $1=$ Not effective for minimising performance impairments and suffering heat-related illnesses, $2=$ Not effective for minimising performance impairments, $3=$ Sometimes effective and sometimes not effective, $4=$ Effective for minimising performance impairments, and $5=$ Effective for minimising both performance impairments and suffering from any heat-related illnesses).

The interviews were recorded (video and audio). At the start of the transcription stage, the participants were anonymised through pseudonyms. Transcriptions were imported to NVIVO software for thematic coding. Coding is the process of exploring the diversity and patterning of meaning from the dataset, developing codes, and applying code labels to specific segments of each data item (Braun and Clarke, 2021; pp 53). A code is an output of the coding process; an analytically interesting idea, concept of meaning associated with particular segments of data; often refined during the coding process (Braun and Clarke, 2021; pp 53). Whereas a code label is an output of the coding process; a succinct phase attached to a segment of data, as a shorthand tag for a code; often refined during the coding process (Braun and Clarke, 2021; pp 53). Braun and Clarke's (2006) six-phase analysis process was adopted:

1. Familiarising/immerse yourself with your data: The primary and secondary investigators separately read through the interview transcripts at least 3 times.
2. Generating initial codes: The primary and secondary investigators generated initial codes separately, and then, came together to discuss and determine codes.
3. Searching for themes: The primary and secondary investigators drew out common themes and meanings within each interview separately, and then, came together to discuss and determine themes.
4. Reviewing themes: Common patterns in the data were identified and organised into themes and sub-themes to connect shared experiences in the different interviews.
5. Defining and naming themes: The primary and secondary investigators defined and named themes separately and then came together to discuss and determine definitions and names for themes.
6. Producing the report: These themes were examined to conclude the data, which reflected the different perspectives on training and competing in hot conditions.

### 6.4. Results

The case study interview was conducted to support the questionnaire findings and therefore the questionnaire and interview results will be reported together in this section. Themes were identified based on the 3 interviews (Figure 19). These interviews were used to have a more in depth insight into the experience and belief of the participants and therefore this data cannot be generalised to the whole group of participants. The main themes that were developed were "experience of training and/or competition in hot conditions", "strategies employed prior to and during training and/or competing in hot conditions" and "knowledge/understanding of cooling strategies and hot conditions" (Figure 21).


Figure 21. Potential factors influencing perceived heat strain during cycling in hot conditions based on the experiences of 3 cyclists-triathletes.
Themes are shaded in grey boxes and subthemes are in white boxes

### 6.4.1. Understanding of Hot Conditions.

$86 \%(\mathrm{~N}=31)$ of participants perceived that there is a difference in thermal stress experienced between HD and HH (Figure 22A). $80 \%(\mathrm{~N}=28)$ of the participants that perceived a difference reported that HH provided greater thermal stress compared to HD (Figure 22B). Despite this understanding, only $60 \%(\mathrm{~N}=21)$ of participants reported employing different strategies depending on the environmental condition ( HD or HH ; Figure 22C). Therefore, the results will focus on this $60 \%(N=21)$ because the $40 \%(N=14)$ that reported employing the same strategies in both HD and HH were due to lack of experience (competitive/recreational level) and were not interested in performance outcomes.


Approach to using the same or different strategies in hot and dry and hot and humid conditions based on perceived thermal strain.

Figure 22. (A) Perceived difference between hot and dry and hot and humid conditions, (B) perceived condition with the greatest thermal stress, and (C) approach to using the same or different strategies in hot and dry and hot and humid conditions based off perceived thermal strain.

Figure used with permission of Bayne et al., (2022)

### 6.4.2. Type of Per-Cooling Strategy

Of the $60 \%(\mathrm{~N}=21)$, participants reported 7 main strategies employed for cooling during training and/or competition in HD conditions (Table 29). In HD the prevailing preference was cold-water ingestion [43\% ( $\mathrm{N}=9$ ); Figure 23A], followed by cold-water ingestion and pouring [19\% ( $\mathrm{N}=4$ ); Figure 3A]; whereas in HH a combination of cold-water ingestion and pouring was the prevailing preference [ $43 \%(\mathrm{~N}=9)$; Figure 23B], followed by cold-water and iceslushy ingestion [14\% ( $\mathrm{N}=3$ ); Figure 23B].

There was a difference in the strategies employed in HD by athletes from different levels of play. For example, a competitive athlete stated:
"I feel like I ended up using everything possible, I had cold water in coolers at transition, which I would use to drink and pour over myself, and I also had cold towels to apply during the transition."

Whereas a professional athlete stated:
"For IRONMAN Oman everything was about drinking cold water for me."

Notably, the strategies employed in HH conditions were different compared to HD for both the competitive and professional athletes. The competitive athlete employed a combination of cold water (ingestion and pouring) and ice slushies:
"I used cold-water ingestion, cold-water pouring, and also ice slushies."

Whereas the professional athlete employed cold-water only (ingestion and pouring):
"I was drinking cold water again like I did at OMAN but this time I also poured cold water over myself on the bike and the run." and "I try to target my head, face, neck, and back."

In addition to physical strategies, mental strategies were also employed. For example, the competitive athlete reported using imagery, reframing and modelling:
"I think because I have gotten used to using the cooling strategies and focusing on implementing them into my races that I actually think about and imagine using them throughout the race so if I know I have a transition coming up where I have an opportunity to use a cooling strategy like a cold towel or cold-water from my cooler then I think about that when I am racing.... I also found that I was imagining myself cycling in a cold country with snow around me"

Whereas the professional athlete reported using positive self-talk (Latinjak et al., 2018) and locus of control (Lefcourt, 2014):
"For me, it's about going into a race feeling confident. I remember when I had just started racing and I went to IRONMAN NICE which was HD I think, and I was talking to some of the other competitors before the race and they were talking about other competitions that they had done before whereas I hadn't really done any, but I said to them that I had come to the race to win and that I was going to win [. . . ], I make sure that I have controlled everything that I can control prior to the race so that on race day I feel confident that I will win."

Table 28. Athletes' classification and their most prevalent descriptive key terms.

Themes	Type	Timing	Justification	Perceived Effectiveness
Different Heat Alleivation Strategies used in Hot and Humid Conditions	1. Cold-water ingestion and pouring   2. Cold-water ingestion and ice-slushy   3. Cold-towels only   4. Cold-water ingestion, pouring and ice-slushy   5. Cold-water ingestion only   6. Cold-water pouring and cold-towels	1. Preplaned by distance and pitstops   2. Pitstops only   3. How they felt during and pitstops   4. Pre-planned by distance and how they felt during performance	1. Previous experience/perceived effectiveness   2. Personal research   3. Support staff   4. Previous experience/perceived effectiveness and support staff   5. Cooling availability	$57 \%(N=12)$ or the $60 \%$ ( $\mathrm{N}=21$ ) $=3$ ("Sometimes effective and sometimes not effective" $43 \%(N=9)$ of the $60 \%$ ( $\mathrm{N}=21$ ) $=4$ ("effective for minimizing performance impairments").
Different Heat Alleivation Strategies used in Hot and Dry Conditions	1. Cold-water ingestion and pouring   2. Cold towels only   3. Ice-vest only   4. Cold-water ingestion and cold-towels   5. Cold-water pouring and cold-towels   6. Cold-water ingestion, pouring and coldtowels	1. Pre-planned by distance and how they felt during   2. Pre-planned by distance and pitstips   3. Pre-planned by distance, pitstops and how they felt during performance   4. How they felt during performance only	1. Previous experience/perceived effectiveness   2. Personal research   3. Support staff   4. Cooling availability   5. No justification/unsure	$57 \%(\mathrm{~N}=12)$ or the $60 \%$ ( $\mathrm{N}=21$ ) $=3$ ("Sometimes effective and sometimes not effective" $43 \%(N=9)$ of the $60 \%$ ( $\mathrm{N}=21$ ) $=4$ ("effective for minimizing performance impairments").


		5. Pre-planned by distance only		
Same Heat Alleivation Strategy used regardless of Humidity.	1. Cold-water pouring only   2. Cold-towels only   3. No per-cooling   4. Cold-water ingestion and pouring   5. Ice-slushy ingestion only   6. Cold-water pouring and cold-towels	1. Pitstops only   2. How they felt during performance   3. Pre-planned by elapsed time	1. Previous experience/perceived effectiveness   2. Previous experience/perceived effectiveness and cooling availability   3. No justification/unsure   4. Cooling availability	100\% ( $\mathrm{N}=14$ ) = 1 ("not effective for minimizing performance impairments and heat related illnesses").



Figure 23. (A) Strategies employed in hot and dry conditions by 60\% ( $N=21$ ) participants who use different strategies depending on condition, (B) strategies employed in hot and humid conditions by 60\% ( $N=21$ ) participants who use different strategies depending on condition, and (C) strategies employed in all hot conditions by $40 \%(N=14)$ participants who employed the same strategy regardless of condition. Figure adapted from Bayne et al., (2022).

### 6.4.3. Timing of Per-Cooling Strategy

Participants selected five defining factors that influenced the timing of application in HD (Table 29); whereas only 4 defining factors were reported in HH (Table 29). The prevailing factors in HD were pre-planned by distance and how they felt during performance [38\% ( $\mathrm{N}=$ 8); Figure 4A], and pre-planned by distance and pitstops [ $38 \%(\mathrm{~N}=8)$; Figure 24A], whereas the prevailing factors in HH were split; pre-planned by distance and how they felt during performance [43\% ( $\mathrm{N}=9$ ); Figure 24B], and pre-planned by distance and pitstops [33\% ( $\mathrm{N}=$ 7); Figure 24B]. The timing of application of per-cooling strategies were not different in HD and HH by the $60 \%(\mathrm{~N}=21)$ that reported using different strategies in both conditions (Figure 4). The interview findings showed that in HD, the competitive athlete based the timing on elapsed distance, how they felt during the race and when pits stop (transition) were available: "Well, I would drink the cold-water and pour the cold-water when I was on the bike, which I used in distance as my guide, and then, applied more if I felt like I needed more. The cold-towels were in transition, so that was between swim and bike, and bike and run and I would quickly just press it on my face wiping the sweat away, and then, place it on the back of my neck whilst I checked into my bike and running shoes." Thereby, in HH, the competitive athletes based the timing of strategy on distance and how they felt during the race only: "I based the timing off distance that I was covering on the bike, and then, also off how I felt, so, again, if I was feeling uncomfortable, I would drink and pour more over myself." and "one thing that was different to the Barcelona race in HD conditions was that I used a lot more water in the Hawaii race compared to the Barcelona race." And "I think I
used about 1L more water in Kona because I kept feeling like I wanted to pour more water over myself to make me feel more comfortable." In HD, the professional athlete based the timing of their strategies on elapsed distance only: "I drank periodically on the bike based on the distance that I was covering" and "Well the bike leg of an IRONMAN is 180.25 km , so every 10 km I would have about 2 sips of my cold-water and I had $2 \times 2 \mathrm{~L}$ bottles on my bike. I would easily get through 1 and half of those before I get on the run." In HH , the professional athlete utilised the same timing as in HD conditions, however, they incorporated ingestion and pouring at each interval:
"I drank periodically on the bike based on the distance that I was covering" and "Well the bike leg of an IRONAMN is 180.25 km , so every 10 km I would have about 2 sips of my coldwater, and then, pour some on myself. I would roughly get through $2 \times 2 \mathrm{~L}$ bottles." These findings show that the competitive and professional athlete employed similar or the same timings for cold-water ingestion and/or pouring in both HD and HH conditions however, the quantity of water used in HH conditions was greater ( $\sim 1 \mathrm{~L}$ and $\sim 0.5 \mathrm{~L}$ ) compared to HD.


Figure 24. Timing of cooling strategies employed in hot and dry conditions by 60\% ( $N=21$ ) participants who use different strategies depending on condition, (B) timing of cooling strategies employed in hot and humid conditions by $60 \%(N=21)$ participants who use different strategies depending on condition, and (C) timing of strategies employed in all hot conditions by $40 \% ~(N=14)$ participants who employed the same strategy regardless of condition.

### 6.4.4. Justification of Per-Cooling Strategy

Participants reported four justifications for type and timing of strategies used in HD (Table 29). The prevailing justification in HD was previous experience/perceived effectiveness (43\% of participants; Figure 25 A ), followed by personal research ( $29 \%$ of participants; Figure 5 A ). There were five justifications for type and timing of strategies employed in HH (Table 3). Similarly, the prevailing justification in HH was previous experience/perceived effectiveness (48\%; Figure 25B), followed by personal research (23\% of participants; Figure 25B). There were seven justifications for type of strategies employed in all hot conditions (Table 29). The prevailing justification in all hot conditions was previous experience/perceived effectiveness (50\%; Figure 25C). In HD, the competitive athlete established which strategy to employ and when to apply it based on experience and personal research: "I typically use the event website together with footage from past races. For example, for IRONMAN Barcelona I watched footage from the year before, and I saw that one of the professional athletes were utilising the transitions to drink and pour cold-water over themselves and had cold towels in coolers. So, I thought I would try that out and see whether it worked for me." In HH, the competitive athlete established which strategy to use and when to apply it based experience and personal research: "Again, I use the event website in combination with footage of past races in the conditions that I am racing in [....] I was watching some footage of the race in Hawaii from the year before and I saw one of the professional athletes using ice slushy ingestion, so I thought it might work for me as well." On the other hand, in HD, the
professional athletes established which strategies to use and when to apply based on experience and support staff (e.g., sport scientists): "After competing in the KONA world championships, I wanted to work with my sport scientist again ahead of competing in the IRONMAN OMAN to trial different cooling methods again, such as cold-water ingestion and pouring in the simulated conditions that I would be competing in using an environmental chamber [....] This trial-and-error approach has really helped me figure out which method is not only beneficial but also practical."

The justification was the same in HH for professional athletes: "Before competing in the IRONMAN World Championships in KONA, I worked closely with my sport scientist to trial different cooling methods such as cold-water ingestion and pouring in the simulated conditions that I would be competing in using an environmental chamber [....] I found this an effective method to determine which method would best work for me."


B
$\left.\begin{array}{cc}\text { Cooling } \\ \text { availability }\end{array}\right\}$

C



Figure 25. (A) How the type and timing of strategies employed in hot and dry conditions by $60 \%(N=21)$ participants who use different strategies depending on condition were established, (B) how the type and timing of strategies employed in hot and humid conditions by $60 \%(N=21)$ participants who use different strategies depending on condition were
established, and (C) how the type and timing of strategies employed in in all hot conditions by $40 \%(N=14)$ participants who employed the same strategy regardless of condition were established.

### 6.4.5. Perceived Effectiveness of Per-Cooling Strategy

There was no difference between perceived effectiveness of heat mitigation strategies by the $40 \%(\mathrm{~N}=14)$ that employed the same heat mitigation strategies in all hot conditions. One hundred percent $(\mathrm{N}=14)$ rated their heat mitigation strategies as 1 ("not effective for minimising performance impairments and heat related illnesses"). There was no difference between perceived effectiveness in HD and HH in the $60 \%(N=21)$ of participants that employed different heat mitigation strategies depending on the condition. Fifty-seven percent ( $\mathrm{N}=12$ ) of the $60 \%(\mathrm{~N}=21)$ rated their strategies in HD and HH as 3 ("Sometimes effective and sometimes not effective"); whereas, $43 \%(\mathrm{~N}=9)$ of the $60 \%(\mathrm{~N}=21)$ rated their strategies in HD and HH as 4 ("Effective for minimising performance impairments").

The competitive athlete perceived the effectiveness of type and timing of strategies in HD to be 3 ("Sometimes effective and sometimes not effective") which was related to experience:
"I think in terms of performance there were positives and negatives of the strategies that I used. I think the cold-water ingestion and pouring water worked and it really helped me on the bike leg; for example, whenever I did not feel comfortable from the heat I would drink and pour again, which reset me back to feeling comfortable again, so that was a positive.... the cold towels provided an instant benefit, but the benefits did not last very long and made me uncomfortable if I was wearing them for a long period of time [...] On reflection I should have practised this strategy before competing as it was new to me."

The competitive athlete perceived the effectiveness of type and timing of strategies in HH to be 4 ("Effective for minimising performance impairments"):
"I think the cold-water ingestion and pouring worked well for me [. . . ..] I felt a lot better and more comfortable using that strategy after more practise, and that helped with my performance during this race."

On one hand, the professional athlete thought that the effectiveness of their type and timings of strategies in HD was 4 ("Effective for minimising performance impairments"):
"I felt really comfortable in terms of the conditions when I was there and during the race, I actually felt good, the best that I have felt whilst competing in hot conditions for sure, which I think was reflected in the race outcome."

The professional athlete thought that the effectiveness of their type and timings of strategies in HD was 4 ("Effective for minimising performance impairments"):
"...with cold-water my performance has continued to improve." Both competitive and professional athlete agree that mental heat mitigation strategies can be effective in both conditions (Figure 6). The competitive athletes found imagery beneficial for minimising heat related illnesses and performance impairments:
"It makes me feel better because I know that when I use that cooling, I will feel more comfortable, and I think knowing what the cooling strategies feel like because I have used them a lot helps with my performance because it gives me something to work towards, i.e., getting to the transition sooner."

On the other hand, the professional athletes also found positive self-talk and locus of control beneficial for minimising performance impairments:
"I had come to the race to win and that I was going to win, and I did win. So, now when I go into a race, I make sure that I have controlled everything that I can control prior to the race, so that on race day I feel confident that I will win."

### 6.4.6. Comparison of Participant Level

Recreational athletes employ the same type of strategies regardless of environmental condition $(\mathrm{N}=10)$. The most reported strategy was cold-water ingestion $(\mathrm{N}=7)$. The timing of application was based on when pit stops were available only ( $\mathrm{N}=7$ ). There was no clear justification for strategy type and timing. As a result, recreational athletes' performance was perceived as impaired, and they suffered from heat related illnesses. Majority of competitive athletes employed different strategies depending on environmental condition ( $N=11 / 15$ ). The most reported strategy ( $\mathrm{N}=9$ ) was cold-water ingestion and pouring. The timing of application was pre-planned based on distance, how they felt during and pitstop availability ( $\mathrm{N}=9$ ). Justification of the type and timing of strategies was based on previous experience/perceived effectiveness ( $\mathrm{N}=9$ ). Additional strategies (e.g., cold towels, ice vests) were sometimes added with cold-water ingestion and/or pouring based on perceived effectiveness $(\mathrm{N}=6)$. The interview findings revealed that using professional athletes as role models influenced their heat mitigation strategy's type and timing. The perceived effectiveness of these strategies was sometimes effective and sometimes not effective for minimising impairments to performance and heat related illnesses. Therefore, the competitive athletes in this sample have yet to master their heat mitigation strategies for training and/or competing in hot conditions ( HD and HH ). All professional athletes employed different strategies depending on environmental condition ( $\mathrm{N}=10$ ). Cold-water ingestion and pouring was the most reported strategy in both HD and HH. Timing of application was preplanned based on distance and how they felt during ( $\mathrm{N}=10$ ). The justification of strategies used was based on previous experience/perceived effectiveness.

### 6.5. Discussion

The aim of this study was to investigate the type, timing, and justification of per-cooling strategies employed by athletes (cyclists-triathletes) during training and/or competitions in hot and dry (HD) and hot and humid (HH) conditions.

### 6.5.1. Main findings

1. Cold-water ingestion was the most employed strategy in HD, whereas a combination of cold-water ingestion and pouring was the most employed strategy in HH .
2. Timing of application was pre-planned based on distance in both conditions, supplemented with how participants felt during when pit stops are available in HD, and how participants felt during in HH .
3. The prevailing justifications for type and timing of strategies was previous experience/perceived effectiveness (e.g., trial and error).
4. There was no difference in perceived effectiveness of type and timing of strategies employed in HD and HH.
5. There is a difference in the type, timing, justification, and perceived effectiveness of heat mitigation strategies between recreational, competitive, and professional athletes.
6. Competitive athletes found benefits from mental strategies, such as imagery and modelling; whereas professional athletes found benefits from positive self-talk and locus of control during competition in HD and HH .

Cold-water ingestion has previously been shown to directly cool core organs and circulating blood, which enhances thermal sensation through thermoreceptors in the mouth and gut, and can be complementary to existing hydration and/or nutrition supplementation strategies used pre-event and during event (e.g., combine with carbohydrates and minerals; James et al., 2015; Bongers et al., 2017). Mechanistically, the thermal stimulus to elicit a phase change from cold to warm water draws heat from internal tissue, reducing temperatures proximal to the gut directly and indirectly cools other regions, as blood of a lower temperature circulates the body. Therefore, unlike external cooling, internal cooling often displays insignificant changes in $\mathrm{T}_{\text {sk }}$, but does induce changes in $\mathrm{T}_{\text {core }} / \mathrm{T}_{\text {rectal }}$, reflecting the cooling site proximity to core organs, and typical $\mathrm{T}_{\text {core }} / \mathrm{T}_{\text {rectal }}$ measurements in the gut (e.g., pill) or rectum (e.g., thermistor probe). Perceptual benefits of reduced thermal strain (i.e. comfort and sensation) can also be achieved via mouth and gut cooling as a consequence of
the relative prominence of thermoreceptors in these regions (Villanova et al., 1997; Flouris, 2011).

In contrast to the strategies employed in the current study, previous findings have highlighted that HD greatly favours evaporation, so cycling in the desert may be an ideal situation for cold-water pouring, as most of it is likely to evaporate (Morris and Jay, 2016). Despite this understanding, a combination of strategies was employed by endurance athletes in Racinais et al. (2021) study, showing that $93 \%$ of participants employed percooling (mainly head/face water dousing/pouring and cold-water ingestion) at IAAF World Athletics Championships in HD. Collectively these findings highlight that there is a lack of consensus between which strategy to use (i.e. cold-water ingestion only, cold-water pouring only, or a combination of the two) during training and/or competition in HD conditions by endurance athletes.

In contrast to HD, HH conditions make the process of evaporation increasingly difficult, therefore, mechanistically, cold-water pouring wouldn't offer any significant evaporative heat loss whilst cycling in HH (Morris and Jay, 2016). This poses the question as to whether internal cooling via cold-water ingestion would be more favourable during HH . Morris et al. (2014) examined local sweating activity, as well as $\mathrm{T}_{\text {core }}$ and $\mathrm{T}_{\text {sk }}$, and found that immediately after cold-water ingestion, a sudden drop in local sweat rates occurred at the back, forehead, and forearm. All of which remained depressed for several minutes, despite the fact that $\mathrm{T}_{\text {core }}$ and $\mathrm{T}_{\text {sk }}$ were unaltered throughout. Upon further investigation by administering aliquots of water of equal volume and temperature to the mouth via swilling or directly into the stomach via a nasogastric tube, it was determined that the reductions in sweating were due to signalling from independent thermoreceptors that are probably located in the stomach and/or small intestine without input from thermoreceptors located in the deep body core or skin (Morris et al., 2014). Morris et al. (2016) conducted a subsequent study examining ice slurry ingestion during exercise and found similar results, with sweating drastically reduced following ingestion, without changes in $\mathrm{T}_{\text {core }} / \mathrm{T}_{\text {rectal }}$ or $\mathrm{T}_{\text {sk }}$. Perhaps more important than the
changes in local sweat rate, Morris et al. (2016) also measured environmental parameters, such as air velocity, ambient temperature and humidity, and designed the experiment in order to estimate heat loss from all avenues of heat transfer. Critically, alterations in evaporative potential due to differences in sweating were determined (Bain et al., 2012). The findings showed that compared to a $37{ }^{\circ} \mathrm{C}$ drink, the reduction in evaporative heat loss with 1.5 and $10^{\circ} \mathrm{C}$ fluid ingestion was approximately equal to the additional internal heat transfer obtained with these drinks. Notably in the follow up study where the participants ingested ice slurry drinks, the reduction in sweating compared to a $37{ }^{\circ} \mathrm{C}$ drink was so great that it exceeded the internal heat transfer to the ice slurry, despite the extra internal heat loss due to the latent heat fusion. As such, ice slurry ingestion led to a greater, not smaller, net heat storage compared to a $37{ }^{\circ} \mathrm{C}$ drink. However, it should be noted that a distinct advantage of cold-water ingestion is that all internal heat transfer is $100 \%$ efficient, whereas reductions in sweating in an HH condition may not mean that evaporation will be equally impacted. Sweat must evaporate to provide a cooling effect, and if it is simply sweat that will ultimately drip off the body anyway that is reduced then cold-water ingestion will likely confer an advantage. Collectively, these mechanistic findings suggest that the cyclists-triathletes in the current study are using the incorrect per-cooling strategies for the condition that they are training and/or competing in. Specifically, cold-water pouring should be employed in HD and coldwater ingestion should be employed in HH. The impact of these strategies on cycling performance have yet to be investigated.

In addition to physical strategies, the competitive and professional athletes reported using mental strategies, such as imagery, reframing, modelling, positive self-talk (PST) and locus of control (LOC), respectively, when preparing for competitions in hot conditions (Figure 21). These strategies helped to cope with the thermal discomfort experienced during cycling in HD and HH by creating a perceived "cold feeling". This concept was explored in Coudevylle et al. (2019) review, in which the benefits of mental techniques (such as hypnosis) in relation to heat or heat exposure were discussed. For example, Jussiau et al. (2002) showed an
increase in heat detection and heat-pain thresholds after a hypnosis intervention. In addition, Younus et al. (2003) showed that the frequency, duration, and severity of the hot flashes were significantly reduced after hypnosis ( $4 \times 1-\mathrm{h} /$ week). These studies demonstrate that mental strategies can be applied and provide benefits in relation to thermoregulation.

Future research should aim to investigate whether this also works for cold interventions and whether there were any specific effects on psychological markers (i.e. TC, TS, AF) and the motivation to perform exercise in hot conditions ( HD and HH ) compared to a thermoneutral/control condition (Coudevylle et al., 2019). The mental strategies employed by professional cyclists-triathletes are supported by previously work demonstrating that PST improved running performance in HD by 8\% (Barwood et al., 2008).

Therefore, it could be hypothesised that this mental strategy may prove beneficial for other endurance sports such as cycling, and other hot conditions such as HH , however, this has yet to be investigated.

In addition to PST, the professional athlete reported controlling as many factors as possible to increase self-confidence going into a competition. This behaviour is classed as locus of control - the extent to which people see the environment as controllable (Schippers and Van Lange, 2006). It has been argued that people who see the environment as controllable feel less tension and are more self-confidence before a competition (Schippers and Van Lange, 2006). Phillips and Hopkins (2020) highlighted that self-confidence had a positive effect on cycling performance. These findings suggest that improving locus of control to view the environment as controllable may improve self-confidence and prove beneficial for cycling performance in hot conditions. Therefore, the current study contributes to the early findings in this research area, demonstrating the potential benefit of using mental strategies/psychological skills training (for example imagery, modelling, PST, LOC) during cycling in hot conditions. In addition to the type of strategy employed, the current study also highlighted the timing of application in HD and HH. Previous research in the area that is conducted in a laboratory setting commonly provides cold-water ad-libitum (Dugas et al.,
2009). For example, provided ad libitum cold-water $\left(10^{\circ} \mathrm{C}\right)$ during a $40-\mathrm{km}$ cycling TT in HH conditions to investigate the frequency and quantity of water consumed. The findings highlighted that cold water was consumed on completion of every 2 kms . The current study supported these findings, highlighting that cold water was ingested based on elapsed distance and how athletes felt in $\mathrm{HH}(42.85 \%, \mathrm{~N}=9$; Figure 24). Athletes felt in $\mathrm{HH}(42.85 \%$, $\mathrm{N}=9$; Figure 24). Athletes also consumed cold water based on elapsed distance and how they felt in HD, with the addition of ingestion at pit stops during competition (38.09\%; Figure 24). However, in the athletes that employed the same strategies regardless of competition, cold water ingestion was completed at pit stops only ( $50 \%, \mathrm{~N}=7$; Figure 24). Therefore, the optimal timing of cold-water ingestion for thermoregulatory and performance benefits during a self-paced cycling TT in HD and HH are still unknown. The athletes in the current study relied on previous experience/perceived effectiveness when selecting type and timing of strategies.

Mechanistically the strategies selected were not the most effective for alleviating heat strain (i.e. greater heat loss than heat gain) for the desired conditions, however, the effectiveness of these strategies on minimising performance impairments and heat related illnesses have yet to be investigated in these conditions. There was no difference in perceived effectiveness of strategies employed in HD and HH by the $60 \%(\mathrm{~N}=21)$ of participants that reported using different strategies depending on condition. However, the interview findings revealed that there was a difference between perceived effectiveness of strategies between HD and HH for the competitive and professional athlete. The professional athlete stated using a trial-and-error approach with heat mitigation strategies with the support of a sport scientist. The competitive and recreational athletes had less experience and support compared to the professional athlete, which may explain why $80 \%$ of recreational and $60 \%$ of competitive athlete employed the same heat mitigation strategy regardless of the condition. Surprisingly, the competitive athlete chose to use the same heat mitigation strategy in both conditions despite their understanding of perceived heat stress (Figure 22).

This highlights that there may be a lack of understanding among competitive athletes in what heat mitigation strategies to use (e.g., type and timing) in different conditions (e.g., HD vs. HH ) (Figure 22). The interview findings highlighted that the competitive athletes use modelling of professional athletes' behaviour to obtain information on which heat mitigation strategies to use. It is common for fans of elite/professional athletes to mimic behavioural cues (Lynch et al., 2014) or use copying as an effective skill development technique (Abraham and Collins, 2011). However, the use of modelling to determine heat mitigation strategies was a novel finding of the current study. In addition, the recreational athlete' strategies were perceived as not effective for minimising performance impairments and heat related illnesses. Shendell et al. (2010) identified adult recreational endurance athletes, and in particular less experienced (e.g., first time) participants, as a susceptible and vulnerable population subgroup to heat related illnesses (Shendell et al., 2010). These findings were related to a lack of knowledge in exercising in hot conditions mostly from lack of experience and education on heat related illnesses (Shendell et al., 2010). An additional factor that contributes to this is that recreational athletes train less and at a lower intensity than competitive and professional athlete, implying that they would have a lower physical fitness and/or higher BMI which are risk factors for heat exhaustion (Winkenwerder and Sawka, 2007). The findings of the current study support Shendell et al. (2010) study demonstrating that recreational athletes are at a higher risk compared to competitive and professional athletes due to knowledge/understanding and experience. Therefore, it is important that recreational and competitive athletes are educated on the impairment effect of HD and HH on performance and risk of heat related illnesses together with strategies on how to compete this impairment effect. This education should also cover the risk of modelling wrong heat mitigation strategies in different environmental conditions.

### 7.6. Limitations and Perspectives

Despite being derived from a relatively small sample size $(\mathrm{N}=35)$, the findings of this study highlight the existing strategies employed by cyclists-triathletes during training and/or
competitions in hot and dry and hot and humid conditions. The importance of this is that different types of strategies are employed depending on the condition however the effectiveness of these strategies in these conditions have yet to be explored. Therefore, future larger scale studies should explore the effectiveness of these heat mitigation strategies in hot and dry and hot and humid conditions. The study of Racinais et al. (2021) had an effective approach to pre-race questionnaires. This would also allow for exact conditions on competition day to be recorded and related to questionnaire findings.

As noted in the methodology, questions related to quantity and magnitude of cooling employed were removed from the questionnaire/interview to focus on type, timing, justification, and perceived effectiveness in hot and dry and hot and humid conditions. Carvalho et al., (2014) reported the quantity of water consumed during a cycling time-trial, which increased over time [0-8 km ( $\sim 50 \mathrm{~mL}$ ), 8 - $16 \mathrm{~km}(\sim 100 \mathrm{~mL}), 16-24 \mathrm{~km}(\sim 260 \mathrm{~mL})$, 24-32 km ( $\sim 230 \mathrm{~mL}$ ), and 32-40km ( $\sim 180 \mathrm{~mL}$ )] equating to a total consumption of $1.1 \pm 0.4$ L. This strategy contributed to a completion time of $93+3.5 \mathrm{~min}$, however, few studies have investigated the impact of cold-water ingestion on performance and, therefore, it is unclear whether this method was effective at improving $\mathbb{T}$ performance in HH conditions. In contrast to self-paced protocols, exercise to exhaustion protocols often base consumption of coldwater $\left(4^{\circ} \mathrm{C}\right)$ on time, with every 15 mins being the most reported strategy in both HD (Mündel et al., 2006; Naito and Ogaki, 2017) and HH (Lee et al., 2008). Therefore, the optimal quantity of cold-water to ingest and/or pour in HD and HH conditions is unknown and should be an area for future research to explore.

It was also reported that cyclists-triathletes do not only use physical heat mitigation strategies, but also mental strategies when preparing for training and/or competitions in hot conditions. Therefore, future research should investigate the mental strategies employed and their effectiveness on minimising performance impairments and heat related illnesses.

Finally, the results suggest the need to educate competitive and recreational athletes on heat strain and heat mitigation strategies. Based on the competitive athletes' use of
modelling to obtain information on heat mitigation strategies, it may suggest that the best approach to educate competitive and recreational athletes is through role-models (for example professional athletes). This could be conducted through professional athletes together with their support staff giving talks/webinars, which reflect on current and past practise.

### 7.7. Conclusion

Using mixed-method methodology and a population of cyclists-triathletes, this study identified that cold-water ingestion was the prevalent cooling strategy employed in hot and dry, whereas a combination of cold-water ingestion and pouring was the most reported strategy in hot and humid. In HD, the timing of application was based on elapsed distance, how they felt during and when pitstops were available, compared to elapsed distance and how they felt during in HH. The type and timing of strategies were based on previous experience and perceived effectiveness. There was no difference in the perceived effectiveness of strategies employed in HD and HH. However, the type and timing of strategies have yet to be investigated in the favoured conditions for their effect on minimising performance impairments and heat related illnesses. Mental strategies seem to be promising methods that require further investigation in hot and dry and hot and humid conditions. Future research should investigate the effectiveness of cold-water ingestion and pouring on performance in hot and dry and hot and humid conditions to determine the optimal type of strategy for cyclists-triathletes to use during training and/or competition in these conditions. The impact of mental strategies should also be investigated further in both isolation and combination with cold-water ingestion, pouring and combined ingestion, and pouring.

### 7.8. Importance of Findings for Subsequent Chapter and Thesis

- Cold-water ingestion was the most employed strategy in HD, whereas a combination of cold-water ingestion and pouring was the most employed strategy in HH. This was associated with perceived effectiveness of these strategies. However, the actual effectiveness of these strategies (i.e. affect on performance reducing thermal strain)
have yet to be investigated. Therefore, these two strategies will be employed in study 4 to investigate their effect on cycling performance in both HD and HH conditions. This will also be conducted on a competitive cyclist/triathlete group as this had the largest participation number of all groups (recreational, competitive, professional).
- Timing of application was pre-planned based predominantly by distance in both conditions and supplemented with how participants felt during and when pit stops are available in HD, and how participants felt during in HH. Periard et al., (2020) suggested that if exercise intensity is moderate to high, exercise duration is $>60 \mathrm{~min}$ and the environmental condition is warm to hot then a drinking strategy should be pre-planned. Therefore per-cooling via cold-water ingestion and pouring in study 4 is based on timing as it is a time-based time-trial (45min preload, and 30min TT = 75 min ) instead of distance.


# Chapter 7. Study 4: To drink or to pour? Per-cooling cold-water ingestion has a greater ergogenic effect on 30min cycling time-trial performance in hot and dry and hot and humid environmental conditions compared to cold-water pouring. 

### 7.1. Abstract

Purpose: To investigate the effect of per-cooling via cold-water ingestion compared to coldwater pouring on physiological and perceptual responses during a 30min cycling time-trial in hot and dry and hot and humid conditions.

Methods: 12 participants (Group 1: N=6, 29 $\pm 2 \mathrm{yrs}, 187 \pm 9 \mathrm{~cm}, 78 \pm 6 \mathrm{~kg}, 53 \pm 4 \mathrm{~mL} . \mathrm{kg} . \mathrm{min}^{-1}$, and Group 2: $\mathrm{N}=6,29 \pm 2 \mathrm{yrs}, 186 \pm 10 \mathrm{~cm}, 78 \pm 6 \mathrm{~kg}, 54 \pm 4 \mathrm{~mL} . \mathrm{kg} . \mathrm{min}^{-1}$ ) visited the laboratory for 1 familiarisation and 4 experimental trial. Participants were assigned randomly into 2 groups: Group 1 - Hot and Dry, and Group 2 - Hot and Humid. Within their groups participants completed $4 \times 30 \mathrm{~min}$ cycling time-trials in neutral with no cooling, hot with no cooling, hot with cold-water ingestion and hot with cold-water pouring, separated by $\sim 5-7$ days. Performance, physiological, perceptual measurements were recorded throughout the preload and TT.

Results: Cold-water pouring was more beneficial compared to cold-water ingestion for power output in hot and dry conditions (Mean $\pm$ SD $199.40 \pm 0.82 \mathrm{~W}$ vs $180.35 \pm 1.51 \mathrm{~W}, \mathrm{p}=0.023$ ). This performance benefit occurred in absence of a significant difference in rectal temperature between cold-water pouring and ingestion $\left(38.18 \pm 0.13^{\circ} \mathrm{C}\right.$ vs $38.38 \pm 0.14^{\circ} \mathrm{C}, \mathrm{p}=$ $\mathrm{p}=0.121$ ). There was also no difference in thermal comfort between cold-water pouring and ingestion ( $11 \pm 1$ ( $55 \%$ ) vs $12 \pm 2(60 \%)$; $p=0.067$ ).

Whereas cold-water ingestion was more beneficial compared to cold-water pouring for power output in hot and humid conditions (Mean $\pm$ SD $173.77 \pm 0.97 \mathrm{~W}$ vs $165.16 \pm 1.31 \mathrm{~W}$, $\mathrm{p}=0.760$ ). This was supported by physiological responses such as rectal temperature which was significantly lower with cold-water ingestion compared to cold-water pouring $\left(37.9 \pm 0.1^{\circ} \mathrm{C}\right.$ vs $38.5 \pm 0.19^{\circ} \mathrm{C}, \mathrm{p}=0.001$ ). This was also supported by perceptual responses
such as mean $\pm$ SD thermal comfort ratings which was significantly greater with cold-water pouring than cold-water ingestion during the time-trial in hot and humid conditions ( $14 \pm 3(70 \%)$ vs $12 \pm 1(60 \%) ; p=0.004)$.

Power in the hot and dry conditions with cold-water pouring (199.40 $\pm 0.82 \mathrm{~W}$ ) was significantly greater compared to hot and humid condition with cold-water pouring ( $165.16 \pm 1.31 \mathrm{~W}, \mathrm{p}=0.001$ ). This difference occurred in absence of a difference in physiological responses such as rectal temperature as there was no difference between groups respectively ( $38.18 \mathrm{~T} \pm 0.13$ vs $38.4 \pm 0.22, p=0.253$ ). However, this performance difference was supported by perceptual responses such as thermal comfort ratings which were significantly greater with cold-water pouring during the time-trial in hot and humid conditions compared to hot and dry conditions (14 $\pm 3(70 \%)$ vs $12 \pm 2(60 \%) ; p=0.021$ ).

Conclusion: Cold-water pouring provided a greater ergogenic effect on 30min cycling timetrial performance in HD conditions compared to cold-water ingestion. This was accompanied by improvements in thermal comfort and in the absence of a reduction in rectal temperature. Whereas cold-water ingestion provided a greater ergogenic effect on power output during a 30min cycling time-trial performance in HH conditions compared to cold-water pouring. This was related to a reduction in rectal temperature and thermal discomfort with cold-water pouring.

### 7.2. Introduction

The findings of chapter 5 (Study 2) highlighted that average power output during a 30min cycling time-trial was significantly impaired in HH compared to HD conditions. This impairment was related to the imbalance between heat gain (l.e. environmental and metabolic) and heat loss (I.e. evaporation) resulting in a significantly higher mean $\pm$ SD $T_{\text {rectal }}$, thermal sensation and thermal discomfort in HH conditions.

In an attempt to mitigate heat-related impairments in performance during training and/or competitions in hot conditions (both dry and humid), athletes regularly employ different
cooling strategies both before (pre-cooling) and during (per-cooling) exercise (Bongers et al., 2015). Pre-cooling athletes, using cold water immersion (2-20 ) (Duffield et al., 2010), ice vests (I.e. applied to the torso; Cotter et al., 2001) or neck cooling collars (Tyler and Sunderland, 2011; Sunderland et al., 2015) blunts heat related decrements in performance. While likely beneficial, most of these interventions are not particularly feasible in lowresource environments (such as away competitions, competition in remote areas and amateur level sports). Typically, during endurance events drink stations/transition stops or support cars are available where athletes are able to pick up or restock their water supply. In chapter 6 (Study 3) cyclists-triathletes reported performance benefits whilst using cold-water ingestion and pouring during cycling competitions in HD and HH conditions. These findings supported Racinais et al., (2021) article which reported that $93 \%$ of athletes at the Doha (hot and dry) 2019 IAAF World Athletics Championships planned to use water for per-cooling ( $65 \%$ = head/face water dousing/pouring and $25 \%=$ cold-water ingestion). Despite the readily available nature of water at these events, little research has been conducted on the efficacy of cold-water ingestion and pouring for improving endurance performance in hot conditions and the mechanisms behind this.

The aim of all cooling strategies is to alleviate heat stress, however the mechanisms behind internal and external cooling are different and therefore may trigger different responses (Jay and Morris, 2016). Cold-water ingestion is considered as the most straight forward way to cool via conduction. The amount of heat lost is determined by the temperature difference between the ingested water and the body core, the volume of water drunk, and the specific heat capacity of water, i.e. the amount of heat energy needed to warm up 1 g of water by $1^{\circ} \mathrm{C}$, which is $4.184 \mathrm{~J} / \mathrm{g} /{ }^{\circ} \mathrm{C}$. In comparison, cold-water pouring (sometimes referred to as 'dousing') is considered as the most straight forward way to cool via convection. The effectiveness of heat loss is dependent on how likely the water is to evaporate. For example, dry air and high wind speeds greatly favour evaporation, so cycling in HD conditions may be an ideal situation for cold-water pouring. Conversely, high levels of ambient humidity and low
air speeds make it increasingly difficult for evaporation to occur and may result in greater heat storage. Therefore, cold-water pouring may not be the best method to incorporate whilst cycling in HH conditions, posing the question as to which method is the most effective for different environmental conditions.

To investigate the effect of per-cooling via cold-water ingestion compared to cold-water pouring on physiological and perceptual responses during a 30min cycling time-trial in hot and dry and hot and humid conditions.

### 7.3 Methodology

### 7.3.1. Participants

12 participants completed study 4 and were recruited using the recruitment methods and inclusion and exclusion criteria outlined in the general methodology section (Chapter 3). If the inclusion criteria were met, participants were randomly separated into 2 groups:

1. Hot and Dry conditions $\left(35^{\circ} \mathrm{C}, 30 \%, 2.2 \mathrm{~m} / \mathrm{s}^{1}\right.$, equating to a WBGT of $\left.\sim 27^{\circ} \mathrm{C}\right)$
2. Hot and Humid conditions $\left(30^{\circ} \mathrm{C}, 70 \%, 2.2 \mathrm{~m} / \mathrm{s}\right.$, equating to a WBGT of $\left.\sim 26^{\circ} \mathrm{C}\right)$

The groups were matched for age, stature, body mass, experience, training and $\mathrm{VO}_{2 \text { max }}$ (Table 30).

Table 29. Mean $\pm$ SD differences in cyclists-triathletes in each group for $\operatorname{sex}(M: F)$, age(yrs), stature $(\mathrm{cm})$, body mass $(\mathrm{kg}), \mathrm{VO}_{2 \max }\left(\mathrm{~mL} . \mathrm{kg} \cdot \mathrm{min}^{-1}\right)$, maximal aerobic power at $\mathrm{VO}_{2 \max }(\mathrm{~W})$, prior experience(yrs) and weekly training(hrs).

Groups	$1 \text { = Hot and Dry }$ Conditions	2 = Hot and Humid Conditions
Participants ( N )	6	6
Sex Ration (M:F)	6:0	6:0
Age (Years)	$29 \pm 2$	$29 \pm 2$
Stature (cm)	$187 \pm 9$	$186 \pm 10$
Body Mass ( Kg )	$78 \pm 6$	$78 \pm 6$
Body Mass Index (kg/m2)	$22 \pm 2$	$21 \pm 2$
$\mathrm{VO}_{\text {2max }}$ (mL.kg.min ${ }^{-}$   ${ }^{1}$ )	$53 \pm 4$	$54 \pm 4$


MAP at VO 2max $^{\text {(W) }}$	$283.3 \pm 51.6$	$283.3 \pm 51.6$
MAX HR at VO   2max		
${\text { (b. } \text { min }^{-1} \text { ) }}$	$190 \pm 3$	$192 \pm 4$
Prior Experience   (Years)	$6 \pm 2$	$6 \pm 3$
Weekly Training   (hrs)	$6-8 \mathrm{hrs}$	$6-8 \mathrm{hrs}$

### 7.3.2. Experimental Design

All data was collected between the winter and spring months of January-May (2021), to prevent any heat acclimatization effect.

Each participant was invited to visit the laboratory on 5 occasions to complete 1 familiarisation and 4 experimental trials (Figure 27). Each group completed 4 experimental trials in a randomised order all in their designated environmental condition. This included 2 control trial ((i) thermoneutral and no cooling and (ii) hot with no cooling) and 2 cooling intervention trials ((i) cold-water ingestion and (ii) cold-water pouring; Figure 27). Each session lasted $\sim 1.5 \mathrm{hrs}$.


Figure 27. Illustrated structure of study design outlining the 4 experimental trials completed within each group ((i) thermoneutral and no cooling, (ii) hot with no cooling, (iii) hot with coldwater ingestion, and (iv) hot with cold-water pouring).

### 7.3.3. Familiarisation and Standardization

Upon arrival to the laboratory volunteers received information and explanation regarding the study aims, structure and measurements. Specifically, volunteers received explanations and demonstrations of all equipment and procedures included in the study, as well as being familiarised with specialist equipment and measurement tools (i.e., turbo/wattbike, perceptual scales). All trials were conducted on a turbo (Wahoo, Kickr, Atlanta, USA), which allowed each participant to bring in and use their own bicycle, or alternatively use the bicycle London South Bank University provided (2019 Specialized Allez Elite). In this time and throughout the study volunteers were permitted to ask questions regarding the study demands and requirements, which were answered by the investigator. If the volunteer was interested and willing to participate then they would complete a health screening questionnaire and consent form.

Volunteers anthropometric measurements of stature (cm) and body mass (kg) was then collected before completing a $\mathrm{VO}_{2 \text { max }}$ test. Participants were strapped with a HR monitor (polar) and then completed a $5-10 \mathrm{~min}$ self-paced warm up. The $\mathrm{VO}_{2 \max }$ test started at 100 W and was increased by 40 W every 4 min . After 16 min , the load was increased by 30 W every minute until participants reached volitional exhaustion. Expired air and HR was measured during the last minute of each stage. After 30min of rest, participants completed a familiarisation with the experimental protocol under the experimental conditions (depending on group allocation).

Prior to every trial across the experimental studies, participants attended the laboratory after refraining from caffeine, alcohol, heat exposure and vigorous exercise for $\geq 48 \mathrm{hr}$ to facilitate recovery and rehydration. In the preliminary visit, all participants complete a food record for the day (24hrs prior to initial familiarisation trial). They were then asked to adopt the same diet on the day before each subsequent trial. In addition, all experimental trials at a similar time of day ( $\pm 1$ hrs) to minimise the impact of circadian rhythm variation on measured parameters (Carrier \& Monk, 2000). Whilst enrolled in the study, participants were asked to maintain their

### 7.3.4. Experimental Trials

habitual daily routine of diet, sleep and exercise patterns in a training diary to calculate daily workload ( Kj ). Finally, to control for hydration status during the preload, participants were required to drink 500 mL of thermoneutral room temperature water in all trials. This was all to minimise the impact of these factors on psycho-physiological responses assessed within the experimental studies.


Figure 28. Illustrated figure of experiment trials in study 4 with key above. $T_{\text {rectal }}=$ rectal temperature, $T_{s k}=$ skin temperature, $H R=$ heart rate, $U S G=$ urine specific gravity, map = mean aerobic power, subjective measures = Ratings of perceived exertion, thermal sensation, thermal comfort, and affect. In non-cooling trials the water bottle icon represents hydration timings so that trials were matched for hydration status.

Experimental trials started with a 10min standardized warm-up (outside the environmental chamber), followed by a 45 min cycle preload at a fixed intensity ( $50 \%$ of maximal aerobic power) (Figure 28). On completion of the preload, there was a 10-min rest before completing a 30min self-paced performance test on a turbo. Within this 10-minute rest participants had a nude body mass measurement. The investigator then gave verbal standardised instructions to all participants to complete the greatest distance $(\mathrm{km})$ possible during the 30 min TT . From the onset of the TT participants were able to freely increase or decrease PO. There was no motivation given and the only visual feedback was the time they had left to complete the 30 min performance test. Distance covered by participants was not revealed until all 3 of the experimental trials were completed. Participants were able to ask any questions before they began. Throughout the experimental trial air flow was provided by a fan $(2.2 \mathrm{~m} / \mathrm{s})$ that was in line with the participants torso (shoulder to waist) providing a headwind effect.

During the performance test, 1 L of room temperature water was provided for the participants to drink ad libitum.

### 7.3.5. Cooling intervention

2 cooling interventions were used in this study (i) ingestion of cold-water $\left(4^{\circ} \mathrm{C}\right)$ and (ii) pouring of cold-water $\left(4^{\circ} \mathrm{C}\right)$ over the participants neck, shoulders and back (based on study 3 findings). Due to the nature of the TT (complete as much distance as possible within 30 min ), the cooling intervention in this study was applied on completion of every 15 min in the 45 min preload (i.e. 15,30 and 45 min ) and 10 min in the 30 min cycling time-trial (i.e. 0 , 10 , and 20 min ). In addition, the quantities of the water ingested and poured was based on study 3 findings. For example, cyclists and triathletes reported using aliquots of $<500 \mathrm{~mL}$ of water when consuming or pouring (based on long distance events of $\sim 180 \mathrm{~km}$ ), therefore the volume of water used for the cooling intervention was $\sim 150 \mathrm{ml}$ each time. In total participants were given $5 \times 150 \mathrm{~mL}=750 \mathrm{~mL}$ ( 450 mL during the preload and 300 ml during the performance test). The participants in group 2 (cold-water pouring) also received 750 mL of
room temperature water to drink at the same time as pouring cold-water to control for any hydration status differences between the groups.

### 7.3.6. Performance Measurements

Power output and distance covered were continuously measured using PerfPRO during the experimental trials.

### 7.3.7. Physiological Measurements

Prior trial measurements of USG and NBM are taken before entering the environmental chamber. Throughout the trial, $\mathrm{T}_{\text {rectal, }} \mathrm{T}_{\text {sk, }}$, HR were recorded continuously. In the 10 min rest between preload and TT a second BM is taken. Post TT a final NBM measurement is taken after wiping down the sweat on the body using a dry towel. NBM together with fluid intake were used to calculate SR. All body mass measurements were taken nude in a private room.

### 7.3.8. Perceptual Measurements

Upon arrival to the lab for all experimental trial's participants completed a Situational Motivation Scale (Guay et al., 2000) to access for any changes in situational motivation to participate in this study between visits which may influence performance. Participants then sat quietly post warm-up and pre-TT for 2 min before baseline measurements of $\mathrm{HR}, \mathrm{AF}$, RPE, and TM were assessed. In the 45 min preload, RPE, TM, TS, TC and AF were recorded every 15 mins (i.e. $0,15,30$, and 45 min ), and every 15 min in the 30 min cycling TT (i.e. 0,15 and 30 min ).

### 7.3.9. Statistical analysis

All statistical analysis was completed using SPSS (version 21, IBM Corporation, Armonk, NY). Shapiro-Wilk's test revealed that all physiological and performance data were normally distributed $(P>0.05)$. Variables that were normally distributed were analyzed using a threeway repeated measures ANOVA (group (1 or 2) x condition ((i) thermoneutral with no cooling, (ii) hot with no cooling, (iii) hot with cold-water ingestion, and (iv) hot with cold-water
pouring) x time ( $0,5,10,15,20,25,30,35,40,45 \mathrm{~min})$ ) to test for significant differences, main and interactions effects at time intervals (preload= 10 blocks $(B)$ of 5 min $(0,5,10,15,20,25,30,35,40,45 \mathrm{~min})$ and $\mathrm{TT}=7$ blocks $(B)$ of $5 \min (0,5,10,15,20,25,30 \mathrm{~min})$ ). Partial eta-squared ( n 2 ) was calculated as a measure of effect size. Values of $0.01,0.06$ and above 0.14 were considered as small, medium and large, respectively (Cohen, 1988). A related samples Friedman's non-parametric test (TM, AF, RPE, TS and TC) was used for data not normally distributed. Bonferroni post hoc pairwise comparisons were used to identify locations of significant effects. Data was considered significant if $p \leq 0.05$. All data are presented as group means $\pm$ SD.

### 7.4. Results

### 7.4.2. The Effect of Cooling on Performance



Figure 29. 5 min mean $\pm S D$ power output during 30 min cycling time-trial in hot and dry conditions $(A)$ and hot and humid conditions $(B)$. Con $=$ thermoneutral, hot = hot and dry or hot and humid, drink = cold-water ingestion, pour = cold-water pouring, and (C) mean $\pm$ SD power output during 30min cycling time-trial in hot and dry and hot and humid conditions (white = group 1 (hot and dry), grey = group 2 (hot and humid).

Panels A\&B *on y axis = significant difference between conditions.

Panels A\&B * on x axis = significant difference over time.

Panels $A \& B £=$ difference between groups in the hot conditions only.
Panel C * $=$ difference between conditions within group.

Panel $C^{* *}=$ difference between groups in hot condition only

Panels $A \& B$ *on y axis = significant difference between conditions.

Panels $A \& B$ * on x axis = significant difference over time.

Panels $A \& B £=$ difference between groups in the hot conditions only.

Panel C * = difference between conditions within group.

Panel $C^{* *}=$ difference between groups in hot condition only

Table 30. Mean $\pm$ SD total distance (km) and power (W) during the 30min cycling time-trial.

Group	1				2			
Condition	Thermoneutral	Hot	Hot with   cold-water   ingestion	Hot with   cold-water   pouring	Thermoneutral   Hot with   cold-water   ingestion	Hot with   cold-water   pouring		
Total   Distance   Covered   (km)	$10.60 \pm 0.89$	$9.55 \pm 0.62$	$9.90 \pm 0.63$	$10.21 \pm 0.64$	$10.96 \pm 0.89$	$9.23 \pm 0.68$	$9.93 \pm 0.18$	$9.42 \pm 0.22$
Power   Output   (W)	$236.86 \pm 2.83$	$177.35 \pm 6.68$	$180.35 \pm 5.51$	$199.40 \pm 5.82$	$235 \pm 2.48$	$160.12 \pm 5.43$	$173.77 \pm 6.97$	$165.16 \pm 5.31$

### 7.4.2.1. Power Output in Hot and Dry (Group 1)

There was a significant interaction between condition and time for power output $(f(5,50)=$ 331.095, $p=0.036, n^{2}=0.573$ ). There was a significant main effect for time for power output $(f(5,50)=360.800, p=0.001, \eta 2=0.973)$ with average power output increasing from start to finish (Figure 29). Post-hoc analysis indicated that in control with no cooling, there was a significant difference between B1 (0to5min), B2(5to10min), B3(10to15min) and $B 4$ (15to20min), B5(20to25min), B6(25to30min; $p=0.046$ ). In cold-water ingestion, there was a significant difference between B 1 ( 0 to5min) and B 6 (25to30min, $\mathrm{p}=0.003$ ). In cold-water pouring, there was a significant difference between B1 (0to5min) and B2(5to10minp=0.014). In hot with no cooling, there was a significant difference between B1 (0to5min), and B4(15to20min), B5(20to25min), B6(25to30min; $\mathrm{p}=0.003$ ) showing that power output was greater in the first 5 mins compared to $15-25 \mathrm{~min}$.

There was a significant difference in power output between conditions $(f(3,30)=4179.291$, $p=0.000)$ and an interaction between condition and time $(f(15,50)=45.910, p=0.000$. Post hoc analysis indicated that average power output in control (236.86 $\pm 1.83 \mathrm{~W}$ ) was significantly greater throughout the TT compared to hot with no cooling (177.35 $\pm 1.68 \mathrm{~W}, \mathrm{p}=0.014 ; 33 \%$ ), cold-water ingestion (180.35 $\pm 1.51 \mathrm{~W} p=0.023 ; 31 \%$ ) and POUR (199.40 $\pm 0.82 \mathrm{~W} p=0.035$; 18\%;Table 30 and Figure 29 Panel C). Average power output in cold-water pouring ( $199.40 \pm 0.82 \mathrm{~W}$ ) was significantly greater throughout the TT compared to cold-water ingestion ( $180.35 \pm 1.51 \mathrm{~W}, \mathrm{p}=0.023 ; 10 \%$; Table 30 and Figure 29 Panel C). This inferred that cold-water pouring was more effective at reducing the impairment shown in power output in hot and dry conditions compared to cold-water ingestion.

### 7.4.2.2. Power Output in Hot and Humid (Group 2)

There was a significant interaction for power output $\left(f(5,50)=331.095, p=0.036, n^{2}\right.$ $=0.573$ ). There was a significant main effect for time for power output $(f(5,50)=360.800, p=$ $0.000, \eta 2=0.973$ ) with average power output increasing from start to finish (Figure 29). Post
hoc analysis indicated that in control with no cooling, there was a significant difference between B1 (0to5min), B2(5to10min), B3(10to15min) and B4(15to20min), B5(20to25min), $B 6(25 t o 30 \mathrm{~min} ; \mathrm{p}=0.003$ ). In cold-water ingestion, there was a significant difference between B 1 (0to5min) and $\mathrm{B6}(25 \mathrm{to30min}, \mathrm{p}=0.011$ ). There was no significant difference over time for cold-water pouring ( $p=0.161$ ). In hot with no cooling, there was a significant difference between B 1 ( 0 to 5 min ), and $\mathrm{B} 4(15 \mathrm{to} 20 \mathrm{~min}$ ), $\mathrm{B} 5(20 \mathrm{to} 25 \mathrm{~min}$ ), $\mathrm{B} 6(25 \mathrm{to} 30 \mathrm{~min} ; \mathrm{p}=0.013$ ). There was a significant difference in power output between conditions $(f(3,30)=4179.291$, $p=0.001)$ and an interaction between condition and time $(f(15,50)=45.834, p=0.001)$. Post hoc analysis indicated that average power output in control with no cooling ( $235 \pm 2.48 \mathrm{~W}$ ) was significantly greater throughout the time-trial compared to hot with no cooling (160.12 $\pm 3.43 \mathrm{~W} p=0.001$; 46\%), cold-water ingestion (173.77 $\pm 0.97 \mathrm{~W}, \mathrm{p}=0.006 ; 35 \%$ ) and cold-water pouring ( $165.16 \pm 1.31 \mathrm{~W} p=0.004 ; 42 \%$;Table 30 and Figure 29 Panel C). Average power output was significantly greater in cold-water ingestion compared to hot with no cooling at all time points ( $p=0.033$ ) except for $B 6(25 t o 30 \mathrm{~min}, \mathrm{p}=0.054 ; 8 \%$ ). However, there was no significant difference between cold-water ingestion and cold-water pouring (173.77 $\pm 0.97 \mathrm{~W}$ vs $165.16 \pm 1.31 \mathrm{~W}, \mathrm{p}=0.760 ; 4 \%$; Table 30 and Figure 29 Panel C), and coldwater pouring and hot with no cooling (165.16 $\pm 1.31 \mathrm{~W}$ vs $160.12 \pm 3.43 \mathrm{~W}, \mathrm{p}=0.976$; $3 \%$; Table 30 and Figure 29 Panel C). Therefore, cold-water ingestion was more effective at reducing the impairment in power output in hot and humid conditions compared to no cooling at all.

### 7.4.2.3. Power Output in Hot and Dry and Hot and Humid (Group Comparison)

There was a significant interaction between condition and group $(f=(3,30) 237.085, p=$ 0.000 ), as well as condition, time and group $f=(15,150) 11.660, p=0.000)$. Average power output in the hot and dry ( $177.35 \pm 1.68 \mathrm{~W}$ ) condition was significantly greater compared to hot and humid ( $160.12 \pm 3.43 \mathrm{~W}, \mathrm{p}=0.003 ; 10 \%$ ). Average power in the hot and dry conditions with cold-water pouring ( $199.40 \pm 0.82 \mathrm{~W}$ ) was significantly greater compared to hot and humid condition with cold-water pouring (165.16 $\pm 1.31 \mathrm{~W}, \mathrm{p}=0.000 ; 20 \%$; Table 30 and Figure 29 Panel C). There was no significant difference between groups for control with no
cooling ( $236.86 \pm 1.83$ vs $235 \pm 2.48 \mathrm{~W}, \mathrm{p}=0.746$; $1 \%$ ) and cold-water ingestion ( $180.35 \pm 1.51$ 4304 vs $173.77 \pm 0.97 \mathrm{~W}, \mathrm{p}=0.644 ; 4 \%)$.

### 7.4.2.4. Distance Covered in Hot and Dry (Group 1)

There was a significant interaction between condition and time for distance covered (f) $(8,16)$ $=112.04, \mathrm{p}=0.047, \mathrm{n}^{2}=0.573$ ).

There was a significant difference between conditions $\left(f(8,16)=206.83, p=0.044, n^{2}=\right.$ 0.267). However, the cyclists-triathletes were able to cover a significantly greater distance in control with no cooling compared to hot and dry conditions with no cooling ( $p=0.046 ; 10 \%$ ). This was supported by the greater mean $\pm$ SD power output values reported in the control conditions compared to hot and dry conditions (Table 30). There was no significant difference between control with no cooling and cold-water ingestion ( $\mathrm{p}=0.634 ; 7 \%$ ), and control with no cooling and cold-water pouring ( $\mathrm{p}=0.621 ; 3 \%$ ) for distance covered (Table 30). Cyclists-triathletes were able to cover a greater distance in cold-water pouring compared to hot and dry with no cooling, and cold-water ingestion, however there was no significant difference ( $\mathrm{p}=0.645$ and $\mathrm{p}=0.662 ; 6$ and $3 \%$;Table 30 ).

## Distance Covered in Hot and Humid (Group 2)

There was a significant interaction between condition and time for distance covered (f $(8,16)$ $=112.04, \mathrm{p}=0.047, \mathrm{n}^{2}=0.573$ ).

There was a significant difference between conditions $\left(f(8,16)=203.86, p=0.042, n^{2}=\right.$ 0.237). Post-hoc analysis indicated that the cyclists-triathletes were able to cover a significantly greater distance in control with no cooling compared to hot and humid with no cooling ( $p=0.036 ; 18 \%$ ), cold-water ingestion ( $p=0.047 ; 10 \%$ ) and cold-water pouring ( $p=0.041 ; 16 \%$ ). This was supported by the greater mean $\pm$ SD power output values reported in the control with no cooling compared to all hot conditions (Table 30). Cyclists-triathletes were able to cover a greater distance in cold-water ingestion compared to hot and humid with no cooling and cold-water pouring however there was no significant difference between these conditions ( $\mathrm{p}=0.645$ and $\mathrm{p}=0.662 ; 7$ and $5 \%$; Table 30 ).

Distance Covered in Hot and Dry and Hot and Humid (Group Comparison)

There was no significant interaction between condition and group for distance covered (f $\left.(8,16)=112.04, p=0.198, n^{2}=0.573\right)$.

The Effect of Cooling on Physiological Responses
$£$


- CON- - HOT- - DRINK - POUR

Figure 30. Mean $\pm$ SD rectal temperature ( ${ }^{\circ} \mathrm{C}$ ) values during the 45 min preload and 30 min time-trial in $A$ ) hot and dry conditions and B) hot and humid conditions. CON= Control condition, HOT = hot condition with no cooling, DRINK = cold-water ingestion, POUR = cold-water pouring.

* on y axis = Significant difference between conditions.
* on the $x$ axis = significant difference between conditions over time.
$£$ - Significant difference between groups in HOT at all time blocks.
££ - significant difference in CON at time block 2 (0-5min).
£\$ - Significant difference between groups in DRINK at time block 2(0-5min) and 3(5-10min) and 7(25-30min).

Table 31. Mean $\pm$ SD rectal temperature $\left({ }^{\circ} \mathrm{C}\right)$ during the preload and time-trial.

Group	1				2			
Condition	Thermoneutral	Hot	Ingestion	Pouring	Thermoneutral	Hot	Ingestion	Pouring
Preload	$37.5 \pm 0.16$	$37.5 \pm 0.28$	$37.5 \pm 0.24$	$37.7 \pm 0.28$	$37.6 \pm 0.19$	37.4土0.38	$37.7 \pm 0.1$	$37.6 \pm 0.1$
Time-trial	$37.8 \pm 0.12$	$38.49 \pm 0.07$	$38.38 \pm 0.14$	$38.18 \pm 0.13$	$38.2 \pm 0.17$	38.7 70.09	$37.9 \pm 0.1$	$38.4 \pm 0.22$
Correlation coefficent with power output (significance)	0.66 (0.05)	0.79 (0.03)	0.28 (0.13)	0.14 (0.34)	0.67 (0.05)	0.77 (0.03)	0.63 (0.05)	0.35 (0.57)

Red = low correlation, yellow = moderate correlation, green = strong correlation, blue = very strong correlation

There was a significant interaction for average $T_{\text {rectal }}\left(F(6,10)=2.098, \mathrm{p}=0.006, \mathrm{n}^{2}=0.523\right)$. There was a significant main effect for time where average $\mathrm{T}_{\text {rectal }}$ increased linearly from the start of the preload to the end of the preload and from the start of the TT to the end of the time-trial in both groups and all conditions $(f=(6,10) 2.875, p=0.000$; Figure 30 ).

### 7.4.3.3.1. Rectal Temperature ( $\mathrm{T}_{\text {rectal }}$ ) in Hot and Dry (Group 1)

Post hoc analysis indicated that there was no significant difference in average $\mathrm{T}_{\text {rectal }}$ between conditions during the pre-load $(\mathrm{f}=(6,10) 3.563, \mathrm{p}>0.053$; control with no cooling: $37.7 \pm 0.12^{\circ} \mathrm{C}$; hot with no cooling: $38.1 \pm 0.15^{\circ} \mathrm{C}$; cold-water ingestion: $37.7 \pm 0.11^{\circ} \mathrm{C}$; coldwater pouring: $37.6 \pm 0.12^{\circ} \mathrm{C}$; Table 31). However, there was a significant difference in $\mathrm{T}_{\text {rectal }}$ between conditions during the TT $(f=(3,10), 52.656, \mathrm{p}=0.000)$. Mean $\pm S D \mathrm{~T}_{\text {rectal }}$ in control with no cooling $\left(38.05 \pm 0.15^{\circ} \mathrm{C}\right)$ was significantly lower than hot with no cooling ( $38.55 \pm 0.04^{\circ} \mathrm{C} ; \mathrm{p}=0.000$ ), cold-water ingestion ( $38.43 \pm 0.13^{\circ} \mathrm{C} ; \mathrm{p}=0.018$ ) and cold-water pouring $\left(38.23 \pm 0.12^{\circ} \mathrm{C} ; p=0.000\right)$ at all time points during the $T T(p<0.33)$. Mean $\pm S D T_{\text {rectal }}$ in the hot with no cooling $\left(38.55 \pm 0.04^{\circ} \mathrm{C}\right)$ was significantly greater compared to cold-water pouring ( $38.23 \pm 0.12^{\circ} \mathrm{C} ; \mathrm{p}=0.003$ ) but not cold-water ingestion $\left(38.43 \pm 0.13^{\circ} \mathrm{C} ; \mathrm{p}=0.414\right)$ at all time points ( $\mathrm{p}<0.35$ ). However, there was no significant difference in $\mathrm{T}_{\text {rectal }}$ between coldwater pouring and cold-water ingestion $\left(38.23 \pm 0.12^{\circ} \mathrm{C}\right.$ vs $\left.38.43 \pm 0.13^{\circ} \mathrm{C} ; \mathrm{p}=0.121\right)$. There was a positive correlation between core temperature and power output in all conditions, infering that core temperature increased together with the increase in power output (Table 31). The strongest correlation was reported in hot with no cooling ( $\mathrm{r}=0.79$ ). Notably the correlation between core temperature and power output was low for cold-water infegestion and pouring ( $\mathrm{r}=0.28$ and 0.14 ; Table 31).

### 7.4.3.3.2. Rectal Temperature ( $\mathrm{T}_{\text {rectal }}$ ) in Hot and Humid (Group 2)

There was no significant difference in average $\mathrm{T}_{\text {rectal }}$ between conditions during the pre-load $\left(f=(6,10) 2.875, p>0.056\right.$; control with no cooling: $37.75 \pm 0.12^{\circ} \mathrm{C}$; hot with no cooling: $37.86 \pm 0.22^{\circ} \mathrm{C}$; cold-water ingestion: $37.64 \pm 0.94^{\circ} \mathrm{C}$; cold-water pouring: $37.78 \pm 0.06^{\circ} \mathrm{C}$ ).

Mean $\pm$ SD $T_{\text {rectal }}$ was significantly greater between $30-35$ to 40 to 45 compared to 0 to 35 mins in the hot with no cooling condition ( $\mathrm{p}<0.32$ ).

There was a significant difference in average $\mathrm{T}_{\text {rectal }}$ between conditions during the time-trial (control with no cooling: $38.55 \pm 0.12^{\circ} \mathrm{C}$; hot with no cooling: $38.85 \pm 0.09^{\circ} \mathrm{C}$; cold-water ingestion: $37.97 \pm 0.19^{\circ} \mathrm{C}$; cold-water pouring: $38.50 \pm 0.19^{\circ} \mathrm{C}$; $\mathrm{p}<0.036$ ). Drinking cold-water had the greatest benefit on reducing $\mathrm{T}_{\text {rectal }}$ during the time-trial as this was significantly lower throughout $\left(37.97 \pm 0.19^{\circ} \mathrm{C}\right)$ compared to control with no cooling $\left(38.55 \pm 0.12^{\circ} \mathrm{C} ; \mathrm{p}=0.013\right)$, cold-water pouring $\left(38.50 \pm 0.19^{\circ} \mathrm{C} ; \mathrm{p}=0.000\right)$ and hot with no cooling $\left(38.85 \pm 0.09^{\circ} \mathrm{C}\right.$ $\mathrm{p}=0.000$ ).

There was a positive correlation between core temperature and power output in all conditions infering that core temperature increased together with the increase in power output (Table 31). The strongest correlation was reported in hot with no cooling ( $\mathrm{r}=0.77$ ). Notably, the correlation was stronger with cold-water ingestion compared to pouring ( $\mathrm{r}=0.63$ vs 0.35 ).

### 7.4.3.3.3. Rectal Temperature ( $\mathrm{T}_{\text {rectal }}$ ) in Hot and Dry and Hot and Humid (Group Comparison)

Notably there was also a difference in average $\mathrm{T}_{\text {rectal }}$ between groups during the TT ( $\mathrm{f}=$ $(1,10) 15.510, p=0.003)$. This was in control with no cooling at time point $2(p=0.045)$, hot with no cooling at all time points ( $p<0.040$ ), cold-water ingestion at time point 2 and 3 and 7 ( $p<0.049$ ). There was no difference in $\mathrm{T}_{\text {rectal }}$ with cold-water pouring in hot and dry and hot and humid conditions ( $38.18 \pm 0.13$ vs $38.4 \pm 0.22, \mathrm{p}=0.253$ ). However $\mathrm{T}_{\text {rectal }}$ was significantly greater with cold-water ingestion in hot and dry compared to hot and humid ( $38.38 \pm 0.14$ vs $37.9 \pm 0.1, p=0.044)$.

### 7.4.3.2. Heart Rate

Table 32. Mean $\pm$ SD (b. $\min ^{-1}$; \% of HRmax at $\mathrm{VO}_{2 \max }$ ) HR during the preload and time-trial.

Groups	1				2			
Condition	Thermoneutral	Hot	Ingestion	Pouring	Thermoneutral	Hot	Ingestion	Pouring
Preload	$151 \pm 10$	$167 \pm 7$	$161 \pm 6$	$168 \pm 5$	$158 \pm 9$	$173 \pm 7$	$171 \pm 6$	$172 \pm 6$
	$(79.47 \%)$	$(87.89 \%)$	$(84.73 \%)$	$(88.42 \%)$	$(82.29 \%)$	$(90.10 \%)$	$(89.06 \%)$	(89.58\%)
Time-trial	$166 \pm 10$	$178 \pm 8$	$173 \pm 5$	$177 \pm 6$	$171 \pm 8$	$182 \pm 6$	$178 \pm 5$	$181 \pm 4$
	$(87.36 \%)$	$(93.68 \%)$	$(91.05 \%)$	$(93.15 \%)$	$(89.06 \%)$	$(94.79 \%)$	$(92.70 \%)$	(94.27\%)

There was no significant interaction between condition, group and time for $\operatorname{HR}(\mathrm{F}(8,17)=$ $3.120, p=0.346, n^{2}=0.401$ ). However, there was a significant main effect for time where average $H R$ increased linearly from the start of the preload to the end of the preload (f ( 8,17 $=1.444 p=0.038, n^{2}=0.489$ ) and from the start of the time-trial to the end of the time-trial in both groups and all conditions ( $\left(8,17=1.232, \mathrm{p}=0.034, \mathrm{n}^{2}=0.426\right.$; Table 32).

### 7.4.3.3.4. Heart Rate (HR) in Hot and Dry (Group 1)

There was no significant difference in mean $\pm$ SD HR between cooling during the preload ( $161 \pm 6$ vs $168 \pm 5 \mathrm{~b}_{\mathrm{min}}{ }^{-1} ; \mathrm{f}=(8,17) 2.841, \mathrm{p}=0.113, \mathrm{n}^{2}=0.402$ ) or time-trial ( $173 \pm 5$ vs $172 \pm 6$ b. $\left.\min ^{-1} ; f=(8,17) 2.455, p=0.256, n^{2}=0.398\right)$.

### 7.4.3.3.5. Heart Rate (HR) in Hot and Humid (Group 2)

There was no significant difference in mean $\pm$ SD HR between cooling during the preload ( $171 \pm 6$ vs $172 \pm 6 \mathrm{~b}_{\mathrm{min}}{ }^{-1} ; \mathrm{f}=(8,17) 2.930, \mathrm{p}=0.134, \mathrm{n}^{2}=0.380$ ) or time-trial ( $178 \pm 5$ vs $181 \pm 4$ b. $\left.\min ^{-1} ; f=(8,17) 2.873, p=0.201, n^{2}=0.357\right)$.

### 7.4.3.3.6. Heart Rate (HR) in Hot and Dry and Hot and Humid (Group Comparison)

There was no significant difference in mean $\pm$ SD HR between groups for ingestion during the preload ( $161 \pm 6$ vs $171 \pm 6 \mathrm{~b} \cdot \mathrm{~min}^{-1} ; \mathrm{f}=(8,17) 3.002, \mathrm{p}=0.219, \mathrm{n} 2=0.413$ ) or time-trial $(173 \pm 5$ vs $178 \pm 5$ b. $\left.\mathrm{min}^{-1} ; f=(8,17) 3.015, p=0.288, n 2=0.458\right)$.

There was no significant difference in mean $\pm$ SD HR between groups for pouring during the preload ( $168 \pm 5$ vs $172 \pm 6{\mathrm{~b} \cdot \mathrm{~min}^{-1} ; \mathrm{f}(8,17)}^{2} .990, \mathrm{p}=0.202, \mathrm{n} 2=0.405$ ) or time-trial $(177 \pm 6$ vs $181 \pm 4$ b. $\mathrm{min}^{-1} ; 2.997, \mathrm{p}=0.217, \mathrm{n} 2=409$ ).

### 7.4.3.4. Hydration Status (Urine Specific Gravity and Sweat Rate)

Table 33. Mean $\pm$ SD Urine Specific Gravity (USG) and sweat rate (L.hr) values across all experimental trials.

Group	Condition	Urine Specific   Gravity	Sweat Rate   (L.hr)
1	Thermoneutral	$1.005 \pm 0.4$	$1.4 \pm 0.4$
	Hot with no   cooling	$1.004 \pm 0.3$	$1.8 \pm 0.3$
	Cold-water   Ingestion	$1.004 \pm 0.3$	$1.3 \pm 0.3$
	Cold-water   pouring	$1.005 \pm 0.3$	$1.8 \pm 0.4$
	Thermoneutral	Hot with no   cooling	$1.003 \pm 0.4$
	Cold-water   Ingestion	$1.005 \pm 0.3$	$1.2 \pm 0.3$
	Cold-water   pouring	$1.004 \pm 0.3$	$1.1 \pm 0.3$

USG of $<1.020=$ Euhydrated.

USG of >1.021 = Hypohydrated.

All USG values regardless of group or condition fell between the ranges of 1.001-1.010 which meant that all participants started the experimental trial in a well hydrated/hyperhydrated state (Table 34). There was no significant difference in USG between conditions or groups $(f(8,10)=2.091, p=0.236, n=0.587)$ which meant that any changes reported in
physiological, perceptual or performance were not a result of participants hydration status at the start of the experimental trial.

There was a significant interaction between group and condition for sweat rate $(f(8,10)=$ 1.018, $p=0.35, n=0.679$ ).

### 7.4.3.3.1. Sweat Rate in Hot and Dry (Group 1)

SR was significantly greater with cold-water pouring compared to cold-water drinking (1.8 $\pm 0.4$ vs $1.3 \pm 0.3 \mathrm{~L} . \mathrm{hr} ; \mathrm{p}=0.003$ ) and no cooling ( $1.8 \pm 0.4$ vs $1.4 \pm 0.4 \mathrm{~L} . \mathrm{hr} ; \mathrm{p}=0.024$ ). This demonstrates that cold-water pouring offered additional benefits in regard to evaporative cooling in hot and dry conditions. There was no significant difference between hot with no cooling and cold-water drinking ( $1.4 \pm 0.4$ vs $1.3 \pm 0.3, p=0.245$ ) which meant that cold-water ingestion did not offer any additional benefit in regard to evaporative cooling in hot and dry conditions.

### 7.4.3.3.2. Sweat Rate in Hot and Humid (Group 2)

There was no significant difference in SR between ingestion and pouring (1.1 $\pm 0.3$ vs $0.9 \pm 0.1 \mathrm{Lhr} ; \mathrm{p}=0.020$ ). However, SR was significantly greater with no cooling compared to pouring (1.2 $\pm 0.3$ vs $0.9 \pm 0.1 \mathrm{~L} . \mathrm{hr} ; \mathrm{p}=0.020)$. This demonstrates that cold-water pouring did not offer an additional benefit in regard to evaporative cooling in hot and humid conditions. There was no significant difference in SR between no cooling and cold-water ingestion (1.2 $\pm 0.3$ vs $1.1 \pm 0.3 \mathrm{~L} . \mathrm{hr}, \mathrm{p}=0.763$ ) which demonstrates that cold-water ingestion offers no additional benefit in regard to evaporative cooling in hot and humid conditions.

### 7.4.3.3.3. Sweat Rate in Hot and Dry and Hot and Humid (Group Comparison)

Notably, all mean $\pm$ SD SR were greater in hot and dry compared to hot and humid regardless of cooling type. However, the only significant difference between groups was reported with cold-water pouring, where SR was significantly greater with cold-water pouring in hot and dry conditions compared to hot and humid (1.8 $\pm 0.4$ vs $0.9 \pm 0.1 \mathrm{~L} . \mathrm{hr})$. This demonstrates that cold-
water pouring was more beneficial for evaporative heat loss in hot and dry conditions compared to hot and humid conditions.

### 7.4.4. The Effect of Cooling on Perceptual Responses

### 7.4.4.1. Perceptual Responses Prior to Experimental Trials

There was no significant difference in participants SMS (instrinstic, amotivation, identified and external regulation) scores between visits within group 1 ( $p=0.245$ ), group 2 $(p=0.277)$ or between groups ( $p=0.189$ ). This implies that all participants motivation prior to the task was not different and therefore any differences in performance were not a result of differences in motivation prior to task.

Table 34. Mean $\pm$ SD hours of sleep(hrs), quality of sleep, stress, fatigue and muscle soreness ratings across all trials using Hooper et al., (1995) markers for monitoring overtraining and recovery scale.

Group	Condition	Hours of   Sleep   (hrs)	Sleep   quality	Stress	Fatigue	Muscle   soreness
1 - Hot   and Dry	Thermoneutral	$6.3 \pm 0.4$	$3 \pm 0.1$	$2 \pm 0.2$	$2.2 \pm 0.4$	$1.1 \pm 0.1$
	Hot with no   cooling	$6.3 \pm 0.6$	$3.2 \pm 0.2$	$2.2 \pm 0.2$	$2.1 \pm 0.5$	$1.3 \pm 0.4$
	Cold-water   Ingestion	$6.4 \pm 0.6$	$3.1 \pm 0.1$	$2.4 \pm 0.4$	$2.2 \pm 0.2$	$1.5 \pm 0.5$
	Cold-water   pouring	$6.4 \pm 0.6$	$3.1 \pm 0.1$	$2.2 \pm 0.2$	$2.2 \pm 0.2$	$1.5 \pm 0.5$
2 - Hot   and   Humid	Thermoneutral	$6.8 \pm 0.1$	$3.6 \pm 0.1$	$3.1 \pm 0.1$	$2.8 \pm 0.4$	$2.4 \pm 0.4$
	Hot with no   cooling	$6.8 \pm 0.2$	$3.5 \pm 0.1$	$3.0 \pm 0.2$	$2.7 \pm 0.2$	$2.2 \pm 0.5$
	Cold-water   Ingestion	$6.7 \pm 0.3$	$3.5 \pm 0.1$	$2.9 \pm 0.1$	$2.7 \pm 0.3$	$2 \pm 0.4$
	Cold-water   pouring	$6.7 \pm 0.3$	$3.6 \pm 0.1$	$3 \pm 0.1$	$2.8 \pm 0.2$	$2.1 \pm 0.1$

There were no significant interactions between groups or condition for hours of sleep ( $f$ $\left.(8,30) 2.116, p=0.695, n^{2}=0.683\right)$, quality of sleep ( $\left.f(8,30) 2.334, p=0.564, n^{2}=0.557\right)$, stress ( $f\left(8,30\right.$ ) 2.590, $p=0.424, \mathrm{n}^{2}=0.649$ ), fatigue and muscle soreness ( $f(8,30) 2.527, \mathrm{p}$ $\left.=0.607, n^{2}=0.578\right)$. Therefore, any differences reported in performance, physiological responses or perceptual responses during the experimental trials were not a result of differences in hrs slept, quality of sleep, stress, fatigue or muscle soreness (Table 35).

Table 35．Mean $\pm$ SD ratings of perceived exertion（RPE），thermal comfort（TC），thermal sensation（TS），task motivation（TM）and affect（AF） during the 45 min preload and 30 min cycling time－trial（A．U．（\％of max value on the scale）．

Variables	Group	Intervention	Preload					Time－Trial						
			0	15	30	45	Mean $\pm$ SD	0	10	20	30	Mean $\pm$ SD	Pearsons Correlation coefficient with Power （significance）	Pearsons   Correlation   coefficient   with Core   Temperature   （significance）   ．
RPE	$\begin{aligned} & \text { 1- } \\ & \text { Hot } \\ & \text { and } \\ & \text { Dry } \end{aligned}$	Thermoneutral	6士0（0\％）	$8 \pm 1$（14．28\％）	10さ1（28．57\％）	13さ2（50\％）	10さ3（28．57\％）	6 $\pm 0$（0\％）	11 $\pm 1$（35．71\％）	$\begin{array}{r} 15 \pm 1 \\ (64.28 \%) \\ \hline \end{array}$	$\begin{gathered} 18 \pm 2 \\ (85.71 \%) \\ \hline \end{gathered}$	13 $\pm 5$（50\％）	0.32 （0．24）	0.63 （0．07）
		Hot with no cooling	6 $\pm 0$（0\％）	10さ2（28．57\％）	12さ3（42．85\％）	14 $\pm 2$（57．14\％）	12さ2（42．85\％）	6 $\pm 0$（0\％）	12 $\pm 2(42.85 \%)$	16さ1（71．42\％）	20 $\pm 2$（100\％）	$\begin{gathered} 16 \pm 2 \\ (71.42 \%) \\ \hline \end{gathered}$	0.78 （0．04）	0.98 （0．02）
		Cold－water Ingestion	6 $\pm 0$（0\％）	10さ2（28．57\％）	12さ3（42．85\％）	14 $\pm 2$（57．14\％）	12さ2（42．85\％）	6士0（0\％）	10さ2（28．57\％）	15士1（64．28\％）	18さ2（85．71\％）	13 $\ddagger 3(50 \%$ ）	0.03 （0．75）	0.74 （0．04）
		Cold－water pouring	6士0（0\％）	8 $\pm 1(14.28 \%)$	10さ2（28．57\％）	13さ2（50\％）	10 $\pm 3$（28．57\％）	6士0（0\％）	10さ2（28．57\％）	13さ2（50\％）	15士3（64．28\％）	11 $\pm 4$（35．71\％）	0.12 （0．66）	0.96 （0．02）
	$\begin{gathered} 2- \\ \text { Hot } \\ \text { and } \\ \text { Humid } \end{gathered}$	Thermoneutral	6士0（0\％）	10 $\pm 1$（28．57\％）	13 $\pm 1$（50\％）	15士1（64．28\％）	11 $\pm 4$（35．71\％）	6士0（0\％）	12 $\pm 1$（42．85\％）	13さ1（5）\％）	18さ2（85．71\％）	12 $\pm 5$（42．85\％）	0.32 （0．22）	0.53 （0．10）
		$\begin{aligned} & \text { Hot with no } \\ & \text { cooling } \end{aligned}$	6士0（0\％）	10さ2（28．57\％）	14さ1（57．14\％）	16さ2（71．42\％）	12さ4（42．85\％）	6士0（0\％）	14さ2（57．14\％）	16さ2（71．42\％）	20 $\pm 0$（100\％）	14土6（57．14\％）	0.52 （0．10）	0.70 （0．03）
		Cold－water Ingestion	6士0（0\％）	10士1（28．57\％）	13 $\pm 1$（50\％）	15士1（64．28\％）	12さ3（42．85\％）	6士0（0\％）	12 $\pm 1$（42．85\％）	13さ2（50\％）	18さ1（85．71\％）	12 $\pm 5$（42．85\％）	0.11 （0．69）	0.50 （0．12）
		Cold－water pouring	6士0（0\％）	10さ2（28．57\％）	14さ1（57．14\％）	16さ2（71．42\％）	12さ4（42．85\％）	6士0（0\％）	14さ2（57．14\％）	16さ2（71．42\％）	20 $\pm 0$（100\％）	14土6（57．14\％）	0.12 （0．70）	0.77 （0．03）
TC	$\begin{aligned} & \text { 1- } \\ & \text { Hot } \\ & \text { and } \\ & \text { Dry } \end{aligned}$	Thermoneutral	0 $\pm 0$（0\％）	0士0（0\％）	0士0（0\％）	0士0（0\％）	0士0（0\％）	0士0（0\％）	0.00 （0．98）	0.00 （0．98）				
		Hot with no cooling	$10 \pm 0$（50\％）	$10 \pm 1(50 \%)$	$12 \pm 1$（60\％）	$15 \pm 1$（75\％）	$12 \pm 2(60 \%)$	10 $\pm 0(50 \%$ ）	15士1（75\％）	15士1（75\％）	20 $\pm 1$（60\％）	15 $\pm 4(75 \%)$	－0．55（0．06）	0.81 （0．02）
		Cold－water Ingestion	10さ0（50\％）	12さ1（60\％）	12さ1（60\％）	12さ1（60\％）	12 $\pm 1$（60\％）	10 $\pm 0$（50\％）	12さ1（60\％）	12さ1（60\％）	10さ1（50\％）	11 $\pm 1$（55\％）	0.20 （0．31）	0.34 （0．25）
		Cold－water pouring	10 $\pm 0$（50\％）	10 $\pm 1$（50\％）	10 $\pm 1$（50\％）	$10 \pm 1$（50\％）	10 $\pm 0$（50\％）	10 $\pm 0$（50\％）	$12 \pm 1$（60\％）	12さ1（60\％）	$15 \pm 1$（75\％）	12 $\pm 2$（60\％）	0.02 （0．94）	0.38 （0．27）
	$\begin{gathered} 2- \\ \text { Hot } \\ \text { and } \\ \text { Humid } \end{gathered}$	Thermoneutral	0 $\pm 0$（0\％）	0.00 （0．98）	0.00 （0．98）									
		Hot with no cooling	10 $\pm 0$（50\％）	$10 \pm 1(50 \%)$	$12 \pm 1$（60\％）	$15 \pm 2(75 \%)$	$12 \pm 2(60 \%)$	$15 \pm 1(75 \%)$	20さ1（100\％）	$20 \pm 1$（100\％）	20 $\pm 1$（100\％）	$19 \pm 3$	－0．52（0．06）	0.84 （0．01）
		Cold－water Ingestion	10さ0（50\％）	12 $\pm 1$（60\％）	12 $\pm 1$（60\％）	12 $\pm 1$（60\％）	12 $\pm 1$（60\％）	10 $\pm 0$（50\％）	12さ1（60\％）	12さ2（60\％）	12さ2（60\％）	12さ1（60\％）	0.12 （0．45）	0.35 （0．26）
		Cold－water pouring	10さ0（50\％）	12 $\pm 1$（60\％）	15士1（75\％）	15さ2（75\％）	13さ2（65\％）	$10 \pm 0$	15 $\pm 1$（75\％）	15さ2（75\％）	15さ2（75\％）	14さ3（70\％）	0.18 （0．41）	0.62 （0．05）
TS	$\begin{aligned} & \text { 1- } \\ & \text { Hot } \\ & \text { and } \\ & \text { Dry } \end{aligned}$	Thermoneutral	10£0（50\％）	10 $\pm$（50\％）	10 $\pm 0$（50\％）	12さ1（60\％）	11 $\pm 1$（55\％）	10 $\pm 0$（50\％）	10 $\pm 0$（50\％）	10 $\pm 1$（50\％）	12 $\pm 1$（60\％）	11 $\pm 1$（55\％）	0.32 （0．25）	0.38 （0．27）
		$\begin{aligned} & \text { Hot with no } \\ & \text { cooling } \end{aligned}$	10 $\pm 0$（50\％）	$15 \pm 1$（75\％）	$15 \pm 1$（75\％）	$15 \pm 1$（75\％）	14さ3（70\％）	10 $\pm 0$（50\％）	15 $\pm 2$（75\％）	15さ2（75\％）	$16 \pm 1$（80\％）	14 $\pm 3(70 \%)$	0.35 （0．27）	0.52 （0．06）
		Cold－water Ingestion	10さ0（50\％）	8さ2（40\％）	$8 \pm 2(40 \%)$	8さ2（40\％）	9士1（45\％）	10 $\pm 0$（50\％）	$8 \pm 2(40 \%)$	$8 \pm 2(40 \%)$	8 $\pm 2(40 \%)$	$9 \pm 1(45 \%)$	0.51 （0．06）	0.31 （0．24）
		Cold－water pouring	10 $\pm 0$（50\％）	$6 \pm 1(30 \%)$	$6 \pm 2(30 \%)$	$6 \pm 2(30 \%)$	$7 \pm 2(35 \%)$	10 $\pm 0$（50\％）	$6 \pm 2(30 \%)$	$6 \pm 2(30 \%)$	$6 \pm 2(30 \%)$	$7 \pm 2(35 \%)$	0.02 （0．91）	0.86 （0．01）


		Thermoneutral	10 $\pm 0$（50\％）	10 $\pm 0$（50\％）	10さ0（50\％）	12 $\pm 1$（60\％）	1111（55\％）	10 $\pm 0$（50\％）	10士0（50\％）	10さ0（50\％）	12土1（60\％）	11さ1（55\％）	0.10 （0．87）	0.38 （0．27）
		$\begin{aligned} & \text { Hot with no } \\ & \text { cooling } \\ & \hline \end{aligned}$	10土0（50\％）	$15 \pm 1$（75\％）	$15 \pm 1$（75\％）	17 $\pm 1$（70\％）	14さ3（70\％）	15 $\pm 2(75 \%)$	$15 \pm 1(75 \%)$	$18 \pm 1$（90\％）	20 2 （100\％）	17 2 2（85\％）	0.10 （0．87）	0.49 （0．07）
		Cold－water Ingestion	10 $\pm 0$（50\％）	$8 \pm 2(40 \%)$	$8 \pm 2(40 \%)$	$8 \pm 2(40 \%)$	$9 \pm 1(45 \%)$	10 $\pm 0$（50\％）	$8 \pm 2(40 \%)$	$8 \pm 2(40 \%)$	$8 \pm 2(40 \%)$	$9 \pm 1(45 \%)$	0.52 （0．06）	0.33 （0．22）
		Cold－water pouring	10 $\pm 0$（50\％）	$12 \pm 1$（60\％）	$12 \pm 1$（60\％）	$12 \pm 1$（60\％）	$12 \pm 1(60 \%)$	11£1（55\％）	12（60\％）	12（60\％）	12（60\％）	12土1（60\％）	0.49 （0．07）	0.32 （0．21）
TM	$\begin{aligned} & \hline 1- \\ & \text { Hot } \\ & \text { and } \\ & \text { Dry } \end{aligned}$	Thermoneutral	20 $\pm 0$（100\％）	0.00 （0．98）	0.00 （0．98）									
		Hot with no cooling	20さ0（100\％）	20 0 （100\％）	20さ0（100\％）	20 0 （100\％）	20 $\pm 0$（100\％）	20 0 （100\％）	20さ0（100\％）	20さ0（100\％）	20 $\pm$（100\％）	20さ0（100\％）	0.00 （0．98）	0.00 （0．98）
		Cold－water Ingestion	20 $\pm 0$（100\％）	20さ0（100\％）	20 $\pm 0$（100\％）	20さ0（100\％）	20 $\pm 0$（100\％）	0.00 （0．98）	0.00 （0．98）					
		$\begin{aligned} & \text { Cold-water } \\ & \text { pouring } \end{aligned}$	20 $\pm 0$（100\％）	20 0 （100\％）	20 $\pm 0$（100\％）	0.00 （0．98）	0.00 （0．98）							
	$\begin{gathered} 2- \\ \text { Hot } \\ \text { and } \\ \text { Humid } \end{gathered}$	Thermoneutral	20さ0（100\％）	20 $\pm 0$（100\％）	20 $\pm 0$（100\％）	20 $\pm 0$（100\％）	20 $\pm 0$（100\％）	20さ0（100\％）	20さ0（100\％）	20さ0（100\％）	20 $\pm$（100\％）	20 $\pm 0$（100\％）	0.00 （0．98）	0.00 （0．98）
		Hot with no cooling	20 $\pm 0$（100\％）	0.00 （0．98）	0.00 （0．98）									
		Cold－water Ingestion	20 $\pm 0$（100\％）	20さ0（100\％）	20 $\pm 0$（100\％）	20さ0（100\％）	20 $\pm 0$（100\％）	0.00 （0．98）	0.00 （0．98）					
		Cold－water pouring	20 $\pm 0$（100\％）	20 0 （100\％）	20 $\pm 0$（100\％）	0.00 （0．98）	0.00 （0．98）							
AF	$\begin{aligned} & \text { 1- } \\ & \text { Hot } \\ & \text { and } \\ & \text { Dry } \end{aligned}$	Thermoneutral	$\begin{gathered} 3 \pm 1 \\ (81.81 \%) \\ \hline \end{gathered}$	$3 \pm 1(81.81 \%)$	$3 \pm 1(81.81 \%)$	2 $\pm 1(72.72 \%$ ）	$3 \pm 1(81.81 \%)$	$3 \pm 1$（81．81\％）	$3 \pm 1(81.81 \%)$	2 $\pm 1$（72．72\％）	1 $1 \pm 1(63.63 \%$ ）	2 $\pm 1$（72．72\％）	－0．35（0．19）	－0．33（0．22）
		Hot with no cooling	2 $\pm 1$（72．72\％）	$1 \pm 1(63.63 \%)$	0 $\pm 1$（54．54\％）	$-1 \pm 1(45.45 \%)$	$1 \pm 1(63.63 \%)$	1 11 （63．63\％）	0 $\pm 1$（54．54\％）	$-1 \pm 1(45.45 \%)$	$-2 \pm 1$（36．36\％）	$-1 \pm 1(45.45 \%)$	0.40 （0．11）	－0．45（0．9）
		Cold－water Ingestion	$3 \pm 1(81.81 \%)$	$3 \pm 1$（81．81\％）	$3 \pm 1(81.81 \%)$	$2 \pm 172.72$	$3 \pm 1$（81．81\％）	2土1（72．72\％）	$3 \pm 1$（81．81\％）	$3 \pm 1(81.81 \%)$	$2 \pm 172.72$	$3 \pm 1$（81．81\％）	0.51 （0．06）	0.34 （0．22）
		Cold－water pouring	$3 \pm 1(81.81 \%)$	$4 \pm 1$（90．90\％）	$4 \pm 1(90.90 \%)$	4 $\pm 1$（90．90\％）	$4 \pm 1$（90．90\％）	$3 \pm 1$（81．81\％）	$4 \pm 1$（90．90\％）	$4 \pm 1$（90．90\％）	$3 \pm 1$（81．81\％）	$4 \pm 1$（90．90\％）	0.24 （0．35）	0.67 （0．05）
		Thermoneutral	$3 \pm 1(81.81 \%)$	$3 \pm 1$（81．81\％）	$3 \pm 1$（81．81\％）	2 $\pm 1(72.72 \%)$	$3 \pm 1$（81．81\％）	$3 \pm 1(81.81 \%)$	$3 \pm 1$（81．81\％）	$3 \pm 1(81.81 \%)$	2 $\pm 1(72.72 \%)$	$3 \pm 1$（81．81\％）	－0．51（0．06）	－0．40（0．11）
		$\begin{aligned} & \text { Hot with no } \\ & \text { cooling } \\ & \hline \end{aligned}$	3 $\pm 1$（81．81\％）	2 $\pm 1$（72．72\％）	1 $\pm 1$（63．63\％）	0 $\pm 1(54.54 \%)$	2 $\pm 1(72.72 \%)$	1 $1 \pm 1(63.63 \%$ ）	0 $\pm 1(54.54 \%$ ）	$-1 \pm 1(45.45 \%)$	$-2 \pm 1$（36．36\％）	$-1 \pm 1(45.45 \%)$	0.52 （0．06）	－0．67（0．05）
		Cold－water Ingestion	$3 \pm 1(81.81 \%)$	$3 \pm 1$（81．81\％）	$3 \pm 1(81.81 \%)$	2 $\ddagger$（ $72.72 \%$ ）	$3 \pm 1$（81．81\％）	2 $\pm 1$（72．72\％）	$3 \pm 1$（81．81\％）	$3 \pm 1$（81．81\％）	2 $\pm 1$（72．72\％）	$3 \pm 1$（81．81\％）	－0．52（0．06）	0.08 （0．89）
		Cold－water pouring	$3 \pm 1(81.81 \%)$	2 $\pm 1$（72．72\％）	$1 \pm 1(63.63 \%)$	$0 \pm 1$（54．54\％）	${ }^{2} \pm 1(72.72 \%)$	$3 \pm 1(81.81 \%)$	2 $\pm 1$（72．72\％）	$1 \pm 163.63$	$-1 \pm 1(45.45 \%)$	1 $\pm 2$（63．63\％）	0.18 （0．64）	－0．62（0．05）

$R P E=$ ratings of perceived exertion，thermal sensation $=T S, T C=$ thermal comfort，$T M=$ task motivation，$A F=$ affect．Red $=$ low correlation，
yellow＝moderate correlation，green $=$ strong correlation，blue $=$ very strong correlation ．

### 7.4.4.2.1. Ratings of perceived Exertion (RPE)

There was significant interaction between group, condition and time (f $(8,24), p=0.011, n^{2}=$ $0.584)$. There was a main effect for time where ratings of perceived exertion increased from the start of the preload to the end of the preload ( $f\left(8,24\right.$ ), $p=0.005, n^{2}=0.782 ;$ Table 36) and from the start of the time-trial to the end of the time-trial ( $\mathrm{f}\left(8,24\right.$ ), $\mathrm{p}=0.005, \mathrm{n}^{2}=0.702$; Table 36).

### 7.4.4.2.1.1. Ratings of Perceived Exertion (RPE) in Hot and Dry (Group 1)

Ratings of perceived exertion were significantly lower throughout the preload in control with no cooling ( $10 \pm 3(28.57 \%)$ ) compared to cold-water ingestion (12 $\pm 2(42.85 \%)$ ) and hot with no cooling respectively ( $12 \pm 2(42.85 \%) ; p=0.036$ and $p=0.036$ Table 36). Ratings of perceived exertion were significantly lower throughout the preload in cold-water pouring ( $10 \pm 3(28.57 \%$ ) compared to cold-water ingestion (12 $\pm 2(42.85 \%)$ and hot with no cooling $12 \pm 2(42.85 \%)$ respectively ( $p=0.032$ and $p=0.032$; Table 36 ). There was no significant difference between pouring cold-water and control condition during the pre-load ((10 $\pm 3(28.57 \%)$ vs ( $10 \pm 3(28.57 \%) ; p=0.124$; Table 36$)$.

Ratings of perceived exertion were significantly greater in hot conditions (16 $\pm 2$ ( $71.42 \%$ )) compared to control ( $13 \pm 5(50 \%)$; $p=0.043$ ), cold-water ingestion ( $13 \pm 5(50 \%) ; p=0.043$ ), and cold-water pouring during the time-trial ( $11 \pm 4(35.71 \%) ; p=0.032$; Table 36). Ratings of perceived exertion was significantly lower in cold-water pouring compared to cold-water ingestion during the time-trial ( $11 \pm 4(35.71 \%)$ vs $13 \pm 5(50 \%)$; $p=0.039$;Table 36$)$.There was no significant difference between ingesting cold-water and control condition during the timetrial (11 $\pm 4(35.71 \%)$ vs $13 \pm 5(50 \%) ; p=0.135)$.

Ratings of perceived exertion increased together with the increase in core temperature in all conditions (Table 36). The strongest correlations were reported in hot with no cooling ( $r=0.98$ ) and cold-water pouring ( $r=0.96$ ).

Ratings of perceived exertion increased together with the increase in core temperature in all conditions (Table 36). The strongest correlations were reported in hot with no cooling ( $\mathrm{r}=0.70$ ) and cold-water pouring ( $\mathrm{r}=0.77$ ), where as thermoneutral, ingestion and pouring were all low correlations ( $r<0.32$; Table 36).

### 7.4.4.2.1.2. Ratings of Perceived Exertion (RPE) in Hot and Humid (Group 2)

There was no significant difference in mean $\pm$ SD ratings of perceived exertion between conditions in the preload ( $p>0.070$; Table 36 ). However, mean $\pm$ SD ratings of perceived exertion were significantly lower in control with no cooling (12 $\pm 5(42.85 \%)$ ) compared to hot with no cooling $14 \pm 6(57.14 \%)$; $p=0.035$; Table 36 ) and pouring cold-water ( $14 \pm 6(57.14 \%$ ); $p=0.035$;Table 36) during the time-trial. Similarly, mean $\pm$ SD ratings of perceived exertion were significantly lower in cold-water ingestion ( $12 \pm 5(42.85 \%)$ ) compared to hot with no cooling (14 $\pm 6(57.14 \%)$; $p=0.034$; Table 36) and pouring cold-water ( $14 \pm 6(57.14 \%)$; $p=$ 0.034 ; Table 36) during the time-trial. Whereas there was no significant difference between mean $\pm$ SD rating of perceived exertion in control with no cooling and cold-water ingestion during the time-trial ( $12 \pm 5(42.85 \%)$ vs $12 \pm 5(42.85 \%)$; $p=0.167$; Table 36$)$. There was also no significant difference between hot with no cooling and hot with cold-water pouring during the time-trial ( $14 \pm 6(57.14 \%)$ vs $14 \pm 6(57.14 \%) ; p=0.235$; Table 36$)$.

Ratings of perceived exertion increased together with the increase in core temperature in all conditions (Table 36). The strongest correlations were reported in hot with no cooling ( $\mathrm{r}=0.70$ ) and cold-water pouring ( $\mathrm{r}=0.52$ ), where as thermoneutral, ingestion and pouring were all low correlations ( $r<0.32$; Table 36).

### 7.4.4.2.1.3. Ratings of Perceived Exertion (RPE) in Hot and Dry and Hot and Humid (Group Comparison)

Mean $\pm$ SD ratings of perceived exertion were significantly greater during the preload and time-trial with cold-water pouring in hot and humid conditions compared to hot and dry
conditions ((12 $\pm 4(42.85 \%)$ vs $10 \pm 3(28.57 \%)) ; p=0.012)$ and ( $14 \pm 6(57.14 \%)$ vs $11 \pm 4(35.71 \%) ;$ p = 0.014, respectively; Table 36).

There was no significant difference between ratings of perceived exertion with ingestion in hot and dry and hot and humid during the preload ( $12 \pm 3$ vs $12 \pm 2, \mathrm{p}=0.234$ ) and time-trial ( $11 \pm 4$ vs $12 \pm 5 ; p=0.119$ ).

There was no significant difference between groups (dry vs humid) in the hot condition during the preload ( $12 \pm 2(42.85 \%)$ vs $12 \pm 4(42.85 \%)$; $p=0.246$; Table 36$)$. However, ratings of perceived exertion were significantly greater during the time-trial in hot and dry compared to hot and humid conditions ( $16 \pm 2$ ( $71.42 \%$ ) vs $14 \pm 6(57.14 \%)$; $p=0.014$; Table 36).

### 7.4.4.2.2. Thermal Comfort (TC)

There was significant interaction between group, condition and time (f $(8,24), \mathrm{p}=0.017, \mathrm{n}^{2}=$ 0.762 ). There was a main effect for time where thermal comfort increased from the start of the preload to the end of the preload ( $f(8,24), \mathrm{p}=0.037, \mathrm{n}^{2}=0.654$; Table 36) and from the start of the time-trial to the end of the time-trial ( $\mathrm{f}\left(8,24\right.$ ), $\mathrm{p}=0.033, \mathrm{n}^{2}=0.681$; Table 36).

### 7.4.4.2.2.1. Thermal Comfort (TC) in Hot and Dry (Group 1)

Mean $\pm$ SD thermal comfort ratings were significantly lower during the preload and time-trial, respectively in the control condition ( $0 \pm 0(0 \%)$ and $0 \pm 0(0 \%))$ compared to hot and dry with no cooling (12 $\pm 2(60 \%) ; p=0.001$, and $15 \pm 4(75 \%) ; p=0.002)$, cold-water ingestion ( $12 \pm 1$ ( $60 \%$ ); $p=0.001$ and $11 \pm 1(55 \%) ; p=0.002$ ), and cold-water pouring ( $10 \pm 0(50 \%) ; p=$ 0.001 and $12 \pm 2(60 \%) ; p=0.003$; Table 36 ). In addition, there was no significant difference between thermal comfort with ingestion vs pouring in hot and dry conditions during the preload (11 vs $12, \mathrm{p}=0.69$ ).

Mean $\pm$ SD thermal comfort ratings in hot with no cooling ( $15 \pm 4(75 \%)$ ) was significantly greater than cold-water ingestion (11 $\pm 1(55 \%) ; p=0.013$ ) and cold-water pouring $(12 \pm 2(60 \%) ; p=0.020)$ during the time-trial (Table 36). However, there was no significant
difference in thermal comfort ratings between cold-water ingestion and cold-water pouring (11 $\pm 1(55 \%)$ vs $12 \pm 2(60 \%) ; p=0.67$; Table 36).

Thermal comfort increased together with the increase in core temperature in all conditions (except thermoneutral) infering that the greater the core temperature the more thermally uncomfortable the athlete felt (Table 36). The strongest correlation was reported in hot with no cooling ( $r=0.81$ ), however correlation was similar for both ingestion and pouring ( $r=0.34$ vs $r=0.38$ ).

Thermal comfort decreased as power output decreased in hot with no cooling ( $\mathrm{r}=-0.55$; Table 36). Notably, ingestion and pouring were both low correlations ( $\mathrm{r}<0.20$; Table 36).

### 7.4.4.2.2.2. Thermal Comfort (TC) in Hot and Humid (Group 2)

Mean $\pm$ SD thermal comfort ratings were significantly lower during the preload and time-trial, respectively in the control condition $(0 \pm 0(0 \%)$ and $0 \pm 0(0 \%))$ compared to hot and humid with no cooling (12 $\pm 2(60 \%) ; p=0.009$, and $19 \pm 3(95 \%) ; p=0.007$ ), cold-water ingestion ( $12 \pm 1$ ( $60 \%$ ); $p=0.008$ and $12 \pm 1(60 \%) ; p=0.011$ ), and cold-water pouring ( $13 \pm 2(65 \%) ; p=$ 0.008 and $14 \pm 3(70 \%) ; p=0.009$; Table 36).

Mean $\pm$ SD thermal comfort ratings in hot and humid with no cooling (19 $\pm 3(95 \%)$ ) was significantly greater than cold-water ingestion ( $12 \pm 1(60 \%)$; $p=0.010$ ) and cold-water pouring ( $14 \pm 3(70 \%)$; $p=0.022$ ) during the time-trial (Table 36). Mean $\pm$ SD thermal comfort ratings were significantly greater with cold-water pouring than cold-water ingestion during the timetrial in hot and humid conditions ( $14 \pm 3(70 \%)$ vs $12 \pm 1(60 \%)$; $p=0.004$; Table 36 ).

Thermal comfort increased together with the increase in core temperature in all conditions (except thermoneutral), infering that the greater the core temperature the more thermally uncomfortable the athlete felt (Table 36). The strongest correlation was reported in hot with no cooling ( $r=0.84$ ). Notably, the correlation was stronger with cold-water pouring compared to cold-water ingestion (r=0.62 vs 0.35).

Thermal comfort decreased as power output decreased in hot with no cooling (r=-0.52;
Table 36). Notably, ingestion and pouring were both low correlations ( $r<0.18$; Table 36).

### 7.4.4.2.2.3. Thermal Comfort (TC) in Hot and Dry and Hot and Humid (Group Comparison)

There was no significant difference in mean $\pm$ SD thermal comfort ratings between groups in the control condition ( $p=0.376$ ) or cold-water ingestion ( $p=0.123$ ) during the preload (Table 36). There was no significant difference in mean $\pm$ SD thermal comfort ratings between groups in the control condition ( $p=0.386$ ) or cold-water ingestion ( $p=0.135$ ) during the timetrial (Table 36).

Whereas mean $\pm$ SD thermal comfort ratings were greater with cold-water pouring during the time-trial in hot and humid conditions compared to hot and dry conditions ( $14 \pm 3(70 \%)$ vs $12 \pm 2(60 \%) ; p=0.021$; Table 36). Thermal comfort ratings were significantly higher in hot and humid compared to hot and dry during the preload (15 $\pm 4(75 \%)$ vs $12 \pm 2(60 \%) ; p=$ 0.037 ) and the time-trial ( $19 \pm 3(95 \%)$ ) vs $12 \pm 2(60 \%)) ; p=0.029$; Table 36 ).

### 7.4.4.2.3. Thermal Sensation (TS)

There was significant interaction between group, condition and time (f $(8,24), p=0.012, n^{2}=$ 0.701). There was a main effect for time where thermal sensation increased from the start of the preload to the end of the preload (f (8,24), $\mathrm{p}=0.018, \mathrm{n}^{2}=0.796$; Table 36) and from the start of the time-trial to the end of the time-trial ( $f(8,24), \mathrm{p}=0.017, \mathrm{n}^{2}=0.713$; Table 36). This inferred that the participants felt hotter over time.

### 7.4.4.2.3.1. Thermal Sensation (TS) in Hot and Dry (Group 1)

Mean $\pm$ SD thermal sensation ratings were significantly lower with cold-water pouring during the preload and time-trial compared to cold-water ingestion (7 $\pm 2(35 \%)$ vs $9 \pm 1(45 \%)$; $p=$ 0.047 and $7 \pm 2(35 \%)$ vs $9 \pm 1(45 \%) ; p=0.047)$, hot with no cooling ( $7 \pm 2(35 \%)$ vs $14 \pm 3(70 \%)$;
$p=0.013$ and $7 \pm 2(35 \%)$ vs $14 \pm 3(70 \%) ; p=0.013)$ and control ( $7 \pm 2(35 \%)$ vs $11 \pm 1(55 \%) ; p$ $=0.032$ and $7 \pm 2(35 \%)$ vs11 $\pm 1(55 \%) ; p=0.032$; Table 36 ).

The greatest mean $\pm$ SD thermal sensation ratings were reported in hot with no cooling during the preload and time-trial which was significantly greater than control ( $14 \pm 3(70 \%)$ vs $11 \pm 1(55 \%) ; p=0.037$ and $14 \pm 3(70 \%)$ vs $11 \pm 1(55 \%) ; p=0.037)$, cold-water ingestion ( $14 \pm 3(70 \%)$ vs $9 \pm 1(45 \%) ; p=0.020$ and $14 \pm 3(70 \%)$ vs $9 \pm 1(45 \%) ; p=0.021)$ and cold-water pouring ( $14 \pm 3(70 \%)$ vs $7 \pm 2(35 \%) ; p=0.013$ and $14 \pm 3(70 \%)$ vs $7 \pm 2(35 \%) ; p=0.013$; Table $36)$.

Thermal sensation increased together with the increase in core temperature in all conditions (except thermoneutral), infering that the greater the core temperature the more hot the athlete felt (Table 36). The strongest correlation was reported with cold-water pouring ( $r=0.86$ ).

Thermal sensation increased together with the increase in power output in all conditions (Table 36). The strongest correlation was reported with cold-water ingestion ( $r=0.51$ ). Notably, the correlation was very low with cold-water pouring ( $r=0.02$ ) suggesting that this cooling method was effective for reducing thermal sensation (i.e. felt cooler) despite the increase in power output (i.e. greater physiological strain).

### 7.4.4.2.3.2. Thermal Sensation (TS) in Hot and Humid (Group 2)

Mean $\pm$ SD thermal sensation ratings were significantly lower with cold-water ingestion during the preload and time-trial compared to cold-water pouring ( $\mathrm{p}=0.032$ and $\mathrm{p}=0.032$ ), hot with no cooling ( $p=0.012$ and $p=0.019$ ) and control ( $p=0.044$ and $p=0.043$; Table 36).

The greatest mean $\pm$ SD thermal sensation ratings were reported in hot with no cooling during the preload and time-trial which was significantly greater than control ( $14 \pm 3(70 \%)$ vs $11 \pm 1(55 \%) ; p=0.027$ and $17 \pm 2(85 \%)$ vs $11 \pm 1(55 \%) ; p=0.021)$, cold-water ingestion ( $14 \pm 3(70 \%$ ) vs $9 \pm 1(45 \%) ; p=0.012$ and $17 \pm 2(85 \%)$ vs $9 \pm 1(45 \%) ; p=0.019)$ and cold-water
pouring ( $14 \pm 3(70 \%)$ vs $12 \pm 1(60 \%) ; p=0.025$ and $17 \pm 2(85 \%)$ vs $12 \pm 1(60 \%) ; p=0.025$; Table 36).

Thermal sensation increased together with the increase in core temperature in all conditions (except thermoneutral), infering that the greater the core temperature the more hot the athlete felt (Table 36). The strongest correlation was reported in hot with no cooling (r=0.49). Notably, the correlation was similar between core temperature and cold-water ingestion and cold-water pouring ( $\mathrm{r}=0.33$ vs 0.32 ).

Thermal sensation increased together with the increase in power output in all conditions (Table 36). The strongest correlation was reported with cold-water ingestion ( $r=0.51$ ). Notably, the correlation was similar for cold-water ouring ( $\mathrm{r}=0.49$ ).

### 7.4.4.2.3.3. Thermal Sensation (TS) in Hot and Dry and Hot and Humid (Group Comparison)

There was no significant difference in mean $\pm$ SD thermal sensation ratings between groups (dry vs humid) during the preload and the time-trial in control ((11 $\pm 1$ ( $55 \%$ ) vs $11 \pm 1(55 \%) ; p=$ 0.178 and ( $11 \pm 1(55 \%)$ vs $11 \pm 1(55 \%) ; p=0.178$ ) or cold-water ingestion ( $9 \pm 1(45 \%)$ vs $9 \pm 1(45 \%) ; p=0.123$ and $9 \pm 1(45 \%)$ vs $9 \pm 1(45 \%) ; p=0.123 ;$ Table 36$)$.

There was no significant differences between groups in hot (dry vs humid) conditions during the preload ( $14 \pm 3(70 \%)$ vs $14 \pm 3(70 \%)$; $p=0.231$; Table 36$)$. However, thermal comfort ratings were significantly higher in hot and humid compared to hot and dry during the timetrial ( $17 \pm 2(85 \%)$ vs $14 \pm 3(70 \%) ; p=0.037$; Table 36 ).

Mean $\pm$ SD thermal sensation ratings were greater during the preload and time-trial with coldwater pouring in hot and humid conditions compared to hot and dry conditions ( $12 \pm 1$ ( $60 \%$ ) vs7 $\pm 2(35 \%) ; p=0.009$ and $12 \pm 1(60 \%)$ vs $7 \pm 2(35 \%) ; p=0.009$; Table 36).

### 7.4.4.2.4. Task Motivation (TM)

There was no significant interaction between group, condition and time for task motivation ( $f$ $\left.(8,24), p=0.328, n^{2}=675\right)$. This infers that the participants were highly motivated $(20 \pm 0$ (100\%); Table 36) throughout the preload and the time-trial regardless of intervention (i.e. cooling) or condition (i.e. hot vs con or dry vs humid). Therefore, any differences found in physiological responses or performance data were not a result of differences in participants task motivation.

Notably there was no correlation between the core temperature and motivation, power output and motivation because motivation remained unchanged (highly motivated as stated above) in all conditions ( $r=0.00$; Table 36).

### 7.4.4.2.5. Affect (AF)

There was significant interaction between group, condition and time ( $f(8,24)=1.023, p=$ $0.024, \mathrm{n}^{2}=0.756$ ). There was a main effect for time where affect increased or decreased from the start of the preload to the end of the preload $\left(f(8,24)=1.005, p=0.037, n^{2}=0.617\right.$; Table 36) and from the start of the time-trial to the end of the time-trial ( $f(8,24), p=0.032, n^{2}$ $=0.645$; Table 36).

### 7.4.4.2.5.1. Affect (AF) in Hot and Dry (Group 1)

Mean $\pm$ SD affect ratings were significantly lower in hot and dry with no cooling during the preload and the time-trial compared to cold-water ingestion (1 $\pm 1$ (63.63\%) vs $3 \pm 1(81.81 \%) ; \mathrm{p}$ $=0.0 .21$ and $-1 \pm 1(45.45 \%)$ vs $3 \pm 1(81.81 \%) ; p=0.016)$, cold-water pouring ( $1 \pm 1(63.63 \%)$ vs $4 \pm 1(90.90 \%) ; p=0.007$ and $-1 \pm 1(45.45 \%)$ vs $4 \pm 1(90.90 \%) ; p=0.001)$ and control ( $1 \pm 1(63.63 \%)$ vs $3 \pm 1(81.81 \%) ; p=0.022$ and $-1 \pm 1(45.45 \%)$ vs $2 \pm 1(72.72 \%) ; p=0.038$; Table $36)$.

The greatest mean $\pm$ SD affect ratings were reported in cold-water pouring during the preload and time-trial which was significantly greater than control ( $4 \pm 1$ ( $90.90 \%$ ) vs $3 \pm 1(81.81 \%) ; p=$ 0.027 and $2 \pm 1(72.72 \%)$ vs $4 \pm 1(90.90 \%)$ vs $p=0.028)$ and hot with no cooling ( $4 \pm 1$ ( $90.90 \%$ ) vs $1 \pm 1(63.63 \%) ; p=0.007$ and $4 \pm 1(90.90 \%)$ vs $-1 \pm 1(45.45 \%) ; p=0.001$; Table 36).

However, there was no significant difference between cold-water ingestion and cold-water pouring for the preload or time-trial ( $3 \pm 1$ ( $81.81 \%$ ) vs $4 \pm 1$ ( $90.90 \%$ ); $p=0.078$ and $3 \pm 1$ (81.81\%) vs $4 \pm 1$ (90.90\%); $p=0.080$; Table 36).

As core temperature increased, AF decreased (felt worse) in all conditions except for coldwater pouring (Table 36). As core temperature increased, AF increased (felt better) with cold-water pouring ( $\mathrm{R}=0.67$ ). This may suggest that this cooling strategy masked the physiological strain (i.e. increase in core temperature).

Affect increased together with the increase in power output in all conditions except thermoneutral where affect decreased together with the decrease in power output (Table 36). The strongest correlation was reported with cold-water ingestion ( $r=0.51$ ). Notably, the correlation was similar for hot with no cooling ( $r=0.49$ ).

### 7.4.4.2.5.2. Affect (AF) in Hot and Humid (Group 2)

There was no significant difference in AF with ingestion vs pouring in the preload ( $3 \pm 1$ ( $81.81 \%$ ) vs $2 \pm 1$ ( $72.72 \%$ ); $\mathrm{p}=0.91$ ). However, AF was significantly higher (felt better) with ingestion compared to pouring ((3 $\pm 1$ ( $81.81 \%$ ) vs $1 \pm 1(63.63 \%) ; p=0.03)$ in the time-trial. However, mean $\pm$ SD affect ratings were significantly lower during the time-trial in hot and humid conditions with no cooling compared to control ( $p=0.022$ ), cold-water ingestion ( $p=$ 0.022 ) and cold-water pouring ( $\mathrm{p}=0.39$; Table 36 ). There was no significant difference between mean $\pm$ SD affect ratings during the time-trial in control and with cold-water ingestion ( $p=0.244$ ). Therefore, the stimulus from the cold-water ingestion was effective at increasing affect ratings to the same as those rated in control conditions.

As core temperature increased, AF decreased (felt worse) in all conditions except for coldwater ingestion where there was no correlation (Table 36). The strongest correlation was reported in hot with no cooling ( $r=-0.67$ ) which was similar to correlation values reported with cold-water pouring (r=-0.62).

Affect increased together with the increase in power output in hot with no cooling and with cold-water pouring whereas, affect decreased together with the decrease in power output in thermoneutral and with cold-water ingestion (Table 36). The strongest correlation was reported with cold-water ingestion (r=-0.52). Notably, the correlation was low for cold-water pouring ( $r=0.18$ ).

### 7.4.4.2.5.3. Affect (AF) in Hot and Dry and Hot and Humid (Group Comparison)

There was no significant difference in mean $\pm$ SD affect ratings between groups (Dry vs Humid) during the preload or time-trial for cold-water ingestion ( $3 \pm 1$ ( $81.81 \%$ ) vs $3 \pm 1(81.81 \%) ; p=0.396$ and $3 \pm 1(81.81 \%)$ vs $3 \pm 1(81.81 \%) p=0.396)$ and control $(3 \pm 1(81.81 \%)$ vs $2 \pm 1(72.72 \%) ; p=0.391$ and $3 \pm 1(81.81 \%)$ vs $3 \pm 1(81.81 \%) p=0.377$; Table 36). There was no significant difference in mean $\pm$ SD affect ratings between groups (dry vs humid) in hot during the preload ( $1 \pm 1(63.63 \%)$ vs $-1 \pm 1(45.45 \%) ; p=0.069$; Table 36). However hot and humid had a significantly lower rating of affect during the time-trial compared to hot and dry ( $2 \pm 1$ (72.72\%) vs $-1 \pm 1(45.45 \%)$; $p=0.39$; Table 36 ).

Mean $\pm$ SD affect ratings were significantly greater during the preload and the time-trial with cold-water pouring in hot and dry and hot and humid conditions ( $4 \pm 1$ ( $90.90 \%$ ) vs $2 \pm 1(72.72 \%) ; p=0.012$ and $4 \pm 1(90.90 \%)$ vs $1 \pm 2(63.63 \%) ; p=0.009 ;$ Table 36$)$.

### 7.5. Discussion

### 7.5.1. Main findings

- Power output was significantly greater ( $10 \%$ ) with cold-water pouring compared to cold-water ingestion in hot and dry conditions. These performance differences occurred irrespective of no changes in rectal temperature or thermal comfort. However percpetual thermal strain was reduced for ratings of perceived exertion with cold-water pouring.
- There was no significant differences (4\%) in power output between cold-water ingestion and pouring in hot and humid conditions. This result occurred despite a reduced physiological thermal strain (i.e. rectal temperature) with cold-water ingestion compared to pouring. However perceptual thermal strain (i.e. thermal comfort) was the same in both conditions. These findings suggest that the optimal cooling strategy in hot and humid conditions is still unknown.
- Power output was signfiicantly greater (10\%) with cold-water pouring in hot and dry compared to hot and humid. This was accompanied by no differenced in physiological thermal strain (i.e. rectal temperature) but a reduced percpetual thermal strain (i.e. thermal discomfort) in hot and humid compared to hot and dry.


### 7.5.2. The Effect of Cooling on Performance Responses in Hot and Dry

Power output was significantly greater with cold-water pouring (199.40 $\pm 5.82 \mathrm{~W}$ ) compared to cold-water ingestion (180.35 $\pm 5.51 \mathrm{~W}$ ) in hot and dry conditions (10\%). As outlined in the introduction, there is a difference between internal and external cooling. Cooling via coldwater pouring is linked to direct conduction (cold-water on skin), and convective (relies on the water being poured to be evaporated into the surrounding environment) pathways. This enables the removal of heat by the water temperature (direct) and evaporation (indirect) and subsequent circulation of the cooler peripheral blood to central regions of the body to reduce rectal temperature (Jay and Morris, 2018). To date, no studies have investigated the same
method employed in this study (i.e. cold-water pouring in a laboratory setting) for comparison. A similar method that has been investigated in the literature is face spraying/dousing (Stevens et al., 2017). Stevens et al., (2017) found 3\% performance benefit during a 5 km running time-trial with cold water spray on the face (every 1 km ) during hot and dry conditions $\left(33^{\circ} \mathrm{C}, 46 \%\right.$ and $\left.15 \mathrm{~km} \cdot \mathrm{~h}^{-1}\right)$.

Notably, in the current study performance differences were found regardless of no significant difference in mean $\pm$ SD rectal temperature during the time-trial between cold-water pouring $\left(38.18 \pm 0.13^{\circ} \mathrm{C}\right)$ and cold-water ingestion ( $38.38 \pm 0.14^{\circ} \mathrm{C}$ ). Stevens et al., (2017) also found no significant differences in core temperature with and without facial water spray every 1 km during a 5 km time-trial in hot and dry conditions. These findings suggest that per-cooling via these cooling methods were not suffient enough to cause changes in rectal temperature. This infers that the performance differences between cooling strategies were not a result of differences in core temperature during the time-trial. Notably, Stevens et al., (2017) did find a significant difference in skin temperature at the site of cooling (i.e. forehead). Based on Schlader et al., (2011) findings, a reduction in skin temperature is linked with higher selection of exercise intensity at the start of exercise. Skin temperature was not measured in the current study but it could be hypothesised that this could explain the greater starting intensity exhibited in the cold-water pouring trial compared to ingestion in Figure 29 Panel A. This was supported by a reduced percpetual strain experienced with cold-water pouring. For example, mean $\pm$ SD ratings of perceived exertion were greater with cold-water ingestion $(13 \pm 3(50 \%$ of max)) compared to cold-water pouring ( $11 \pm 4(35.71 \%$ of max)), inferring that participants felt like they were exerting more effort whilst ingesting water compared to pouring. Therefore, cold-water pouring was effective for reducing mean $\pm$ SD ratings of perceived exertion during a 30 min cycling time-trial in hot and dry conditions. This may explain why participants were able to provide a greater power output with cold-water pouring $(199.40 \pm 5.82 \mathrm{~W})$ compared to cold-water ingestion $(180.35 \pm 5.51 \mathrm{~W})$. However, the greater power produced and subsequent metabolic heat production with cold-water pouring may
have contributed to a greater thermal discomfort ( $12 \pm 2(60 \%$ of max)) compared to ingestion ( $11 \pm 1$ ( $55 \%$ of max)). Therefore there seems to be a trade off in heat storage between reduction in perceptual strain and exercise intensity exerted/produced. Notably, Stevens et al., (2017) did not measure ratings of perceived exertion or thermal comfort but they did measure thermal sensation. They found that facial water spray every 1 km during a 5 km time-trial in hot and dry conditions reduced thermal sensation (i.e. felt cooler).

### 7.5.3. The Effect of Cooling on Performance Responses in Hot and Humid

There was no significant difference in power output between cold-water ingestion and coldwater pouring ( $173.77 \pm 0.97 \mathrm{~W}$ vs $165.16 \pm 1.31 \mathrm{~W}, \mathrm{p}=0.760$; $5 \%$ ). This result occurred despite a reduced physiological thermal strain (i.e. rectal temperature) with cold-water ingestion compared to pouring. Notably, there have been discrepancies within the literature regarding whether cold-water ingestion can successfully reduce core body temperature. Differences in findings are a result from differences in dosage provided (i.e. temperature, quantity and timing). As discussed in section 2.5, Carvalho et al., (2016) found no difference in 40 km cycling time-trial completion time when cold-water $\left(10^{\circ} \mathrm{C}\right)$ was consumed ad libitum and scheduled in hot and humid conditions. Power output was not reported in Carvalho et al., (2016) study and therefore cannot be directly compared to the current study. However, more cold-water was ingestion ( $1.1 \pm 0.4 \mathrm{~L}$ ) was consumed in Carvalho et al., (2016) study compared to the 750 mL ingested in the current study and the temperature of the water was higher $\left(10^{\circ} \mathrm{C}\right)$ compared to the current study $\left(4^{\circ} \mathrm{C}\right)$. Therefore two conclusions can be drawn based on methodology; 1) the temperature of the water in Carvalho et al., (2016) study was not cold enough to elicit a a significant reduction in thermal strain (i.e. rectal temperature) and performance impairment in completion time, 2) the amount of water consumed in the current study was not enough to elicit any performance benefits.

Despite no differences in performance, cold-water ingestion was effective at reducing ratings of perceived exertion compared to pouring ( $12 \pm 5(42.85 \%$ ) vs $14 \pm 6(57.14 \%)$ ) in hot and humid conditions. This inferred that cyclists felt like they were exerting less effort with cold-
water ingestion compared to pouring even though they were exerting a similar effort in with both cooling strategies.

As discussed above skin temperature was not measured in the current study. However, if there was no significant differenced reported in skin temperature at the start of the time-trial then starting exercise intensity would be similar with both cooling strategies which matches values reported in Figure 29 panel B. Therefore, these findings suggest that the optimal cooling strategy in hot and humid conditions is still unknown and future research in this area should focus on using per-cooling strategies that elicit alterations in skin temperature.

### 7.5.4. The Effect of Cooling on Performance Responses in Hot and Dry and Hot and Humid

There was no significant difference in power output with cold-water ingestion in hot and dry compared to hot and humid ( $180.35 \pm 1.51$ vs $173.77 \pm 0.97 \mathrm{~W}, \mathrm{p}=0.644$ ). No performance differences occurred regardless of a reduced thermal strain (i.e. rectal temperature) with cold-water ingestion in hot and humid compared to hot and dry ( $37.9 \pm 0.1$ vs $38.38 \pm 0.14, \mathrm{p}=$ 0.044). This may have been a result of similar perceptual thermal strain (i.e. thermal comfort). There was no significant difference in thermal comfort with cold-water ingestion in hot and dry and hot and humid conditions ( $11 \pm 1(55 \%)$ vs $12 \pm 1(60 \%), \mathrm{p}=0.135)$. To date no studies have compared per-cooling via cold-water ingestion during cycling in hot and dry compared to hot and humid conditions and therefore the findings of the current study cannot be directly compared. Based on previous findings that have investigated per-cooling via cold-water ingestion in either hot and dry or hot and humid conditions, the concensis is that there are mixed results in terms of its effectiveness in reducing rectal temperature which are dependant on doseage. As a result of this majotity of literature in the area reports no changes in performance (Carvalho et al., 2016) or small changes (2.5\%; Maunder et al, 2016). As highlighted in the second literature review, more research into cold-water ingestion is needed to find the optimal dosage to elicit physiological alternations (i.e. reduce core temperature and maintain the reduction in core temperature throughout an exercise bout).

Whereas, power output was significantly greater with cold-water pouring in hot and dry compared to hot and humid ( $199.40 \pm 0.82$ vs $165.16 \pm 1.31 \mathrm{~W}, \mathrm{p}=0.000 ; 20 \%$ ). This performance differenced occured regardless of no differences in physiological thermal strain (i.e. rectal temperature). For example, there were no signfiicant differences in rectal temperature with cold-water pouring in hot and dry compared to hot and humid ( $38.18 \pm 0.13$ vs $38.4 \pm 0.22, p=0.253$ ). Therefore the performance difference was not a result of differences in rectal temperature. An alternative reason for the performance difference may be related to a reduction in perceptual thermal strain (i.e. thermal comfort). For example, mean $\pm$ SD thermal discomfort ratings were greater with cold-water pouring during the timetrial in hot and humid conditions compared to hot and dry conditions ( $14 \pm 3(70 \%)$ vs $12 \pm 2(60 \%)$;Table 36$)$. This inferred that the cyclists' felt more uncomfortable with cold-water pouring in hot and humid conditions compared to hot and dry conditions. This may have been linked to the environmental conditions as previously stated, hot and humid conditions have a greater water vapour content compared to hot and dry conditions which impairs sweat evaporation and contributes to a greater heat storage and subsequent greater thermal discomfort.

### 7.5.5. Limitations and Perspectives

- A typical repeated measures study design was not used (e.g. same participants completed all conditions). An interdependent repeated measures design was selected as (i) it was not deemed practical for participants to visit the laboratory 9 times and (ii) to minimise a heat acclimation effect from 6/10 trials in hot conditions (Moss et al., 2020).
- Due to equipment failure with skin temperature no skin temperature values could be presented. This meant that mean body temperature (Tb) could not be calculated using the formula from Colin et al. (1971) $\Delta \mathrm{Tb}=0.8 \times(\Delta \mathrm{Tre})+0.2 \times\left(\Delta \mathrm{T}_{\text {sk }}\right)+0.4$. As a result of this heat storage could not be calculated using the formula described by Adams et al. (1992) heat storage $=0.965 \times \mathrm{m} \times \triangle \mathrm{Tb} / \mathrm{AD}$, where 0.965 is the specific
heat storage capacity of the body $\left(\mathrm{W} / \mathrm{kg} /{ }^{\circ} \mathrm{C}\right)$, m is the mean body mass $(\mathrm{kg})$ over the duration of the trial, and AD is the body surface area (m2): $\mathrm{AD}=0.202 \times \mathrm{m} 0.425 \times$ height ${ }^{0.725}$. In addition, measuring skin temperature would have allowed us to explore another mechanistic avenue. For example, Sawka et al., (2012) found that elevated skin temperature alone may impair aerobic performance such as self-paced cycling. This occurs as hot skin narrows the core to skin temperature gradient which increases peripheral thermoregulatory blood flow requirements and in turn circulatory strain, reducing cardiac filling and elevating heart rate for a given cardiac output (Cheuvront et al., 1985). The increased cardiovascular strain associated with high skin temperatures may contribute to modulate performance in advance of a rise in core body temperature (i.e. hyperthermia).


### 7.6. Conclusion

Cold-water pouring provided a greater ergogenic effect on 30min cycling time-trial performance in HD conditions compared to cold-water ingestion which was accompanied by physiological benefits. There was no difference in performance with cold-water ingestion compared to pouring in hot and humid conditions and therefore the optimal cooling strategy in this condition is still unknown.

### 7.7. Importance of findings for subsequent chapter and thesis

The findings of the current study have highlighted that:

- Internal per-cooling via cold-water ingestion should be utilised during cycling in HH conditions to reduce elevated physiological (i.e. rectal temperature) and pereptual thermal strain (i.e. thermal discomfort and ratings of perceived exertion) compared to no cooling in HH. However, the dosage should be investigated further as no performance benefits were reported with cold-water ingestion compared to coldwater pouring in HH .
- External per-cooling via cold-water pouring should be utilised during cycling in HD conditions compared to cold-water ingestion to reduce impairments in power output and percpetual strain (i.e. thermal discomfort and ratings of perceived exertion). Notably, cold-water pouring resulted in significant differences in physiological thermal strain experienced.
- No differences in power output were reported with internal per-cooling via cold-water ingestion in HD compared to HH . This result occurred despite a reduced physiological thermal strain (i.e. rectal temperature) in HH compared to HD. However perceptual thermal strain (i.e. thermal comfort) was the same in both conditions.
- Power output was signfiicantly greater with external per-cooling via cold-water pouring in HD compared to HH . This was accompanied by no differenced in physiological thermal strain (i.e. rectal temperature) but a reduced percpetual thermal strain (i.e. thermal discomfort) in HH compared to HD.
- This information should be used to inform coaches and athletes on what type (external vs internal) per-cooling strategies to use during major sporting events that take place in countries with hot environmental conditions (HD vs HH ).


## Chapter 8. General discussion

### 8.1. Thesis Aims and Main Findings

The overall aim of this thesis was to investigate the effect of cold-water ingestion and coldwater pouring on 30 min cycling time-trial performance in HD , and HH conditions. To do this, a narrative review (chapter 2) was first completed to identify common trends (i.e. thermal stress and strain) within the literature. The review highlighted that (i) a range of hot conditions (i.e. ambient temperatures and humidities) have been utilised to investigate the effect of hot conditions on cycling performance, (ii) hot and dry and hot and humid conditions provide a different thermal stress (i.e. humidity level) and therefore result in different thermal strain (i.e. physiological and perceptual) experienced by an athlete, (iii) few studies have compared the effect of HD and HH on cycling performance in the same study (i.e. often only one condition is investigated) and therefore it is difficult to form firm conclusions on the thermal stress and strain. Therefore, the first aim of the thesis was to charactise the effect of HD and HH conditions on cycling time-trial performance (Study 2). Before exploring the first aim of the thesis it should be noted that an additional finding was noted in the narrative review which highlighted that different quantities of visual feedback have been utilised in previous literature. Therefore, the pilot study (chapter 4) submitted as part of this thesis highlighted that experienced cyclists 30min cycling time-trial performance was impaired with multiple feedback (elapsed distance, elapsed time, power output, cadence, speed and heart rate) compared to single feedback (elapsed time only). This finding was/is vital in understanding cycling performance and to inform future methodologies investigating cycling performance (including study 2 and 4 included as part of this thesis).

The findings from study 2 (Chapter 5) showed that (i) cycling performance is significantly impaired in hot and dry, and hot and humid conditions compared to thermoneutral conditions which supports previous findings (Racinais et al., 2015), (ii) cycling performance is
significantly impaired in hot and humid compared to hot and dry conditions, (iii) both impairments were accompanied with a significantly greater increase in rectal temperature and thermal discomfort. These findings demonstrate that training and/or competing in (i) HD and HH conditions compared to thermoneutral will result in performance impairments (i.e. which could mean missing out on a potential medal placing), and (ii) HH conditions will cause a greater performance impairment compared to HD conditions. The greater impairment in HH conditions is linked to the greater water vapour content in the air in comparison to HD, which impairs sweat evaporation and contributes to a greater heat storage and subsequent greater thermal discomfort. Therefore, a means for alleviating this heat related performance impairments is needed in both HD and HH compared to thermoneutral, and these methods may have to be different to account for the difference in thermal stress and strain experienced.

Athletes and coaches use heat alleviation strategies prior to and during training and/or competitions in hot conditions to alleviate performance impairments and reduce the risk of heat related illnesses (Gibson et al., 2020). Therefore, the second aim of the thesis was to determine (i) which heat alleviation strategy cyclists-triathletes currently employ during training and/or competitions in hot conditionsm (HD and HH), (ii) when cyclists-triathletes apply them, (iii) why cyclists-triathletes use this strategy, and (iv) the percieved effectiveness of these strategies at minimising performance impairments and heat related illnesss. To do this, an online questionnaire was created and follow up interviews were conducted. The findings of study 3 (Chapter 6) highlighted that 60\% of cyclistst-triathletes per-cooling strategies differ depending on condition (hot and dry vs hot and humid), whereas the other $40 \%$ used the same per-cooling strategies regardless of condition (hot and dry vs hot and humid). Cold-water ingestion was the most employed strategy in hot and dry, whereas a combination of cold-water ingestion and pouring was the most employed strategy in hot and humid. These findings supported Racinais et al., (2020) study, showing that $93 \%$ of athletes
competing at the DOHA 2019 IAAF World Athletics Championships (hot and dry conditions) employed per-cooling. 65\% used head/face water dousing/pouring and 52\% used cold-water ingestion. The timing of application in study 3 was pre-planned based on distance in both conditions, which was supplemented with how participants felt during and when pit stops are available in hot and dry, and how participants felt during in hot and humid. The prevailing justifications for type and timing of strategies was previous experience/perceived effectiveness (i.e. trial and error). There was no difference in perceived effectiveness of the strategies (time and timing combined) employed in HD and HH. $57 \%(\mathrm{~N}=12)$ of the overall $60 \%(N=21)=3 / 5$ ("Sometimes effective and sometimes not effective" and $43 \%(N=9)$ of the overall $60 \%(N=21)=4 / 5$ ("effective for minimizing performance impairments but not heat related illnesses") for both conditions.

Based on study 3 (Chapter 6) findings, Study 4 (chapter 7) investigated the effect of coldwater ingestion and cold-water pouring on cycling time-trial performance in hot and dry and and hot and humid conditions. The findings showed that power output was significantly greater with cold-water pouring compared to cold-water ingestion in hot and dry conditions. These performance differences occurred irrespective of no changes in rectal temperature or thermal comfort. However, percpetual thermal strain was reduced for ratings of perceived exertion. These findings contradict strategies that are currently used by cyclists-triathletes in HD (reported in study 3, chapter 6). For example, cyclists-triathletes selected cold-water ingestion as their main per-cooling strategy in HD which was based on perceived effectiveness. However, study 4 has shown that cold-water pouring provides a reduced performance impairment and percpetual thermal strain compared to cold-water ingestion in HD. Cold-water pouring promotes heat loss via evaporation as water will sit on the skin surface (i.e. head, neck and back) and readily evaporate into the surrounding environment (Morris and Jay , 2016). Therefore, the cyclists-triathletes in study 3 are currently not
employing the most effective per-cooling strategy for cycling time-trial performance in HD conditions.

There were no differences in power output between cold-water ingestion and pouring in hot and humid conditions. This finding occurred despite a reduction in rectal temperature with cold-water ingestion compared to pouring. This therefore suggests that the reduction in rectal temperature with cold-water ingestion was not sufficient enough to elicit any performance benefits. This has been supported in the literature with descripenses on whether cold-water ingestion is successful at reducing core temperature (literature review 2 ). This has resulted from a range of different methodologies/dosages that have been used (i.e. temperature, frequency, magnitude). Cyclists-triathletes in study 3 reported using a combination of cold-water ingestion and cold-water pouring in hot and humid conditions which was not investigated in study 4 and therefore perceived effectiveness vs actual effectiveness at reducing thermal strain cannot be directly compared. Based on study 4 findings, cold-water ingestion alone was not sufficient to elicit any performance benefits in comparison to cold-water pouring alone. However as previously stated cold-water pouring promotes heat loss via evaporation, and in hot and humid conditions sweat/water on the skin surface cannot be evaporated as readily as it can in hot and dry conditions (Morris and Jay, 2016). Therefore if cold-water ingestion and pouring were used incombination during a cycling time-trial in hot and humid conditions it would be practical to suggest that the pouring aspect of the cooling would not elicit any physiological benefits as evaporative cooling would be limited. If anything only perceptual benefits would occur linking to previous findings of Stevens et al., (2017) who found that despite no reductions in core temperature, face water spray every 1 km reduced thermal sensation (i.e. felt cooling) during a 5 km running time-trial in hot and humid conditions. Notably, Stevens et al., (2017) found a significant improvement in 5 km completion time with face water spray compared to no face water spray which contributed to a reduction in skin temperature at the cooling site (i.e. forehead) and subsequent reduction in thermal sensation and selection of a higher exercise intensity at the
start of the time-trial. Notably, skin temperature was not measured in study 4 and therefore no firm conclusions can be made in regard to it's affect on performance differences.

However, as stated in study 4, it could be hypothesised that the greater starting intensity exhibited with cold-water pouring compared to ingestion in hot and dry conditions (Figure 29 Panel A) may have resulted from a reduction in skin temperature and subsequent reduction in perceptual strain. Similarly, starting intensity was similar with both cooling strategies in hot and humid conditions (Figure 29 Panel B) which may suggest that there was no significant differences in skin temperature which subsequently explain why no differences occurred in the overall performance. Therefore, these findings suggest that the optimal cooling strategy in hot and humid conditions is still unknown and future research in this area should focus on using per-cooling strategies that elicit alterations in skin temperature. Whereas, cold-water pouring should be utilised during cycling time-trials in hot and dry conditions compared to cold-water ingestion.

In the group comparison, there were no significant differences in power output with coldwater ingestion in hot and dry and hot and humid conditions. This result occurred despite a reduced physiological thermal strain (i.e. rectal temperature) in hot and humid compared to hot and dry. Despite differences in rectal temperature, perceptual thermal strain (i.e. thermal comfort) was the same in both conditions. This finding suggests that the dose of cold-water ingestion was not sufficient enough to provide a reduction in thermal strain (both physiological and perceptual) to elicit performance benefits. Whereas, power output was signfiicantly greater with cold-water pouring in hot and dry compared to hot and humid. This was accompanied by no differences in physiological thermal strain (i.e. rectal temperature) but a reduced percpetual thermal strain (i.e. thermal discomfort). This finding suggests that the dose of cold-water pouring was sufficient enough to elicit a performance benefit without reductions in physiological thermal strain. As previously stated skin temperature was not measured in study 4 and therefore we cannot conclude as to whether skin temperature was
reduced which may have contributed to the performance benefits found in hot and dry compared to hot and humid condition with cold-water pouring.

Collectively, per-cooling may disrupt pacing strategies (i.e. produce greater power output as a result of allievated thermal discomfort or ratings of perceived exertion at the start or throughout a cycling time-trial) and/or impair the ability to self-detect physiological thermal strain (i.e. increase in rectal temperature) which may put an athlete at a greater risk of heat related illnesses (Racinais and Periard, 2020, pp. 152).Therefore, optimal per-cooling strategies should aim to alleviate both physiological and perceptual thermal strain, and not just perceptual as seen in study 4 with cold-water pouring in hot and dry conditions.

### 8.2. Real-world Availability and Application of Cooling

The findings of the current thesis contribute to the understanding of how cycling performance is influenced by feedback (quantity), hot conditions (HD vs HH ) and per-cooling (cold-water ingestion and pouring). The following guidelines can be used by cyclists-triathletes and coaches to improve cycling performance:

- Use single visual feedback (time only) during training and/or competion compared to multiple feedback (i.e. elapsed distance, time, speed, power, heart rate, cadence).
- Consider the difference in thermal stress between hot and dry and hot and humid conditions before training and/or competion.
- The type (internal vs external) of per-cooling should depend on the condition you are competing in (HD vs HH ).
- Cold-water pouring provides a reduced performance impairment and percpetual thermal strain in HD compared to cold-water ingestion. However, this dose $\left(4^{\circ} \mathrm{C}\right.$ of 150 mL targeted at the head, neck and shoulders every 15 min during the preload and every 10 min during the time-trial) was not sufficient to reduce physiological thermal strain and therefore the optimal strategy has not yet been determined.
- There were no differences in power output between cold-water ingestion and pouring in hot and humid conditions. Therefore the optimal strategy to be utilised in hot and humid conditions is still unknown.


### 8.3. Limitations

The methodology, findings and interpretations of the experimental studies within this thesis naturally include limitations. These limitations are outlined below:

- Across all experimental studies composed within this thesis, participants were instructed to refrain from caffeine and alcohol for $\geq 48 \mathrm{hr}$ prior to each experimental trial and maintain a habitual diet whilst enrolled onto the study, as described in Chapter 3 (General Methods). Although advised to maintain their diet, the total daily calorie intake and meal timing may have varied between participants.
- Physical activity outside of experimental trials/exercise sessions were quantified in terms of work completed (kj). Although unlikely, there is potential that participants may have increased their calorie intake or became more/less active during their time spent enrolled onto a study, which could have impacted the findings reported regardless of the extent of advice given by the investigators (particularly study 1,2 and 4).
- It has been demonstrated that a $\sim 20 \%$ difference in body fat percentage is sufficient to independently yield $\sim 0.2-0.3^{\circ} \mathrm{C}$ greater rises in $\mathrm{T}_{\text {core }}$ during moderate exercise at a fixed metabolic heat production of $6 \mathrm{~W} / \mathrm{kg}$ of total body mass in healthy males (mean body fat \% of 10.8 versus $32.0 \%$ ) in a $28^{\circ} \mathrm{C}$ environment (Dervis et al., 2016). Secondly, large differences in the specific heat of the tissues of the body (Cp) caused by marked differences in body composition can also alter Tcore despite a similar heat storage. A Cp of $3.47 \mathrm{~kJ} . \mathrm{kg}-1^{\circ} \mathrm{C}-1$ is assumed for the average person (Geddes, 1967). However, owing to the different Cp of fat tissue ( $2.97 \mathrm{~kJ} . \mathrm{kg}-1^{\circ} \mathrm{C}-1$ ) and lean mass (3.64kJ.kg-1 ${ }^{\circ} \mathrm{C}-1$ ) overall Cp can vary depending on adiposity. Body fat percentage and Cp were not measured in any of the experimental studies included in
this thesis. However, BM was measured which is a representation of a humans heat sink, meaning that changes in $\mathrm{T}_{\text {core }} / \mathrm{T}_{\text {rectal }}$ for an absolute amount of heat stored in the body are negatively correlated I.e. a smaller rise is observed with a larger BM for a fixed heat storage (Cramer and Jay, 2014; Ravanelli et al., 2017). Therefore, BM was measured at the start and end of every experimental trial and different in BM within and between groups was controlled to $\sim 20 \%$.
- All experimental trials included psychological measures such as ratings of perceived exertion and study 2 and 4 includes psychological measures such as thermal sensation and thermal comfort which are subjective psychological measure. Therefore ratings of these measures will be different from person to person (Gaoua et al., 2021).


### 8.4. Conclusions and Future Research Direction

In conclusion, this thesis has highlighted the effect of thermal stress (HD vs HH ) and percooling (cold-water ingestion and pouring) on thermal strain (physiological and perceptual) during cycling time-trial performance.

Collectively, these findings indicate that

1. Consider the difference in thermal stress between hot and dry and hot and humid conditions before training and/or competion.
2. The type (internal vs external) of per-cooling should depend on the condition you are competing in (HD vs HH ) as these two conditions offer different thermal stresses.
3. Per-cooling via cold-water pouring reducing performance impairments in HD compared to HH. Whereas there was no difference in performance with cold-water ingestion in HD and HH.

Future research should be directed towards the specific methodologies involved in coldwater ingestion and pouring i.e. quantities of water consumed during exercise, when the
cooling is administered, the temperature of water provided, and the site of cooling if pouring to identify the optimal cold-water ingestion and pouring intervention.

## 9.References

Abbiss, C.R. and Laursen, P.B., 2005. Models to explain fatigue during prolonged endurance cycling. Sports medicine, 35(10), pp.865-898.

Abbiss, C.R., Quod, M.J., Martin, D.T., Netto, K.J., Nosaka, K., Lee, H., Surriano, R., Bishop, D. and Laursen, P.B., 2006. Dynamic pacing strategies during the cycle phase of an Ironman triathlon. Medicine \& Science in Sports \& Exercise, 38(4), pp.726-734.

Abbiss, C.R. and Laursen, P.B., 2008. Describing and understanding pacing strategies during athletic competition. Sports Medicine, 38(3), pp.239-252.

Abbiss, C.R., Peiffer, J.J., Peake, J.M., Nosaka, K., Suzuki, K., Martin, D.T. and Laursen, P.B., 2008. Effect of carbohydrate ingestion and ambient temperature on muscle fatigue development in endurance-trained male cyclists. Journal of applied physiology, 104(4), pp.1021-1028.

Abbiss, C.R. and Peiffer, J.J., 2010. The influence of afferent feedback, perceived exertion and effort on endurance performance. Journal of applied physiology (Bethesda, Md.: 1985), 108(2), pp.460-461.

Abbiss, C.R., Burnett, A., Nosaka, K., Green, J.P., Foster, J.K. and Laursen, P.B., 2010. Effect of hot versus cold climates on power output, muscle activation, and perceived fatigue during a dynamic 100-km cycling trial. Journal of sports sciences, 28(2), pp.117-125.

Abbiss, C.R., Peiffer, J.J., Meeusen, R. and Skorski, S., 2015. Role of ratings of perceived exertion during self-paced exercise: what are we actually measuring?. Sports medicine, 45(9), pp.1235-1243.

Abbiss, C. R., Thompson, K. G., Lipski, M., Meyer, T., and Skorski, S. 2016. Difference in pacing between time- and distance-based time trials in trained cyclists. Int. J. Sports Physiol. Perform. 11, 1018-1023.

Abdallah, S.J., Krug, R. and Jensen, D., 2015. Does wearing clothing made of a synthetic "cooling" fabric improve indoor cycle exercise endurance in trained athletes?. Physiological Reports, 3(8), p.e12505.

Abel, A., Baron, B., Grappe, F. and Francaux, M., 2019. Effect of environmental feedbacks on pacing strategy and affective load during a self-paced 30 min cycling time trial. Journal of sports sciences, 37(3), pp.291-297.

Adams, W.C., Mack, G.W., Langhans, G.W. and Nadel, E.R., 1992. Effects of varied air velocity on sweating and evaporative rates during exercise. Journal of Applied Physiology, 73(6), pp.2668-2674.

Adams, W.M., Hosokawa, Y., Adams, E.L., Belval, L.N., Huggins, R.A. and Casa, D.J., 2016. Reduction in body temperature using hand cooling versus passive rest after exercise in the heat. Journal of science and medicine in sport, 19(11), pp.936-940.

Adolph, E.F., 1947. Physiology of Man in the Desert. Physiology of Man in the Desert. Aisbett, B., Lerossignol, P., McConell, G.K., Abbiss, C.R. and Snow, R., 2009. Influence of all-out and fast start on 5-min cycling time trial performance. Med Sci Sports Exerc, 41(10), pp.1965-1971.

Alhadad, S.B., Tan, P.M. and Lee, J.K., 2019. Efficacy of heat mitigation strategies on core temperature and endurance exercise: a meta-analysis. Frontiers in physiology, 10.

Al-Horani, R.A., Wingo, J.E., Ng, J., Bishop, P. and Richardson, M., 2018. Precooling and warm-up effects on time trial cycling during heat stress. Aerospace medicine and human performance, 89(2), pp.87-93.

Allnutt, M.F. and Allan, J.R., 1973. The effects of core temperature elevation and thermal sensation on performance. Ergonomics, 16(2), pp.189-196.

Almudehki, F., Girard, O., Grantham, J. and Racinais, S., 2012. Hot ambient conditions do not alter intermittent cycling sprint performance. Journal of science and medicine in sport, 15(2), pp.148-152.

Altareki, N., Drust, B., Atkinson, G., Cable, T. and Gregson, W., 2009. Effects of environmental heat stress $\left(35^{\circ} \mathrm{C}\right)$ with simulated air movement on the thermoregulatory responses during a 4-km cycling time trial. International journal of sports medicine, 30(01), pp.9-15.

Amann, M., Eldridge, M.W., Lovering, A.T., Stickland, M.K., Pegelow, D.F. and Dempsey, J.A., 2006a. Arterial oxygenation influences central motor output and exercise performance via effects on peripheral locomotor muscle fatigue in humans. The Journal of physiology, 575(3), pp.937-952.

Amann, M., Romer, L.M., Pegelow, D.F., Jacques, A.J., Hess, C.J. and Dempsey, J.A., 2006b. Effects of arterial oxygen content on peripheral locomotor muscle fatigue. Journal of Applied Physiology, 101(1), pp.119-127.

American College of Sports Medicine Health Related Physical Fitness Assessment Manual, Fourth Edition. 2014. Lippincott Williams and Wilkins. pp 10-23

Ammons, R.B. Effects of knowledge of performance: A survey and tentative theoretical formulation. JGP 1956, 54, 279-299, doi:10.1080/00221309.1956.9920284.

Amos, D., Hansen, R., Lau, W.M. and Michalski, J.T., 2000. Physiological and cognitive performance of soldiers conducting routine patrol and reconnaissance operations in the tropics. Military medicine, 165(12), pp.961-966.

Ando, S., Komiyama, T., Sudo, M., Kiyonaga, A., Tanaka, H. and Higaki, Y., 2015. The effects of temporal neck cooling on cognitive function during strenuous exercise in a hot environment: a pilot study. BMC research notes, 8(1), pp.1-8.

Ansley, L., Marvin, G., Sharma, A., Kendall, M.J., Jones, D.A. and Bridge, M.W., 2008. The effects of head cooling on endurance and neuroendocrine responses to exercise in warm conditions. Physiological research, 57(6).

Ansley, L., Noakes, T., Robson-Ansley, P. and St Clair Gibson, A., 2004. Anticipatory pacing strategies during supra-maximal exercise lasting more than 30 s . Medicine \& Science in Sports \& Exercise, 36(2), pp.309-314.

Arkesteijn, M., Jobson, S.A., Hopker, J. and Passfield, L., 2013. Effect of gradient on cycling gross efficiency and technique. Medicine and science in sports and exercise, 45(5), pp.920926.

Armstrong, L.E. and Maresh, C.M., 1991. The induction and decay of heat acclimatisation in trained athletes. Sports medicine, 12(5), pp.302-312.

Armstrong, L.E., 2003.Exertional heat illnesses. Human Kinetics.

Armstrong, L.E., Crago, A.E., Adams, R., Roberts, W.O. and Maresh, C.M., 1996. Wholebody cooling of hyperthermic runners: comparison of two field therapies. The American journal of emergency medicine, 14(4), pp.355-358.

Arngrímsson, S.Á., Petitt, D.S., Borrani, F., Skinner, K.A. and Cureton, K.J., 2004. Hyperthermia and maximal oxygen uptake in men and women. European journal of applied physiology, 92(4-5), pp.524-532.

Arngrïmsson, S.Á., Petitt, D.S., Stueck, M.G., Jorgensen, D.K. and Cureton, K.J., 2004. Cooling vest worn during active warm-up improves 5 -km run performance in the heat. Journal of applied physiology.

Arngrimsson, S.A., Stewart, D.J., Borrani, F., Skinner, K.A. and Cureton, K.J., 2003. Relation of heart rate to percentV o 2 peak during submaximal exercise in the heat. Journal of Applied Physiology, 94(3), pp.1162-1168.

Arngrimsson, S.A., Stewart, D.J., Borrani, F., Skinner, K.A. and Cureton, K.J., 2003. Relation of heart rate to percentV o 2 peak during submaximal exercise in the heat. Journal of Applied Physiology, 94(3), pp.1162-1168.

ASHRAE. 1966. Thermal comfort conditions, ASHRAE standard 55.66, New York.

Assayag, M., Saada, A., Gerstenblith, G., Canaana, H., Shlomai, R. and Horowitz, M., 2012. Mitochondrial performance in heat acclimation-a lesson from ischemia/reperfusion and calcium overload insults in the heart. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 303(8), pp.R870-R881.

Atkinson, G., Davison, R., Jeukendrup, A. and Passfield, L., 2003. Science and cycling: current knowledge and future directions for research. Journal of sports sciences, 21(9), pp.767-787.

Atkinson, G., Peacock, O., Gibson, A.S.C. and Tucker, R., 2007. Distribution of power output during cycling. Sports Medicine, 37(8), pp.647-667.

Auliciems, A., 1981. Towards a psycho-physiological model of thermal perception. International journal of biometeorology, 25(2), pp.109-122. Azevedo, R., Cruz, R., Silva-Cavalcante, M., Silva, R., Correia-Oliveira, C., Couto, P., LimaSilva, A. and Bertuzzi, R., 2017. Methodological approaches to determine the "U"-pacing strategy in cycling time trial. International Journal of Performance Analysis in Sport, 17(5), pp.752-762.

Backx, K., Mc Naughton, L., Crickmore, L., Palmer, G. and Carlisle, A., 2000. Effects of differing heat and humidity on the performance and recovery from multiple high intensity, intermittent exercise bouts. International journal of sports medicine, 21(06), pp.400-405. Baden, DA., McLean, TL., Tucker, R., Noakes, TD., St. Clair Gibson, A. 2005. Effect of anticipation during unknown or unexpected exercise duration on rating of perceived exertion, affect, and physiological function. Br J Sports Med 39(10):742-746

Bailey, S. and O'Hagan, C., 2014. Effect of environmental temperature on pacing during a simulated 16 km cycling time trial. Journal of Science and Cycling, 3(2), p. 38 .

Bain, A.R., Lesperance, N.C. and Jay, O., 2012. Body heat storage during physical activity is lower with hot fluid ingestion under conditions that permit full evaporation. Acta physiologica, 206(2), pp.98-108.

Baird, N.A., Turnbull, D.W. and Johnson, E.A., 2006. Induction of the heat shock pathway during hypoxia requires regulation of heat shock factor by hypoxia-inducible factor-1. Journal of Biological Chemistry, 281(50), pp.38675-38681.

Ball, D., Burrows, C. and Sargeant, A.J., 1999. Human power output during repeated sprint cycle exercise: the influence of thermal stress. European journal of applied physiology and occupational physiology, 79(4), pp.360-366.

Balmer, J.A.M.E.S., Davison, R.R. and Bird, S.R., 2000. Peak power predicts performance power during an outdoor 16.1-km cycling time trial. Medicine \& Science in Sports \& Exercise, 32(8), pp.1485-1490.

Bandelow, S., Maughan, R., Shirreffs, S., Ozgünen, K., Kurdak, S., Ersöz, G., Binnet, M. and Dvorak, J.I.R.I., 2010. The effects of exercise, heat, cooling and rehydration strategies on cognitive function in football players. Scandinavian journal of medicine \& science in sports, 20, pp.148-160.

Barcroft, J., Meakins, J.C., Davies, H.W., Scott, J.D. and Fetter, W., 1922. On the relation of external temperature to blood volume. Philosophical Transactions of the Royal Society B, 211, p. 455 .

Barker, SJ. 1998. Blood Volume Measurement. The Next Intraoperative Monitor? J Am Soc Anesthesiol 89:1310-1312.

Baron, B., Moullan, F., Deruelle, F. and Noakes, T.D., 2011. The role of emotions on pacing strategies and performance in middle and long duration sport events. British Journal of Sports Medicine, 45(6), pp.511-517.

Barwood, M.J., Corbett, J. and White, D.K., 2014. Spraying with $0.20 \%$ L-menthol does not enhance 5k running performance in the heat in untrained runners. Journal of Sports Medicine and Physical Fitness, 54(5), pp.595-604.

Barwood, M.J., Corbett, J., Thomas, K. and Twentyman, P., 2015. Relieving thermal discomfort: Effects of sprayed L-menthol on perception, performance, and time trial cycling in the heat. Scandinavian Journal of Medicine \& Science in Sports, 25, pp.211-218.

Barwood, M.J., Corbett, J., White, D. and James, J., 2012. Early change in thermal perception is not a driver of anticipatory exercise pacing in the heat. British journal of sports medicine, 46(13), pp.936-942.

Barwood, M.J., Newton, P.S. and Tipton, M.J., 2009. Ventilated vest and tolerance for intermittent exercise in hot, dry conditions with military clothing. Aviation, space, and environmental medicine, 80(4), pp.353-359.

Bass, D.E., Buskirk, E.R., lampietro, P.F. and Mager, M., 1958. Comparison of blood volume during physical conditioning, heat acclimatization and sedentary living. Journal of applied physiology, 12(2), pp.186-188.

Bass, D.E., Kleeman, C.R., Quinn, M., HenscheL, A. and Hegnauer, A.H., 1955. Mechanisms of acclimatization to heat in man. Medicine, 34(3), pp.323-380.

Bayne F, Racinais S, Mileva KN, Hunter S and Gaoua N (2022) The Type of Per-Cooling Strategies Currently Employed by Competitive and Professional Cyclists-Triathletes During Training and Competition Are Condition (Dry vs. Humid) Dependant. Front. Sports Act. Living 4:845427. doi: 10.3389/fspor.2022.845427

Bazett, H.C., Sunderman, F.W., Doupe, J. and Scott, J.C., 1940. Climatic effects on the volume and composition of blood in man. American Journal of Physiology-Legacy Content, 129(1), pp.69-83.

Bedford T. The warmth factor in comfort at work: a physiological study of heating and ventilation. Industrial health research board No 76. London: HMSO, 1936.

Bedford, T., 1936. The Warmth Factor in Comfort at Work. A Physiological Study of Heating and Ventilation. The Warmth Factor in Comfort at Work. A Physiological Study of Heating and Ventilation., (76).

Belcher, J.D., Beckman, J.D., Balla, G., Balla, J. and Vercellotti, G., 2010. Heme degradation and vascular injury. Antioxidants \& redox signaling, 12(2), pp.233-248. Benita, Y., Kikuchi, H., Smith, A.D., Zhang, M.Q., Chung, D.C. and Xavier, R.J., 2009. An integrative genomics approach identifies Hypoxia Inducible Factor-1 (HIF-1)-target genes that form the core response to hypoxia. Nucleic acids research, 37(14), pp.4587-4602. Benzinger TH. Heat regulation: homeostasis of central temperature in man. Physiol Rev. 1969;49(4):671-759.

Bergeron, M.F., Bahr, R., Bärtsch, P., Bourdon, L., Calbet, J.A.L., Carlsen, K.H., Castagna, O., González-Alonso, J., Lundby, C., Maughan, R.J. and Millet, G., 2012. International

Olympic Committee consensus statement on thermoregulatory and altitude challenges for high-level athletes. British journal of sports medicine, 46(11), pp.770-779.

Bergh, U. and Ekblom, B., 1979. Influence of muscle temperature on maximal muscle strength and power output in human skeletal muscles. Acta physiologica scandinavica, 107(1), pp.33-37.

Berkulo, M.A., Bol, S., Levels, K., Lamberts, R.P., Daanen, H.A. and Noakes, T.D., 2016. Ad-libitum drinking and performance during a $40-\mathrm{km}$ cycling time trial in the heat. European journal of sport science, 16(2), pp.213-220.

Berkulo, M.A., Bol, S., Levels, K., Lamberts, R.P., Daanen, H.A. and Noakes, T.D., 2016. Ad-libitum drinking and performance during a 40-km cycling time trial in the heat. European journal of sport science, 16(2), pp.213-220.

Bernard, T., Hausswirth, C., Le Meur, Y., Bignet, F., Dorel, S. and Brisswalter, J., 2009. Distribution of power output during the cycling stage of a triathlon world cup. Medicine \& Science in Sports \& Exercise, 41(6), pp.1296-1302.

Bezdjian, S., Baker, L.A., Lozano, D.I. and Raine, A., 2009. Assessing inattention and impulsivity in children during the Go/NoGo task. British Journal of Developmental Psychology, 27(2), pp.365-383.

Birchard, G.F., 1997. Optimal hematocrit: theory, regulation and implications. American Zoologist, 37(1), pp.65-72.

Bishop, D. and Maxwell, N.S., 2009. Effects of active warm up on thermoregulation and intermittent-sprint performance in hot conditions. Journal of Science and Medicine in Sport, 12(1), pp.196-204.

Bishop, D., Bonetti, D., \& Dawson, B. 2002. The influence of pacing strategy on VO2 and supramaximal kayak performance. Medicine and Science in Sports and Exercise,34(6), 1041-1047.

Black, M. I., Jones, A. M., Bailey, S. J., and Vanhatalo, A. 2015. Self-pacing increases critical power and improves performance during severe-intensity exercise. Appl. Physiol. Nutr. Metab. 40, 662-670.

Blain, G. M., Mangum, T. S., Sidhu, S. K., Weavil, J. C., Hureau, T. J., Jessop, J. E., et al. 2016. Group III/IV muscle afferents limit the intramuscular metabolic perturbation during whole body exercise in humans. J. Physiol. 594, 5303-5315.

Bogerd, N., Perret, C., Bogerd, C.P., Rossi, R.M. and Daanen, H.A., 2010. The effect of precooling intensity on cooling efficiency and exercise performance. Journal of sports sciences, 28(7), pp.771-779.

Boksem, M. A., and Tops, M. (2008). Mental fatigue: costs and benefits. Brain Res. Rev. 59, 125-139. doi: 10.1016/j.brainresrev.2008.07.001

Bolton, C.F., Sawa, G.M. and Carter, K., 1981. The effects of temperature on human compound action potentials. Journal of Neurology, Neurosurgery \& Psychiatry, 44(5), pp.407-413.

Bonde-Petersen, F., Schultz-Pedersen, L., and Dragsted, N., 1992. Peripheral and central blood flow in man during cold, thermoneutral, and hot water immersion. Aviation, space, and environmental medicine, 63(5), p. 346.

Bongers, C.C., Hopman, M.T. and Eijsvogels, T.M., 2017. Cooling interventions for athletes: an overview of effectiveness, physiological mechanisms, and practical considerations. Temperature, 4(1), pp.60-78.

Bongers, C.C., Thijssen, D.H., Veltmeijer, M.T., Hopman, M.T. and Eijsvogels, T.M., 2015. Precooling and percooling (cooling during exercise) both improve performance in the heat: a meta-analytical review. British journal of sports medicine, 49(6), pp.377-384.

Bongers, C.C., Thijssen, D.H., Veltmeijer, M.T., Hopman, M.T. and Eijsvogels, T.M., 2015. Precooling and percooling (cooling during exercise) both improve performance in the heat: a meta-analytical review. British journal of sports medicine, 49(6), pp.377-384.

Bonner, R.M., Edwards, R.J. 1976. Effect of heat acclimatization on intravascular responses to acute heat stress in man. J Appl Physiol 41:708-713.

Booth, J., Marino, F., and Ward, J., 1997. Improved running performance in hot humid conditions following whole body precooling. Medicine \& Science in Sports \& Exercise, 29(7), pp.943-949.

Borg, D.N., 2019.The perception of effort, training load, and exercise performance in the heat (Doctoral dissertation, Queensland University of Technology).

Borg, D.N., Osborne, J.O., Stewart, I.B., Costello, J.T., Headrick, J., McMaster, B.S., Borg, S.J. and Minett, G.M., 2020. The availability of task-specific feedback does not affect 20 km time trial cycling performance or test-retest reliability in trained cyclists. Journal of science and medicine in sport, 23(8), pp.758-763.

Borg, G.A. 1973. Perceived exertion: a note on "history" and methods. Med Sci Sports;5(2):90-3.

Borg, G.A. 1982. Psychophysical bases of perceived exertion. Med Sci Sports Exerc 14:377-81.

Bosquet, L., Montpetit, J., Arvisais, D. and Mujika, I., 2007. Effects of tapering on performance: a meta-analysis. Medicine \& Science in Sports \& Exercise, 39(8), pp.13581365.

Bouillod, A. and Grappe, F., 2018. Physiological and biomechanical responses between seated and standing positions during distance-based uphill time trials in elite cyclists. Journal of sports sciences, 36(10), pp.1173-1178.

Boya, M., Foulsham, T., Hettinge, F., Parry, D., Williams, E., Jones, H., Sparks, A., Marchant, D., Ellison, P., Bridge, C. and McNaughton, L., 2017. Information acquisition differences between experienced and novel time trial cyclists. Medicine and science in sports and exercise, 49(9), pp.1884-1898.

Bradbury, K.E., Coffman, K.E., Mitchell, K.M., Luippold, A.J., Fulco, C.S. and Kenefick, R.W., 2019. Separate and combined influences of heat and hypobaric hypoxia on self-paced aerobic exercise performance. Journal of Applied Physiology, 127(2), pp.513-519.

Bradley, E.C. and Barr, J.W., 1968. Determination of blood volume using indocyanine green (Cardio-Green (r)) dye. Life sciences, 7, pp.1001-1007. Braun, V., Clarke, V. (2021). Thematic analysis: A practical guide [eBook version]. SAGE. Bridge, M.W., Weller, A.S., Rayson, M. and Jones, D.A., 2003. Responses to exercise in the heat related to measures of hypothalamic serotonergic and dopaminergic function. European journal of applied physiology, 89(5), pp.451-459.

Brisson, G.R., Boisvert, P., Peronnet, F., Quirion, A. and Senecal, L., 1989. Face coolinginduced reduction of plasma prolactin response to exercise as part of an integrated response to thermal stress. European journal of applied physiology and occupational physiology, 58(8), pp.816-820.

Brisson, G.R., Bouchard, J., Peronnet, F., Boisvert, P. and Garceau, F., 1987. Evidence for an interference of selective face ventilation on hyperprolactinemia induced by hyperthermic treadmill running. International journal of sports medicine, 8(06), pp.387-391.

Brisswalter, J., Collardeau, M.,René, A. 2002. Effects of acute physical exercise characteristics on cognitive performance. Sports Med. 32, 555-566.

Brotherhood, J.R. 2008. Heat stress and strain in exercise and sport. J Sci Med Sport. 11(1):6-19.

Broun, G.O. 1922. Blood destruction during exercise: I. Blood changes occurring in the course of a single day of exercise. J Exp Med 36:481-500.

Broun, G.O. 1923. Blood destruction during exercise: II. Demonstration of blood destruction in animals exercised after prolonged confinement. J Exp Med 37:113-30.

Brown, G.A., Williams, G.M. 1982. The effect of head cooling on deep body temperature and thermal comfort in man. Aviat. Space Environ. Med. 53, 583-586.

Brown, H.A., Topham, T.H., Clark, B., Smallcombe, J.W., Flouris, A.D., Ioannou, L.G., Telford, R.D., Jay, O. and Périard, J.D., 2022. Seasonal Heat Acclimatisation in Healthy Adults: A Systematic Review. Sports Medicine, pp.1-18.

Broxterman, R. M., Craig, J. C., Ade, C. J., Wilcox, S. L., and Barstow, T. J. 2015. The effect of resting blood flow occlusion on exercise tolerance and W'. Am. J. Physiol. Regul. Integr. Comp. Physiol. 309, R684-R691.

Brubaker, P.H., Kaminsky, L.A. and Whaley, M.H., 2002. Coronary artery disease: essentials of prevention and rehabilitation programs. Human Kinetics 1.

Buchheit, M., Racinais, S., Bilsborough, J., Hocking, J., Mendez-Villanueva, A., Bourdon, P.C., Voss, S., Livingston, S., Christian, R., Périard, J. and Cordy, J., 2013. Adding heat to the live-high train-low altitude model: a practical insight from professional football. British Journal of Sports Medicine, 47(Suppl 1), pp.i59-i69.

Buchheit, M., Voss, S.C., Nybo, L., Mohr, M. and Racinais, S., 2011. Physiological and performance adaptations to an in-season soccer camp in the heat: Associations with heart
rate and heart rate variability. Scandinavian journal of medicine \& science in sports, 21(6), pp.e477-e485.

Buono, M.J., Ball, K.D. and Kolkhorst, F.W., 2007. Sodium ion concentration vs. sweat rate relationship in humans. Journal of Applied Physiology, 103(3), pp.990-994.

Buono, M.J., Heaney, J.H. and Canine, K.M., 1998. Acclimation to humid heat lowers resting core temperature. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 274(5), pp.R1295-R1299.

Buono, M.J., Numan, T.R., Claros, R.M., Brodine, S.K. and Kolkhorst, F.W., 2009. Is active sweating during heat acclimation required for improvements in peripheral sweat gland function?. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 297(4), pp.R1082-R1085.

Burdon, C., O'Connor, H., Gifford, J., Shirreffs, S., Chapman, P. and Johnson, N., 2010a. Effect of drink temperature on core temperature and endurance cycling performance in warm, humid conditions. Journal of sports sciences, 28(11), pp.1147-1156.

Burdon, C.A., Hoon, M.W., Johnson, N.A., Chapman, P.G. and O'Connor, H.T., 2013. The effect of ice slushy ingestion and mouthwash on thermoregulation and endurance performance in the heat. International journal of sport nutrition and exercise metabolism, 23(5), pp.458-469.

Burdon, C.A., Johnson, N.A., Chapman, P.G. and O'Connor, H.T., 2012. Influence of beverage temperature on palatability and fluid ingestion during endurance exercise: a systematic review. International journal of sport nutrition and exercise metabolism, 22(3), pp.199-211.

Burdon, C.A., O'Connor, H.T., Gifford, J.A. and Shirreffs, S.M., 2010b. Influence of beverage temperature on exercise performance in the heat: a systematic review. International journal of sport nutrition and exercise metabolism, 20(2), pp.166-174.

Burnley, M., Vanhatalo, A., Fulford, J., and Jones, A. M. 2010. Similar metabolic perturbations during all-out and constant force exhaustive exercise in humans: a (31)P magnetic resonance spectroscopy study. Exp. Physiol. 95, 798-807.

Butts, C.L., Smith, C.R., Ganio, M.S. and McDermott, B.P., 2017b. Physiological and perceptual effects of a cooling garment during simulated industrial work in the heat. Applied ergonomics, 59, pp.442-448.

Butts, C.L., Spisla, D.L., Adams, J.D., Smith, C.R., Paulsen, K.M., Caldwell, A.R., Ganio, M.S. and McDermott, B.P., 2017a. Effectiveness of ice-sheet cooling following exertional hyperthermia. Military medicine, 182(9-10), pp.e1951-e1957.

Cabanac M. Physiological role of pleasure. Science. 1971;173(4002):1103-7. 15.

Cabanac, M. 2006. Sensory pleasure optimizes muscular work. Clin. Investig. Med. 29, 110116.

Cairns, S.P. and Dulhunty, A.F., 1994. Beta-adrenoceptor activation shows high-frequency fatigue in skeletal muscle fibers of the rat. American Journal of Physiology-Cell Physiology, 266(5), pp.C1204-C1209.

Caldwell, J.N., Patterson, M.J. and Taylor, N.A., 2012. Exertional thermal strain, protective clothing and auxiliary cooling in dry heat: evidence for physiological but not cognitive impairment. European journal of applied physiology, 112(10), pp.3597-3606.

Caldwell, J.N., van den Heuvel, A.M., Kerry, P., Clark, M.J., Peoples, G.E. and Taylor, N.A., 2018. A vascular mechanism to explain thermally mediated variations in deep-body cooling
rates during the immersion of profoundly hyperthermic individuals. Experimental physiology, 103(4), pp.512-522.

Carrillo, A.E., Flouris, A.D., Herry, C.L., Notley, S.R., Macartney, M.J., Seely, A.J., Wright Beatty, H.E. and Kenny, G.P., 2019. Age-related reductions in heart rate variability do not worsen during exposure to humid compared to dry heat: A secondary analysis.

Temperature, pp.1-5.

Caruso, J.F., Barbosa, A., Erickson, L., Edwards, R., Perry, R., Learmonth, L. and Potter, W.T., 2015. Intermittent palm cooling's impact on resistive exercise performance. International journal of sports medicine, 94(10), pp.814-821.

Carvalho, M.V., De Andrade, M.T., Ramos, G.P., Maia-Lima, A., Pereira, E.R., Mendes, T.T., Marins, J., Amorim, F. and Silami-Garcia, E., 2014. The temperature of water ingested ad libitum does not influence performance during a $40-\mathrm{km}$ self-paced cycling trial in the heat. J Sports Med Phys Fitness, 54, pp.1-2.

Casa, D.J., Armstrong, L.E., Kenny, G.P., O’Connor, F.G. and Huggins, R.A., 2012. Exertional heat stroke: new concepts regarding cause and care. Current sports medicine reports, 11(3), pp.115-123.

Casa, D.J., DeMartini, J.K., Bergeron, M.F., Csillan, D., Eichner, E.R., Lopez, R.M., Ferrara, M.S., Miller, K.C., O'Connor, F., Sawka, M.N. and Yeargin, S.W., 2015. National Athletic Trainers' Association position statement: exertional heat illnesses. Journal of athletic training, 50(9), pp.986-1000.

Casa, D.J., McDermott, B.P., Lee, E.C., Yeargin, S.W., Armstrong, L.E. and Maresh, C.M., 2007. Cold water immersion: the gold standard for exertional heatstroke treatment. Exercise and sport sciences reviews, 35(3), pp.141-149.

Casa, D.J., Stearns, R.L., Lopez, R.M., Ganio, M.S., McDermott, B.P., Walker Yeargin, S., Yamamoto, L.M., Mazerolle, S.M., Roti, M.W., Armstrong, L.E. and Maresh, C.M., 2010.

Influence of hydration on physiological function and performance during trail running in the heat. Journal of Athletic Training, 45(2), pp.147-156.

Castle, P., Mackenzie, R.W., Maxwell, N., Webborn, A.D. and Watt, P.W., 2011. Heat acclimation improves intermittent sprinting in the heat but additional pre-cooling offers no further ergogenic effect. Journal of sports sciences, 29(11), pp.1125-1134.

Castle, P.C., Macdonald, A.L., Philp, A., Webborn, A., Watt, P.W. and Maxwell, N.S., 2006. Precooling leg muscle improves intermittent sprint exercise performance in hot, humid conditions. Journal of applied physiology, 100(4), pp.1377-1384.

Castle, P.C., Maxwell, N., Allchorn, A., Mauger, A.R. and White, D.K., 2012. Deception of ambient and body core temperature improves self-paced cycling in hot, humid conditions. European journal of applied physiology, 112(1), pp.377-385.

Ceci, R. and Hassmén, P., 1991. Self-monitored exercise at three different RPE intensities in treadmill vs field running. Medicine \& Science in Sports \& Exercise.

Chada, K.E. and Bruce, E.N., 2012. Computational analyses of CO-rebreathing methods for estimating haemoglobin mass in humans. Experimental Physiology, 97(1), pp.141-154.

Chalmers, S., Esterman, A., Eston, R., Bowering, K.J. and Norton, K., 2014. Short-term heat acclimation training improves physical performance: a systematic review, and exploration of physiological adaptations and application for team sports. Sports Medicine, 44(7), pp.971988.

Chatain, C., Gruet, M., Vallier, J.M. and Ramdani, S., 2019a. Effects of nonstationarity on muscle force signals regularity during a fatiguing motor task. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 28(1), pp.228-237.

Chatain, C., Radel, R., Vercruyssen, F., Rabahi, T., Vallier, J.M., Bernard, T. and Gruet, M., 2019b. Influence of cognitive load on the dynamics of neurophysiological adjustments during fatiguing exercise. Psychophysiology, 56(6), p.e13343.

Chan, A.P., Song, W. and Yang, Y., 2015. Meta-analysis of the effects of microclimate cooling systems on human performance under thermal stressful environments: potential applications to occupational workers. Journal of Thermal Biology, 49, pp.16-32. Chang, Y.K., Labban, J.D., Gapin, J.I. and Etnier, J.L., 2012. The effects of acute exercise on cognitive performance: a meta-analysis. Brain research, 1453, pp.87-101.

Che Jusoh, M.R., Stannard, S.R. and Mündel, T., 2016. Physiologic and performance effects of sago supplementation before and during cycling in a warm-humid environment. Temperature, 3(2), pp.318-327.

Che Jusoh, M.R., Stannard, S.R. and Mündel, T., 2016. Physiologic and performance effects of sago supplementation before and during cycling in a warm-humid environment. Temperature, 3(2), pp.318-327.

Che Jusoh, M.R., Stannard, S.R. and Mündel, T., 2016. Physiologic and performance effects of sago supplementation before and during cycling in a warm-humid environment. Temperature, 3(2), pp.318-327.

Cheung, S.S. and Sleivert, G.G., 2004a. Multiple triggers for hyperthermic fatigue and exhaustion. Exercise and sport sciences reviews, 32(3), pp.100-106.

Cheung, S.S. and Sleivert, G.G., 2004b. Lowering of skin temperature decreases isokinetic maximal force production independent of core temperature. European journal of applied physiology, 91(5-6), pp.723-728.

Cheung, S.S., 2007a. Hyperthermia and voluntary exhaustion: integrating models and future challenges. Applied Physiology, Nutrition, and Metabolism, 32(4), pp.808-817. Cheung, S.S., 2007b. Neuropsychological determinants of exercise tolerance in the heat. Progress in brain research, 162, pp.45-60.

Cheung, S.S., 2010. Interconnections between thermal perception and exercise capacity in the heat. Scandinavian journal of medicine \& science in sports, 20, pp.53-59.

Cheuvront, S.N. and Sawka, M.N., 2005. Hydration assessment of athletes. Sports Sci Exchange, 18(2), pp.1-6.

Cheuvront, S.N., Kenefick, R.W., Montain, S.J. and Sawka, M.N., 2010. Mechanisms of aerobic performance impairment with heat stress and dehydration. Journal of Applied Physiology, 109(6), pp.1989-1995.

Chidnok, W., Dimenna, F. J., Bailey, S. J., Vanhatalo, A., Morton, R. H., Wilkerson, D. P. 2012. Exercise tolerance in intermittent cycling: application of the critical power concept. Med. Sci. Sports Exerc. 44, 966-976.

Chidnok, W., Fulford, J., Bailey, S. J., DiMenna, F. J., Skiba, P. F., Vanhatalo, A. 2013. Muscle metabolic determinants of exercise tolerance following exhaustion: relationship to the "critical power." J. Appl. Physiol. 115, 243-250.

Chinevere, T.D., Cadarette, B.S., Goodman, D.A., Ely, B.R., Cheuvront, S.N., Sawka, M.N. 2008. Efficacy of body ventilation system for reducing strain in warm and hot climates. Eur. J. Appl. Physiol. 103, 307-314.

Choi, J.H., Loftness, V. and Lee, D.W., 2012. Investigation of the possibility of the use of heart rate as a human factor for thermal sensation models. Building and Environment, 50, pp.165-175.

Choi, J.W., Kim, M.J. and Lee, J.Y., 2008. Alleviation of heat strain by cooling different body areas during red pepper harvest work at WBGT $33^{\circ} \mathrm{C}$. Industrial health, 46(6), pp.620-628.

Choo, H.C., Peiffer, J.J., Lopes-Silva, J.P., Mesquita, R.N., Amano, T., Kondo, N. and Abbiss, C.R., 2019. Effect of ice slushy ingestion and cold water immersion on thermoregulatory behavior. PloS one, 14(2), p.e0212966.

Cian C, Barraud PA, Melin B, Raphel C. Effects of fluid ingestion on cognitive function after heat stress or exercise-induced dehydration. Int J Psychophysiol. 2001;42(3):243-51. 9.

Cian, C., Barraud, P.A., Melin, B. and Raphel, C., 2001. Effects of fluid ingestion on cognitive function after heat stress or exercise-induced dehydration. International Journal of Psychophysiology, 42(3), pp.243-251.

Cipryan, L., Tschakert, G., Hofmann, P. 2017. Acute and Post-Exercise Physiological Responses to High-Intensity Interval Training in Endurance and Sprint Athletes. J Sports Sci Med 16:219-229.

Clarke, N.D., Maclaren, D.P.M., Reilly, T. and Drust, B., 2011. Carbohydrate ingestion and pre-cooling improves exercise capacity following soccer-specific intermittent exercise performed in the heat. European journal of applied physiology, 111(7), pp.1447-1455. Close, R., Hoh, J.F.1968. Influence of temperature on isometric contractions of rat skeletal muscles. Nature 217:1179-80.

Coakley, S.L. and Passfield, L., 2018. Cycling performance is superior for time-to-exhaustion versus time-trial in endurance laboratory tests. Journal of sports sciences, 36(11), pp.12281234.

Coast, R.J., Cox, R.H. and Welch, H.G., 1986. Optimal pedalling rate in prolonged bouts of cycle ergometry. Medicine and Science in Sports and Exercise, 18(2), pp.225-230.

Colin, J., Timbal, J., Houdas, Y., Boutelier, C. and Guieu, J.D., 1971. Computation of mean body temperature from rectal and skin temperatures. Journal of Applied Physiology, 31(3), pp.484-489.

Colin, J., Timbal, J., Houdas, Y., Boutelier, C. and Guieu, J.D., 1971. Computation of mean body temperature from rectal and skin temperatures. Journal of Applied Physiology, 31(3), pp.484-489.

Convertino, V.A 1991a. Blood volume: its adaptation to endurance training. Med Sci Sports Exerc 23:1338-48.

Convertino, V.A. 1987. Fluid shifts and hydration state: effects of long-term exercise. Can 184 J Sport Sci 12:136S-139S.

Convertino, V.A. 1991b. Blood volume: its adaptation to endurance training. Med. Sci. Sports Exerc.

Cooper, K.E., Martin, S.H.E.I.L.A.G.H. and Riben, P., 1976. Respiratory and other responses in subjects immersed in cold water. Journal of applied physiology, 40(6), pp.903910.

Corbett, J., Neal, R.A., Lunt, H.C. and Tipton, M.J., 2014. Adaptation to heat and exercise performance under cooler conditions: a new hot topic. Sports Medicine, 44(10), pp.13231331.

Cotter, J.D. and Taylor, N.A., 2005. The distribution of cutaneous sudomotor and alliesthesial thermosensitivity in mildly heat-stressed humans: an open-loop approach. The Journal of physiology, 565(1), pp.335-345.

Cotter, J.D., Sleivert, G.G., Roberts, W.S. and Febbraio, M.A., 2001. Effect of pre-cooling, with and without thigh cooling, on strain and endurance exercise performance in the heat. Comparative Biochemistry and Physiology Part A: Molecular \& Integrative Physiology, 128(4), pp.667-677.

Cotter, J.D., Sleivert, G.G., Roberts, W.S. and Febbraio, M.A., 2001. Effect of pre-cooling, with and without thigh cooling, on strain and endurance exercise performance in the heat. Comparative Biochemistry and Physiology Part A: Molecular \& Integrative Physiology, 128(4), pp.667-677.

Coudevylle, G.R., Sinnapah, S., Robin, N., Collado, A. and Hue, O., 2019. Conventional and alternative strategies to cope with the subtropical climate of Tokyo 2020: impacts on psychological factors of performance. Frontiers in psychology, 10, p.1279.

Coudevylle, G.R., Sinnapah, S., Collado, A., Fenouillet, F., Hue, O., Parrat, M. and Robin, N., 2020. If Motivation Was a Key Factor in Aerobic Performance in Tropical Climate?. Frontiers in Psychology, 11.

Coudevylle, G.R., Sinnapah, S., Collado, A., Fenouillet, F., Hue, O., Parrat, M. and Robin, N., 2020. If Motivation Was a Key Factor in Aerobic Performance in Tropical Climate?. Frontiers in Psychology, 11. to put in how you measure motivation with their frame work small paragraph.

Coudevylle, G.R., Sinnapah, S., Hue, O., Robin, N. and Popa-Roch, M., 2020. Impact of Cold Water Intake on Environmental Perceptions, Affect, and Attention Depends on Climate Condition. The American Journal of Psychology, 133(2), pp.205-219.

Coull, J.T., Frith, C.D., Frackowiak, R.S.J. and Grasby, P.M., 1996. A fronto-parietal network for rapid visual information processing: a PET study of sustained attention and working memory. Neuropsychologia, 34(11), pp.1085-1095.

Coyle, E.F. and Gonzalez-Alonso, J., 2001. Cardiovascular drift during prolonged exercise: new perspectives. Exercise and sport sciences reviews, 29(2), pp.88-92.

Coyle, E.F., Hopper, M.K. and Coggan, A.R., 1990. Maximal oxygen uptake relative to plasma volume expansion. International journal of sports medicine, 11(02), pp.116-119.

Craig, A.D. and Blomqvist, A., 2002. Is there a specific lamina I spinothalamocortical pathway for pain and temperature sensations in primates?. The Journal of Pain, 3(2), pp.95101.

Craig, A.D., 2002. How do you feel? Interoception: the sense of the physiological condition of the body. Nature reviews neuroscience, 3(8), pp.655-666.

Cramer, M.N., Gagnon, D., Laitano, O. and Crandall, C.G., 2022. Human temperature regulation under heat stress in health, disease, and injury. Physiological Reviews.

Cramer, M.N., Thompson, M.W. and Périard, J.D., 2015. Thermal and cardiovascular strain mitigate the potential benefit of carbohydrate mouth rinse during self-paced exercise in the heat. Frontiers in physiology, 6, p. 354.

Crandall, C.G., Wilson, T.E., Marving, J., Vogelsang, T.W., Kjaer, A., Hesse, B. and Secher, N.H., 2008. Effects of passive heating on central blood volume and ventricular dimensions in humans. The Journal of physiology, 586(1), pp.293-301.

Crewe, H., Tucker, R., and Noakes, TD. 2008. The rate of increase in rating of perceived exertion predicts the duration of exercise to fatigue at a fixed power output in different environmental conditions. Eur J Appl Physiol; 103: 569-77.

Currell, K. and Jeukendrup, A.E., 2008. Validity, reliability and sensitivity of measures of sporting performance. Sports medicine, 38, pp.297-316.

Cuttell, S.A., Kiri, V. and Tyler, C., 2016. A comparison of 2 practical cooling methods on cycling capacity in the heat. Journal of athletic training, 51(7), pp.525-532.

Daanen, H.A., Racinais, S. and Périard, J.D., 2018. Heat acclimation decay and reinduction: a systematic review and meta-analysis. Sports Medicine, 48(2), pp.409-430.

Daanen, H.A., Van Es, E.M. and De Graaf, J.L., 2006. Heat strain and gross efficiency during endurance exercise after lower, upper, or whole body precooling in the heat. International journal of sports medicine, 27(05), pp.379-388.

Damasceno, M.V., Lima-Silva, A.E., Pasqua, L.A., Tricoli, V., Duarte, M., Bishop, D.J. and Bertuzzi, R., 2015. Effects of resistance training on neuromuscular characteristics and pacing during 10-km running time trial. European Journal of Applied Physiology, 115(7), pp.1513-1522.

Damsgaard, R., Munch, T., Morkeberg, J., Mortensen, S.P. and Gonzalez-Alonso, J., 2006. Effects of blood withdrawal and reinfusion on biomarkers of erythropoiesis in humans: Implications for anti-doping strategies. haematologica, 91(7), pp.1006-1008.

Davranche, K., McMorris, T. 2009. Specific effects of acute moderate exercise on cognitive control. Brain Cogn 69(3):565-570
de Castro Magalhães, F., Amorim, F.T., Passos, R.L.F., Fonseca, M.A., Oliveira, K.P.M., Lima, M.R.M., Guimarães, J.B., Ferreira-Júnior, J.B., Martini, A.R., Lima, N.R. and Soares, D.D., 2010. Heat and exercise acclimation increases intracellular levels of Hsp72 and inhibits exercise-induced increase in intracellular and plasma Hsp72 in humans. Cell Stress and Chaperones, 15(6), pp.885-895.

De Koning, J.J., Bobbert, M.F. and Foster, C., 1999. Determination of optimal pacing strategy in track cycling with an energy flow model. Journal of Science and Medicine in Sport, 2(3), pp.266-277.

De Koning, J.J., Foster, C., Bakkum, A., Kloppenburg, S., Thiel, C., Joseph, T., Cohen, J. and Porcari, J.P., 2011. Regulation of pacing strategy during athletic competition. PloS one, 6(1), p.e15863.

De Morree, H.M., Klein, C. and Marcora, S.M., 2012. Perception of effort reflects central motor command during movement execution. Psychophysiology, 49(9), pp.1242-1253.

De Pauw, K., Roelands, B., Cheung, S.S., De Geus, B., Rietjens, G. and Meeusen, R., 2013. Guidelines to classify subject groups in sport-science research. International journal of sports physiology and performance, 8(2), pp.111-122.

De Pauw, K., Roelands, B., Cheung, S.S., De Geus, B., Rietjens, G. and Meeusen, R., 2013. Guidelines to classify subject groups in sport-science research. International journal of sports physiology and performance, 8(2), pp.111-122.

De Ruiter, C.J. and De Haan, A., 2000. Temperature effect on the force/velocity relationship of the fresh and fatigued human adductor pollicis muscle. Pflügers Archiv, 440(1), pp.163170.

DeLorey, D.S., Kowalchuk, J.M. and Paterson, D.H., 2005. Adaptation of pulmonary O2 uptake kinetics and muscle deoxygenation at the onset of heavy-intensity exercise in young and older adults. Journal of Applied Physiology, 98(5), pp.1697-1704.

Demartini, J.K., Casa, D.J., Stearns, R., Belval, L., Crago, A., Davis, R. and Jardine, J., 2015. Effectiveness of cold water immersion in the treatment of exertional heat stroke at the Falmouth Road Race. Medicine and science in sports and exercise, 47(2), pp.240-245.

DeMartini, J.K., Ranalli, G.F., Casa, D.J., Lopez, R.M., Ganio, M.S., Stearns, R.L., McDermott, B.P., Armstrong, L.E. and Maresh, C.M., 2011. Comparison of body cooling methods on physiological and perceptual measures of mildly hyperthermic athletes. The Journal of Strength \& Conditioning Research, 25(8), pp.2065-2074.

DiDomenico, A. and Nussbaum, M.A., 2011. Effects of different physical workload parameters on mental workload and performance. International Journal of Industrial Ergonomics, 41(3), pp.255-260.

Dill, D.B. and Costill, D.L., 1974. Calculation of percentage changes in volumes of blood, plasma, and red cells in dehydration. Journal of applied physiology, 37(2), pp.247-248. Donnan, K., Williams, E., Morris, J. and Stanger, N., 2021. The effects of exercise at different temperatures on cognitive function: A systematic review. Psychology of Sport and Exercise, p. 101908.

Dotan, R. and Bar-Or, O., 1980. Climatic heat stress and performance in the Wingate Anaerobic Test. European journal of applied physiology and occupational physiology, 44(3), pp.237-243.

Douglas, C.G., Haldane, J. and Haldane, J.B.S., 1912. The laws of combination of haemoglobin with carbon monoxide and oxygen. The Journal of physiology, 44(4), p. 275.

Douzi, W., Dugué, B., Vinches, L., Al Sayed, C., Hallé, S., Bosquet, L. and Dupuy, O., 2019. Cooling during exercise enhances performances, but the cooled body areas matter: A systematic review with meta-analyses. Scandinavian Journal of Medicine \& Science in Sports, 29(11), pp.1660-1676.

Douzi, W., Dupuy, O., Theurot, D., Smolander, J. and Dugué, B., 2020. Per-cooling (Using cooling systems during physical exercise) enhances physical and cognitive performances in hot environments. a narrative review. International Journal of Environmental Research and Public Health, 17(3), p. 1031.

Drinkwater, E., 2008. Effects of peripheral cooling on characteristics of local muscle. In Thermoregulation and Human Performance (Vol. 53, pp. 74-88). Karger Publishers.

Drust, B., Rasmussen, P., Mohr, M., Nielsen, B. and Nybo, L., 2005. Elevations in core and muscle temperature impairs repeated sprint performance. Acta Physiologica Scandinavica, 183(2), pp.181-190.

DuBois, D.F., 1916. A formula to estimate the approximate surface area if height and body mass be known. Arch intern med, 17, pp.863-871.

Duffield, R. and Marino, F.E., 2007. Effects of pre-cooling procedures on intermittent-sprint exercise performance in warm conditions. European journal of applied physiology, 100(6), pp.727-735.

Duffield, R., Green, R., Castle, P. and Maxwell, N., 2010. Precooling can prevent the reduction of self-paced exercise intensity in the heat. Medicine \& science in sports \& exercise, 42(3), pp.577-584.

Duffield, R., Green, R., Castle, P. and Maxwell, N., 2010. Precooling can prevent the reduction of self-paced exercise intensity in the heat. Medicine \& science in sports \& exercise, 42(3), pp.577-584.

Dunn, A. and Donnelly, S., 2007. The role of the kidney in blood volume regulation: the kidney as a regulator of the hematocrit. The American journal of the medical sciences, 334(1), pp.65-71.

Ely, E.R., Price, J.S., Smith, R.K., Wood, J.L.N. and Verheyen, K.L.P., 2010. The effect of exercise regimens on racing performance in National Hunt racehorses. Equine Veterinary Journal, 42, pp.624-629.

Ebbeling, C.B. and Clarkson, P.M., 1989. Exercise-induced muscle damage and adaptation. Sports medicine, 7(4), pp.207-234.

Ebert, T.R., Martin, D.T., McDonald, W., Victor, J., Plummer, J. and Withers, R.T., 2005. Power output during women's World Cup road cycle racing. European journal of applied physiology, 95(5-6), pp.529-536.

Edwards, R.H.T., Melcher, A., Hesser, C.M., Wigertz, O. and Ekelund, L.G., 1972. Physiological correlates of perceived exertion in continuous and intermittent exercise with the same average power output. European journal of clinical investigation, 2(2), pp.108-114. Edwards, A., 1999. Reflective practice in sport management. Sport Management Review, 2(1), pp.67-81.

Eijsvogels, T.M., Bongers, C.C., Veltmeijer, M.T., Moen, M.H. and Hopman, M., 2014. Cooling during exercise in temperate conditions: impact on performance and thermoregulation. International journal of sports medicine, 35(10), pp.840-846.

Ekblom, B., Wilson, G. and Astrand, P.O., 1976. Central circulation during exercise after venesection and reinfusion of red blood cells. Journal of Applied Physiology, 40(3), pp.379383.

El-Sayed, H., Goodall, S.R. and Hainsworth, R., 1995. Re-evaluation of Evans blue dye dilution method of plasma volume measurement. Clinical \& Laboratory Haematology, 17(2), pp.189-194.

Ely, B.R., Cheuvront, S.N., Kenefick, R.W. and Sawka, M.N., 2010. Aerobic performance is degraded, despite modest hyperthermia, in hot environments. Med Sci Sports Exerc, 42(1), pp.135-41.

Ely, B.R., Ely, M.R., Cheuvront, S.N., Kenefick, R.W., DeGroot, D.W. and Montain, S.J., 2009. Evidence against a 40 C core temperature threshold for fatigue in humans. Journal of Applied Physiology, 107(5), pp.1519-1525.

Ely, B.R., Lovering, A.T., Horowitz, M. and Minson, C.T., 2014. Heat acclimation and cross tolerance to hypoxia: bridging the gap between cellular and systemic responses. Temperature, 1(2), pp.107-114.

Ely, M.R., Cheuvront, S.N., Roberts, W.O. and Montain, S.J., 2007. Impact of weather on marathon-running performance. Medicine and Science in Sports and Exercise, 39(3), p.487.

English, T., Mavros, Y. and Jay, O., 2019. Listening to motivational music mitigates heatrelated reductions in exercise performance. Physiology \& behavior, 208, p.112567.

Enoka RM, Duchateau J. Muscle fatigue: what, why and how it influences muscle function. J Physiol 2008; 586 (1): 11-23

Enoka RM, Stuart DG. Neurobiology of muscle fatigue. J Appl Physiol 1992; 72: 1631-48 Epstein, Y. and Moran, D.S., 2006. Thermal comfort and the heat stress indices. Industrial health, 44(3), pp.388-398.

Epstein, Y., Roberts, W.O., Golan, R., Heled, Y., Sorkine, P. and Halpern, P., 2015. Sepsis, septic shock, and fatal exertional heat stroke. Current sports medicine reports, 14(1), pp.6469.

Eriksen, M. and Frandsen, T. 2018. The impact of patient, intervention, comparison, outcome (PICO) as a search strategy tool on literature search quality: a systematic review. Journal of the Medical Library Association. 2018;106(4).

Eston, R., Stansfield, R., Westoby, P. and Parfitt, G., 2012. Effect of deception and expected exercise duration on psychological and physiological variables during treadmill running and cycling. Psychophysiology, 49(4), pp.462-469.

Færevik, H. and Eidsmo Reinertsen, R., 2003. Effects of wearing aircrew protective clothing on physiological and cognitive responses under various ambient conditions. Ergonomics, 46(8), pp.780-799.

Falk, B., Radom-Isaac, S., Hoffmann, J.R., Wang, Y., Yarom, Y., Magazanik, A. and Weinstein, Y., 1998. The effect of heat exposure on performance of and recovery from highintensity, intermittent exercise. International journal of sports medicine, 19(01), pp.1-6.

Fan, F.C., Chen, R.Y., Schuessler, G. and Chien, S., 1980. Effects of hematocrit variations on regional hemodynamics and oxygen transport in the dog. American Journal of Physiology-Heart and Circulatory Physiology, 238(4), pp.H545-H522.

Farina, D., Arendt-Nielsen, L., Graven-Nielsen, T. 2005. Effect of temperature on spiketriggered average torque and electrophysiological properties of low-threshold motor units. J Appl Physiol 99:197-203.

Faulkner, J., Parfitt, G. and Eston, R., 2008. The rating of perceived exertion during competitive running scales with time. Psychophysiology, 45(6), pp.977-985.

Faulkner, S.H., Broekhuijzen, I., Raccuglia, M., Hupperets, M., Hodder, S.G. and Havenith, G., 2019. The threshold ambient temperature for the use of precooling to improve cycling time-trial performance. International journal of sports physiology and performance, 14(3), pp.323-330.

Faulkner, S.H., Ferguson, R.A., Gerrett, N., Hupperets, M., Hodder, S.G. and Havenith, G., 2013. Reducing muscle temperature drop after warm-up improves sprint cycling performance. Med Sci Sports Exerc, 45(2), pp.359-365.

Fayazi, S.A., Wan, N., Lucich, S., Vahidi, A. and Mocko, G., 2013. Optimal pacing in a cycling time-trial considering cyclist's fatigue dynamics. In 2013 American Control Conference (pp. 6442-6447). IEEE.

Febbraio, M., Murton, P., SELIG, S., CLARK, S., LAMBERT, D., ANGUS, D. and CAREY, M., 1996b. Effect of CHO ingestion on exercise metabolism and performance in different ambient temperatures. Medicine \& Science in Sports \& Exercise, 28(11), pp.1380-1387.

Febbraio, M.A., 2000. Does muscle function and metabolism affect exercise performance in the heat?. Exercise and sport sciences reviews, 28(4), pp.171-176.

Febbraio, M.A., Carey, M.F., Snow, R.J., Stathis, C.G. and Hargreaves, M., 1996a. Influence of elevated muscle temperature on metabolism during intense, dynamic exercise. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 271(5), pp.R1251-R1255.

Febbraio, M.A., Parkin, J.M., Baldwin, J., Zhao, S. and Carey, M.F., 1996c. Effect of ambient temperature on metabolic indices of fatigue during prolonged exercise 1071. Medicine \& Science in Sports \& Exercise, 28(5), p. 180.

Febbraio, M.A., Snow, R.J., Stathis, C.G., Hargreaves, M. and Carey, M.F., 1994. Effect of heat stress on muscle energy metabolism during exercise. Journal of Applied Physiology, 77(6), pp.2827-2831.

Fehrenbach, E., Passek, F., Niess, A.M., Pohla, H., WeinstocK, C., Dickhuth, H.H. and Northoff, H., 2000. HSP expression in human leukocytes is modulated by endurance exercise. Medicine \& Science in Sports \& Exercise, 32(3), pp.592-600.

Fellmann, N., 1992. Hormonal and plasma volume alterations following endurance exercise. Sports Medicine, 13(1), pp.37-49.

Filingeri, D., Fournet, D., Hodder, S. and Havenith, G., 2015. Mild evaporative cooling applied to the torso provides thermoregulatory benefits during running in the heat. Scandinavian journal of medicine \& science in sports, 25, pp.200-210.

Flouris, A.D. and Kenny, G.P., 2017. Heat remains unaccounted for in thermal physiology and climate change research. F1000Research, 6.

Flouris, A.D. and Schlader, Z.J., 2015. Human behavioral thermoregulation during exercise in the heat. Scandinavian journal of medicine \& science in sports, 25, pp.52-64.

Fortney, S.M., Nadel, E.R., Wenger, C.B. and Bove, J.R., 1981a. Effect of acute alterations of blood volume on circulatory performance in humans. Journal of Applied Physiology, 50(2), pp.292-298.

Foster, C., Hettinga, F., Lampen, J., Dodge, C., Bobbert, M., Porcari, J. P. 2004. Effect of competitive distance on energy expenditure during simulated competition. International Journal of Sports Medicine, 25(3), 198-204. [Google Scholar];

Fox, R.H., Goldsmith, R., Hampton, I.F. and Hunt, T.J., 1967. Heat acclimatization by controlled hyperthermia in hot-dry and hot-wet climates. Journal of Applied Physiology, 22(1), pp.39-46.

Fox, R.H., Goldsmith, R., Kidd, D.J. and Lewis, H.E., 1963. Acclimatization to heat in man by controlled elevation of body temperature. The Journal of Physiology, 166(3), p.530. Franco, R.S., 2009. The measurement and importance of red cell survival. American journal of hematology, 84(2), pp.109-114.

Frank, A., Belokopytov, M., Shapiro, Y. and Epstein, Y., 2001. The cumulative heat strain index-a novel approach to assess the physiological strain induced by exercise-heat stress. European journal of applied physiology, 84(6), pp.527-532.

Fregly, M.J., 2010. Adaptations: some general characteristics. Comprehensive Physiology, pp.3-15.

Froom, P., Caine, Y., Shochat, I. and Ribak, J., 1993. Heat stress and helicopter pilot errors. Journal of occupational medicine.: official publication of the Industrial Medical Association, 35(7), pp.720-724.

Fukazawa, T. and Havenith, G., 2009. Differences in comfort perception in relation to local and whole body skin wettedness. European journal of applied physiology, 106(1), pp.15-24.

Galloway, S.D. and Maughan, R.J., 1997. Effects of ambient temperature on the capacity to perform prolonged cycle exercise in man. Medicine and science in sports and exercise, 29(9), pp.1240-1249.

Gao, C., Kuklane, K. and Holmér, I., 2010. Cooling vests with phase change material packs: the effects of temperature gradient, mass and covering area. Ergonomics, 53(5), pp.716723.

Gaoua N, Grantham J, Massioui El F, Girard O, Racinais S. Cognitive decrements do not follow neuromuscular alterations during passive heat exposure. Int J Hyperth. 2011;27(1):10-9. 13.

Gaoua N, Grantham J, Racinais S, El Massioui F. Sensory displeasure reduces complex cognitive performance in the heat. J Environ Psychol. 2012;32:158-63.

Gaoua N, Herrera CP, Périard JD, Massioui EI F, Racinais S. Effect of passive hyperthermia on working memory resources during simple and complex cognitive tasks. Front Psychol. 2018;8:2290.

Gaoua N, Racinais S, Grantham J, Massioui El F. Alterations in cognitive performance during passive hyperthermia are task dependent. Int J Hyperth. 2011;27(1):1-9.

Gaoua, N., 2010. Cognitive function in hot environments: a question of methodology. Scandinavian journal of medicine \& science in sports, 20, pp.60-70.

Gaoua, N., de Oliveira, R.F. and Hunter, S., 2017. Perception, action, and cognition of football referees in extreme temperatures: impact on decision performance. Frontiers in psychology, 8, p. 1479.

Gaoua, N., Grantham, J., El Massioui, F., Girard, O. and Racinais, S., 2011a. Cognitive decrements do not follow neuromuscular alterations during passive heat exposure. International journal of hyperthermia, 27(1), pp.10-19.

Gaoua, N., Grantham, J., El Massioui, F., Girard, O. and Racinais, S., 2011b. Cognitive decrements do not follow neuromuscular alterations during passive heat exposure. International journal of hyperthermia, 27(1), pp.10-19.

Gaoua, N., Grantham, J., Racinais, S. and El Massioui, F., 2012. Sensory displeasure reduces complex cognitive performance in the heat. Journal of environmental psychology, 32(2), pp.158-163.

Gaoua, N., Herrera, C.P., Périard, J.D., El Massioui, F. and Racinais, S., 2018. Effect of passive hyperthermia on working memory resources during simple and complex cognitive tasks. Frontiers in psychology, 8, p. 2290.

Gaoua, N., Racinais, S., Grantham, J. and El Massioui, F., 2011a. Alterations in cognitive performance during passive hyperthermia are task dependent. International Journal of Hyperthermia, 27(1), pp.1-9.

Gaoua, N., Racinais, S., Grantham, J. and El Massioui, F., 2011b. Alterations in cognitive performance during passive hyperthermia are task dependent. International Journal of Hyperthermia, 27(1), pp.1-9.

Gaoua, N.; Racinais, S.; Grantham, J.; El Massioui, F. Alterations in cognitive performance during passive hyperthermia are task dependent. Int. J. Hyperth. 2011, 27, 1-9. [CrossRef] Gaoua, N.; Racinais, S.; Grantham, J.; El Massioui, F. Sensory displeasure reduces complex cognitive performance in the heat. J. Environ. Psychol. 2012, 32, 158-163.

Garrett, A.T., Creasy, R., Rehrer, N.J., Patterson, M.J. and Cotter, J.D., 2012. Effectiveness of short-term heat acclimation for highly trained athletes. European journal of applied physiology, 112(5), pp.1827-1837.

Garrett, A.T., Goosens, N.G., Rehrer, N.G., Patterson, M.J. and Cotter, J.D., 2009. Induction and decay of short-term heat acclimation. European journal of applied physiology, 107(6), p. 659.

Garth, A.K. and Burke, L.M., 2013. What do athletes drink during competitive sporting activities?. Sports Medicine, 43(7), pp.539-564.

Garvican, L., Martin, D., Quod, M., Stephens, B., Sassi, A. and Gore, C., 2012. Time course of the hemoglobin mass response to natural altitude training in elite endurance cyclists. Scandinavian journal of medicine \& science in sports, 22(1), pp.95-103.

Garvican, L.A., Burge, C.M., Cox, A.J., Clark, S.A., Martin, D.T. and Gore, C.J., 2010. Carbon monoxide uptake kinetics of arterial, venous and capillary blood during CO rebreathing. Experimental physiology, 95(12), pp.1156-1166.

Garvican, L.A., Pottgiesser, T., Martin, D.T., Schumacher, Y.O., Barras, M. and Gore, C.J., 2011. The contribution of haemoglobin mass to increases in cycling performance induced by simulated LHTL. European journal of applied physiology, 111(6), pp.1089-1101.

Gastin, P.B. 2001. Energy system interaction and relative contribution during maximal exercise. Sports Med. 31, 725-741.

Gerrett, N., Ouzzahra, Y., Coleby, S., Hobbs, S., Redortier, B., Voelcker, T. and Havenith, G., 2014. Thermal sensitivity to warmth during rest and exercise: a sex comparison. European journal of applied physiology, 114(7), pp.1451-1462.

Geurts, C.L., Sleivert, G.G. and Cheung, S.S., 2006. Local cold acclimation during exercise and its effect on neuromuscular function of the hand. Applied physiology, nutrition, and metabolism, 31(6), pp.717-725.

Gibson, A.S.C. and Noakes, T.D., 2004. Evidence for complex system integration and dynamic neural regulation of skeletal muscle recruitment during exercise in humans. British journal of sports medicine, 38(6), pp.797-806.

Gibson, J.G. and Evans, W.A., 1937. Clinical studies of the blood volume. I. Clinical application of a method employing the azo dye "Evans Blue" and the spectrophotometer. The Journal of clinical investigation, 16(3), pp.301-316.

Gibson, O.R., James, C.A., Mee, J.A., Willmott, A.G., Turner, G., Hayes, M. and Maxwell, N.S., 2020. Heat alleviation strategies for athletic performance: a review and practitioner guidelines. Temperature, 7(1), pp.3-36.

Gibson, O.R., Mee, J.A., Tuttle, J.A., Taylor, L., Watt, P.W. and Maxwell, N.S., 2015. Isothermic and fixed intensity heat acclimation methods induce similar heat adaptation following short and long-term timescales. Journal of thermal biology, 49, pp.55-65.

Gibson, O.R., Turner, G., Tuttle, J.A., Taylor, L., Watt, P.W. and Maxwell, N.S., 2015. Heat acclimation attenuates physiological strain and the HSP72, but not HSP90a, mRNA response to acute normobaric hypoxia. Journal of Applied Physiology, 119(8), pp.889-899.

Gillis, D.J., Barwood, M.J., Newton, P.S., House, J.R. and Tipton, M.J., 2016. The influence of a menthol and ethanol soaked garment on human temperature regulation and perception during exercise and rest in warm, humid conditions. Journal of Thermal Biology, 58, pp.99105.

Gillis, D.J., House, J.R. and Tipton, M.J., 2010. The influence of menthol on thermoregulation and perception during exercise in warm, humid conditions. European journal of applied physiology, 110(3), pp.609-618.

Girard, O., Bishop, D.J. and Racinais, S., 2013. Hot conditions improve power output during repeated cycling sprints without modifying neuromuscular fatigue characteristics. European journal of applied physiology, 113(2), pp.359-369.

Girard, O., Bishop, D.J. and Racinais, S., 2013. Hot conditions improve power output during repeated cycling sprints without modifying neuromuscular fatigue characteristics. European journal of applied physiology, 113(2), pp.359-369.

Girard, O., Brocherie, F. and Bishop, D.J., 2015. Sprint performance under heat stress: a review. Scandinavian journal of medicine \& science in sports, 25, pp.79-89.

Givoni, B. and Goldman, R.F., 1972. Predicting rectal temperature response to work, environment, and clothing. Journal of Applied Physiology, 32(6), pp.812-822.

Glaser, E.M., 1949. Acclimatization to heat and cold. The Journal of Physiology, 110(3-4), p. 330 .

Gold, A.J. and Zornitzer, A., 1968. Effect of partial body cooling on man exercising in a hot, dry environment. Aerospace Medicine, 39(9), p. 944.

Goldman, R.F., 1982. Thermal comfort in an era of energy shortage. In Selected Sensory Methods: Problems and Approaches to Measuring Hedonics. ASTM International.

Gonzalez, R.R. and Gagge, AP., 1973. Magnitude estimates of thermal discomfort during transients of humidity and operative temperature (ET*). ASHRAE Trans 79, 89-96.

González-Alonso, J. and Calbet, J.A., 2003. Reductions in systemic and skeletal muscle blood flow and oxygen delivery limit maximal aerobic capacity in humans. Circulation, 107(6), pp.824-830.

González-Alonso, J., Calbet, J.A. and Nielsen, B., 1998. Muscle blood flow is reduced with dehydration during prolonged exercise in humans. The Journal of physiology, 513(3), pp.895-905.

González-Alonso, J., Crandall, C.G. and Johnson, J.M., 2008. The cardiovascular challenge of exercising in the heat. The Journal of physiology, 586(1), pp.45-53.

González-Alonso, J., Dalsgaard, M.K., Osada, T., Volianitis, S., Dawson, E.A., Yoshiga, C.C. and Secher, N.H., 2004. Brain and central haemodynamics and oxygenation during maximal exercise in humans. The Journal of physiology, 557(1), pp.331-342.

Gonzalez-Alonso, J., Mora-Rodríguez, R. and Coyle, E.F., 2000. Stroke volume during exercise: interaction of environment and hydration. American Journal of Physiology-Heart and Circulatory Physiology, 278(2), pp.H321-H330.

González-Alonso, J., Teller, C., Andersen, S.L., Jensen, F.B., Hyldig, T. and Nielsen, B., 1999. Influence of body temperature on the development of fatigue during prolonged exercise in the heat. Journal of applied physiology, 86(3), pp.1032-1039.

Goosey-Tolfrey, V., Swainson, M., Boyd, C., Atkinson, G. and Tolfrey, K., 2008. The effectiveness of hand cooling at reducing exercise-induced hyperthermia and improving distance-race performance in wheelchair and able-bodied athletes. Journal of Applied Physiology, 105(1), pp.37-43.

Gordon, N.F., Bogdanffy, G.M. and Wilkinson, J., 1990. Effect of a practical neck cooling device on core temperature during exercise. Medicine and science in sports and exercise, 22(2), pp.245-249.

Gorelov, V., 2004. Theoretical value of Hüfner's constant. Anaesthesia, 59(1), pp.97-97. Gorman, A.J. and Proppe, D.W., 1984. Mechanisms producing tachycardia in conscious baboons during environmental heat stress. Journal of Applied Physiology, 56(2), pp.441446.

Goto, K., Oda, H., Kondo, H., Igaki, M., Suzuki, A., Tsuchiya, S., Murase, T., Hase, T., Fujiya, H., Matsumoto, I. and Naito, H., 2011. Responses of muscle mass, strength and gene transcripts to long-term heat stress in healthy human subjects. European journal of applied physiology, 111(1), pp.17-27.

Gough, C.E., Eastwood, A., Saunders, P.U., Anson, J.M. and Gore, C.J., 2012. Spurious Hb mass increases following exercise. International journal of sports medicine, 33(09), pp.691695.

Grahn, D.A., Dillon, J.L. and Heller, H.C., 2009. Heat loss through the glabrous skin surfaces of heavily insulated, heat-stressed individuals. Journal of biomechanical engineering, 131(7).

Grantham, J., Cheung, S.S., Connes, P., Febbraio, M.A., Gaoua, N., Gonzàlez-Alonso, J., Hue, O., Johnson, J.M., Maughan, R.J., Meeusen, R. and Nybo, L., 2010. Current knowledge on playing football in hot environments. Scandinavian journal of medicine \& science in sports, 20, p. 161.

Gray, S.R., De Vito, G., Nimmo, M.A., Farina, D. and Ferguson, R.A., 2006a. Skeletal muscle ATP turnover and muscle fiber conduction velocity are elevated at higher muscle temperatures during maximal power output development in humans. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 290(2), pp.R376-R382.

Gray, S.R., De Vito, G., Nimmo, M.A., Farina, D. and Ferguson, R.A., 2006b. Skeletal muscle ATP turnover and muscle fiber conduction velocity are elevated at higher muscle temperatures during maximal power output development in humans. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 290(2), pp.R376-R382.

Greenleaf, J.E., Looft-Wilson, R., Wisherd, J.L., McKenzie, M.A., Jensen, C.D. and Whittam, J.H., 1997. Pre-exercise hypervolemia and cycle ergometer endurance in men. Biology of sport, 14, pp.103-114.

Grego, F., Vallier, J.M., Collardeau, M., Bermon, S., Ferrari, P., Candito, M., Bayer, P., Magnié, M.N. and Brisswalter, J., 2004. Effects of long duration exercise on cognitive function, blood glucose, and counterregulatory hormones in male cyclists. Neuroscience letters, 364(2), pp.76-80.

Guy, J.H., Deakin, G.B., Edwards, A.M., Miller, C.M. and Pyne, D.B., 2015. Adaptation to hot environmental conditions: an exploration of the performance basis, procedures and future directions to optimise opportunities for elite athletes. Sports medicine, 45(3), pp.303-311.

Haldane, J. and Smith, J.L., 1900. The mass and oxygen capacity of the blood in man. The Journal of physiology, 25(5), p. 331.

Hampson, D.B., Gibson, A.S.C., Lambert, M.I. and Noakes, T.D., 2001. The influence of sensory cues on the perception of exertion during exercise and central regulation of exercise performance. Sports Medicine, 31(13), pp.935-952.

Hancock PA, Vasmatzidis I. Effects of heat stress on cognitive performance: the current state of knowledge. Int J Hyperth. 2003;19(3):355-72. 12.

Hancock, P. 1986. Sustained attention under thermal stress. Psychol. Bull. 99, 263-281. Hancock, P.A., 1982. Task categorization and the limits of human performance in extreme heat. Aviation, space, and environmental medicine.

Haneda, K. and Horiuchi, T., 1986. A method for measurement of total circulating blood volume using indocyanine green. The Tohoku journal of experimental medicine, 148(1), pp.49-56.

Hanin, Y.L., 2000. Individual zones of optimal functioning (IZOF) model. Emotions in sport, pp.65-89.

Harrison, H. 1985. Effects of Thermal Stress and Exercise on Blood Volume in Humans. Physiol Rev 65:149-209.

Harrison, M.H., Edwards, R.J., Cochrane, L.A. and Graveney, M.J., 1983. Blood volume and protein responses to skin heating and cooling in resting subjects. Journal of Applied Physiology, 54(2), pp.515-523.

Harrison, M.H., Edwards, R.J., Graveney, M.J., Cochrane, L.A. and Davies, J.A., 1981. Blood volume and plasma protein responses to heat acclimatization in humans. Journal of Applied Physiology, 50(3), pp.597-604.

Hasegawa, H., Takatori, T., Komura, T. and Yamasaki, M., 2005. Wearing a cooling jacket during exercise reduces thermal strain and improves endurance exercise performance in a warm environment. Journal of strength and conditioning research, 19(1), p.122.

Hasegawa, H., Takatori, T., Komura, T. and Yamasaki, M., 2006. Combined effects of precooling and water ingestion on thermoregulation and physical capacity during exercise in a hot environment. Journal of sports sciences, 24(1), pp.3-9.

Hattie, J. and Timperley, H., 2007. The power of feedback. Review of educational research, 77(1), pp.81-112.

Hautier, C.A., Arsac, L.M., Deghdegh, K., Souquet, J.I.M.M.Y., Belli, A.L.A.I.N. and Lacour, J.R., 2000. Influence of fatigue on EMG/force ratio and cocontraction in cycling. Medicine and science in sports and exercise, 32(4), pp.839-843.

Heidari, H., Mohammadbeigi, A., Khazaei, S., Soltanzadeh, A., Asgarian, A. and Saghafipour, A., 2020. The effects of climatic and environmental factors on heat-related illnesses: A systematic review from 2000 to 2020. Urban Climate, 34, p. 100720.

Heled, Y., Peled, A., Yanovich, R., Shargal, E., Pilz-Burstein, R., Epstein, Y. and Moran, D.S., 2012. Heat acclimation and performance in hypoxic conditions. Aviation, Space, and Environmental Medicine, 83(7), pp.649-653.

Helyar, R., Green, H., Zappe, D. and Sutton, J., 1996. Comparative effects of acute volume expansion and short-term training on thermal and cardiovascular responses to prolonged exercise. Canadian journal of physiology and pharmacology, 74(9), pp.1087-1094.

Henschen, S., Busse, M.W., Zisowsky, S. and Panning, B., 1993. Determination of plasma volume and total blood volume using indocyanine green: a short review. Journal of medicine, 24(1), pp.10-27.

Hettinga, F.J., De Koning, J.J., Broersen, F.T., Van Geffen, P. and Foster, C., 2006. Pacing strategy and the occurrence of fatigue in 4000-m cycling time trials. Medicine \& Science in Sports \& Exercise, 38(8), pp.1484-1491.

Hettinga, F.J., De Koning, J.J., Schmidt, L.J., Wind, N.A., MacIntosh, B.R. and Foster, C., 2011. Optimal pacing strategy: from theoretical modelling to reality in $1500-\mathrm{m}$ speed skating. British Journal of Sports Medicine, 45(1), pp.30-35.

Hiestand, W.A., Stemler, F.W. and Jasper, R.L., 1955. Increased anoxic resistance resulting from short period heat adaptation. Proceedings of the Society For Experimental Biology and Medicine, 88(1), pp.94-95.

Hilti, C.C., Jann, K., Heinemann, D., Federspiel, A., Dierks, T., Seifritz, E. and CattapanLudewig, K., 2013. Evidence for a cognitive control network for goal-directed attention in simple sustained attention. Brain and cognition, 81(2), pp.193-202.

Hocking C, Silberstein RB, Lau WM, Stough C, Roberts W. Evaluation of cognitive performance in the heat by functional brain imaging and psychometric testing. Comp Biochem Physiol Part A Mol Integr Physiol. 2001;128(4):719-34.

Hocking, C., Silberstein, R.B., Lau, W.M., Stough, C. and Roberts, W., 2001. Evaluation of cognitive performance in the heat by functional brain imaging and psychometric testing. Comparative Biochemistry and Physiology Part A: Molecular \& Integrative Physiology, 128(4), pp.719-734.

Hom, L.L., Lee, E.C.H., Apicella, J.M., Wallace, S.D., Emmanuel, H., Klau, J.F., Poh, P.Y., Marzano, S., Armstrong, L.E., Casa, D.J. and Maresh, C.M., 2012. Eleven days of moderate exercise and heat exposure induces acclimation without significant HSP70 and apoptosis responses of lymphocytes in college-aged males. Cell Stress and Chaperones, 17(1), pp.2939.

Hooper, S.L., Mackinnon, L.T., Howard, A.L.F., Gordon, R.D. and Bachmann, A.W., 1995. Markers for monitoring overtraining and recovery. Medicine \& Science in Sports \& Exercise. Horowitz M, Shimoni Y, Parnes S, et al. (1986b) Heat acclimation: cardiac performance of isolated rat heart. J Appl Physiol 60:9-13.

Horowitz, M., 2002. From molecular and cellular to integrative heat defense during exposure to chronic heat. Comparative Biochemistry and Physiology Part A: Molecular \& Integrative Physiology, 131(3), pp.475-483.

Horowitz, M., 2003. Matching the heart to heat-induced circulatory load: heat-acclimatory responses. Physiology, 18(6), pp.215-221.

Horowitz, M., Parnes, S. and Hasin, Y., 1993. Mechanical and metabolic performance of the rat heart: effects of combined stress of heat acclimation and swimming training. Journal of basic and clinical physiology and pharmacology, 4(1-2), pp.139-156.

Horowitz, M., Peyser, Y.M. and Muhlrad, A., 1986a. Alterations in cardiac myosin isoenzymes distribution as an adaptation to chronic environmental heat stress in the rat. Journal of molecular and cellular cardiology, 18(5), pp.511-515.

Hosokawa Y, Casa DJ, Vanos JK, et al. Activity modification in heat: critical assessment of guidelines across athletic, occupational, and military settings. Int J Biometeorol. 2019;63(3):405-427. doi: 10.1007/s00484-019-01673-6

Houmard, J.A., Costill, D.L., Davis, J.A., Mitchell, J.B., Pascoe, D.D. and Robergs, R.A., 1990. The influence of exercise intensity on heat acclimation in trained subjects. Medicine and Science in Sports and Exercise, 22(5), pp.615-620.

Hsu, A.R., Hagobian, T.A., Jacobs, K.A., Attallah, H. and Friedlander, A.L., 2005. Effects of heat removal through the hand on metabolism and performance during cycling exercise in the heat. Canadian journal of applied physiology, 30(1), pp.87-104.

Hsu, C.Y., Bates, D.W., Kuperman, G.J. and Curhan, G.C., 2001. Relationship between hematocrit and renal function in men and women. Kidney international, 59(2), pp.725-731.

Hue, O., Antoine-Jonville, S. and Sara, F., 2007. The effect of 8 days of training in tropical environment on performance in neutral climate in swimmers. International journal of sports medicine, 28(01), pp.48-52.

Hureau, T.J., Romer, L.M. and Amann, M., 2018. The ‘sensory tolerance limit': A hypothetical construct determining exercise performance?. European journal of sport science, 18(1), pp.13-24.

Hutchinson, M. 2015. Faster. London: Bloomsbury Publishing Plc.

Hutchinson, M. 2017. Re:Cyclists. 200 years on two wheels. Bloomsbury Publishing Plc. Pp.

Hutter, M.M., Sievers, R.E., Barbosa, V. and Wolfe, C.L., 1994. Heat-shock protein induction in rat hearts. A direct correlation between the amount of heat-shock protein induced and the degree of myocardial protection. Circulation, 89(1), pp.355-360.

Ihsan, M., Landers, G., Brearley, M. and Peeling, P., 2010. Beneficial effects of ice ingestion as a precooling strategy on $40-\mathrm{km}$ cycling time-trial performance. International Journal of Sports Physiology and Performance, 5(2), pp.140-151.

ISO 7243:2017(en) Ergonomics of the thermal environment- assessment of heat stress using the WBGT (wet bulb globe temperature) index. International Organization for Standardization Web site. https://www.iso.org/obp/ui/\#iso:std:iso:7243:en. Published 2017.

IUPS Thermal Commission, 1987. Glossary of terms for thermal physiology. Pflugers Arch., 410, pp.567-587.

James,C.A.; Richardson,A.J.; Watt,P.W.; Gibson,O.R.; Maxwell,N.S. 2015. Physiological responsesto incremental exercise in the heat following internal and external precooling. Scand. J. Med. Sci. Sports. 25 (Suppl. 1), 190-199.

Jay, O. and Morris, N.B., 2018. Does cold water or ice slurry ingestion during exercise elicit a net body cooling effect in the heat?. Sports Medicine, 48(1), pp.17-29.

Jay, O. and Morris, N.B., 2018. Does cold water or ice slurry ingestion during exercise elicit a net body cooling effect in the heat?. Sports Medicine, 48(1), pp.17-29.

Jay, O. and Webb, P., 2009. Improving the prediction of sweat losses during exercise. Journal of Applied Physiology, 107(2), pp.375-376.

Jeffries, O. and Waldron, M., 2019. The effects of menthol on exercise performance and thermal sensation: a meta-analysis. Journal of science and medicine in sport, 22(6), pp.707715.

Jelkmann, W. 1992. Erythropoietin: structure, control of production, and function. Physiol Rev 72:449-489.

Jensen, K. and Johansen, L., 1998. Reproducibility and validity of physiological parameters measured in cyclists riding on racing bikes placed on a stationary magnetic brake. Scandinavian journal of medicine \& science in sports, 8(1), pp.1-6.

Jeremiah J. Peiffer and Chris R. Abbiss (2011) Influence of Environmental Temperature on 40 km Cycling Time-Trial Performance. International Journal of Sports Physiology and Performance, 2011, 6, 208-220. Human Kinetics, Inc.

Jeukendrup A, Saris W, Brouns F, Kester A. A new validated endurance performance test. Med Sci Sports Exerc 28: 266-270, 1996.

Jiang, Q., Yang, X., Liu, K., Li, B., Li, L., Li, M., Qian, S., Zhao, L., Zhou, Z. and Sun, G., 2013. Hyperthermia impaired human visual short-term memory: an fMRI study. International Journal of Hyperthermia, 29(3), pp.219-224.

Johnson, C.D., Melanaphy, D., Purse, A., Stokesberry, S.A., Dickson, P. and Zholos, A.V., 2009. Transient receptor potential melastatin 8 channel involvement in the regulation of vascular tone. American Journal of Physiology-Heart and Circulatory Physiology. Johnson, J.M. and Kellogg Jr, D.L., 2010. Thermoregulatory and thermal control in the human cutaneous circulation. Front Biosci (Schol Ed), 2, pp.825-853.

Johnson, J.M., Minson, C.T. and Kellogg Jr, D.L., 2011. Cutaneous vasodilator and vasoconstrictor mechanisms in temperature regulation. Comprehensive physiology, 4(1), pp.33-89.

Jones, A. M., Vanhatalo, A., Burnley, M., Morton, R. H., and Poole, D. C. 2010. Critical power: implications for determination of $\mathrm{V} \mathrm{V}^{`} \mathrm{O}_{2} \max$ and exercise tolerance. Med. Sci. Sports Exerc. 42, 1876-1890.

Jones, A. M., Wilkerson, D. P., DiMenna, F., Fulford, J., and Poole, D. C. 2008. Muscle metabolic responses to exercise above and below the "critical power" assessed using 31PMRS. Am. J. Physiol. Regul. Integr. Comp. Physiol. 294, R585-R593.

Jones, H. S., Williams, E. L., Marchant, D. C., Sparks, S. A., Bridge, C. A., Midgley, A. W., et al. 2016b. Deception has no acute or residual effect on cycling time trial performance but negatively effects perceptual responses. J. Sci. Med. Sport 19, 771-776. doi: 10.1016/j.jsams.2015.12.006

Jones, H. S., Williams, E. L., Marchant, D., Sparks, S. A., Bridge, C. A., Midgley, A. W., et al. 2016a. Improvements in cycling time trial performance are not sustained following the acute provision of challenging and deceptive feedback. Front. Physiol. 7:399. doi: 10.3389/fphys.2016.00399

Jones, H.S. and Williams, E.L., 2017. Accuracy of Pacing Strategy Predictions in Ride-Alone and Competitive Cycling Time Trials. Journal of Science and Cycling, 6(3).

Jones, H.S., Williams, E.L., Marchant, D., Sparks, A., Midgley, A., Bridge, C. and McNaughton, L., 2015. Distance-dependent association of affect with pacing strategy in cycling time trials. Medicine and science in sports and exercise, 47(4), pp.825-832.

Jose, A.D., Stitt, F. and Collison, D., 1970. The effects of exercise and changes in body temperature on the intrinsic heart rate in man. American heart journal, 79(4), pp.488-498. Junge, N., Jørgensen, R., Flouris, A.D. and Nybo, L., 2016. Prolonged self-paced exercise in the heat-environmental factors affecting performance. Temperature, 3(4), pp.539-548.

Kamata, A., Tenenbaum, G. and Hanin, Y.L., 2002. Individual zone of optimal functioning (IZOF): A probabilistic estimation. Journal of Sport and Exercise Psychology, 24(2), pp.189208.

Kampmann, B., Bröde, P., Schütte, M. and Griefahn, B., 2008. Lowering of resting core temperature during acclimation is influenced by exercise stimulus. European journal of applied physiology, 104(2), pp.321-327.

Kanstrup, I.L. and Ekblom, B., 1982. Acute hypervolemia, cardiac performance, and aerobic power during exercise. Journal of Applied Physiology, 52(5), pp.1186-1191.

Karatzaferi, C., Chinn, M.K. and Cooke, R., 2004. The force exerted by a muscle crossbridge depends directly on the strength of the actomyosin bond. Biophysical journal, 87(4), pp.2532-2544.

Kargotich, S., Goodman, C., Keast, D. and Morton, A.R., 1998. The influence of exerciseinduced plasma volume changes on the interpretation of biochemical parameters used for monitoring exercise, training and sport. Sports medicine, 26(2), pp.101-117.

Karlsen, A., Nybo, L., Nørgaard, S.J., Jensen, M.V., Bonne, T. and Racinais, S., 2015 a . Time course of natural heat acclimatization in well-trained cyclists during a 2-week training camp in the heat. Scandinavian journal of medicine \& science in sports, 25, pp.240-249.

Karlsen, A., Racinais, S., Jensen, M.V., Nørgaard, S.J., Bonne, T. and Nybo, L., 2015b. Heat acclimatization does not improve VO2max or cycling performance in a cool climate in trained cyclists. Scandinavian Journal of Medicine \& Science in Sports, 25, pp.269-276.

Karsten, B., Hopker, J., Jobson, S.A., Baker, J., Petrigna, L., Klose, A. and Beedie, C., 2017. Comparison of inter-trial recovery times for the determination of critical power and W'in cycling. Journal of Sports Sciences, 35(14), pp.1420-1425.

Karsten, B., Jobson, S.A., Hopker, J., Jimenez, A. and Beedie, C., 2014. High agreement between laboratory and field estimates of critical power in cycling. International journal of sports medicine, 35(04), pp.298-303.

Kashimura O. Changes in thermal sensation during endurance exercise. J Phys Fitness Sports Med 1986;35:264-9. [in Japanese].

Käthner, I., Wriessnegger, S.C., Müller-Putz, G.R., Kübler, A. and Halder, S., 2014. Effects of mental workload and fatigue on the P300, alpha and theta band power during operation of an ERP (P300) brain-computer interface. Biological psychology, 102, pp.118-129.

Kaufman, W.C. and Pittman, J.C., 1966. A simple liquid transport cooling system for aircrewmembers(Water cooled vest with insulated icebox and electric pump to reduce thermal strain and increase comfort for aircrew members in hot humid climates). Aerospace Medicine, 37, pp.1239-1243.

Kay, D., Marino, F.E., Cannon, J., Gibson, A.S.C., Lambert, M.I. and Noakes, T.D., 2001. Evidence for neuromuscular fatigue during high-intensity cycling in warm, humid conditions. European journal of applied physiology, 84(1-2), pp.115-121.

Kay, D., Taaffe, D.R. and Marino, F.E., 1999. Whole-body pre-cooling and heat storage during self-paced cycling performance in warm humid conditions. Journal of sports sciences, 17(12), pp.937-944.

Keatinge, W.R. and Evans, M., 1961. The respiratory and cardiovascular response to immersion in cold and warm water. Quarterly Journal of Experimental Physiology and Cognate Medical Sciences: Translation and Integration, 46(1), pp.83-94.

Keatinge, W.R. and Nadel, J.A., 1965. Immediate respiratory response to sudden cooling of the skin. Journal of Applied Physiology, 20(1), pp.65-69.

Keatinge, W.R., Mcllroy, M.B. and Goldfien, A., 1964. Cardiovascular responses to ice-cold showers. Journal of Applied Physiology, 19(6), pp.1145-1150.

Keiser, S., Flück, D., Hüppin, F., Stravs, A., Hilty, M.P. and Lundby, C., 2015. Heat training increases exercise capacity in hot but not in temperate conditions: a mechanistic counterbalanced cross-over study. American Journal of Physiology-Heart and Circulatory Physiology, 309(5), pp.H750-H761.

Keller, D.M., Low, D.A., Davis, S.L., Hastings, J. and Crandall, C.G., 2011. Skin surface cooling improves orthostatic tolerance following prolonged head-down bed rest. Journal of Applied Physiology, 110(6), pp.1592-1597.

Kelly, M., 2019. Evan Dunfee Stopped At 74 Drink Stations En Route To A World Championship Bronze - Canadian Running Magazine. [online] Canadian Running Magazine. Available at: [https://runningmagazine.ca/sections/training/evan-dunfee-stopped-at-74-drink-stations-en-route-to-a-world-championship-bronze/](https://runningmagazine.ca/sections/training/evan-dunfee-stopped-at-74-drink-stations-en-route-to-a-world-championship-bronze/).

Kemppainen, P., Pertovaara, A., Huopaniemi, T., Johansson, G. and Karonen, S.L., 1985. Modification of dental pain and cutaneous thermal sensitivity by physical exercise in man. Brain research, 360(1-2), pp.33-40.Kenefick, R.W.; Cheuvront, S.N.; Sawka, M.N. Thermoregulatory function during the marathon. Sports Med. 2007, 37, 312-315.

Kenefick, R.W.; Cheuvront, S.N.; Sawka, M.N. 2007. Thermoregulatory function during the marathon. Sports Med. 37, 312-315.

Kenny, G.P., Schissler, A.R., Stapleton, J., Piamonte, M., Binder, K., Lynn, A., Lan, C.Q. and Hardcastle, S.G., 2011. Ice cooling vest on tolerance for exercise under uncompensable heat stress. Journal of occupational and environmental hygiene, 8(8), pp.484-491.

Kent, G.L., Dawson, B., Cox, G.R., Burke, L.M., Eastwood, A., Croft, K.D. and Peeling, P., 2018. Dietary nitrate supplementation does not improve cycling time-trial performance in the heat. Journal of sports sciences, 36(11), pp.1204-1211.

Kim, J.H., Coca, A., Williams, W.J. and Roberge, R.J., 2011. Effects of liquid cooling garments on recovery and performance time in individuals performing strenuous work wearing a firefighter ensemble. Journal of occupational and environmental hygiene, 8(7), pp.409-416.

Kingma, B.R., Roijendijk, L.M., Van Maanen, L., Van Rijn, H. and Van Beurden, M.H. 2020. Time perception and timed decision task performance during passive heat stress. Temperature, pp.1-11.

Kirby, C.R. and Convertino, V.A., 1986. Plasma aldosterone and sweat sodium concentrations after exercise and heat acclimation. Journal of Applied Physiology, 61(3), pp.967-970.

Kissen, A.T., 1971. Physiological responses to cooling the head and neck versus the trunk and leg areas in severe hyperthermic exposure. Aerospace Med, 42, pp.882-888.

Klausen, K., Dill, D.B., Phillips Jr, E.E. and McGregor, D., 1967. Metabolic reactions to work in the desert. Journal of applied physiology, 22(2), pp.292-296.

Knicker, A.J., Renshaw, I., Oldham, A.R. and Cairns, S.P., 2011. Interactive processes link the multiple symptoms of fatigue in sport competition. Sports medicine, 41(4), pp.307-328.

Kobayashi, Y., Ando, Y., Takeuchi, S., Takemura, K., Okuda, N., Isobe, Y., Takaba, S. and Ohara, K., 1980. Effects of heat acclimation of distance runners in a moderately hot environment. European Journal of Applied Physiology and Occupational Physiology, 45(2-3), pp.189-198.

Kodesh, E. and Horowitz, M., 2010. Soleus adaptation to combined exercise and heat acclimation: physiogenomic aspects. Medicine and science in sports and exercise, 42(5), p. 943 .

Koury, M.J. and Bondurant, M.C., 1988. Maintenance by erythropoietin of viability and maturation of murine erythroid precursor cells. Journal of cellular physiology, 137(1), pp.6574.

Kresfelder, T.L., Claassen, N. and Cronje, M.J., 2006. Hsp70 induction and hsp70 gene polymorphisms as indicators of acclimatization under hyperthermic conditions. Journal of Thermal Biology, 31(5), pp.406-415.

Kuennen, M., Gillum, T., Dokladny, K., Bedrick, E., Schneider, S. and Moseley, P., 2011. Thermotolerance and heat acclimation may share a common mechanism in humans. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 301(2), pp.R524-R533.

Kuennen, M.R., Gillum, T.L., Amorim, F.T., Kwon, Y.S. and Schneider, S.M., 2010. Palm cooling to reduce heat strain in subjects during simulated armoured vehicle transport. European journal of applied physiology, 108(6), pp.1217-1223.

Kwon, Y.S., Robergs, R.A., Mermier, C.M., Schneider, S.M. and Gurney, A.B., 2015. Palm cooling and heating delays fatigue during resistance exercise in women. The Journal of Strength \& Conditioning Research, 29(8), pp.2261-2269.

Lacombe, C., Da Silva, J.L., Bruneval, P., Fournier, J.G., Wendling, F., Casadevall, N., Camilleri, J.P., Bariety, J., Varet, B. and Tambourin, P., 1988. Peritubular cells are the site of erythropoietin synthesis in the murine hypoxic kidney. The Journal of clinical investigation, 81(2), pp.620-623.

LaFata, D., Carlson-Phillips, A., Sims, S.T. and Russell, E.M., 2012. The effect of a cold beverage during an exercise session combining both strength and energy systems development training on core temperature and markers of performance. Journal of the International Society of Sports Nutrition, 9(1), p.44.

Lambert EV, St Clair Gibson A, Noakes TD. Complex systems model of fatigue: integrative homoeostatic control of peripheral physiological systems during exercise in humans. Br J Sports Med. 2005;39(1):52-62.

Lambourne, K. and Tomporowski, P., 2010. The effect of exercise-induced arousal on cognitive task performance: a meta-regression analysis. Brain research, 1341, pp.12-24. Länne, T. and Lundvall, J., 1992. Mechanisms in man for rapid refill of the circulatory system in hypovolaemia. Acta physiologica scandinavica, 146(3), pp.299-306.

Laursen, P.B., Shing, C.M. and Jenkins, D.G., 2003. Reproducibility of the Cycling Time to Exhaustion at in Highly Trained Cyclists. Canadian journal of applied physiology, 28(4), pp.605-615.

Laursen, P.B., Shing, C.M., Peake, J.M., Coombes, J.S. and Jenkins, D.G., 2002. Interval training program optimization in highly trained endurance cyclists. Medicine \& Science in Sports \& Exercise, 34(11), pp.1801-1807.

Lawrence, N.S., Ross, T.J., Hoffmann, R., Garavan, H. and Stein, E.A., 2003. Multiple neuronal networks mediate sustained attention. Journal of cognitive neuroscience, 15(7), pp.1028-1038.

Lee JK, Shirreffs SM, Maughan RJ. Cold drink ingestion improves exercise endurance capacity in the heat. Med Sci Sports Exerc. 2008a;40(9):1637-44.

Lee, B.J., Emery-Sinclair, E.L., Mackenzie, R.W., Hussain, A., Taylor, L., James, R.S. and Thake, C.D., 2014. The impact of submaximal exercise during heat and/or hypoxia on the cardiovascular and monocyte HSP72 responses to subsequent (post 24 h ) exercise in hypoxia. Extreme physiology \& medicine, 3(1), p. 15.

Lee, B.J., Mackenzie, R.W., Cox, V., James, R.S. and Thake, C.D., 2015. Human monocyte heat shock protein 72 responses to acute hypoxic exercise after 3 days of exercise heat acclimation. BioMed research international, 2015.

Lee, B.J., Miller, A., James, R.S. and Thake, C.D., 2016. Cross acclimation between heat and hypoxia: heat acclimation improves cellular tolerance and exercise performance in acute normobaric hypoxia. Frontiers in physiology, 7, p.78.

Lee, J.K. and Shirreffs, S.M., 2007. The influence of drink temperature on thermoregulatory responses during prolonged exercise in a moderate environment. Journal of sports sciences, 25(9), pp.975-985.

Lee, J.K., Koh, A.C., Koh, S.X., Liu, G.J., Nio, A.Q. and Fan, P.W., 2014. Neck cooling and cognitive performance following exercise-induced hyperthermia. European journal of applied physiology, 114(2), pp.375-384.

Lee, J.K., Maughan, R.J. and Shirreffs, S.M., 2008b. The influence of serial feeding of drinks at different temperatures on thermoregulatory responses during cycling. Journal of sports sciences, 26(6), pp.583-590.

Lei, T.H. and Wang, F., 2021. Looking ahead of 2021 Tokyo Summer Olympic Games: How Does Humid Heat Affect Endurance Performance? Insight into physiological mechanism and heat-related illness prevention strategies. Journal of Thermal Biology, p. 102975.

Lei, T.H., Schlader, Z.J., Muhamed, A.M.C., Zheng, H., Stannard, S.R., Kondo, N., Cotter, J.D. and Mündel, T., 2020. Differences in dry-bulb temperature do not influence moderateduration exercise performance in warm environments when vapor pressure is equivalent. European journal of applied physiology, pp.1-12.

Lenzuni, P., Capone, P., Freda, D. and Del Gaudio, M., 2014. Is driving in a hot vehicle safe?. International journal of hyperthermia, 30(4), pp.250-257.

Levels, K., De Koning, J., Broekhuijzen, I., Zwaan, T., Foster, C. and Daanen, H., 2014. Effects of radiant heat exposure on pacing pattern during a $15-\mathrm{km}$ cycling time trial. Journal of Sports Sciences, 32(9), pp.845-852.

Levels, K., de Koning, J.J., Foster, C. and Daanen, H.A., 2012. The effect of skin temperature on performance during a $7.5-\mathrm{km}$ cycling time trial. European journal of applied physiology, 112(9), pp.3387-3395.

Levi, E., Vivi, A., Hasin, Y., Tassini, M., Navon, G. and Horowitz, M., 1993. Heat acclimation improves cardiac mechanics and metabolic performance during ischemia and reperfusion. Journal of Applied Physiology, 75(2), pp.833-839.

Levick, J.R., 1991. Capillary filtration-absorption balance reconsidered in light of dynamic extravascular factors. Experimental physiology, 76(6), pp.825-857.

Lieberman, H.R., Castellani, J.W. and Young, A.J., 2009. Cognitive function and mood during acute cold stress after extended military training and recovery. Aviation, space, and environmental medicine, 80(7), pp.629-636.

Lim, J., Wu, W.C., Wang, J., Detre, J.A., Dinges, D.F. and Rao, H., 2010. Imaging brain fatigue from sustained mental workload: an ASL perfusion study of the time-on-task effect. Neuroimage, 49(4), pp.3426-3435.

Linnane, D.M., Bracken, R.M., Brooks, S., Cox, V.M. and Ball, D., 2004. Effects of hyperthermia on the metabolic responses to repeated high-intensity exercise. European journal of applied physiology, 93(1-2), pp.159-166.

Lissoway, J.B., Lipman, G.S., Grahn, D.A., Cao, V.H., Shaheen, M., Phan, S., Weiss, E.A. and Heller, H.C., 2015. Novel application of chemical cold packs for treatment of exerciseinduced hyperthermia: a randomized controlled trial. Wilderness \& Environmental Medicine, 26(2), pp.173-179.

Liu, K., Jiang, Q., Li, L., Li, B., Yang, Z., Qian, S., Li, M. and Sun, G., 2015. Impact of elevated core body temperature on attention networks. Cognitive and Behavioral Neurology, 28(4), pp.198-206.

Locke, M. and Noble, EG, 1995. Stress proteins: the exercise response. Canadian Journal of Applied Physiology , 20 (2), pp. 155-167.

Lorenzo, S., Halliwill, J.R., Sawka, M.N. and Minson, C.T., 2010. Heat acclimation improves exercise performance. Journal of Applied Physiology, 109(4), pp.1140-1147.

Lorenzo, S., Minson, C.T., Babb, T.G. and Halliwill, J.R., 2011. Lactate threshold predicting time-trial performance: impact of heat and acclimation. Journal of Applied Physiology, 111(1), pp.221-227.

Lorist, M.M., 2008. Impact of top-down control during mental fatigue. Brain research, 1232, pp.113-123.

Lorist, M.M., Boksem, M.A. and Ridderinkhof, K.R., 2005. Impaired cognitive control and reduced cingulate activity during mental fatigue. Cognitive Brain Research, 24(2), pp.199205.

Lounana, J., Campion, F., Noakes, T.D. and Medelli, J., 2007. Relationship between\% HRmax, \% HR reserve,\% VO2max, and\% VO2 reserve in elite cyclists. Medicine and science in sports and exercise, 39(2), pp.350-357.

Lucia, A., Hoyos, J. Chicharro, J.L., 2001. Preferred pedalling cadence in professional cycling. Medicine and science in sports and exercise, 33(8), pp.1361-1366.

Lucia, A., Hoyos, J., Perez, M., Santalla, A. Chicharro, J.L., 2002. Inverse relationship between VO~ 2~ m~ a~ x and economy/efficiency in world-class cyclists. Medicine and science in sports and exercise, 34(12), pp.2079-2084.

Lucia, A., Juan, A.F.S., Montilla, M., Canete, S.I.L.V.I.A., Santalla, A.., Earnest, C. Perez, M.A., 2004. In professional road cyclists, low pedaling cadences are less efficient. Medicine and science in sports and exercise, 36(6), pp.1048-1054.

Ludyga, S., Gerber, M., Brand, S., Holsboer-Trachsler, E. and Pühse, U., 2016. Acute effects of moderate aerobic exercise on specific aspects of executive function in different age and fitness groups: A meta-analysis. Psychophysiology, 53(11), pp.1611-1626.

Luomala, M.J., Oksa, J., Salmi, J.A., Linnamo, V., Holmér, I., Smolander, J. and Dugué, B., 2012. Adding a cooling vest during cycling improves performance in warm and humid conditions. Journal of Thermal Biology, 37(1), pp.47-55.

Mabjeesh, N.J., Post, D.E., Willard, M.T., Kaur, B., Van Meir, E.G., Simons, J.W. and Zhong, H., 2002. Geldanamycin induces degradation of hypoxia-inducible factor $1 \alpha$ protein via the proteosome pathway in prostate cancer cells. Cancer research, 62(9), pp.2478-2482.

MAcDougall, J.D., Reddan, W.G., Layton, C.R. and Dempsey, J.A., 1974. Effects of metabolic hyperthermia on performance during heavy prolonged exercise. Journal of applied physiology, 36(5), pp.538-544.

MacIntosh, B.R., Neptune, R.R. and Horton, J.F., 2000. Cadence, power, and muscle activation in cycle ergometry. Medicine and science in sports and exercise, 32(7), pp.12811287.

Maia-Lima, A., Ramos, G.P., Moraes, M.M., Pacheco, D.A.S., de Oliveira, G.G.A., de Barros, C.L.M., Prado, L.S. and Garcia, E.S., 2017. Effects of precooling on $30-\mathrm{km}$ cycling
performance and pacing in hot and temperate environments. International journal of sports medicine, 38(01), pp.48-54.

Mairbäurl, H., 2013. Red blood cells in sports: effects of exercise and training on oxygen supply by red blood cells. Frontiers in physiology, 4, p. 332.

Mallet, C. J., and Hanrahan, S. J. (2004) Elite athletes: why does the 'fire' burn so birghly? Psychology of Sport and Exercise. 5(2), 183-200.

Maloyan, A., Eli-Berchoer, L., Semenza, G.L., Gerstenblith, G., Stern, M.D. and Horowitz, M., 2005. HIF-1 $\alpha$-targeted pathways are activated by heat acclimation and contribute to acclimation-ischemic cross-tolerance in the heart. Physiological genomics, 23(1), pp.79-88.

Maloyan, A., Palmon, A. and Horowitz, M., 1999. Heat acclimation increases the basal HSP72 level and alters its production dynamics during heat stress. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 276(5), pp.R1506-R1515. Margaria, R. 1976. Biomechanics and Energetics of Muscular Exercise. Oxford: Clarendon Press.

Marino, F.E., 2004. Anticipatory regulation and avoidance of catastrophe during exerciseinduced hyperthermia. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 139(4), pp.561-569.

Marino, F.E., Lambert, M.I. and Noakes, T.D., 2004. Superior performance of African runners in warm humid but not in cool environmental conditions. Journal of Applied Physiology, 96(1), pp.124-130.

Marsh, A. and Martin, P., 1997. Effect of cycling experience, aerobic power, and power output on preferred and most economical cycling cadences. Medicine \& Science in Sports \& Exercise, 29(9), pp.1225-1232.

Marsh, D. and Sleivert, G., 1999. Effect of precooling on high intensity cycling performance. British Journal of Sports Medicine, 33(6), pp.393-397.

Marshall, H.C., Ferguson, R.A. and Nimmo, M.A., 2006. Human resting extracellular heat shock protein 72 concentration decreases during the initial adaptation to exercise in a hot, humid environment. Cell stress \& chaperones, 11(2), p.129.

Martin, D.E., Martin, D.A. and Gynn, R.W., 2000. The olympic marathon. Human Kinetics. Martin, D.T., Watts, P.B. and Newbury, V.S., 1992. The effect of alpine mountaineering on acute erythrocyte hemolysis. International journal of sports medicine, 13(01), pp.31-35. Masento, N.A., Golightly, M., Field, D.T., Butler, L.T. and van Reekum, C.M., 2014. Effects of hydration status on cognitive performance and mood. British Journal of Nutrition, 111(10), pp.1841-1852.

Massey, H.S., Whitehead, A.E., Marchant, D., Polman, R.C. and Williams, E.L., 2020. An investigation of expertise in cycling: Eye tracking, Think Aloud and the influence of a competitor. Psychology of Sport and Exercise, 49, p. 101681.

Masters, K.S. and Ogles, B.M., 1998. Associative and dissociative cognitive strategies in exercise and running: 20 years later, what do we know?. The sport psychologist, 12(3), pp.253-270.

Matsushita, K., Homma, S. and Okada, E., 1998, January. Influence of adipose tissue on muscle oxygenation measurement with an NIRS instrument. In Photon Propagation in Tissues III (Vol. 3194, pp. 159-165). International Society for Optics and Photonics. Matsuura, R., Arimitsu, T., Yunoki, T., Kimura, T., Yamanaka, R. and Yano, T., 2015. Effects of heat exposure in the absence of hyperthermia on power output during repeated cycling sprints. Biology of sport, 32(1), p. 15.

Mauger, A.R., Jones, A.M. and Williams, C.A., 2011. The effect of non-contingent and accurate performance feedback on pacing and time trial performance in 4-km track cycling. British Journal of Sports Medicine, 45(3), pp.225-229.

Maughan, R.J., Otani, H. and Watson, P., 2012. Influence of relative humidity on prolonged exercise capacity in a warm environment. European journal of applied physiology, 112(6), pp.2313-2321.

Maughan, R.J., Shirreffs, S.M. and Watson, P., 2007. Exercise, heat, hydration and the brain. Journal of the American College of Nutrition, 26(sup5), pp.604S-612S.

Maxwell, N.S., Aitchison, T.C. and Nimmo, M.A., 1996. The effect of climatic heat stress on intermittent supramaximal running performance in humans. Experimental Physiology: Translation and Integration, 81(5), pp.833-845.

McCleave, E.L., Slattery, K.M., Duffield, R., Saunders, P.U., Sharma, A.P., Crowcroft, S.J. and Coutts, A.J., 2017. Temperate performance benefits after heat, but not combined heat and hypoxic training. Medicine and science in sports and exercise.

McClung, J.P., Hasday, J.D., He, J.R., Montain, S.J., Cheuvront, S.N., Sawka, M.N. and Singh, I.S., 2008. Exercise-heat acclimation in humans alters baseline levels and ex vivo heat inducibility of HSP72 and HSP90 in peripheral blood mononuclear cells. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 294(1), pp.R185R191.

McDermott, B.P., Casa, D.J., Ganio, M.S., Lopez, R.M., Yeargin, S.W., Armstrong, L.E. and Maresh, C.M., 2009. Acute whole-body cooling for exercise-induced hyperthermia: a systematic review. Journal of athletic training, 44(1), pp.84-93.

McFarlin, B.K., Henning, A.L., Venable, A.S., Williams, R.R. and Best Sampson, J.N., 2016. A shirt containing multistage phase change material and active cooling components was associated with increased exercise capacity in a hot, humid environment. Ergonomics, 59(8), pp.1019-1025.

McMorris, T., Swain, J., Smith, M., Corbett, J., Delves, S., Sale, C., Harris, R.C. and Potter, J., 2006. Heat stress, plasma concentrations of adrenaline, noradrenaline, 5hydroxytryptamine and cortisol, mood state and cognitive performance. International Journal of Psychophysiology, 61(2), pp.204-215.

Meeusen, R. and Roelands, B., 2010. Central fatigue and neurotransmitters, can thermoregulation be manipulated?. Scandinavian journal of medicine \& science in sports, 20, pp.19-28.

Mejuto, G., Chalmers, S., Gilbert, S. and Bentley, D., 2018. The effect of ice slurry ingestion on body temperature and cycling performance in competitive athletes. Journal of thermal biology, 72, pp.143-147.

Minett, G.M., Duffield, R., Kellett, A. and Portus, M., 2012. Mixed-method pre-cooling reduces physiological demand without improving performance of medium-fast bowling in the heat. Journal of sports sciences, 30(9), pp.907-915.

Minett, G.M., Duffield, R., Marino, F.E. and Portus, M., 2011. Volume-dependent response of precooling for intermittent-sprint exercise in the heat. Medicine and Science in Sports and Exercise, 43(9), pp.1760-1769.

Minett, G.M., Duffield, R., Marino, F.E. and Portus, M., 2011. Volume-dependent response of precooling for intermittent-sprint exercise in the heat. Medicine and Science in Sports and Exercise, 43(9), pp.1760-1769.

Minniti, A., Tyler, C.J. and Sunderland, C., 2011. Effects of a cooling collar on affect, ratings of perceived exertion, and running performance in the heat. European Journal of Sport Science, 11(6), pp.419-429.

Minson, C.T. and Cotter, J.D., 2016. CrossTalk proposal: Heat acclimatization does improve performance in a cool condition. The Journal of physiology, 594(2), p.241.

Minson, C.T., Wladkowski, S.L., Cardell, A.F., Pawelczyk, J.A. and Kenney, W.L., 1998. Age alters the cardiovascular response to direct passive heating. Journal of applied physiology, 84(4), pp.1323-1332.

Mitchell, D., Senay, L.C., Wyndham, C.H., Van Rensburg, A.J., Rogers, G.G. and Strydom, N.B., 1976. Acclimatization in a hot, humid environment: energy exchange, body temperature, and sweating. Journal of Applied Physiology, 40(5), pp.768-778.

Moher D. Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. Ann Intern Med. 2009;151(4):264. doi:10.7326/0003-4819-151-4-200908180-00135

Moher, D., Liberati, A., Tetzlaff, J., Altman, D.G. 2009. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Ann Intern Med. 151:264-9; W64; PMID:19622511.

Mohr M, Nybo L, Grantham J, Racinais S. Physiological responses and physical performance during football in the heat. PLoS One. 2012;7(6):e39202. https://doi.org/10.1371/journal. pone.0039202.

Moloney, T.C., Hoban, D.B., Barry, F.P., Howard, L. and Dowd, E., 2012. Kinetics of thermally induced heat shock protein 27 and 70 expression by bone marrow-derived mesenchymal stem cells. Protein science, 21(6), pp.904-909.

Monod, H., and Scherrer, J. 1965. The work capacity of a synergic muscular group. Ergonomics 8, 329-38.

Mora-Rodriguez, R., 2012. Influence of aerobic fitness on thermoregulation during exercise in the heat. Exercise and sport sciences reviews, 40(2), pp.79-87.

Mora-Rodriguez, R., Del Coso, J., Hamouti, N., Estevez, E. and Ortega, J.F., 2010. Aerobically trained individuals have greater increases in rectal temperature than untrained ones during exercise in the heat at similar relative intensities. European journal of applied physiology, 109(5), pp.973-981.

Mora-Rodriguez, R., Del Coso, J.., Aguado-Jimenez, R. and Estevez, E., 2007. Separate and combined effects of airflow and rehydration during exercise in the heat. Medicine and science in sports and exercise, 39(10), pp.1720-1726.

Morimoto, R.I., 1998. Regulation of the heat shock transcriptional response: cross talk between a family of heat shock factors, molecular chaperones, and negative regulators. Genes \& development, 12(24), pp.3788-3796.

Morris, J.G., Nevill, M.E. and Williams, C., 2000. Physiological and metabolic responses of female games and endurance athletes to prolonged, intermittent, high-intensity running at 30 and 16 C ambient temperatures. European journal of applied physiology, 81(1-2), pp.84-92.

Morris, J.G., Nevill, M.E., Boobis, L.H., Macdonald, I.A. and Williams, C., 2005. Muscle metabolism, temperature, and function during prolonged, intermittent, high-intensity running in air temperatures of 33 and 17 C. International journal of sports medicine, 26(10), pp.805814.

Morris, N.B. and Jay, O., 2016. To drink or to pour: How should athletes use water to cool themselves?.

Morris, N.B., Bain, A.R., Cramer, M.N. and Jay, O., 2014. Evidence that transient changes in sudomotor output with cold and warm fluid ingestion are independently modulated by abdominal, but not oral thermoreceptors. Journal of applied physiology, 116(8), pp.10881095.

Morris, N.B., Coombs, G. and Jay, O., 2016. Ice slurry ingestion leads to a lower net heat loss during exercise in the heat. Medicine and science in sports and exercise, 48(1), pp.114122.

Morrison, S., Sleivert, G.G. and Cheung, S.S., 2004. Passive hyperthermia reduces voluntary activation and isometric force production. European journal of applied physiology, 91(5-6), pp.729-736.

Morrison, S.A., Cheung, S. and Cotter, J.D., 2014b. Importance of airflow for physiologic and ergogenic effects of precooling. Journal of athletic training, 49(5), pp.632-639.

Mortensen, S.P., Damsgaard, R., Dawson, E.A., Secher, N.H. and González-Alonso, J., 2008. Restrictions in systemic and locomotor skeletal muscle perfusion, oxygen supply and VO2 during high-intensity whole-body exercise in humans. The Journal of physiology, 586(10), pp.2621-2635.

Mortensen, S.P., Dawson, E.A., Yoshiga, C.C., Dalsgaard, M.K., Damsgaard, R., Secher, N.H. and González-Alonso, J., 2005. Limitations to systemic and locomotor limb muscle oxygen delivery and uptake during maximal exercise in humans. The Journal of physiology, 566(1), pp.273-285.

Morton, R.H., 2006. The critical power and related whole-body bioenergetic models. European journal of applied physiology, 96(4), pp.339-354.

Morton, R.H., 2009. Deception by manipulating the clock calibration influences cycle ergometer endurance time in males. Journal of Science and Medicine in Sport, 12(2), pp.332-337.

Mower, G.D., 1976. Perceived intensity of peripheral thermal stimuli is independent of internal body temperature. Journal of comparative and physiological psychology, 90(12), p. 1152.

Moyen, N.E., Ganio, M.S., Wiersma, L.D., Kavouras, S.A., Gray, M., McDERMOTT, B.P., Adams, J.D., Binns, A.P., Judelson, D.A., McKENZIE, A.L. and Johnson, E.C., 2015. Hydration status affects mood state and pain sensation during ultra-endurance cycling. Journal of sports sciences, 33(18), pp.1962-1969.

Mündel, T. and Jones, D.A., 2010. The effects of swilling an I (-)-menthol solution during exercise in the heat. European journal of applied physiology, 109(1), pp.59-65.

Mündel, T., Bunn, S.J., Hooper, P.L. and Jones, D.A., 2007. The effects of face cooling during hyperthermic exercise in man: evidence for an integrated thermal, neuroendocrine and behavioural response. Experimental Physiology, 92(1), pp.187-195.

Mündel, T., King, J., Collacott, E. and Jones, D.A., 2006. Drink temperature influences fluid intake and endurance capacity in men during exercise in a hot, dry environment. Experimental physiology, 91(5), pp.925-933.

Mündel, T., King, J., Collacott, E. and Jones, D.A., 2006. Drink temperature influences fluid intake and endurance capacity in men during exercise in a hot, dry environment. Experimental physiology, 91(5), pp.925-933.

Mündel, T., Raman, A. and Schlader, Z.J., 2016. Head temperature modulates thermal behavior in the cold in humans. Temperature, 3(2), pp.298-306.

Munten, S., Relationship between ambient temperature and hypoxia during a $20-\mathrm{km}$ cycling time trial (Unpublished).

Naito, T. and Ogaki, T., 2017. Comparison of the effects of cold water and ice ingestion on endurance cycling capacity in the heat. Journal of sport and health science, 6(1), pp.111117.

Nakamura, M., Esaki, H., Yoda, T., Yasuhara, S., Kobayashi, A., Konishi, A., Osawa, N., Nagashima, K., Crawshaw, L.I. and Kanosue, K., 2006. A new system for the analysis of thermal judgments: multipoint measurements of skin temperatures and temperature-related sensations and their joint visualization. The Journal of Physiological Sciences, 56(6), pp.459464.

Nakamura, M., Yoda, T., Crawshaw, L.I., Kasuga, M., Uchida, Y., Tokizawa, K., Nagashima, K. and Kanosue, K., 2013. Relative importance of different surface regions for thermal comfort in humans. European journal of applied physiology, 113(1), pp.63-76.

Nakamura, M., Yoda, T., Crawshaw, L.I., Yasuhara, S., Saito, Y., Kasuga, M., Nagashima, K. and Kanosue, K., 2008. Regional differences in temperature sensation and thermal comfort in humans. Journal of applied physiology, 105(6), pp.1897-1906.

Neal, R.A., Corbett, J., Massey, H.C. and Tipton, M.J., 2016. Effect of short-term heat acclimation with permissive dehydration on thermoregulation and temperate exercise performance. Scandinavian journal of medicine \& science in sports, 26(8), pp.875-884.

Nelson, M.D., Stuart-Hill, L.A. and Sleivert, G.G., 2008. Hypervolemia and blood alkalinity: effect on physiological strain in a warm environment. International journal of sports physiology and performance, 3(4), pp.501-515.

Nielsen, B., Hyldig, T., and Bidstrup, F. 2001. Brain activity and fatigue during prolonged exercise in the heat. Pflügers Arch 442:41-48.

Nielsen, B., Strange, S., and Christensen, NJ. 1997. Acute and adaptive responses in humans to exercise in a warm, humid environment. Pflugers Arch 434:49-56.

Nielsen, B., 1998. Heat acclimation-mechanisms of adaption to exercise in the heat. International journal of sports medicine, 19(S 2), pp.S154-S156.

Nielsen, B., Hales, J.R., Strange, S., Christensen, N.J., Warberg, J. and Saltin, B., 1993. Human circulatory and thermoregulatory adaptations with heat acclimation and exercise in a hot, dry environment. The Journal of physiology, 460(1), pp.467-485.

Niimi, Y., Matsukawa, T., Sugiyama, Y., Shamsuzzaman, A.S.M., Ito, H., Sobue, G. and Mano, T., 1997. Effect of heat stress on muscle sympathetic nerve activity in humans. Journal of the autonomic nervous system, 63(1-2), pp.61-67.

Nikolac, N., Lenicek Krleza, J. and Simundic, A.M., 2017. Preanalytical external quality assessment of the Croatian Society of Medical Biochemistry and Laboratory Medicine and CROQALM: finding undetected weak spots. Biochemia medica: Biochemia medica, 27(1), pp.131-143.

Nikolopoulos, V., Arkinstall, M.J. and Hawley, J.A., 2001. Pacing strategy in simulated cycle time-trials is based on perceived rather than actual distance. Journal of Science and Medicine in Sport, 4(2), pp.212-219.

Nishihara, N., Tanabe, S.I., Hayama, H. and Komatsu, M., 2002. A cooling vest for working comfortably in a moderately hot environment. Journal of physiological anthropology and applied human science, 21(1), pp.75-82.

Noakes, T.D. and Gibson, A.S.C., 2004. Logical limitations to the "catastrophe" models of fatigue during exercise in humans. British journal of sports medicine, 38(5), pp.648-649.

Noakes, T.D., 2000. Physiological models to understand exercise fatigue and the adaptations that predict or enhance athletic performance. Scandinavian Journal of Medicine \& Science in Sports: Review Article, 10(3), pp.123-145.

Noakes, T.D., 2004. Linear relationship between the perception of effort and the duration of constant load exercise that remains. Journal of applied physiology, 96(4), pp.1571-1573.

Nose, H., Mack, G.W., Shi, X.R., Morimoto, K. Nadel, E.R., 1990. Effect of saline infusion during exercise on thermal and circulatory regulations. Journal of applied physiology, 69(2), pp.609-616.

Nuccio, R.P., Barnes, K.A., Carter, J.M. and Baker, L.B., 2017. Fluid balance in team sport athletes and the effect of hypohydration on cognitive, technical, and physical performance. Sports Medicine, 47(10), pp.1951-1982.

Nunneley, S.A. and Maldonado, R.J., 1983. Head and/or torso cooling during simulated cockpit heat stress. Aviation, space, and environmental medicine, 54(6), pp.496-499.

Nunneley, S.A., Dowd, P.J., Myhre, L.G., Stribley, R.F. and Mcnee, R.C., 1979. Trackingtask performance during heat stress simulating cockpit conditions in high-performance aircraft. Ergonomics, 22(5), pp.549-555.

Nunneley, S.A., Martin, C.C., Slauson, J.W., Hearon, C.M., Nickerson, L.D. and Mason, P.A., 2002. Changes in regional cerebral metabolism during systemic hyperthermia in humans. Journal of Applied Physiology, 92(2), pp.846-851.

Nunneley, S.A., Reader, D.C. and Maldonado, R.J., 1982. Head-temperature effects on physiology, comfort, and performance during hyperthermia. Aviation, space, and environmental medicine.

Nunnely, S.A., 1971. Head cooling in work and heat stress. Aerospace Med., 42, pp.64-68. Nybo, L. 2010a. Cycling in the heat: performance perspectives and cerebral challenges. 194 Scand J Med Sci Sports 20:71-79.

Nybo, L. 2010b. CNS fatigue provoked by prolonged exercise in the heat. Front Biosci (Elite Ed) 2:779-92.

Nybo, L. and Lundby, C., 2016. CrossTalk opposing view: Heat acclimatization does not improve exercise performance in a cool condition. The Journal of Physiology, 594(2), p. 245.

Nybo, L., Dalsgaard, M.K., Steensberg, A., Møller, K. and Secher, N.H., 2005. Cerebral ammonia uptake and accumulation during prolonged exercise in humans. The Journal of physiology, 563(1), pp.285-290.

Nybo, L., Jensen, T., Nielsen, B. and González-Alonso, J., 2001. Effects of marked hyperthermia with and without dehydration onV o 2 kinetics during intense exercise. Journal of Applied Physiology, 90(3), pp.1057-1064.

Nybo, L., Nielsen, B. 2001a. Hyperthermia and central fatigue during prolonged exercise in humans. J Appl Physiol 91:1055-1060.

Nybo, L., Nielsen, B. 2001b. Perceived exertion is associated with an altered brain activity during exercise with progressive hyperthermia. J Appl Physiol 91:2017-2023.

Nybo, L., Rasmussen, P. and Sawka, M.N., 2011. Performance in the heat-physiological factors of importance for hyperthermia-induced fatigue. Comprehensive Physiology, 4(2), pp.657-689.

Oberholzer, L., Siebenmann, C., Mikkelsen, C.J., Junge, N., Piil, J.F., Morris, N.B., Goetze, J.P., Meinild Lundby, A.K., Nybo, L. and Lundby, C., 2019. Hematological adaptations to prolonged heat acclimation in endurance-trained males. Frontiers in physiology, 10, p.1379. Ogoh, S., Sato, K., Okazaki, K., Miyamoto, T., Hirasawa, A., Morimoto, K. and Shibasaki, M., 2013. Blood flow distribution during heat stress: cerebral and systemic blood flow. Journal of Cerebral Blood Flow \& Metabolism, 33(12), pp.1915-1920.

Olschewski, H. and Bruck, K., 1988. Thermoregulatory, cardiovascular, and muscular factors related to exercise after precooling. Journal of applied physiology, 64(2), pp.803-811.

Osborne, J.O., Stewart, I.B., Beagley, K.W., Borg, D.N. and Minett, G.M., 2019. Acute glutamine supplementation does not improve 20-km self-paced cycling performance in the heat. European Journal of Applied Physiology, 119(11-12), pp.2567-2578.

Otani, H., Kaya, M., Tamaki, A., Watson, P. and Maughan, R.J., 2018. Air velocity influences thermoregulation and endurance exercise capacity in the heat. Applied Physiology, Nutrition, and Metabolism, 43(2), pp.131-138.

Otani, H., Kaya, M., Tamaki, A., Watson, P. and Maughan, R.J., 2016. Effects of solar radiation on endurance exercise capacity in a hot environment. European journal of applied physiology, 116(4), pp.769-779.

Ouzzahra, Y., Havenith, G. and Redortier, B., 2012. Regional distribution of thermal sensitivity to cold at rest and during mild exercise in males. Journal of Thermal Biology, 37(7), pp.517-523

Padilla, S., Mujika, I., Orbananos, J. and Angulo, F., 2000. Exercise intensity during competition time trials in professional road cycling. Medicine and Science in Sports and Exercise, 32(4), pp.850-856.

Palmer, G.S. and SC, D., 1996. Noakes TD. Hawley JA. Assessment of the reproducibility of performance testing on an air-braked cycle ergometer. Int J Sports Med, 17(4), pp.293-298.

Pandolf, K.B., 1978. Influence of local and central factors in dominating rated perceived exertion during physical work. Perceptual and motor skills, 46(3), pp.683-698. Pandolf, K.B., 1998. Time course of heat acclimation and its decay. International journal of sports medicine, 19(S 2), pp.S157-S160.

Pandolf, K.B., Burse, R.L. and Goldman, R.F., 1977. Role of physical fitness in heat acclimatisation, decay and reinduction. Ergonomics, 20(4), pp.399-408.

Pandolf, KB, 1992. Environmental extremes and performance. Endurance in Sport , pp.270282.

Parfitt, G., Markland, D. and Holmes, C., 1994. Responses to physical exertion in active and inactive males and females. Journal of Sport and Exercise Psychology, 16(2), pp.178-186.

Parkin, J.M., Carey, M.F., Zhao, S. and Febbraio, M.A., 1999. Effect of ambient temperature on human skeletal muscle metabolism during fatiguing submaximal exercise. Journal of applied physiology, 86(3), pp.902-908.

Paterson, S. and Marino, F.E., 2004. Effect of deception of distance on prolonged cycling performance. Perceptual and motor skills, 98(3), pp.1017-1026.

Paton, C.D., Hopkins WG. 2001. Tests of cycling performance. Sports Med, 31(7), pp.489496.

Patterson, M.J., Stocks, J.M. and Taylor, N.A., 2004. Sustained and generalized extracellular fluid expansion following heat acclimation. The Journal of physiology, 559(1), pp.327-334.

Paul, D. J., Gabbett, T. J., \& Nassis, G. P. 2016. Agility in team sports: Testing, training and factors affecting performance. Sports Medicine, 46(3), 421-442.

Peiffer, J.J. and Abbiss, C.R., 2011. Influence of environmental temperature on 40 km cycling time-trial performance. International Journal of Sports Physiology and Performance, 6(2), pp.208-220.

Peiffer, J.J. and Abbiss, C.R., 2011. Influence of environmental temperature on 40 km cycling time-trial performance. International journal of sports physiology and performance, 6(2), pp.208-220.

Periard JD, Racinais S, Timpka T, Dahlstrom O, Spreco A, Jacobsson J, et al. Strategies and factors associated with preparing for competing in the heat: a cohort study at the 2015 IAAF world athletics championships. Br J Sports Med. 2017;51(4):264-70

Périard JD, Racinais S, 2015a. Self-paced exercise in hot and cool conditions is associated with the maintenance of \%VO2peak within a narrow range. J Appl Physiol. 118:1258-65.

Périard, J. and Racinais, S., 2019. Heat Stress in Sport and Exercise. Springer.

Periard, J.D. and Racinais, S., 2016. Performance and pacing during cycle exercise in hyperthermic and hypoxic conditions. Med Sci Sports Exerc, 48(5), pp.845-853.

Periard, J.D. and Racinais, S., 2016. Performance and Pacing during Cycle Exercise in Hyperthermic and Hypoxic Conditions. Medicine and science in sports and exercise, 48(5), pp.845-853.

Périard, J.D., Caillaud, C. and Thompson, M.W., 2012. The role of aerobic fitness and exercise intensity on endurance performance in uncompensable heat stress conditions. European journal of applied physiology, 112(6), pp.1989-1999.

Périard, J.D., Cramer, M.N., Chapman, P.G., Caillaud, C. and Thompson, M.W., 2011a. Cardiovascular strain impairs prolonged self-paced exercise in the heat. Experimental physiology, 96(2), pp.134-144.

Périard, J.D., Cramer, M.N., Chapman, P.G., Caillaud, C. and Thompson, M.W., 2011 b. Neuromuscular function following prolonged intense self-paced exercise in hot climatic conditions. European journal of applied physiology, 111(8), pp.1561-1569.

Périard, J.D., De Pauw, K., Zanow, F. and Racinais, S., 2018. Cerebrocortical activity during self-paced exercise in temperate, hot and hypoxic conditions. Acta Physiologica, 222(1), p.e12916.

Périard, J.D., Racinais, S. and Sawka, M.N., 2015c. Adaptations and mechanisms of human heat acclimation: applications for competitive athletes and sports. Scandinavian journal of medicine \& science in sports, 25, pp.20-38.

Périard, J.D., Racinais, S., 2015b. Heat stress exacerbates the reduction in middle cerebral artery blood velocity during prolonged self-paced exercise. Scandinavian journal of medicine \& science in sports, 25, pp.135-144.

Périard, J.D., Racinais, S., Timpka, T., Dahlström, Ö., Spreco, A., Jacobsson, J., Bargoria, V., Halje, K. and Alonso, J.M., 2017. Strategies and factors associated with preparing for competing in the heat: a cohort study at the 2015 IAAF World Athletics Championships. British journal of sports medicine, 51(4), pp.264-270.

Perrey, S., Grappe, F., Girard, A., Bringard, A., Groslambert, A., Bertucci, W. and Rouillon, J.D., 2003. Physiological and metabolic responses of triathletes to a simulated 30-min timetrial in cycling at self-selected intensity. International journal of sports medicine, 24(02), pp.138-143.

Perri, R.L., Berchicci, M., Lucci, G., Spinelli, D. and Di Russo, F., 2015. Why do we make mistakes? Neurocognitive processes during the preparation-perception-action cycle and error-detection. Neuroimage, 113, pp.320-328.

Petersen, C.J., Portus, M.R., Pyne, D.B., Dawson, B.T., Cramer, M.N. and Kellett, A.D., 2010. Partial heat acclimation in cricketers using a 4 -day high intensity cycling protocol. International journal of sports physiology and performance, 5(4), pp.535-545.

Pilcher, J.J., Nadler, E. and Busch, C., 2002. Effects of hot and cold temperature exposure on performance: a meta-analytic review. Ergonomics, 45(10), pp.682-698.

Pinheiro, F. A., Santos, T. M., and Pires, F. O. (2016). Conscious distance monitoring and perceived exertion in light-deprived cycling time trial. Physiol. Behav. 165, 211-216. doi: 10.1016/j.physbeh.2016.07.020

Pires, F.O., Silva-Júnior, F.L., Brietzke, C., Franco-Alvarenga, P.E., Pinheiro, F.A., de França, N.M., Teixeira, S. and Meireles Santos, T., 2018. Mental fatigue alters cortical activation and psychological responses, impairing performance in a distance-based cycling trial. Frontiers in physiology, 9, p.227.

Pirnay, F., Deroanne, R. and Petit, J.M., 1970. Maximal oxygen consumption in a hot environment. Journal of Applied Physiology, 28(5), pp.642-645.

Ponce, L.L., Navarro, J.C., Ahmed, O. and Robertson, C.S., 2013. Erythropoietin neuroprotection with traumatic brain injury. Pathophysiology, 20(1), pp.31-38.

Poole, D. C., Burnley, M., Vanhatalo, A., Rossiter, H. B., Jones, A. M. 2016. Critical power: an important fatigue threshold in exercise physiology. Med. Sci. Sports Exerc. 48, 23202334.

Poole, D. C., Ward, S. A., Gardner, G. W., Whipp, B. J. 1988. Metabolic and respiratory profile of the upper limit for prolonged exercise in man. Ergonomics 31, 1265-1279.

Price, M.J., Boyd, C. and Goosey-Tolfrey, V.L., 2009. The physiological effects of pre-event and midevent cooling during intermittent running in the heat in elite female soccer players. Applied physiology, nutrition, and metabolism, 34(5), pp.942-949.

Priego Quesada, J.I., Kerr, Z.Y., Bertucci, W.M. and Carpes, F.P., 2018. The categorization of amateur cyclists as research participants: findings from an observational study. Journal of sports sciences, 36(17), pp.2018-2024.

Proulx, C.I., Ducharme, M.B. and Kenny, G.P., 2003. Effect of water temperature on cooling efficiency during hyperthermia in humans. Journal of Applied Physiology, 94(4), pp.13171323.

Qian, S., Li, M., Li, G., Liu, K., Li, B., Jiang, Q., Li, L., Yang, Z. and Sun, G., 2015. Environmental heat stress enhances mental fatigue during sustained attention task performing: evidence from an ASL perfusion study. Behavioural brain research, 280, pp.615.

Quod, M.J., Martin, D.T., Laursen, P.B., Gardner, A.S., Halson, S.L., Marino, F.E., Tate, M.P., Mainwaring, D.E., Gore, C.J. and Hahn, A.G., 2008. Practical precooling: effect on cycling time trial performance in warm conditions. Journal of sports sciences, 26(14), pp.1477-1487.

Racinais S, Gaoua N, Grantham J. Hyperthermia impairs short-term memory and peripheral motor drive transmission. J Physiol. 2008;586(Pt 19):4751-62. 17.

Racinais, S., Alonso, J.M., Coutts, A.J., Flouris, A.D., Girard, O., González-Alonso, J., Hausswirth, C., Jay, O., Lee, J.K., Mitchell, N. and Nassis, G.P., 2015a. Consensus recommendations on training and competing in the heat. Scandinavian journal of medicine \& science in sports, 25, pp.6-19.

Racinais, S., Alonso, J.M., Coutts, A.J., Flouris, A.D., Girard, O., González-Alonso, J., Hausswirth, C., Jay, O., Lee, J.K., Mitchell, N. and Nassis, G.P., 2015a. Consensus recommendations on training and competing in the heat. Scandinavian journal of medicine \& science in sports, 25, pp.6-19.

Racinais, S., Bishop, D., Denis, R., Lattier, G., Mendez-Villaneuva, A. and Perrey, S., 2007. Muscle deoxygenation and neural drive to the muscle during repeated sprint cycling. Medicine \& Science in Sports \& Exercise, 39(2), pp.268-274.

Racinais, S., Blonc, S., Oksa, J. and Hue, O., 2009. Does the diurnal increase in central temperature interact with pre-cooling or passive warm-up of the leg?. Journal of Science and Medicine in Sport, 12(1), pp.97-100.

Racinais, S., Buchheit, M., Bilsborough, J., Bourdon, P.C., Cordy, J. and Coutts, A.J., 2014. Physiological and performance responses to a training camp in the heat in professional Australian football players. International journal of sports physiology and performance, 9(4), pp.598-603.

Racinais, S., Gaoua, N. and Grantham, J., 2008. Hyperthermia impairs short-term memory and peripheral motor drive transmission. The Journal of physiology, 586(19), pp.4751-4762.

Racinais, S., Gaoua, N., Mtibaa, K., Whiteley, R., Hautier, C. and Alhammoud, M., 2017b. Effect of cold on proprioception and cognitive function in elite alpine skiers. International journal of sports physiology and performance, 12(1), pp.69-74.

Racinais, S., Mohr, M., Buchheit, M., Voss, S.C., Gaoua, N., Grantham, J. and Nybo, L., 2012. Individual responses to short-term heat acclimatisation as predictors of football performance in a hot, dry environment. British journal of sports medicine, 46(11), pp.810815.

Racinais, S., Moussay, S., Nichols, D., Travers, G., Belfekih, T., Schumacher, Y.O., Periard, J.D., 2019. Core temperature up to $41.5{ }^{\circ} \mathrm{C}$ during the UCI Road Cycling World Championships in the heat. British journal of sports medicine, 53(7), pp.426-429.

Racinais, S., Nichols, D., Travers, G., Moussay, S., Belfekih, T., Farooq, A., Schumacher, Y.O. and Périard, J.D., 2020a. Health status, heat preparation strategies and medical events among elite cyclists who competed in the heat at the 2016 UCI Road World Cycling Championships in Qatar. British Journal of Sports Medicine.

Racinais, S., Périard, J.D., Karlsen, A. and Nybo, L., 2015b. Effect of heat and heat acclimatization on cycling time trial performance and pacing. Medicine and Science in Sports and Exercise, 47(3), p. 601.

Racinais, S., Wilson, M.G. and Périard, J.D., 2017c. Passive heat acclimation improves skeletal muscle contractility in humans. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 312(1), pp.R101-R107.

Racinais, S., Wilson, M.G., Gaoua, N. and Périard, J.D., 2017a. Heat acclimation has a protective effect on the central but not peripheral nervous system. Journal of Applied Physiology, 123(4), pp.816-824.

Rae, D.E., Knobel, G.J., Mann, T., Swart, J., Tucker, R.O.S.S. and Noakes, T.D., 2008. Heatstroke during endurance exercise: is there evidence for excessive endothermy?. Medicine and science in sports and exercise, 40(7), p.1193. Ramanathan, NL.1964. A new weighting system for mean surface temperature of the human body. J Appl Physiol 19:531-3.

Ravanelli, N., Imbeault, P. and Jay, O., 2020. Steady-state sweating during exercise is determined by the evaporative requirement for heat balance independently of absolute core and skin temperatures. The Journal of Physiology.

Raymond, C., Singh, D. and Horton, R.M., 2017. Spatiotemporal patterns and synoptics of extreme wet-bulb temperature in the contiguous United States. Journal of Geophysical Research: Atmospheres, 122(24), pp.13-108.

Reilly, T., Drust, B. and Gregson, W., 2006. Thermoregulation in elite athletes. Current Opinion in Clinical Nutrition \& Metabolic Care, 9(6), pp.666-671.

Reljic, D., Feist, J., Jost, J., Kieser, M. and Friedmann-Bette, B., 2016. Rapid body mass loss affects erythropoiesis and hemolysis but does not impair aerobic performance in combat athletes. Scandinavian journal of medicine \& science in sports, 26(5), pp.507-517.

Reljic, D., Hässler, E., Jost, J. and Friedmann-Bette, B., 2013. Rapid weight loss and the body fluid balance and hemoglobin mass of elite amateur boxers. Journal of athletic training, 48(1), pp.109-117.

Rendell, M.S., Kelly, S.T., Bamisedun, O., Luu, T., Finney, D.A. and Knox, S., 1993. The effect of increasing temperature on skin blood flow and red cell deformability. Clinical Physiology, 13(3), pp.235-245.

Rendell, R.A., Prout, J., Costello, J.T., Massey, H.C., Tipton, M.J., Young, J.S. and Corbett, J., 2017. Effects of 10 days of separate heat and hypoxic exposure on heat acclimation and temperate exercise performance. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 313(3), pp.R191-R201.

Renfree, A, West, J, Corbett, M, Rhoden, C, and St Clair Gibson, A. Complex interplay between determinants of pacing and performance during $20-\mathrm{km}$ cycling time trials. Int J Sports Physiol Perform 7: 121-129, 2012.

Riera, F., Trong, T.T., Sinnapah, S. and Hue, O., 2014. Physical and perceptual cooling with beverages to increase cycle performance in a tropical climate. PLoS One, 9(8), p.e103718.

Rivas, E., Allie, K.N. and Salvador, P.M., 2019. Progressive dry to humid hyperthermia alters exercise cerebral blood flow. Journal of thermal biology, 84, pp.398-406.

Roberts, G.C., 2001. Understanding the dynamics of motivation in physical activity: The influence of achievement goals on motivational processes. Advances in motivation in sport and exercise, 3, pp.1-50.

Robinson, N., Giraud, S., Saudan, C., Baume, N., Avois, L., Mangin, P. and Saugy, M., 2006. Erythropoietin and blood doping. British journal of sports medicine, 40 (suppl 1), pp.i30-i34.

Rodríguez, M.Á., Piedra, J.V., Sánchez-Fernández, M., Del Valle, M., Crespo, I. and Olmedillas, H., 2020. A Matter of Degrees: A Systematic Review of the Ergogenic Effect of Pre-Cooling in Highly Trained Athletes. International journal of environmental research and public health, 17(8), p. 2952.

Roelands, B., de Koning, J., Foster, C., Hettinga, F. and Meeusen, R., 2013. Neurophysiological determinants of theoretical concepts and mechanisms involved in pacing. Sports Medicine, 43(5), pp.301-311.

Roelands, B., Hasegawa, H., Watson, P., Piacentini, M.F., Buyse, L., De Schutter, G. and Meeusen, R.R., 2008. The effects of acute dopamine reuptake inhibition on performance. Medicine and science in sports and exercise, 40(5), p.879.

Rohles, FJ, and Levins R., 1971. The Nature Of Thermal Comfort For Sedentary Man. ASHRAE Trans, , 77 , Pp.239-247.

Romer, L.M., Bridge, M.W., McConnell, A.K. and Jones, D.A., 2004. Influence of environmental temperature on exercise-induced inspiratory muscle fatigue. European journal of applied physiology, 91(5-6), pp.656-663.

Romer, L.M., Haverkamp, H.C., Amann, M., Lovering, A.T., Pegelow, D.F. and Dempsey, J.A., 2007. Effect of acute severe hypoxia on peripheral fatigue and endurance capacity in healthy humans. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 292(1), pp.R598-R606.

Ross, M., Abbiss, C., Laursen, P., Martin, D. and Burke, L., 2013. Precooling methods and their effects on athletic performance. Sports Medicine, 43(3), pp.207-225.

Ross, M.L., Garvican, L.A., Jeacocke, N.A., Laursen, P.B., Abbiss, C.R., Martin, D.T. and Burke, L.M., 2011. Novel precooling strategy enhances time trial cycling in the heat. Med Sci Sports Exerc, 43(1), pp.123-133.

Rowell, L.B., 1974. Human cardiovascular adjustments to exercise and thermal stress. Physiological reviews, 54(1), pp.75-159.

Rowell, L.B., Brengelmann, G.L., Murray, J.A., Kraning 2nd, K.K. and Kusumi, F., 1969b. Human metabolic responses to hyperthermia during mild to maximal exercise. Journal of Applied physiology, 26(4), pp.395-402.

Rowell, L.B., Marx, H.J., Bruce, R.A., Conn, R.D. and Kusumi, F., 1966. Reductions in cardiac output, central blood volume, and stroke volume with thermal stress in normal men during exercise. The Journal of clinical investigation, 45(11), pp.1801-1816.

Rowell, L.B., Murray, J.A., BRENGELMANN, G.L. and KRANING, K.K., 1969a. Human cardiovascular adjustments to rapid changes in skin temperature during exercise. Circulation Research, 24(5), pp.711-724.

Rowell, L.E., 1986. Circulatory adjustments to dynamic exercise and heat stress. Humann circulation, pp.363-406.

Ruddock, A., Robbins, B., Tew, G., Bourke, L. and Purvis, A., 2017. Practical cooling strategies during continuous exercise in hot environments: a systematic review and metaanalysis. Sports Medicine, 47(3), pp.517-532.

Ruddock, A., Robbins, B., Tew, G., Bourke, L. and Purvis, A., 2017a. Practical cooling strategies during continuous exercise in hot environments: a systematic review and metaanalysis. Sports Medicine, 47(3), pp.517-532.

Ruddock, A.D., Tew, G.A. and Purvis, A.J., 2017b. Effect of hand cooling on body temperature, cardiovascular and perceptual responses during recumbent cycling in a hot environment. Journal of Sports Sciences, 35(14), pp.1466-1474.

Ryan, B.J., Goodrich, J.A., Schmidt, W.F., Stothard, E.R., Wright Jr, K.P. and Byrnes, W.C., 2016. Haemoglobin mass alterations in healthy humans following four-day head-down tilt bed rest. Experimental physiology, 101(5), pp.628-640.

Ryan, B.J., Wachsmuth, N.B., Schmidt, W.F., Byrnes, W.C., Julian, C.G., Lovering, A.T., Subudhi, A.W. and Roach, R.C., 2014. AltitudeOmics: rapid hemoglobin mass alterations with early acclimatization to and de-acclimatization from 5260 m in healthy humans. PloS one, 9(10), p.e108788.

Saat, M., Sirisinghe, R.G., Singh, R. and Tochihara, Y., 2005. Decay of heat acclimation during exercise in cold and exposure to cold environment. European journal of applied physiology, 95(4), pp.313-320

Saldaris, J.M., Landers, G.J. and Lay, B.S., 2019. The effect of crushed ice ingestion on endurance performance and decision-making in hot and humid conditions. International Journal of Performance Analysis in Sport, 19(3), pp.393-401.

Salgado, R.M., White, A.C., Schneider, S.M. and Mermier, C.M., 2014. A novel mechanism for cross-adaptation between heat and altitude acclimation: the role of heat shock protein 90. Physiology Journal, 2014.

Saltin, B., Gagge, A.P., Bergh, U. and Stolwijk, J.A., 1972. Body temperatures and sweating during exhaustive exercise. Journal of applied physiology, 32(5), pp.635-643.

Sanders, D. and van Erp, T., 2020. The Physical Demands and Power Profile of Professional Men's Cycling Races: An Updated Review. International Journal of Sports Physiology and Performance, 1(aop), pp.1-10.

Sanderson, D.J., Hennig, E.M. and Black, A.H., 2000. The influence of cadence and power output on force application and in-shoe pressure distribution during cycling by competitive and recreational cyclists. Journal of sports sciences, 18(3), pp.173-181.

Santos C, Pimenta C, Nobre M. The PICO strategy for the research question construction and evidence search. Rev Lat Am Enfermagem. 2007;15(3):508-511. doi:10.1590/s010411692007000300023

Sarabon, N., Fonda, B. and Markovic, G., 2012. Change of muscle activation patterns in uphill cycling of varying slope. European journal of applied physiology, 112(7), pp.26152623.

Sargeant, A.J. 1987. Effect of muscle temperature on leg extension force and short-term power output in humans. Eur J Appl Physiol Occup Physiol 56:693-698.

Saunders, A.G., Dugas, J.P., Tucker, R., Lambert, M.I. and Noakes, T.D., 2005. The effects of different air velocities on heat storage and body temperature in humans cycling in a hot, humid environment. Acta Physiologica Scandinavica, 183(3), pp.241-255.

Sauseng, P., Griesmayr, B., Freunberger, R. and Klimesch, W., 2010. Control mechanisms in working memory: a possible function of EEG theta oscillations. Neuroscience \& Biobehavioral Reviews, 34(7), pp.1015-1022.

Sawka MN, Burke LM, Eichner ER, Maughan RJ, Montain SJ, Stachenfeld NS. American College of Sports Medicine position stand. Exercise and fluid replacement. Med Sci Sports Exerc. 2007;39(2):377-90.

Sawka, M.N. and Coyle, E.F., 1999. Influence of body water and blood volume on thermoregulation and exercise performance in the heat. Exercise and sport sciences reviews, 27, pp.167-218.

Sawka, M.N., Cheuvront, S.N. and Kenefick, R.W., 2012. High skin temperature and hypohydration impair aerobic performance. Experimental physiology, 97(3), pp.327-332.

Sawka, M.N., Cheuvront, S.N. and Kenefick, R.W., 2015. Hypohydration and human performance: impact of environment and physiological mechanisms. Sports Medicine, 45(1), pp.51-60.

Sawka, M.N., Hubbard, R.W., Francesconi, R.P. and Horstman, D.H., 1983a. Effects of acute plasma volume expansion on altering exercise-heat performance. European journal of applied physiology and occupational physiology, 51(3), pp.303-312.

Sawka, M.N., Leon, L.R., Montain, S.J. and Sonna, L.A., 2011. Integrated physiological mechanisms of exercise performance, adaptation, and maladaptation to heat stress. Comprehensive Physiology, 1(4), pp.1883-1928.

Sawka, M.N., Pandolf, K.B., Avellini, B.A. and Shapiro, Y., 1983b. Does heat acclimation lower the rate of metabolism elicited by muscular exercise?. Aviation, space, and environmental medicine, 54(1), pp.27-31.

Sawka, M.N., Young, A.J., Cadarette, B.S., Levine, L. and Pandolf, K.B., 1985. Influence of heat stress and acclimation on maximal aerobic power. European journal of applied physiology and occupational physiology, 53(4), pp.294-298.

Scheadler, C.M., Saunders, N.W., Hanson, N.J. and Devor, S.T., 2013. Palm cooling does not improve running performance. International journal of sports medicine, 34(08), pp.732735.

Schlader, Z.J., Simmons, S.E., Stannard, S.R. and Mündel, T., 2011a. The independent roles of temperature and thermal perception in the control of human thermoregulatory behavior. Physiology \& behavior, 103(2), pp.217-224.

Schlader, Z.J., Simmons, S.E., Stannard, S.R. and Mündel, T., 2011b. Skin temperature as a thermal controller of exercise intensity. European journal of applied physiology, 111(8), pp.1631-1639.

Schlader, Z.J., Stannard, S.R. and Mündel, T., 2010. Human thermoregulatory behavior during rest and exercise-a prospective review. Physiology \& behavior, 99(3), pp.269-275.

Schlader, Z.J., Stannard, S.R. and Mündel, T., 2011c. Evidence for thermoregulatory behavior during self-paced exercise in the heat. Journal of Thermal Biology, 36(7), pp.390396.

Schlader, Z.J., Stannard, S.R. and Mündel, T., 2011d. Is peak oxygen uptake a determinant of moderate-duration self-paced exercise performance in the heat?. Applied Physiology, Nutrition, and Metabolism, 36(6), pp.863-872.

Schmidt, V. and Bruck, K., 1981. Effect of a precooling maneuver on body temperature and exercise performance. Journal of Applied Physiology, 50(4), pp.772-778.

Schmidt, W. and Prommer, N., 2005. The optimised CO-rebreathing method: a new tool to determine total haemoglobin mass routinely. European journal of applied physiology, 95(56), pp.486-495.

Schmidt, W. and Prommer, N., 2010. Impact of alterations in total hemoglobin mass on V• O2max. Exercise and sport sciences reviews, 38(2), pp.68-75.

Schmit, C., Duffield, R., Hausswirth, C., Coutts, A.J. and Le Meur, Y., 2016. Pacing adjustments associated with familiarization: heat versus temperate
environments. International journal of sports physiology and performance, 11(7), pp.855860.

Schmit, C., Duffield, R., Hausswirth, C., Coutts, A.J. and Le Meur, Y., 2016. Pacing adjustments associated with familiarization: heat versus temperate environments. International journal of sports physiology and performance, 11(7), pp.855860.

Schmit, C., Hausswirth, C., Le Meur, Y. and Duffield, R., 2017. Cognitive functioning and heat strain: performance responses and protective strategies. Sports Medicine, 47(7), pp.1289-1302.

Schobersberger, W., Tschann, M., Hasibeder, W., Steidl, M., Herold, M., Nachbauer, W. and Koller, A., 1990. Consequences of 6 weeks of strength training on red cell O 2 transport and iron status. European journal of applied physiology and occupational physiology, 60(3), pp.163-168.

Schranner, D., Scherer, L., Lynch, G.P., Korder, S., Brotherhood, J.R., Pluim, B.M., Periard, J.D. and Jay, O., 2017. In-play cooling interventions for simulated match-play tennis in hot/humid conditions. Medicine \& Science in Sports \& Exercise, 49(5), pp.991-998.

Schulze, E., Daanen, H.A., Levels, K., Casadio, J.R., Plews, D.J., Kilding, A.E., Siegel, R. and Laursen, P.B., 2015. Effect of thermal state and thermal comfort on cycling performance in the heat. International journal of sports physiology and performance, 10(5), pp.655-663. Scoon, G.S., Hopkins, W.G., Mayhew, S. and Cotter, J.D., 2007. Effect of post-exercise sauna bathing on the endurance performance of competitive male runners. Journal of Science and Medicine in Sport, 10(4), pp.259-262.

Seiler, K.S. and Kjerland, G.Ø., 2006. Quantifying training intensity distribution in elite endurance athletes: is there evidence for an "optimal" distribution?. Scandinavian journal of medicine \& science in sports, 16(1), pp.49-56.

Selkirk, G.A. and McLellan, T.M., 2001. Influence of aerobic fitness and body fatness on tolerance to uncompensable heat stress. Journal of Applied Physiology, 91(5), pp.20552063.

Senay Jr, L.C., 1972. Changes in plasma volume and protein content during exposures of working men to various temperatures before and after acclimitization to heat: separation of the roles of cutaneous and skeletal muscle circulation. The Journal of physiology, 224(1), pp.61-81.

Senay Jr, L.C., 1975. Plasma volumes and constituents of heat-exposed men before and after acclimatization. Journal of applied physiology, 38(4), pp.570-575.

Senay, L.C., Mitchell, D. and Wyndham, C.H., 1976. Acclimatization in a hot, humid environment: body fluid adjustments. Journal of Applied Physiology, 40(5), pp.786-796.

Sendowski, I., Savourey, G., Besnard, Y. and Bittel, J., 1997. Cold induced vasodilatation and cardiovascular responses in humans during cold water immersion of various upper limb areas. European journal of applied physiology and occupational physiology, 75(6), pp.471477.

Seo, Y., Powell, J., Strauch, A., Roberge, R., Kenny, G.P. and Kim, J.H., 2019. Heat stress assessment during intermittent work under different environmental conditions and clothing combinations of effective wet bulb globe temperature (WBGT). Journal of occupational and environmental hygiene, 16(7), pp.467-476.

Shamsuddin, A.K.M., Yanagimoto, S., Kuwahara, T., Zhang, Y., Nomura, C. and Kondo, N., 2005. Changes in the index of sweat ion concentration with increasing sweat during passive heat stress in humans. European journal of applied physiology, 94(3), pp.292-297. Shapiro, Y. and Epstein, Y., 1984. Environmental physiology and indoor climate? Thermoregulation and thermal comfort. Energy and buildings, 7(1), pp.29-34. Shapiro, Y., Hubbard, R.W., Kimbrough, C.M. and Pandolf, K.B., 1981. Physiological and hematologic responses to summer and winter dry-heat acclimation. Journal of Applied Physiology, 50(4), pp.792-798.

Shei, R.J., Thompson, K., Chapman, R., Raglin, J. and Mickleborough, T., 2016. Using deception to establish a reproducible improvement in 4-km cycling time trial performance. International Journal of Sports Medicine, 37(05), pp.341-346.

Shein, N.A.A., Horowitz, M., Alexandrovich, A.G., Tsenter, J. and Shohami, E., 2005. Heat acclimation increases hypoxia-inducible factor $1 \alpha$ and erythropoietin receptor expression: implication for neuroprotection after closed head injury in mice. Journal of Cerebral Blood Flow \& Metabolism, 25(11), pp.1456-1465.

Sherwood, S.C., 2018. How important is humidity in heat stress?. Journal of Geophysical Research: Atmospheres, 123(21), pp.11-808.

Shido, O., Sugimoto, N., Tanabe, M. and Sakurada, S., 1999. Core temperature and sweating onset in humans acclimated to heat given at a fixed daily time. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 276(4), pp.R1095-R1101.

Shirreffs, S.M., 2010. Hydration: Special issues for playing football in warm and hot environments. Scandinavian journal of medicine \& science in sports, 20, pp.90-94.

Shvartz, E. and Benor, D., 1971. Total body cooling in warm environments. Journal of applied physiology, 31(1), pp.24-27.

Shvartz, E., 1970. Effect of a cooling hood on physiological responses to work in a hot environment. Journal of applied physiology, 29(1), pp.36-39.

Shvartz, E., 1974. Objective approach to a design of a whole-body, water-cooled suit. Aerospace medicine

Shvartz, E., 1975. The application of conductive cooling to human operators. Human factors, 17(5), pp.438-445.

Shvartz, E., 1976. Effect of neck versus chest cooling on responses to work in heat. Journal of Applied Physiology, 40(5), pp.668-672.

Shvartz, E.S.A.R., Saar, E.Z.R.A., Meyerstein, N. and Benor, D., 1973. A comparison of three methods of acclimatization to dry heat. Journal of Applied Physiology, 34(2), pp.214219.

Shvartz, N.B., 1975. The incorporation of individual cooling in a compressed-oxygen closedcircuit breathing apparatus. Journal of the Southern African Institute of Mining and Metallurgy, 75(12), pp.322-324.

Siegel, R., Maté, J., Watson, G., Nosaka, K. and Laursen, P.B., 2012. Pre-cooling with ice slurry ingestion leads to similar run times to exhaustion in the heat as cold water immersion. Journal of sports sciences, 30(2), pp.155-165.

Silva, R.A., Silva-Júnior, F.L., Pinheiro, F.A., Souza, P.F., Boullosa, D.A. and Pires, F.O., 2014. Acute prior heavy strength exercise bouts improve the $20-\mathrm{km}$ cycling time trial performance. The Journal of Strength \& Conditioning Research, 28(9), pp.2513-2520.

Silva-Cavalcante, M. D., Correia-Oliveira, C. R., Santos, R. A., Lopes-Silva, J. P., Lima, H. M., Bertuzzi, R., ... Lima-Silva, A. E. 2013. Caffeine increases anaerobic work and restores cycling performance following a protocol designed to lower endogenous carbohydrate availability. PLoS One, 8(8).

Simmons, S.E., Mündel, T. and Jones, D.A., 2008a. The effects of passive heating and head-cooling on perception of exercise in the heat. European journal of applied physiology, 104(2), pp.281-288.

Simmons, S.E., Saxby, B.K., McGlone, F.P. and Jones, D.A., 2008b. The effect of passive heating and head cooling on perception, cardiovascular function and cognitive performance in the heat. European journal of applied physiology, 104(2), pp.271-280.

Skiba, P.F.; Clarke, D.; Vanhatalo, A.; Jones, A.M. Validation of a novel intermittent W' model for cycling using field data. IJSPP 2014, 9, 900-904, doi:10.1123/ijspp.2013-0471.

Skorski, S. and Abbiss, C.R., 2017. The manipulation of pace within endurance sport. Frontiers in physiology, 8, p. 102.

Sleivert, G.G., Cotter, J.D., Roberts, W.S. and Febbraio, M.A., 2001. The influence of wholebody vs. torso pre-cooling on physiological strain and performance of high-intensity exercise in the heat. Comparative Biochemistry and Physiology Part A: Molecular \& Integrative Physiology, 128(4), pp.657-666.

Smirmaul, B.P., Dos Santos, R.V. and Da Silva Neto, L.V., 2014. Pre-task music improves swimming performance. The Journal of sports medicine and physical fitness, 55(12), pp.1445-1451.

Smith, J.A., 1995. Exercise, training and red blood cell turnover. Sports Medicine, 19(1), pp.9-31.

Smith, M.F., Davison, R.C.R., Balmer, J. and Bird, S.R., 2001. Reliability of mean power recorded during indoor and outdoor self-paced 40 km cycling time-trials. International journal of sports medicine, 22(04), pp.270-274.

Smith, K.R., Woodward, A., Lemke, B., Otto, M., Chang, C.J., Mance, A.A., Balmes, J. and Kjellstrom, T., 2016. The last Summer Olympics? Climate change, health, and work outdoors. The Lancet, 388(10045), pp.642-644.

Smits, B.L., Pepping, G.J. and Hettinga, F.J., 2014. Pacing and decision making in sport and exercise: the roles of perception and action in the regulation of exercise intensity. Sports Medicine, 44(6), pp.763-775.

Smits, B.L., Polman, R.C., Otten, B., Pepping, G.J. and Hettinga, F.J., 2016. Cycling in the absence of task-related feedback: effects on pacing and performance. Frontiers in physiology, 7, p. 348.

Snipe, R.M. and Costa, R.J., 2018. Does the temperature of water ingested during exertional-heat stress influence gastrointestinal injury, symptoms, and systemic inflammatory profile?. Journal of science and medicine in sport, 21(8), pp.771-776.

Spragg, J. 2018. Six Things You Need to Know about... VO2 Max. Road Cycling Uk. Available at: https://roadcyclinguk.com/how-to/fitness-nutrition/six-things-need-know-vo2max/.

St Gibson, A.C., Lambert, E.V., Rauch, L.H., Tucker, R., Baden, D.A., Foster, C. and Noakes, T.D., 2006. The role of information processing between the brain and peripheral physiological systems in pacing and perception of effort. Sports Medicine, 36(8), pp.705-722.

Stanley, J., Leveritt, M. and Peake, J.M., 2010. Thermoregulatory responses to ice-slush beverage ingestion and exercise in the heat. European journal of applied physiology, 110(6), pp.1163-1173.

Stevens, C.J., Bennett, K.J., Sculley, D.V., Callister, R., Taylor, L. and Dascombe, B.J., 2017a. A comparison of mixed-method cooling interventions on preloaded running performance in the heat. Journal of strength and conditioning research, 31(3), pp.620-629.

Stevens, C.J., Dascombe, B., Boyko, A., Sculley, D. and Callister, R., 2013. Ice slurry ingestion during cycling improves Olympic distance triathlon performance in the heat. Journal of sports sciences, 31(12), pp.1271-1279.

Stevens, C.J. and Dascombe, B.J., 2015. The reliability and validity of protocols for the assessment of endurance sports performance: an updated review. Measurement in Physical Education and Exercise Science, 19(4), pp.177-185.

Stevens, C.J., Mauger, A.R., Hassmèn, P. and Taylor, L., 2018. Endurance performance is influenced by perceptions of pain and temperature: theory, applications and safety considerations. Sports Medicine, 48(3), pp.525-537.

Stevens, C.J., Taylor, L. and Dascombe, B.J., 2017b. Cooling during exercise: an overlooked strategy for enhancing endurance performance in the heat. Sports Medicine, 47(5), pp.829-841.

Stevens, C.J., Thoseby, B., Sculley, D.V., Callister, R., Taylor, L. and Dascombe, B.J., 2016. Running performance and thermal sensation in the heat are improved with menthol mouth
rinse but not ice slurry ingestion. Scandinavian journal of medicine \& science in sports, 26(10), pp.1209-1216.

Stocks, J.M., Taylor, N.A., Tipton, M.J. and Greenleaf, J.E., 2004. Human physiological responses to cold exposure. Aviation, space, and environmental medicine, 75(5), pp.444457.

Stone, M., Thomas, K., Wilkinson, M., Jones, A., St Clair Gibson, A. and Thompson, K., 2012. Effects of deception on exercise performance: implications for determinants of fatigue in humans. Medicine \& Science in Sports \& Exercise, 44(3), pp.534-541.

Stone, M.R., Thomas, K., Wilkinson, M., Gibson, A.S.C. and Thompson, K.G., 2011. Consistency of perceptual and metabolic responses to a laboratory-based simulated 4,000m cycling time trial. European journal of applied physiology, 111(8), pp.1807-1813.

Sun, G., Yang, X., Jiang, Q., Liu, K., Li, B., Li, L., Zhao, L. and Li, M., 2012. Hyperthermia impairs the executive function using the Attention Network Test. International Journal of Hyperthermia, 28(7), pp.621-626.

Sunderland, C. and Nevill, M., 2003. Effect of the menstrual cycle on performance of intermittent, high-intensity shuttle running in a hot environment. European journal of applied physiology, 88(4-5), pp.345-352.

Sunderland, C. and Nevill, M.E., 2005. High-intensity intermittent running and field hockey skill performance in the heat. Journal of sports sciences, 23(5), pp.531-540.

Sunderland, C., Morris, J.G. and Nevill, M.E., 2008. A heat acclimation protocol for team sports. British Journal of Sports Medicine, 42(5), pp.327-333.

Sunderland, C., Stevens, R., Everson, B. and Tyler, C.J., 2015. Neck-cooling improves repeated sprint performance in the heat. Frontiers in physiology, 6, p.314.

Swart, J., Lamberts, R.P., Lambert, M.I., Gibson, A.S.C., Lambert, E.V., Skowno, J. and Noakes, T.D., 2009. Exercising with reserve: evidence that the central nervous system regulates prolonged exercise performance. British journal of sports medicine, 43(10), pp.782-788.

Tajino, K., Matsumura, K., Kosada, K., Shibakusa, T., Inoue, K., Fushiki, T., Hosokawa, H. and Kobayashi, S., 2007. Application of menthol to the skin of whole trunk in mice induces autonomic and behavioral heat-gain responses. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 293(5), pp.R2128-R2135.

Tamura, Y., Matsunaga, Y., Masuda, H., Takahashi, Y., Takahashi, Y., Terada, S., Hoshino, D. and Hatta, H., 2014. Postexercise whole body heat stress additively enhances endurance training-induced mitochondrial adaptations in mouse skeletal muscle. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 307(7), pp.R931-R943.

Tan, P.M., Teo, E.Y., Ali, N.B., Ang, B.C., Iskandar, I., Law, L.Y. and Lee, J.K., 2017. Evaluation of various cooling systems after exercise-induced hyperthermia. Journal of athletic training, 52(2), pp.108-116.

Tan, P.M.S. and Lee, J.K.W., 2015. The role of fluid temperature and form on endurance performance in the heat. Scandinavian journal of medicine \& science in sports, 25, pp.39-51.

Tatterson, A.J., Hahn, A.G., Martini, D.T. and Febbraio, M.A., 2000. Effects of heat stress on physiological responses and exercise performance in elite cyclists. Journal of Science and Medicine in Sport, 3(2), pp.186-193.

Taylor, R., 1990. Interpretation of the correlation coefficient: a basic review. Journal of diagnostic medical sonography, 6(1), pp.35-39.

Taylor, L., Watkins, S.L., Marshall, H., Dascombe, B.J. and Foster, J., 2016. The impact of different environmental conditions on cognitive function: a focused review. Frontiers in physiology, 6, p. 372.

Taylor, N.A. 2014a. Human heat adaptation. Compr Physiol 4:325-65.

Taylor, N.A., Caldwell, J.N., den Heuvel Van, A.M. and Patterson, M.J., 2008. To cool, but not too cool: that is the question--immersion cooling for hyperthermia. Medicine and science in sports and exercise, 40(11), pp.1962-1969.

Taylor, N.A., Machado-Moreira, C.A., van den Heuvel, A.M. and Caldwell, J.N., 2014. Hands and feet: physiological insulators, radiators and evaporators. European journal of applied physiology, 114(10), pp.2037-2060.

Tetievsky, A., Cohen, O., Eli-Berchoer, L., Gerstenblith, G., Stern, M.D., Wapinski, I., Friedman, N. and Horowitz, M., 2008. Physiological and molecular evidence of heat acclimation memory: a lesson from thermal responses and ischemic cross-tolerance in the heart. Physiological genomics, 34(1), pp.78-87.

Teunissen, L., Jansen, K., Janssen, E., Kingma, B., de Korte, J. and Eijsvogels, T., 2022. Impact of different climatic conditions on peak core temperature of elite athletes during exercise in the heat: a Thermo Tokyo simulation study. BMJ Open Sport \& Exercise Medicine, 8(2), p.e001313.

Teunissen, L.P.J., De Haan, A., De Koning, J.J. and Daanen, H.A.M., 2013. Effects of wind application on thermal perception and self-paced performance. European journal of applied physiology, 113(7), pp.1705-1717.

Thomas, K, Stone, MR, Thompson, KG, St Clair Gibson, A, and Ansley, L. The effect of self-even- and variable-pacing strategies on the physiological and perceptual response to cycling. Eur J Appl Physiol 112: 3069-3078, 2012.

Thomas, K., Goodall, S., Stone, M., Howatson, G., Gibson, A.S.C. and Ansley, L., 2015. Central and peripheral fatigue in male cyclists after 4-, 20-, and 40-km time trials. Medicine \& Science in Sports \& Exercise, 47(3), pp.537-546.

Thomas, K., Stone, M.R., Thompson, K.G., Gibson, A.S.C. and Ansley, L., 2012. Reproducibility of pacing strategy during simulated $20-\mathrm{km}$ cycling time trials in well-trained cyclists. European journal of applied physiology, 112(1), pp.223-229.

Thomas, M.M., Cheung, S.S., Elder, G.C. and Sleivert, G.G., 2006. Voluntary muscle activation is impaired by core temperature rather than local muscle temperature. Journal of Applied Physiology, 100(4), pp.1361-1369.

Thomsen, J.K., Fogh-Andersen, N., Bulow, K. and Devantier, A., 1991. Blood and plasma volumes determined by carbon monoxide gas, 99mTc-labelled erythrocytes, 1251-albumin and the T 1824 technique. Scandinavian journal of clinical and laboratory investigation, 51(2), pp.185-190.

Thorling, E.B. and Erslev, A.J., 1968. The" tissue" tension of oxygen and its relation to hematocrit and erythropoiesis. Blood, 31(3), pp.332-343.

Tikuisis, P., Meunier, P. and Jubenville, C., 2001. Human body surface area: measurement and prediction using three dimensional body scans. European journal of applied physiology, 85(3-4), pp.264-271.

Tipton, M.J., 2016. The Physiological Responses to Cold-Water Immersion and Submersion: From Research to Protection. In Handbook of Offshore Helicopter Transport Safety (pp. 6375). Woodhead Publishing.

Tølløfsrud, S., Svennevig, J.L., Breivik, H., Kongsgaard, U., Øzer, M., Hysing, E., Mohr, B., Seem, E., Geiran, O., Abdelnour, M. and Frøysaker, T., 1995. Fluid balance and pulmonary functions during and after coronary artery bypass surgery: Ringer's acetate compared with dextran, polygeline, or albumin. Acta anaesthesiologica scandinavica, 39(5), pp.671-677.

Tølløfsrud, S., Tønnessen, T., Skraastad, Ø. and Noddeland, H., 1998. Hypertonic saline and dextran in normovolaemic and hypovolaemic healthy volunteers increases interstitial and intravascular fluid volumes. Acta anaesthesiologica scandinavica, 42(2), pp.145-153.

Tomporowski, P.D. and Ganio, M.S., 2006. Short-term effects of aerobic exercise on executive processing, memory, and emotional reactivity. International Journal of Sport and Exercise Psychology, 4(1), pp.57-72.

Tomporowski, P.D., 2003. Effects of acute bouts of exercise on cognition. Acta psychologica, 112(3), pp.297-324.

Townsend, N.E., Nichols, D.S., Skiba, P.F., Racinais, S. and Périard, J.D., 2017. Prediction of Critical Power and W' in Hypoxia: Application to Work-Balance Modelling. Frontiers in physiology, 8, p. 180.

Trangmar, S.J., Chiesa, S.T., Stock, C.G., Kalsi, K.K., Secher, N.H. and González-Alonso, J., 2014. Dehydration affects cerebral blood flow but not its metabolic rate for oxygen during maximal exercise in trained humans. The Journal of physiology, 592(14), pp.3143-3160.

Trezza, B.M., Apolinario, D., de Oliveira, R.S., Busse, A.L., Gonçalves, F.L.T., Saldiva, P.H.N. and Jacob-Filho, W., 2015. Environmental heat exposure and cognitive performance in older adults: a controlled trial. Age, 37(3), p.43.

Tricco A, Lillie E, Zarin W et al. PRISMA Extension for Scoping Reviews (PRISMA-ScR): Checklist and Explanation. Ann Intern Med. 2018;169(7):467. doi:10.7326/m18-0850

Trong, T.T., Riera, F., Rinaldi, K., Briki, W. and Hue, O., 2015. Ingestion of a cold temperature/menthol beverage increases outdoor exercise performance in a hot, humid environment. PLoS One, 10(4), p.e0123815.

Tucker, R. and Noakes, T.D., 2009a. The anticipatory regulation of performance: the physiological basis for pacing strategies and the development of a perception-based model for exercise performance. British journal of sports medicine.

Tucker, R. and Noakes, T.D., 2009b. The physiological regulation of pacing strategy during exercise: a critical review. British Journal of Sports Medicine, 43(6), pp.e1-e1.

Tucker, R., Marle, T., Lambert, E.V. and Noakes, T.D., 2006. The rate of heat storage mediates an anticipatory reduction in exercise intensity during cycling at a fixed rating of perceived exertion. The Journal of physiology, 574(3), pp.905-915.

Tucker, R., Rauch, L., Harley, Y. X. R. and Noakes, T. D. 2004. Impaired exercise performance in the heat is associated with an anticipatory reduction in skeletal muscle recruitment. European Journal of Physiology, 448: 422-430.

Tyler, C. and Sunderland, C., 2008. The effect of ambient temperature on the reliability of a preloaded treadmill time-trial. International journal of sports medicine, 29(10), pp.812-816.

Tyler, C.J. and Sunderland, C., 2011a. Cooling the neck region during exercise in the heat. Journal of athletic training, 46(1), pp.61-68.

Tyler, C.J. and Sunderland, C., 2011b. Neck cooling and running performance in the heat: single versus repeated application. Medicine \& Science in Sports \& Exercise, 43(12), pp.2388-2395.

Tyler, C.J., Reeve, T. and Cheung, S.S., 2015a. Cold-induced vasodilation during single digit immersion in 0 C and 8 C water in men and women. PLoS One, 10(4), p.e0122592.

Tyler, C.J., Reeve, T., Hodges, G.J. and Cheung, S.S., 2016. The effects of heat adaptation on physiology, perception and exercise performance in the heat: a meta-analysis. Sports Medicine, 46(11), pp.1699-1724.

Tyler, C.J., Sunderland, C. and Cheung, S.S., 2015b. The effect of cooling prior to and during exercise on exercise performance and capacity in the heat: a meta-analysis. British journal of sports medicine, 49(1), pp.7-13.

Tyler, C.J., Wild, P. and Sunderland, C., 2010. Practical neck cooling and time-trial running performance in a hot environment. European journal of applied physiology, 110(5), pp.10631074.

Vaile, J., Halson, S., Gill, N. and Dawson, B., 2008. Effect of cold water immersion on repeat cycling performance and thermoregulation in the heat. Journal of sports sciences, 26(5), pp.431-440.

Van Beaumont, W., 1973. Red cell volume with changes in plasma osmolarity during maximal exercise. Journal of applied physiology, 35(1), pp.47-50.

Van Cutsem, J., Roelands, B., De Pauw, K., Meeusen, R. and Marcora, S., 2019. Subjective thermal strain impairs endurance performance in a temperate environment. Physiology \& behavior, 202, pp.36-44.

VanHaitsma, T.A., Light, A.R., Light, K.C., Hughen, R.W., Yenchik, S. and White, A.T., 2016. Fatigue sensation and gene expression in trained cyclists following a 40 km time trial in the heat. European journal of applied physiology, 116(3), pp.541-552.

Vanos, J.K., Thomas, W.M., Grundstein, A.J., Hosokawa, Y., Liu, Y. and Casa, D.J., 2020. A multi-scalar climatological analysis in preparation for extreme heat at the Tokyo 2020 Olympic and Paralympic Games. Temperature, 7(2), pp.191-214.

Vogt, S., Heinrich, L., Schumacher, Y.O., Blum, A., Roecker, K., Dickhuth, H.H. and Schmid, A., 2006. Power output during stage racing in professional road cycling. Medicine and science in sports and exercise, 38(1), p. 147.

Vogt, S., Roecker, K., Schumacher, Y.O., Pottgiesser, T., Dickhuth, H.H., Schmid, A. and Heinrich, L., 2008. Cadence-power-relationship during decisive mountain ascents at the Tour de France. International journal of sports medicine, 29(03), pp.244-250.

Voss, M.W., Nagamatsu, L.S., Liu-Ambrose, T. and Kramer, A.F., 2011a. Exercise, brain, and cognition across the life span. Journal of applied physiology, 111(5), pp.1505-1513.

Voss, S.C., Alsayrafi, M., Alsowaidi, N., Elgingo, M.E., Bourdon, P., Robinson, N., Sottas, P.E., Klodt, F., Nonis, D. and Schumacher, Y.O., 2011b. The influence of exercise and circadian rhythm of haemoglobin concentration associated changes in plasma volume on the biological passport. British Journal of Sports Medicine, 45(15), pp.A7-A7.

Waters, M.C., 2016, September. Life after Hurricane Katrina: The resilience in survivors of Katrina (RISK) project. In Sociological Forum (Vol. 31, pp. 750-769).

Watkins, A.M., Cheek, D.J., Harvey, A.E., Goodwin, J.D., Blair, K.E. and Mitchell, J.B., 2007. Heat shock protein (HSP-72) levels in skeletal muscle following work in heat. Aviation, space, and environmental medicine, 78(9), pp.901-905.

Watson, G. and Swensen, T., 2006. Effects of altering pedal cadence on cycling time-trial performance. International journal of sports medicine, 27(04), pp.296-300.

Watson, P., Hasegawa, H., Roelands, B., Piacentini, M.F., Looverie, R. and Meeusen, R., 2005. Acute dopamine/noradrenaline reuptake inhibition enhances human exercise performance in warm, but not temperate conditions. The Journal of physiology, 565(3), pp.873-883.

Watt, M.J., Garnham, A.P., Febbraio, M.A. and Hargreaves, M., 2000. Effect of acute plasma volume expansion on thermoregulation and exercise performance in the heat. Medicine and science in sports and exercise, 32(5), pp.958-962.

Webborn, N., Price, M.J., Castle, P. and Goosey-Tolfrey, V.L., 2010. Cooling strategies improve intermittent sprint performance in the heat of athletes with tetraplegia. British journal of sports medicine, 44(6), pp.455-460.

Webster J, Holland EJ, Sleiverts G, Laing RM, Niven BE. A light-weight cooling vest enhances performance of athletes in the heat. Ergonomics. 2005;48(7):821-37.

Wegmann, M.; Faude, O.; Poppendieck, W.; Hecksteden, A.; Fröhlich, M.; Meyer, T. 2012. Pre-cooling and sports performance: A meta-analytical review. Sports Med. 42, 545-564.

White, A.C., Salgado, R.M., Astorino, T.A., Loeppky, J.A., Schneider, S.M., McCormick, J.J., McLain, T.A., Kravitz, L. and Mermier, C.M., 2016. The effect of 10 days of heat acclimation on exercise performance in acute hypobaric hypoxia (4350 m). Temperature, 3(1), pp.176185.

Whitehead, A.E., Jones, H.S., Williams, E.L., Rowley, C., Quayle, L., Marchant, D. and Polman, R.C., 2018. Investigating the relationship between cognitions, pacing strategies and performance in 16.1 km cycling time trials using a think aloud protocol. Psychology of Sport and Exercise, 34, pp.95-109.

Williams, C.A., Bailey, S.D. and Mauger, A.R., 2012. External exercise information provides no immediate additional performance benefit to untrained individuals in time trial cycling. Br J Sports Med, 46(1), pp.49-53.

Wilmore, J.H., 1968. Influence of motivation on physical work capacity and performance. Journal of applied physiology, 24(4), pp.459-463.

Wilson, M.G., Lane, A.M., Beedie, C.J. and Farooq, A., 2012. Influence of accurate and inaccurate 'split-time'feedback upon 10-mile time trial cycling performance. European journal of applied physiology, 112(1), pp.231-236.

Wilson, M.G., Lane, A.M., Beedie, C.J. and Farooq, A., 2012. Influence of accurate and inaccurate 'split-time'feedback upon 10-mile time trial cycling performance. European journal of applied physiology, 112(1), pp.231-236.

Wilson, T.E. and Crandall, C.G., 2011. Effect of thermal stress on cardiac function. Exercise and sport sciences reviews, 39(1), p.12.

Wilson, T.E., Brothers, R.M., Tollund, C., Dawson, E.A., Nissen, P., Yoshiga, C.C., Jons, C., Secher, N.H. and Crandall, C.G., 2009. Effect of thermal stress on Frank-Starling relations in humans. The Journal of physiology, 587(13), pp.3383-3392.

Wilson, T.E., Cui, J., Zhang, R. and Crandall, C.G., 2006. Heat stress reduces cerebral blood velocity and markedly impairs orthostatic tolerance in humans. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 291(5), pp.R1443-R1448.

Wingfield, G., Marino, F. and Skein, M., 2018. The influence of knowledge of performance endpoint on pacing strategies, perception of effort, and neural activity during $30-\mathrm{km}$ cycling time trials. Physiological reports, 6(21), p.e13892.

Winslow, C.E., Herrington, L.P. and Gagge, A.P., 1937. Physiological reactions of the human body to varying environmental temperatures. American Journal of Physiology-Legacy Content, 120(1), pp.1-22.

Winter, E. 2016. Sport and exercise physiology testing guidelines. London: Routledge. Winter, K., 2013. Impulsivity. Encyclopedia of Behavioral Medicine, pp.1048-1050.

Wolf, S., Biral, F. and Saupe, D., 2019. Adaptive feedback system for optimal pacing strategies in road cycling. Sports Engineering, 22(1), p.6.

Wooles, A., Keen, P. and Palfreeman, R., 2003. Protocols used for the physiological testing of the Great Britain Cycling Team. Test Methods Manual.

Wyndham, C.H., Benade, A.J., Williams, C.G., Strydom, N.B., Goldin, A. and Heyns, A.J., 1968. Changes in central circulation and body fluid spaces during acclimatization to heat. Journal of Applied Physiology, 25(5), pp.586-593.

Wyss, C.R., Brengelmann, G.L., Johnson, J.M., Rowell, L.B. and Silverstein, D., 1975. Altered control of skin blood flow at high skin and core temperatures. Journal of applied physiology, 38(5), pp.839-845.

Yaglou CP, Minard D. Control of heat casualties at military training centers. AMA Arch Ind Heal. 1957;16(4):302-316.

Yaicharoen, P., Wallman, K., Bishop, D. and Morton, A., 2012a. The effect of warm up on single and intermittent-sprint performance. Journal of sports sciences, 30(8), pp.833-840.

Yaicharoen, P., Wallman, K., Morton, A., Bishop, D. and Grove, R.J., 2012b. The effects of warm-up on intermittent sprint performance in a hot and humid environment. Journal of sports sciences, 30(10), pp.967-974.

Yamada, P.M., Amorim, F.T., Moseley, P., Robergs, R. and Schneider, S.M., 2007. Effect of heat acclimation on heat shock protein 72 and interleukin-10 in humans. Journal of Applied Physiology, 103(4), pp.1196-1204.

Yao, Y., Lian, Z., Liu, W. and Shen, Q., 2007. Experimental study on skin temperature and thermal comfort of the human body in a recumbent posture under uniform thermal environments. Indoor and Built Environment, 16(6), pp.505-518.

Yates, B.A., Ellis, L.A., Butts, C.L., McDermott, B.P., Williamson, K.H. and Armstrong, L.E., 2018. Factors associated with pre-event hydration status and drinking behavior of middleaged cyclists. The journal of nutrition, health \& aging, 22(3), pp.335-340.

Yeargin, S.W., Casa, D.J., McClung, J.M. and Knight, J.C., 2006. Body cooling between two bouts of exercise in the heat enhances subsequent performance. Journal of Strength and Conditioning Research, 20(2), p. 383.

Young, A.J., Sawka, M.N., Epstein, Y., Decristofano, B., Pandolf, K.B., 1987. Cooling different body surfaces during upper and lower body exercise. Journal of Applied Physiology, 63(3), pp.1218-1223.

Young, A.J., Sawka, M.N., Levine, L., Cadarette, B.S. and Pandolf, K.B., 1985. Skeletal muscle metabolism during exercise is influenced by heat acclimation. Journal of Applied Physiology, 59(6), pp.1929-1935.

Zavorsky, G.S., Murias, J.M., Gow, J., Kim, D.J., Poulin-Harnois, C., Kubow, S. and Lands, L.C., 2007. Laboratory 20-km cycle time trial reproducibility. International journal of sports medicine, 28(09), pp.743-748.

Zappe, D., Tankersley, C., Meister, T., Kenney, W., 1993. Fluid restriction prior to cycle exercise: effects on plasma volume and plasma proteins. Medicine \& Science in Sports \& Exercise, 25(11), pp.1225-1230.

Zhang, Y., Davis, J.K., Casa, D. and Bishop, P., 2015. Optimizing cold water immersion for exercise-induced hyperthermia: a meta-analysis. Medicine \& Science in Sports \& Exercise, 47(11), pp.2464-2472.

Zhang. H., Arnes, E., Huizenga, C., Han, T. 2010. Thermal sensation and comfort models for non-uniform and transient environments, Part III: whole-body sensation and comfort. Build Environ. 45: 399-410.

Zimmermann, M., Landers, G., Wallman, K.E. and Saldaris, J., 2017. The effects of crushed ice ingestion prior to steady state exercise in the heat. International journal of sport nutrition and exercise metabolism, 27(3), pp.220-227.

## 10. Appendix

Appendix A - Participation Level based on De Pauw et al., (2013).

	$\text { PL } 1$	$\text { PL } 2$	$\text { PL } 3$	$\text { PL } 4$	PL 5
Physiological performance indicators					
$1^{\circ}$ relative $\mathrm{VO}_{2 \text { max }}, \mathrm{mL} \cdot \mathrm{min}^{-1} \cdot \mathrm{~kg}^{-1}$	<45	45-54.9	55-64.9	65-71	>71
$2^{\circ}$ absolute PPO, W	$<280$	280-319	320-379	380-440	>350
absolute $\mathrm{VO}_{2 \text { max }}, \mathrm{L} / \mathrm{min}$	$<3.7$	3.4-4.2	4.2-4.9	4.5-5.3	>5.0
relative PPO, W/kg	<4.0	3.6-4.5	4.6-5.5	4.9-6.4	>5.5
Cycling status					
training frequency/wk	-	-	$\geq 3$	>3	>5
training $\mathrm{h} / \mathrm{wk}$	<2-3	34	$\geq 5$	$\geq 10$	$>10$
training distance, $\mathrm{km} / \mathrm{wk}$ (miles/wk)		$<60$ (<37)	60-290 (37-180)	>250 (>155)	$>500$ (>310)
cycling experience, y	-	-	-	$\geq 3$	$\geq 5$

## Appendix B - Heat alleviation strategy questionnaire.

Section 1 - Background Information
I understand that all of my answers will be anonymous, and my identity will be anonymised.

- Yes
- No

Please select the 'yes' option below if you agree to participate in this questionnaire and to have your answers used for research purposes that aim to optimize the use of heat alleviation strategies.

- Yes
- No

What gender do you identify as?

- Female.
- Male.
- Transgender.
- Prefer not to answer.

What is your current age (yrs)?

- *text box answer* What country do you currently live in?
- *text box answer*

What is your main sport? (please include specific event distance (km)/time(mins) if applicable)

- *text box answer* What level do you play/compete at?
- Recreational
- Amateur
- Professional
- Other

How much previous experience (yrs) do you have playing/competing in this sport?

- *text box answer*

Before the COVID-19 pandemic in 2020, how many competitions in hot conditions would you participate in one year?

- 0
- 1
- 2
- 3
- 4
- 5
- More than 5

Have you ever experienced any of the following symptoms whilst training or competing in hot conditions? (select all that apply).

- Cramping
- Vomiting
- Nausea
- Severe headache
- Collapsing - fainting
- Other
- None

If you selected Other, please specify below and please give details below of the competition(s) in which they happened and the conditions (temperature and humidity) if known.

Do you think there is a difference between how HD conditions (i.e. desert conditions like Morocco) and hot and humid conditions (i.e. tropical conditions like Tokyo) impact sports performance?

- Yes
- No

If you answered 'yes' to the last question, which option below do you think places a greater thermal strain on athletes during competition?

- HD conditions.
- HH conditions.
- They are the same.

Would you say that you use the same heat alleviation strategies (i.e. cooling) during competitions in HD conditions as you do in hot and humid conditions? Required

- Yes, I use the same strategies for all competitions in hot conditions regardless of humidity level.
- No, I use different strategies.

If participants answered "No I use different strategies" they would be taken to: Section 2 - Heat Alleviation Strategies During Competitions Are Different In this section, it is important that you refer to any competitions that you have previously competed in that were in hot and dry conditions when you answer the questions. The subsequent section will then refer to the strategies that you use during hot and humid conditions so that the two conditions are separated.

If any, what per-cooling (within race cooling) method(s) do you use during your competitions? (select all that apply).

- Ice slurry ingestion.
- Cold water ingestion.
- Head or face cooling via water dousing/pouring.
- Cold towels.
- Cooling vest.
- Cooling collar.
- Menthol mouth rinse.
- Other menthol applications.
- None.
- Other

If you selected an option that involved per-cooling, when to apply it/them? (select all that apply).

- Pre-planned by distance covered (km)
- Pre-planned by elapsed time (min)
- Mixture of pre-planned and how you feel.
- When pitstops or rest breaks are available.
- None.
- Other

If you use a pre-planned cooling strategy, how did you establish the type, timing, and amount/length of the cooling? (select one option that applies).

- Previous experience (i.e. trial and error).
- Cooling availability (i.e. when you have access to cooling).
- Coach recommendation.
- Sports scientist recommendation.
- Personal reading (i.e. based off your own research).
- I do not plan my cooling ahead of time.
- Other/combination

In the questions below, it is important that you refer to any competitions that you have competed in that were in hot and humid conditions when you answer the questions.

If any, what per-cooling (within race cooling) method(s) do you use during your competitions? (select all that apply).

- Ice slurry ingestion.
- Cold water ingestion.
- Head or face cooling via water dousing/pouring.
- Cold towels.
- Cooling vest.
- Cooling collar.
- Menthol mouth rinse.
- Other menthol applications.
- None.
- Other

If you selected an option that involved per-cooling, when to apply it/them? (select all that apply).

- Pre-planned by distance covered (km)
- Pre-planned by elapsed time (min)
- Mixture of pre-planned and how you feel.
- When pitstops or rest breaks are available.
- None.
- Other

If you use a pre-planned cooling strategy, how did you establish the type, timing, and amount/length of the cooling? (select one option that applies).

- Previous experience (i.e. trial and error).
- Cooling availability (i.e. when you have access to cooling).
- Coach recommendation.
- Sports scientist recommendation.
- Personal reading (i.e. based off your own research).
- I do not plan my cooling ahead of time.
- Other/combination

Which of these options below best describes how well your previous heat alleviation strategies have worked for you in both conditions? (Please select one option).

## Required



Please outline below in a few sentences why you think this worked or didn't work for you in previous competitions or training?

- Text box answer.

However, if participants answered "Yes, I use the same strategies for all competitions in hot conditions regardless of humidity level." they would be taken to: Section 2 - Heat

## Alleviation Strategies During Competitions Are The Same

In this section, it is important that you refer to any competitions that you have competed in that were in hot conditions when you answer the questions.

In your own words, please use the text box below to explain why you use the same strategies for competitions in both conditions?

If any, what per-cooling (within race cooling) method(s) do you use during your competitions? (select all that apply).

- Ice slurry ingestion.
- Cold water ingestion.
- Head or face cooling via water dousing/pouring.
- Cold towels.
- Cooling vest.
- Cooling collar.
- Menthol mouth rinse.
- Other menthol applications.
- None.
- Other

If you selected an option that involved per-cooling, when to apply it/them? (select all that apply).

- Pre-planned by distance covered (km)
- Pre-planned by elapsed time (min)
- Mixture of pre-planned and how you feel.
- When pitstops or rest breaks are available.
- None.
- Other

If you use a pre-planned cooling strategy, how did you establish the type, timing, and amount/length of the cooling? (select one option that applies).

- Previous experience (i.e. trial and error).
- Cooling availability (i.e. when you have access to cooling).
- Coach recommendation.
- Sports scientist recommendation.
- Personal reading (i.e. based off your own research).
- I do not plan my cooling ahead of time.
- Other/combination

Which of these options below best describes how well your previous heat alleviation strategies have worked for you? (Please select one option).


Please outline below in a few sentences why you think this worked or didn't work for you in previous competitions or training?

- *Text box answer*


## Appendix C - Interview questions

1. Tell me about a standout competition or training session for you that was in hot and dry conditions such as a heat wave in the UK/Barcalona/Oman, how did you feel during it? What strategies did you use if any?
2. Now tell me about a standout competition for you that was in hot and humid condition such as Kona Hawaii, how did you feel during the competition? What strategies did you use if any? And how did that compare to the previous competition you were talking about?
3. Where do you get your information about these strategies from?
4. How have these experiences shaped your preparation for future events?

## Appendix D - Warm Up pre CPT

Warm up used for feedback study pre CPT (Tomaras and MacIntosh, 2011). Based of maximum heart rate which will be estimated from the commonly used formula: 220-age.

Time (min)	Classifcation	Instruction
$0-5$	General warm-up	$60 \%$ HRmax
$5-10$	Acceleration	Progressive   acceleration ot   $35 k m / h$
$10-15$	Sprint	6s sprint   $15-15: 30$   $15: 30-15: 36$   $15: 36-17: 00$   Recovery

## Appendix E - Study 1 Supplementary Data

## 1. Participant Characteristics

There was a significant difference between the two groups for $\mathrm{VO}_{\text {2peak, }}$, critical power and years of experience ( $\mathrm{P}<0.05$ ).

## Appendix F - Study 2 Supplementary Data

## 1. Participant characteristics

The groups were matched and therefore there were no significant differences between groups for sex, age, stature, body mass, $\mathrm{VO}_{2 \text { max }}$, prior experience and weekly training. Therefore, any differences reported in performance, physiological responses and/or perceptual responses were not because of differences between groups.

## Appendix G - Study 3 Supplementary Data

## Appendix H - Study 4 Supplementary Data

## 2. Participant characteristics

The groups were matched for age, sex, height, weight and training status, and therefore there were no significant differences between groups for sex, age, stature, body mass, $\mathrm{VO}_{2 \text { max }}$, prior experience and weekly training. Therefore, any differences reported in performance, physiological responses and/or perceptual responses were not because of differences between groups.

## 3. Peak Rectal temperature

Table 37. mean $\pm$ SD peak rectal temperature $\left({ }^{\circ} \mathrm{C}\right)$ during the preload and time-trial.

Group	1				2			
Condi	Thermon	Hot	Ingesti   on   tion	Pourin   $\mathbf{g}$	Thermon   eutral	Hot	Ingest   ion	Pourin   $\mathbf{g}$
Preloa	$37.75 \pm 0.1$	$38.18 \pm$	$37.92 \pm$	$38.10 \pm$	$37.98 \pm 0.2$	37.73	$37.9 \pm$	$38.15 \pm$
d	7	0.24	0.21	0.18	4	$\pm 0.6$	0.1	0.12
Time-	$38.05 \pm 0.1$	$38.8 \pm 0$.	$38.8 \pm 0$.	$38.6 \pm 0$.	$38.6 \pm 0.2$	$39.3 \pm$	$38.2 \pm$	$38.9 \pm 0$.
trial	7	11	2	2		0.1	0.1	4

There was a significant interaction between condition and group for peak $\mathrm{T}_{\text {rectal }}$ during timetrial $\left(F(6,10)=3.011, p=0.016, n^{2}=0.741\right)$ but not the preload $(F(6,10)=3.688, p=0.233$, $\mathrm{n}^{2}=0.627$ )

## Group 1 - Hot and Dry

There was no significant difference in peak $T_{\text {rectal }}$ in the preload between conditions $f=(1,10)$, $37.870, \mathrm{p}=0.66$; (control with no cooling: $37.78 \pm 0.13^{\circ} \mathrm{C}$; hot with no cooling: $38.18 \pm 0.15^{\circ} \mathrm{C}$; cold-water ingestion: $38.11 \pm 0.14^{\circ} \mathrm{C}$; cold-water pouring: $37.92 \pm 0.14^{\circ} \mathrm{C}$; Table 37 ).

There was a significant difference in mean $\pm$ SD $T_{\text {core }}$ during the time-trial between conditions $f=(1,10), 38.630, p=0.003)$. The highest mean $\pm$ SD peak $T_{\text {rectal }}$ was reported in hot with no cooling $\left(38.87 \pm 0.08^{\circ} \mathrm{C}\right)$ which was signficiantly greater than peak $\mathrm{T}_{\text {rectal }}$ in control with no cooling $\left(38.05 \pm 0.15^{\circ} \mathrm{C}\right)$. There was no significant difference in mean $\pm$ SD peak $\mathrm{T}_{\text {rectal }}$ in hot with no cooling ( $38.87 \pm 0.08^{\circ} \mathrm{C}$ ), cold-water ingestion $\left(38.8 \pm 0.08^{\circ} \mathrm{C}\right)$ and cold-water pouring $\left(38.63 \pm 0.1^{\circ} \mathrm{C} ; \mathrm{p}=0.76\right)$.

## Group 2 - Hot and Humid

There was no significant difference in mean $\pm$ SD peak $T_{\text {rectal }}$ during the preload between conditions $f=(1,10), 37.860, p=0.073$; Table 37). However, there was a significant difference in mean $\pm$ SD peak $\mathrm{T}_{\text {rectal }}$ during the time-trial between conditions $(\mathrm{f}=(1,10), 38.834, \mathrm{p}=0.030$; Table 37). The highest mean $\pm$ SD peak $T_{\text {rectal }}$ was reported in hot with no cooling $\left(39.27 \pm 0.08^{\circ} \mathrm{C}\right)$ which was significantly greater than peak $\mathrm{T}_{\text {rectal }}$ in control with no cooling $\left(38.55 \pm 0.12^{\circ} \mathrm{C}, \mathrm{p}=0.024\right)$, cold-water ingestion $\left(38.21 \pm 0.01^{\circ} \mathrm{C}, \mathrm{p}=0.019\right)$ and cold-water pouring ( $38.9 \pm 0.27^{\circ} \mathrm{C}, \mathrm{p}=0.036$ ).

## Group Comparison

There was a significant difference between groups for average peak $\mathrm{T}_{\text {rectal }}$ in control with no cooling, hot with no cooling and cold-water ingestion ( $\mathrm{f}=(1,10$ ), 38.633, $\mathrm{p}=0.004$ ) during the
time-trial. This was reported in control with no cooling at all time points during the time-trial ( $\mathrm{p}=0.010$ ), hot with no cooling at all time points during the time-trial $(\mathrm{p}=0.05)$ and cold-water ingestion at all time points during the time-trial $(\mathrm{p}=0.05)$.

## 4. Change in rectal temperature

Table 38. Mean $\pm$ SD change in rectal temperature $\left({ }^{\circ} \mathrm{C}\right)$ from the start of the preload till the end of preload and start of the time-trial till the end of the time-trial.

Group	1				2			
Condit	Thermone							
ion	utral							

There was a significant interaction for condition and group for change in $\mathrm{T}_{\text {rectal }}$ during the preload $(\mathrm{f}=(1,10), 20.011, \mathrm{p}=0.005$; Table 38) and time-trial $(\mathrm{f}=(1,10), 20.901, \mathrm{p}=0.003$; Table 38).

## Group 1 - Hot and Dry

The greatest change in $\mathrm{T}_{\text {rectal }}$ during the preload was reported in hot with no cooling $\left(0.93 \pm 0.10^{\circ} \mathrm{C}\right)$ compared to control with no cooling $\left(0.53 \pm 0.08^{\circ} \mathrm{C}\right)$, cold-water ingestion $\left(0.09 \pm 0.13^{\circ} \mathrm{C}\right)$ and cold-water pouring $\left(0.74 \pm 0.23^{\circ} \mathrm{C} ; \mathrm{p}=0.002\right)$. Similarly, the greatest change in $\mathrm{T}_{\text {rectal }}$ during the time-trial was reported in hot with no cooling $\left(1.04 \pm 0.11^{\circ} \mathrm{C}\right)$ compared to control with no cooling $\left(0.65 \pm 0.16^{\circ} \mathrm{C}\right)$, cold-water ingestion $\left(0.76 \pm 0.01^{\circ} \mathrm{C}\right)$, and cold-water pouring $\left(0.80 \pm 0.14^{\circ} \mathrm{C} ; \mathrm{p}=0.005\right)$. There was no significant difference in change in core between cold-water ingestion $\left(0.76 \pm 0.01^{\circ} \mathrm{C}\right)$ and cold-water pouring $\left(0.80 \pm 0.14^{\circ} \mathrm{C}\right.$; p $=0.104)$. Therefore both per-cooling strategies were effective at attenuating the rise in $\mathrm{T}_{\text {rectal }}$.

## Group 2 - Hot and Humid

The greatest change in $\mathrm{T}_{\text {rectal }}$ during the preload was reported in cold-water pouring $\left(0.75 \pm 0.11^{\circ} \mathrm{C}\right)$. This was significantly greater than control with no cooling $\left(0.42 \pm 0.17^{\circ} \mathrm{C}, \mathrm{p}=\right.$ $0.014)$ and cold-water ingestion $\left(0.38 \pm 0.67^{\circ} \mathrm{C} ; \mathrm{p}=0.001\right)$. Whereas, the rate of change in $\mathrm{T}_{\text {rectal }}$ was very similar and not significantly different in cold-water pouring and hot with no cooling ( $0.72 \pm 0.16^{\circ} \mathrm{C} ; \mathrm{p}=0.73$ ). This infers that cold-water pouring was not an efficient method of per-cooling in hot and humid conditions for attenuating the rise in $\mathrm{T}_{\text {rectal }}$ during 45 min of fixed intensity cycling.

The greatest change in $\mathrm{T}_{\text {rectal }}$ during the time-trial was reported in hot with no cooling $\left(0.94 \pm 0.05^{\circ} \mathrm{C}\right)$ compared to control with no cooling $\left(0.64 \pm 0.05^{\circ} \mathrm{C} ; \mathrm{p}=0.012\right)$, cold-water ingestion ( $0.43 \pm 0.12^{\circ} \mathrm{C} ; \mathrm{p}=0.008$ ) and cold-water pouring $\left(0.88 \pm 0.22^{\circ} \mathrm{C} ; \mathrm{p}=0.042\right)$, Change in $\mathrm{T}_{\text {rectal }}$ during the time-trial was also significantly greater with cold-water pouring $\left(0.88 \pm 0.22^{\circ} \mathrm{C}\right)$ compared to cold-water ingestion $\left(0.43 \pm 0.12^{\circ} \mathrm{C} ; \mathrm{p}=0.023\right)$. This infers that cold-water ingestion was a more efficient method per-cooling in hot and humid conditions compared to cold-water ingestion for attenuating the rise in $\mathrm{T}_{\text {rectal }}$ during a 30 min cycling time-trial.

## Group Comparison

There was a significant difference in $T_{\text {rectal }}$ change between groups during the preload $f=$ $(1,10) 5.056, p=0.043)$. and time-trial $(f=(1,10) 5.015, p=0.046)$. Change in $\mathrm{T}_{\text {rectal }}$ was significant greater in hot and humid compared to hot and dry for both the preload ( $1.08 \pm 0.15$ vs $0.92 \pm 0.12^{\circ} \mathrm{C}, \mathrm{p}=0.041$ ) and time-trial ( $0.93 \pm 0.05$ vs $0.75 \pm 0.16^{\circ} \mathrm{C}, \mathrm{p}=0.034$ ). The infers that there was a greater heat gain/storage compared to heat loss in hot and humid conditions compared to hot and dry conditions.

Change in $\mathrm{T}_{\text {rectal }}$ was significantly greater in hot and dry conditions with cold-water pouring compared to hot and humid with cold-water pouring in both preload $(0.74 \pm 0.2$ vs $0.58 \pm 0.08^{\circ} \mathrm{C}, \mathrm{p}=0.032$ ) and time-trial $\left(0.73 \pm 0.14\right.$ vs $\left.0.43 \pm 0.12^{\circ} \mathrm{C}, \mathrm{p}=0.029\right)$.


[^0]:    Abstract

    Acknowledgements

    Declaration

    List of abbreviations

    List of tables

    ## List of figures

    ## List of publications

    ## Conference preceding's

    ## 1. General introduction

    2. Narrative review - Cycling performance in hot conditions (Dry vs Humid)
    2.1. Cycling Performance and External Factors
    2.1.1. Defining Heat Stress and Heat Strain.
    2.1.1.1. Heat Stress
    2.1.1.2. Heat Strain - Physiological
    2.1.1.3. Heat Strain - Perceptual
    2.2. Literature Search
    2.2.1. Inclusion/Exclusion Criteria
    2.2.2. Outcome Measures
    2.2.3. Article Characteristics
    2.2.4. Quality Assessment
    2.3. Results and Discussion
    2.3.1. Physical Performance in Hot and Dry
    2.3.2. Physical Performance in Hot and Humid
    2.3.3. Physical Performance in Hot and Dry and Hot and Humid
