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Abstract

Background and Objective

Zebrafish (Danio rerio) in their larval stages have grown increasingly popular

as excellent vertebrate models for neurobiological research. Researchers can

apply various tools in order to decode the neural structure patterns which

can aid the understanding of vertebrate brain development. In order to do

so, it is essential to map the gene expression patterns to an anatomical ref-

erence precisely. However, high accuracy in sample registration is sometimes

difficult to achieve due to laboratory- or protocol-dependent variabilities.

Methods

In this paper, we propose an accurate adaptive registration algorithm for

volumetric zebrafish larval image datasets using a synergistic combination of

attractive Free-Form-Deformation (FFD) and diffusive Demons algorithms.

A coarse registration is achieved first for 3D volumetric data using a 3D
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affine transformation. A localized registration algorithm in form of a B-

splines based FFD is applied next on the coarsely registered volume. Finally,

the Demons algorithm is applied on this FFD registered volume for achieving

fine registration by making the solution noise resilient.

Results

Experimental procedures are carried out on a number of 72 hpf (hours post

fertilization) 3D confocal zebrafish larval datasets. Comparisons with state-

of-the-art methods including some ablation studies clearly demonstrate the

effectiveness of the proposed method.

Conclusion

Our adaptive registration algorithm significantly aids Zebrafish imaging anal-

ysis over current methods for gene expression anatomical mapping, such as

Vibe-Z. We believe the proposed solution would be able to overcome the re-

quirement of high quality images which currently limits the applicability of

Zebrafish in neuroimaging research.

Keywords: Zebrafish Imaging, Adaptive Registration, FFD-Demons

Synergism
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1. Introduction

A rapid proliferation in terms of behavioral research with the teleost ze-

brafish (Danio rerio) has evolved significantly over the past decade, which

has led to zebrafish emerging as a potential vertebrate model for neurocog-

nitive function. Zebrafish have indeed successfully modelled many diseases

like Autism, Alzheimer’s, Schizophrenia, drug abuse and other neurological

diseases related to cognitive dysfunction, as discussed in [10] and the ref-

erences within. The reason for this growing popularity in zebrafish models

lies in their complex sensory and motor systems which are quintessential for

sophisticated learning experiments. Zebrafish larvae have developed into an

ideal research model for bio-imaging in vertebrates due to their relative trans-

parency. The zebrafish larval brain contains roughly 105 neurons. Thus, a

wide range of genetic tools as stated in [35] can be applied by researchers in

order to decode the patterns of neural connectivity and structure.

In the present work, we aim at making the registration pipeline adaptive

by using a synergistic combination of B-splines based Free Form Deformation

(FFD), an attractive model and Demons, a diffusive model. The task at our

hand is to register multi-view confocal 3D images of 72 hpf (hours post fer-

tilization) zebrafish larvae on an anatomical reference dataset. Photoacustic

imaging is an extremely powerful strategy when applied to the zebrafish larva,

as the transparency of the organism can be fully exploited for a non-invasive

imaging of morphological and hemodynamic features in vivo. However, this

technique and its improvements are a bit out of the scope for this manuscript.
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Indeed, our objective is the digital improvement of confocal microscopy im-

ages obtained from fixed embryos/larvae, where specific gene expression is

stained with post-mortem techniques. The final goal is the correction of pos-

sible deformations that prevent the processing of the images by the Vibe-Z

software. The Vibe-Z system expects standard sizes for embryos/larvae im-

aged at specific developmental stages, in order to easily compare them with

an internal reference database of gene expression markers previously mapped

in age-matched samples. We first capture the global motion of the volume

to be registered using a 3D affine registration strategy optimized using the

OnePlusOne Evolutionary optimizer [5]. Following the global alignment, the

localized registration is performed in which a mesh of control points is used

to model the underlying deformations which act as parameters to the B-

spline Free Form Deformation (FFD) function [6]. The density of the control

mesh is increased in a coarse-to-fine fashion. Note that as the control points

model the deformations in the different regions of the zebrafish, they become

inherently adaptive. In contrast to Thin Plate Splines (TPS) [8], B-splines

are deformed locally resulting in high computational efficiency for a large

number of control points. Moreover, the basis functions of cubic B-splines

possess limited support which can influence only the local neighbourhood

of the control points. The cost function is iteratively minimised using the

L-BFGS (Limited Memory Broyden–Fletcher–Goldfarb–Shanno) algorithm.

Finally, the demons algorithm [7] is applied to fine tune any of the anoma-

lies which might have existed in the structuring of the control points. The
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greatest advantage of our pipeline is that the varying degrees of freedom of

the various regions of a zebrafish larva are adaptively captured by varying

densities of the control points in the FFD algorithm. Moreover, the final out-

put of the demons algorithm, which also models displacement fields which

will vary in accordance with the regions having higher deformity and would

automatically fine-tune the output obtained from the FFD algorithm.

We have not considered the intensity of the signal, by the way easily ad-

justable during or after the imaging of the sample, as this aspect is usually

not a critical issue. As long as the marker under consideration is display-

ing its expected pattern - based on literature information - this is correctly

processed by the program. The main issue is the shape and the orientation

of the imaged sample, which can indeed depend on laboratory variabilities

(especially on the ability of the user to correctly mount the specimen) and

protocol variabilities (for instance the softness of the larva after the staining

procedure, or the density of the mounting medium, that can affect larval

shape and maintenance of the correct position). We now summarize our

contributions below:

1. We solve an important biological problem of accurately registering ze-

brafish larval images to an anatomical reference dataset. The problem

has several widespread applications in developmental neurology. To the

best of our knowledge, this is the first detailed work of non-rigid regis-

tration of zebrafish larval images. The final goal is the standardization

of zebrafish images in terms of position and orientation, so that they
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can be an adequate input for freeware applications like Vibe-Z, which,

by managing anatomical databases, and comparing different reference

markers among each other, expect highly standardized body dimen-

sions and shapes.

2. Methodologically speaking, we develop an adaptive strategy for a com-

plex non-rigid registration problem by proposing a synergism between

attractive B-Spline based FFD and diffusive Demons algorithms follow-

ing an affine registration procedure. In our solution, we have changed

the similarity measure of the B-Spline based FFD.

The rest of the paper is organized as follows: in Section 2, we discuss the

related works. In Section 3, we describe our proposed model in details. In

Section 4, we present the experimental results with detailed analysis. Finally,

the paper is concluded in section 5 with an outline of directions for future

research.

2. Related Work

In this section, we discuss prominent registration algorithms without and

with learning having a focus on biomedical applications. This is followed by

analysis of some works explicitly dealing with zebrafish registration.

2.1. Registration without Learning

Extensive work has been carried out over the years in 3D medical im-

age registration [11], [12]-[15], [31]. These methods in principle perform an
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optimization within the space of displacement vector fields. Examples are

spline based FFD [6], statistical parametric mapping [12], Demons [7] and

discrete methods [13]. Among these algorithms, the methods conforming to

diffeomorphic transforms have shown remarkable success in studies pertain-

ing to computational anatomy as they preserve topology. While optimizing

an energy function for a given pair of images these methods require compu-

tational time, especially if a large dataset, like ours, is to be registered. In

[39], geometric alignment of two roughly preregistered, partially overlapping,

rigid, noisy 3D point sets is dealt with by adopting least trimmed squares

(LTS) approach in all phases of the operation of the Iterative Closest Point

algorithm. In [40], an algorithm for registering RGB point cloud data. It is

an enhancement of the iterative close point algorithm with features of salient

object detection and maximum correntropy criterion in order to handle with

noise and outliers. In [41] correntropy is introduced into the rigid registration

problem similar to [40] following which and then a new energy function based

on maximum correntropy criterion is proposed. These algorithm, however,

would not be robust enough to handle Zebrafish larval image registration sim-

ply because of the varying degrees of freedom in the zebrafish larva unlike

simple RGB point cloud data.

2.2. Learning Based Registration

There have been several recent studies on Image registration which have

proposed neural networks to learn a function for achieving the registration.
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A common feature of most of these networks lies in the fact that they use

ground truth warp fields ([16] - [20]). Thus, even though these methods ap-

pear to be an attractive solution to the image registration problem, ground

truth warp fields are difficult to acquire. In [16], Cao et al. have implemented

a regression model based on convolutional neural networks (CNN) in order

to learn the complex mapping from between the input image pair and the

deformation fields corresponding to them. The design of the CNN architec-

ture is patch-based to allow the network to learn from the input patch pairs

to their corresponding displacement fields. In [37], a multi-objective opti-

mization algorithm based on clustering calculation has been used to perform

medial image registration tests. In [42], the technique performs end-to-end

training from image pairs to learn priors over geometric transformations and

regularities of the 3D world. It uses an attention based context aggregation

mechanism, enabling the algorithm to reason about the underlying 3D scene

and feature assignments jointly. In order to facilitate accurate CNN model

learning, the authors have implemented an equalized active-points guided

sampling strategy. An auxiliary contextual cue is added as the similarity

metric between the input patches. However, in all cases in which the ground

truth warp field is not available (as in our case), any supervised learning

based approach cannot be adopted. In [21],[37], an unsupervised learning

based registration approach named Voxelmorph determines a registration

field based on the moving volumes of the brain CT scans and the weights are

learned accordingly. Voxelmorph being an unsupervised learning algorithm

8

shoureen
Highlight



does not need the ground truth labels but it formulates registration as a func-

tion that maps an input image pair to a deformation field that aligns these

images. Voxelmorph parameterizes the function via a convolutional neural

network (CNN), and optimizes the parameters of the neural network on a set

of images. Given a new pair of scans, VoxelMorph rapidly computes a de-

formation field by directly evaluating the function. Thus, Voxelmorph needs

a significant amount of computational data in order to parameterize the de-

formation field. The experiments using Voxelmorph which demonstrate its

inadequacy in handling Zebrafish Larval Image registration with limited data

has been illustrated in figure 7.

In [1], the registration strategy applied is that of a landmark-based ap-

proach which is heavily dependent on the resolution of the underlying image

to be registered, owing to which a low image resolution can heavily degrade

the quality of registration. Moreover, ViBE-Z also possesses limitations on

applications in a large scale as it requires a high level of accuracy and stan-

dardization for any new image data produced by numerous laboratories glob-

ally. In order to overcome the limitations of [1], Ghosal et al. in [2] have

adopted a four-step intensity based non-rigid registration algorithm in which

the given volume is coarsely registered by means of the L-BFGS optimization

method followed by a patch-based fine registration using the Diffeomorphic

Demons algorithm and inter- patch regularization. However, the nature of

their pipeline comprising the patch-based registration does not take into ac-

count the underlying geometry as different regions of the zebrafish larva will
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typically have different degrees of freedom and hence would ideally require

an adaptive registration strategy.

3. Proposed Method

Image Registration aims at finding an optimal transformation T : (x, y, z) 7→

(x′, y′, z′) which establishes a mapping of any given point in the moving image

I ′(x′, y′, z′) to the corresponding point in the reference image I(x, y, z). The

structure of the zebrafish larva, in general is non-rigid with varying degrees

of freedom. So, a single affine transformation alone is not at all sufficient in

correcting the motion. The head of a larval zebrafish is mostly rigid while the

tail can bend and deform heavily thereby exhibiting high non-rigidity. Hence,

we propose in this paper an adaptive approach that can cater to the global

as well as local transformations. The proposed method consists of three ma-

jor steps, namely, i) a coarse affine registration, ii) FFD based adaptive local

alignment, and iii) Demons based fine registration. The above three steps are

first discussed in details. We then explicitly discuss the rationale behind the

FFD-Demons synergism. We end this section with an algorithm (Algorithm

1) showing the different steps.

3.1. Global Alignment

In order to capture the overall motion of the moving volume, an affine

transformation is applied which parameterizes a rigid transformation com-

prising 6 degrees of freedom and an additional 6 degrees of freedom modelling
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shearing and scaling. The one-plus-one evolutionary optimizer by Styner et.

al [5] has been used to parameterize the transformation.

3.2. Adaptive Local Alignment

The affine transformation performed in the previous step fails to capture

the underlying geometry and the varying degrees of freedom in the underly-

ing moving volume. As the nature of local deformations may vary from one

sample to another, applying parameterized transformations for characteriz-

ing the local deformations would not suffice. Thus, we use a B-splines [9]

based FFD function developed by Rueckert et al. [6]. The basic principle of

the B-spline based FFD algorithm is that the moving volume is aligned to

the reference volume (atlas) by manipulating an underlying mesh of control

points. The deformations of the control points take place on the basis of

varying degrees of freedom as the regions having higher degrees of freedom

would have a higher density of control points leading to smooth and contin-

uous C2 transformation. We specify the domain of the volumetric image as

Γ = {(x, y, z)|0 ≤ x < X, 0 ≤ y < Y, 0 ≤ z < Z}. Let Φ denote a mesh of

control points having dimensions nx × ny × nz. The spacing δ among the

control points φi,j,k is uniform. The FFD can, thus, be formulated as a 3D

tensor product of 1-D cubic splines as follows:

Tlocal(x, y, z) =
3∑

l=0

3∑
m=0

3∑
n=0

Bl(r)Bm(s)Bn(t)φi+l,j+m,k+n (1)
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where i = b x
nx
c−1, j = b y

ny
c−1, k = b y

ny
c−1, r = x

nx
−b x

nx
c, s = y

ny
−b y

ny
c,

t = z
nz
− b z

nz
c and where Bl represents the lth basis function of the B-splines

[9],

B0(r) =
(1− r)3

6
(2a)

B1(r) =
3r3 − 6r2 + 4

6
(2b)

B2(r) =
−3r3 + 3r2 + 3r + 1

6
(2c)

B3(r) =
r3

6
(2d)

The B-spline FFD function is parameterized by the control points Φ in

a manner such that regions having a higher density of control points model

regions with significant levels of local deformations, while regions in which

the density of control points is low represents lower degrees of freedom of the

underlying region. In order to ensure a smooth FFD based transformation,

a penalty term has been used [8] as follows:

Creg =

1

V

∫ X

0

∫ Y

0

∫ Z

0

(
∂2Tlocal

∂x2

)2

+

(
∂2Tlocal

∂y2

)2

+

(
∂2Tlocal

∂z2

)2

+ 2

(
∂2Tlocal

∂x∂y

)2

+ 2

(
∂2Tlocal

∂x∂z

)2

+ 2

(
∂2Tlocal

∂y∂z

)2

dx dy dz

(3)

where V represents the volume in the domain of the image. The similarity
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measure used is sum of squared differences.

Csim =
nx∑
a=0

ny∑
b=0

nz∑
c=0

[I ′(x+ a, y + b, z + c)− I(x, y, z)]2 (4)

where I ′ represents the moving volume and I represents the reference volume.

The use of sum of squared differences is justified by the fact that there is not

any temporal variation in the volumetric image intensities as the registration

proceeds. The overall cost function is specified as follows:

C(Φ) = −Csim(I,T(I ′)) + λCreg(T(I ′)) (5)

where λ is the regularization weighting parameter and controls the amount

of regularization of the transformation. The cost function is minimized by

means of the memory efficient L-BFGS algorithm [28]. The value of λ in our

case has been experimentally determined to be 0.01.The control points are

evaluated in each iteration using :

Φ = Φ + µ
∇C
||∇C||

(6)

The value of µ in our case has been experimentally determined to be 0.1.

3.3. Fine Registration using Demons Algorithm

Demons algorithm [7] is applied on the output obtained from the B-splines

based FFD algorithm. The Gaussian filter inherently present in the demons

algorithm smooths the displacement field and removes any noise which might
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have caused errors in the previous step. The principle behind the demons

algorithm is that the voxels present in the reference volume would serve as

local forces which would successfully displace the voxels in the moving volume

in order to align it with the static volume. The displacement vector applied

to each of the voxels in order to align them in an iterative manner can be

written as [22]:

dr(n+1) =
(I ′(n) − I(0))∇I(0)

(I ′(n) − I(0))2+ | ∇I(0) |2
(7)

In the above equation, I ′(n) denotes the image intensity of the moving

volume in the nth iteration while I(0) denotes the image intensity of the

reference volume initially. It is evident from the above equation that the

gradient of the reference volume remains constant across all the iterations

which saves computational time. Gaussian filter is originally used to smooth

the displacement field. In the context of the present problem, the same

filter additionally removes any existing noise in the control points which has

possibly affected the adaptive local alignment.

3.4. FFD-Demons Synergism

Adaptive accurate registration for the present problem is achieved through

the FFD-Demons synergism. The synergism is based on somewhat comple-

mentary nature of the two algorithms. B-Splines based FFD is basically an

attractive model whereas Demons is a diffusive model. FFD algorithm using

the B-spline grid ensures that geometrically similar points are attracted by
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a set of points in the static image by a force f given by :

f(m,m′) =
∑
m∈I

Csim(I(m), I(m′))

h(m,m′)
I(m)I(m′) (8)

where m is a voxel in the reference image, m′ is a voxel in the moving

image, I(m) represents the intensity at point m, h(m,m′) is the distance be-

tween the voxels in the B-spline grid and Csim is from equation (5). So, after

FFD algorithm is applied, the moving image possesses a significant degree of

overlap with the reference image. As the demons are being computed from

the static image using the criterion ∇s 6= 0, the space of transformation s is

now more refined, based on FFD. The demons forces can efficiently diffuse

the moving image and register it with the reference atlas while also ensuring

that the model does not get trapped in a local minima from the attractive

model. Thus, the synergism ensures that the diffusion of the moving im-

age is controlled by the attractive force of FFD so that the output does not

get stuck in any local minima and the noisy voxels are not diffused by the

demons. The steps of the proposed method are now shown in Algorithm 1.

When demons are considered for image registration, the moving image must

be matched with the reference atlas by a diffusive force generated by the

demon acting on an object located on the surface of the reference atlas in

a manner such that the corresponding points on the moving image diffuse

through the object and are accordingly aligned with the reference atlas.
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Algorithm 1 Adaptive Registration Algorithm for Zebrafish Larval Images

Input: Moving Volume, Anatomical Reference Volume
Output: Registered Volume

1: Obtain the optimal affine transformation
Apply B-Spline based FFD on affine registered volume

2: initialize the control points Φ
3: calculate the gradient vector of the cost function in eq. (5) with respect

to Φ
4: while ||∇C|| > ε do
5: recalculate the control points according to eq. (7).
6: recalculate ∇C
7: increase the density of control points adaptively
8: end while

Apply Demons Algorithm on FFD registered volume
9: for i = 1 to n do

10: compute the displacement vector field according to eq. (8)
11: end for
12: Align the volume according to the displacement field
13: return Registered Volume
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Figure 1: Flow Diagram (Zebrafish larval heads are displayed in dorsoventral view, anterior
to the top)
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3.5. Complexity Analysis

Let m be the number of voxels to be registered. The proposed algorithm

consists of three steps, namely, the affine registration, FFD and Demons.

Time-complexity of the affine registration phase of the algorithm employing

the One-Plus Evolutionary optimizer is O(mlog(m)) [27]. FFD based adap-

tive spline registration with the L-BFGS optimizer runs in O(m2) time [28].

Demons algorithm is capable of solving the registration problem in linear

time, i.e. O(m) [29]. So, the overall complexity of the proposed solution is

O(mlog(m)) +O(m2) +O(m) = O(m2).

4. Experimental Results

Our experiments were performed on a dataset comprising eight multi-

view confocal volumetric images of 72 hpf (hours post fertilization) zebrafish

larvae to be registered on an anatomical reference (a single volumetric image).

The samples were generated using the standard set of protocols for ViBE-Z

sample preparation. The dimensions of the anatomical reference were 800×

500 × 500 voxels. However, the volume was scaled down to the dimensions

of 200 × 125 × 500 voxels as the registration was performed on a PC with

Intel(R) Core(TM) i5 8th generation processor with a clock speed of 2.5 GHz.

4.1. Dataset Generation

High Quality datasets have been generated using the ViBE-Z software

by the fusion of multiple confocal stacks which is required for aligning the
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3D expression patterns of the different larval zebrafish at various stages of

development to a common reference. The larvae used for the dataset were

72 hours post fertilization (hpf) which is an already advanced stage of de-

velopment. The dataset was available in HDF5 format and could be opened

using ImageJ or MATLAB R2018A. Fluorescence confocal imaging of thick

samples are affected by the attenuation of the light used for excitation as

well the light which is emitted. The common approximation used for mod-

elling attenuation is that the sample is considered as a solid block with a

constant attenuation coefficient. Such an approximation is too coarse for ze-

brafish larval head which is not a cuboid and comprises distinct local tissues

and spaces filled with liquid which lead to different attenuation properties.

Thus, in order to overcome these issues, ViBEZ combines the two intensity

measurements available at each voxel following which it jointly estimates the

local attenuation coefficient and the combined attenuation at each position

in the dataset [2].

4.2. Performance Measures

The registration accuracy is measured by using Structural Similarity In-

dex (SSIM) and Peak Signal to Noise Ratio (PSNR). The purpose of using

SSIM is that it takes into account the local differences while PSNR takes

into account the global differences between the registered volume and the

anatomical reference. The SSIM is given by [24]:
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SSIM(x, y) =
(2µxµy + c1)(2σxy + c2)

(µ2
x + µ2

y + c1)(σ2
x + σ2

y + c2)
(9)

where, µx denotes the average of x, µy denotes the average of y, σ2
x denotes

the variance of x, σ2
y denotes the variance of y, σxy denotes the covariance of

x and y, c1 = (k1L)2, c2 = (k2L)2 are two variables to stabilize the division

with weak denominator, L is the dynamic range of the pixel-values. The

PSNR is given by:

PSNR = 10 · log10

(
MAX 2

I

MSE

)
(10)

where, MAXI is the maximum possible pixel value of the image and MSE is

the mean squared error. MSE is defined as follows:

MSE =
1

mn

m−1∑
i=0

n−1∑
j=0

[I(i, j)−K(i, j)]2 (11)

Let X and Y be two non-empty subsets of a metric space (M,d). We

define their Hausdorff distance dH(X, Y ) by

H(X, Y ) = max{h(X, Y ), h(Y,X)} (12)

where

h(X, Y ) = max
x∈X
{min
y∈Y
{ d(x, y)}} (13)
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Given two sets, X and Y, the Dice Coefficient is defined as:

DSC(X, Y ) =
2|X ∩ Y |
|X|+ |Y |

(14)

4.3. Ablation Studies

The ablation studies depict the importance of each component of the

solution pipeline. The studies also throw light into the sequence in which the

algorithms need to be interleaved in order to obtain the synergistic results

which exhibit a high level of overlap with the reference volume.

Table 1: SSIM Comparisons as a part of Ablation: A denotes Affine registration, B denotes
B-Splines based FFD and C denotes Demons. Best values shown in bold.

Sl No. Algorithm Mean (µ) ± Std. Dev. (σ)
1 A+B+C 0.934 ± 0.012
2 A+B 0.642 ± 0.054
3 A+C 0.277 ± 0.017
4 A 0.235 ± 0.013

Table 2: PSNR Comparisons as a part of Ablation: A denotes Affine registration, B
denotes B-Splines based FFD and C denotes Demons. Best values shown in bold.

Sl No. Algorithm Mean (µ) ± Std. Dev. (σ)
1 A+B+C 37.211 ± 2.732
2 A+B 21.777 ± 1.282
3 A+C 8.319 ± 1.301
4 A 7.302 ± 1.218

In Table 1, we present the SSIM values for various components of the
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proposed solution and some combinations thereof. Similarly, in Table 2,

PSNR values of the these components and same combinations are shown.

The tables clearly demonstrate that removal of any component of the solution

pipeline leads to a drop in the accuracy of the registration. We now show in

the figures that follow, the qualitative results of the ablation studies on one

sample dataset.

4.4. Comparisons with State-of-the-art Approaches

We have performed comparisons with five well-known registration algo-

rithms. These are ViBE-Z [1], EMBC-17 [2], FFD [6], Demons [7], MSDIR

[23] and ANTS [38]. The proposed method is shown to outperform all the

competing methods. Our method has been further tested against a relatively

recent method [23] as well which aims at performing image registration of ar-

bitrarily ordered input images by deriving a cost function which only depends

on the transformation required to warp the moving image and is indepen-

dent of the atlas. The experiment has been performed parametrized with a

λ value of 0.01 and optimization step size of 5. Other values have already

been used but the algorithm did not show any significant changes over the

values obtained with λ value of 0.01 and optimization step size of 5. ANTs

[38] is an ITK based framework which essentially provides a standardized

implementation of popular registration algorithms. The experiment in our

case has been performed using symmetric normalization as its optimization

metric having performed affine and deformable registration.
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Figure 2: Unregistered images: Projection of the 3D view of the unregisterd moving image
(Green) overlaid on the reference image (Magenta) on different planes - See left image for
XY plane, middle image for XZ plane and right image for YZ plane. Zebrafish larval heads
are displayed, from left to right, in dorsoventral view (anterior to the top), lateral view
(anterior to the top, ventral side to the right) and sagittal view (right side to the bottom,
ventral side to the right).

Figure 3: Affine registration: SSIM = 0.2312, PSNR = 5.4324. Projection of the 3D view
of the unregisterd moving image (Green) overlaid on the reference image (Magenta) on
different planes - See left image for XY plane, middle image for XZ plane and right image
for YZ plane. Zebrafish larval heads are displayed, from left to right, in dorsoventral
view (anterior to the top), lateral view (anterior to the top, ventral side to the right) and
sagittal view (right side to the bottom, ventral side to the right).
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Figure 4: Affine + FFD + Demons registration: SSIM = 0.9181, PSNR = 34.7784. Pro-
jection of the 3D view of the unregisterd moving image (Green) overlaid on the reference
image (Magenta) on different planes - See left image for XY plane, middle image for XZ
plane and right image for YZ plane. Zebrafish larval heads are displayed, from left to
right, in dorsoventral view (anterior to the top), lateral view (anterior to the top, ventral
side to the right) and sagittal view (right side to the bottom, ventral side to the right).

Figure 5: Affine + FFD + Demons registration: SSIM = 0.9181, PSNR = 34.7784. Pro-
jection of the 3D view of the unregisterd moving image (Green) overlaid on the reference
image (Magenta) on different planes - See left image for XY plane, middle image for XZ
plane and right image for YZ plane. Zebrafish larval heads are displayed, from left to
right, in dorsoventral view (anterior to the top), lateral view (anterior to the top, ventral
side to the right) and sagittal view (right side to the bottom, ventral side to the right).
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Table 3: A Comparison of SSIM Values for Various Competing Approaches. Best values
are shown in bold.

Sl No. Algorithm Mean (µ) ± S.D. (σ) Max. Min.
1 Ours 0.934 ± 0.012 0.9421 0.9181
2 ViBE-Z [1] 0.717 ± 0.057 0.7531 0.6315
3 EMBC [2] 0.748 ± 0.010 0.7554 0.733
4 FFD [6] 0.287 ± 0.008 0.2931 0.275
5 Demons [7] 0.248 ± 0.010 0.2564 0.2345
6 MSDIR [23] 0.073 ± 0.110 0.0883 0.0646
7 ANTS [38] 0.295 ± 0.035 0.305 0.260

Table 4: A Comparison of PSNR Values for Various Competing Approaches. Best values
are shown in bold.

Sl No. Algorithm Mean (µ) ± S.D. (σ) Max. Min.
1 Ours 37.211 ± 2.732 38.7223 34.7784
2 ViBE-Z [1] 20.699 ± 1.609 22.446 19.0206
3 EMBC [2] 20.910 ± 1.664 22.776 19.0902
4 FFD [6] 8.505 ± 1.759 9.8175 6.0712
5 Demons [7] 7.236 ± 1.597 8.6899 5.0716
6 MSDIR [23] 4.492 ± 0.899 5.0919 3.1537
7 ANTS [38] 8.395 ± 0.455 9.102 8.035

25



Table 5: A Comparison of Hausdorff Distance Values for Various Competing Approaches.
Best values are shown in bold.

Sl No. Algorithm Mean (µ) ± S.D. (σ) Max. Min.
1 Ours 401.764 ± 2.719 403.763 401.034
2 ViBE-Z [1] 920.928 ± 1.132 921.050 920.005
3 EMBC [2] 900.699 ± 2.609 901.452 899.041
4 FFD [6] 1367.505 ± 1.369 1368.4373 1366.7102
5 Demons [7] 1464.505 ± 1.632 1465.2472 1463.5322
6 MSDIR [23] 110583.112 ± 1.299 111582.819 110490.137
7 ANTS [38] 1163.231 ± 2.244 1165.261 1161.748

Table 6: A Comparison of Dice Coefficient Values for Various Competing Approaches.
Best values are shown in bold.

Sl No. Algorithm Mean (µ) ± S.D. (σ) Max. Min.
1 Ours 0.027 ± 0.0002 0.029 0.026
2 ViBE-Z [1] 0.025 ± 0.001 0.026 0.024
3 EMBC [2] 0.026 ± 0.002 0.027 0.025
4 FFD [6] 0.023 ± 0.002 0.024 0.021
5 Demons [7] 0.021 ± 0.003 0.023 0.019
6 MSDIR [23] 0.009 ± 0.0005 0.010 0.008
7 ANTS [38] 0.024 ± 0.001 0.025 0.023
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In table 3, we show the SSIM values of these competing approaches.

Similarly, in tables 4,5,6 we present the PSNR values, Hausdorff Distance

and Dice Coefficient values respectively of these competing approaches. All

the four tables clearly demonstrate that the proposed approach performs

better than its competitors.

Figure 6: Qualitative comparisons of three registration algorithms: our method with SSIM
= 0.9181, PSNR = 34.7784 (Top Left); [2] with SSIM = 0.7330, PSNR = 19.0902 (Top
Right); [1] with SSIM = 0.6315, PSNR = 19.0206 (Bottom). Distortions resulting from
[2] and [1] are depicted with white arrows. Zebrafish larval heads are displayed: on the
left in dorsoventral view (anterior to the top); on top right in sagittal view (right side to
the bottom, ventral side to the right); on bottom right in lateral view (anterior to the top,
ventral side to the right).
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In figure 6, the registration outputs of three competing algorithms are

illustrated. The figure clearly portrays the superiority of the proposed solu-

tion over that of [1] and [2]. The qualitative as well as the quantitative

studies show that the adaptive nature of our solution outperforms both

the landmark-based approaches (e.g.[1]) as well as patch-based approaches

(e.g.[2]). The reason for this significant level of improvement over the other

two approaches can be attributed to the fact that our pipeline takes into

consideration the varying degrees of freedom inherently present in the vari-

ous regions which is modelled by the varying density of the control points.

Moreover, the final step in our pipeline removes any sort of noise which

might have been introduced in the control points and thus, gives a near com-

pletely accurate registration. As our solution is not dependent on detection

of landmarks, which is quite difficult in low-contrast images, our results have

surpassed that of [1]. In [2], Ghosal et al. have performed inter patch regu-

larization by means of a weighted average which may not necessarily correct

the underlying noise in the stitching across the patches. This is avoided in

our algorithm as the regularization term penalizes only the non-affine trans-

formation and moreover adaptively caters to the various regions. We have

also outperformed both FFD [6] and Demons [7] when applied in isolation.

This further justifies the necessity of FFD-Demons synergism. Our method

also yields better results than a very recent method [23] aimed at performing

image registration of arbitrarily ordered input images by deriving a cost func-

tion which only depends on the transformation required to warp the moving
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image and is independent of the atlas.

Figure 7: Projection of the 3D view of VoxelMorph [21] output. See left image for XY
plane, right-top image for XZ plane and right-bottom image for YZ plane. Outputs show
heavy distortions. Zebrafish larval heads are displayed: on the left in dorsoventral view
(anterior to the top); on top right in sagittal view (right side to the bottom, ventral side to
the right); on bottom right in lateral view (anterior to the top, ventral side to the right).

We end this section with a discussion on possible use of deep learning

based VoxelMorph [21], [37] for this problem. As our dataset was extremely

limited and the ground truth warp fields were also not available, we employed

a transfer learning based approach in order to test our solution pipeline

against the state of the art unsupervised registration algorithm, VoxelMorph.

In order to apply this algorithm, the network was trained on a dataset of

brain MRI scans following which the dimensions and the distributions of our

dataset was made to match with those of the brain CT scans in order to use

the pretrained model weights.

Voxelmorph determines a registration field based on the moving volumes

of the brain CT scans and the weights are learned accordingly, rendering the
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solution to be completely unsupervised. The registration field computed over

the multiple epochs is applied on our moving volume to perform the global

as well as local alignment. However, the SSIM score of the registered volume

was 0.16 which is extremely poor and is evident from the registered output

shown in figure 7. This can be attributed to the fact that the anatomy of

a human brain is significantly different from that of a zebrafish larva owing

to which the registration field estimated for the human brain would not

serve as a good approximation for zebrafish larval images. Thus, we have

validated that even if we use transfer learning by means of a state of the

art unsupervised learning approach which outperforms most pipelines in all

cases, such a solution would not be viable in our case simply because of

the extreme scarcity of the number of training examples. Thus, the main

challenge lies in the dataset generation in case of zebrafish larval images

which is not widely available.

4.5. Robustness to Initialization

In this section, with the help of figure 8, we elucidate that the final

registered volume is not sensitive to the choice of the initial control points.

The nature of the solution is inherently adaptive owing to which the solution

is insensitive to the nature of initialization of the control points. Following

the global alignment, the localized registration is performed in which a mesh

of control points is used to model the underlying deformations which act

as parameters to the B-spline Free Form Deformation (FFD) function. The
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density of the control mesh increases in a coarse-to-fine fashion adaptively

in accordance with the underlying geometry. As the control points model

the deformations in the different regions of the zebrafish, they become inher-

ently adaptive. So, the algorithm in itself is handling the control points in

accordance with the underlying geometry without any manual intervention.

Two sets of control points are chosen and the corresponding final registered

volumes are shown. The values of SSIM and PSNR for the two registered

volumes are very much comparable.
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(a) An initial grid of control points.
(b) Final registered output SSIM = 0.9081, PSNR =
34.2014..

(c) An initial grid of control points.
(d) Final registered output SSIM = 0.9181, PSNR =
34.7784.

Figure 8: Different configurations of Control grid vs Final outputs (zebrafish larval head
is displayed in dorsoventral view, anterior to the top).
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Figure 9: The warped grid in XY(top row), YZ(middle row), XZ(middle row) planes after
FFD(left) & FFD-Demons(right) synergism.

4.6. Execution Time

The overall algorithm takes 20 minutes to complete on a workstation

equipped with Intel(R)Core(TM)i5 8th gen processor with a clock speed of

2.5GHz having 8GB of RAM and 1TB of hard disk space. The L-BFGS

optimization of the adaptive alignment takes 15 minutes to complete which

comprises of a total of 15 iterations divided into 3 sets of 5 iterations each.

The demons algorithm takes 100 iterations to compute the displacement

field which is performed in 4 minutes. The affine registration takes the least
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amount of time and is completed in approximately a minute in each of the

cases. All experiments were performed in MATLAB R2018A. In table 7, we

compare the execution times of several competing methods. The values show

that our solution, in addition to yielding most accurate adaptive registration,

is superior than [1], [2] and [23] in terms of execution times. Note that FFD

in [6] used NMI and that is why it is quite time-consuming. In this work, we

have applied FFD with SSD which has made it much faster.

Table 7: Execution Times of Various Competing Methods

Sl No. Algorithm Execution Time (min.)
1 Ours 20
2 EMBC [1] 30
3 ViBE-Z [2] 60
4 FFD [6] 15
5 Demons [7] 05
6 MSDIR [23] 120
6 ANTs [38] 05

5. Conclusion

One of the biggest challenges in the field of developmental neurology is the

integration of cellular and molecular (gene expression) information, reaching

a resolution sufficient to define single cells, or at least few cell diameters.

So far, this level of accuracy has been quite easily obtained in invertebrate

animals, but it is often hardly achievable in a vertebrate system. With the

advent of ViBE-Z [1], a software developed to automatically map gene ex-
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pression data to a 3D reference brain, this analysis could be extended to a

vertebrate system, the zebrafish (Danio rerio) larva. The applicability of

this software, however, requires multi-level accuracy, from signal quality to

precise sample mounting and imaging. Small deformations or rotations oc-

curring during sample preparation and acquisition, and even small variations

in the pose of the larva (e.g. open or closed mouth), may make raw data

inadequate for software elaboration. Sample processing and microscope set

up for each acquisition are time consuming steps, with intrinsic variables due

to different operators and laboratory standards. Moreover, each registration

failure not only prevents the analysis of a specific gene of interest, but it

also slows down the growth of a ViBE-Z-related database of key markers,

shareable among an international community of neurobiologists.

In this paper, we proposed an adaptive accurate registration for Zebrafish

larval images based on a synergistic combination of the FFD and the demons

algorithms. Our solution explicitly uses geometry and captures varying de-

grees of freedom in the underlying image volumes. FFD-Demons synergism

builds an effective combination of an attractive and a diffusive registration

model. The experimental results validate the superiority of our solution over

other approaches and also establish the necessity of each component in the

pipeline. In future, if a larger labeled dataset of zebrafish larval images is

made available or alternatively be synthesized, a deep learning based ap-

proach for further improving the solution can be explored.
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