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Summary

The increasing complexity of contemporary mobile and application-centric networks
is pushing traditional WAN architectures to its limit. Due to the rise of Cloud-
based services and Edge-computing, the inter-site data transfer volume in enterprise
networks is rising rapidly.Moreover, enterprises are tending to integrate several com-
munication technologies such as Broadband, LTE, MPLS, etc. for a high-available
dynamic WAN connectivity, which a traditional WAN doesn’t support natively.
Additionally, its distributed computing model results in the Control-plane traffic to
consume a significant amount of backhaul bandwidth. Software-Defined WAN (SD-
WAN) is a generation shift that adapts the centralized model of SDN to WAN that
fills the bottlenecks of its predecessor. It provides over twice the bandwidth having
the same backhaul1 with more managibility, autonomy, and security of the network.
In this article, we propose a hybrid routing model for multi-controller SD-WANs
that computes all-possible routes proactively and serve them on-demand. It results
in a rapid convergence across the edge devices. The article further discusses the syn-
chronization mechanism among several controllers and a testbed implementation to
conduct the experiments.
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1 INTRODUCTION

Telecommunication industries across the world are going through a massive transformation phase. With the increasing demand
for high-quality online content like streaming from "Over the Top" (OTT) platforms (e.g. Netflix, Amazon Prime, Youtube),
are driving the telcos to optimize their existing network architectures. Content Ditribution Network (CDN) that caches static
contents into a proxy server e.g. Point of Presence (PoP) enables various alternatives to reduce the delays. A clever and possibly
most widely used method is content-caching2, that keeps the response of most frequently requested contents and serves them
from local storage rather redirecting towards the origin. Research shows the use of a predictive approach may reduce the cache
overhead value per day up to a fraction (10% - 20%) of the cache size3.
Multi-acces Edge Computing (MEC)4 enhances the availability of cloud-service by distributing them into the edge, bringing

them closer to the mobile end users. MEC nodes host several virtualized services and attach them to a dedicated network called
the Backhaul network. SDN based backhauling enables a centralised control, which results control-plane functionalities such as
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Routing, Policying, etc. to execute as services. Unlike traditional distributed computing models where network devices synchro-
nise by exchanging control packets, SDN decouples the control plane, from the forwarding plane.? . Every network device sends
its local information to the controller to compute the forwarding logic. This results in a higher degree of autonomy and pro-
grammability in a network configuration, this includs rapid policy deployment, that collectively reduce the CapEx and OpEx.5.
A logically centralized cluster of remote servers (SDN-Controllers) hosts the control plane. The SDN controller interfaces with
applications and hardware switches via the North-Bound (NBI) and South-Bound (SBI) interfaces respectively. The communi-
cation method for NBI is typically RESTFul, where the SBI uses Openflow. Applications send generic RESTful configuration
requests to the controller defined by a policy, which then gets translated in device-specific configuration and injected into the
devices. Therefore, SDN-controllers play a principal role in abstracting the granularity of the network infrastructure and ease
the configuration for application developers.
With the introduction of Network Function Virtualization (NFV), it is now possible to virtualize network functions (VNF)

and to host them in a remote compute platform (e.g. Cloud, Remote servers etc.). However, not all network functions such
as Radio, Sensor, etc. can be virtualized. For instance, Virtualized appliances like routers (e.g. Cisco CSR, HP VSR, Juniper
vEX, Quagga, etc.), switches (e.g. Cisco Nexus-9k, 10k, HP Flex-Fabric, Cumulus, etc.), and firewalls (e.g. Cisco ASAv, PF-
Sense, etc.) are a pretty common sight in production networks.6. The Orchestrator program manages o the VNFs in a MEC
environment, such as optimal placement, resource allocation, and provisioning.7. A challenge in SDN-MEC based design of
CDN is to optimize the forwarding traffic. SDN offers a birds-eye view of the network, which eases the traffic control by taking
forwarding decisions at the control plane. The high-level traffic management also leverages optimal connectivity under mobility
conditions, using efficient ad-hoc routing techniques. Reactive routing is a type of ad-hoc routing process that discovers routes
on-demand, whereas proactive routing discovers routes before applying them. SDN is also effective for hardware independence.
For a mobile ad-hoc network in a simulated LTE test-bed, the SDN-NFV approach demonstrates better agility for high volume
data than of a non-SDN based one, which stands superior in large-signal load.8.
Although SDN offers a wide range of benefits over traditional network models, it falls short in implementational acceptance.

Giant-sized network infrastructure owners such as service providers, data Centers, and telcos are reluctant to scrap all their
existing non-SDN-compliant forwarding hardware for the sake of enjoying the SDN benefits1. The primary reasons are first,
the cost of re-investment over the expected profit from service quality escalation, and second, the resource spending to retrain
for a smooth operational transition. This results in the Overlay-SDN model (initially introduced by VMWare through their NSX
platform9), which cancels the need to replace the Data-plane devices, rather creating a virtual overlay network that connects
it to the control plane. The overlay tunnels enable the edge devices, i.e. routers and layer 3 switches, to communicate with
the controller using the Internet as a fabric. The control plane gets segregated, as the global controls reside to the remote-
orchestrator, whereas the device-specific controls stay in the edge devices. The resultant architecture is called Software-defined
WAN or SD-WAN10 11. In SD-WAN architecture, the orchestrator hosts the application plane and interacts with the controller
cluster. Application plane performs network operations like routing and sends generic results to the controller. The controller
then translates it to device-specific commands and pushes it to the downstream edge nodes. Cisco uses Overlay Management
Protocol (OMP)12 and Citrix uses Adaptive Transport Protocol13 for this purpose.
SD-WAN architecture leverages the centralised routing model where edge-devices do not exchange control information,

rather they update the central controller. Routing as a part of the Layer-3 operations executes within the controller. This surfaces
a fundamental problem in adapting traditional routing protocols such as OSPF14 and EIGRP15 which are inherently distributed
in nature. This opens up a new dimension in the routing protocol design philosophy that aims to compute routes from a cen-
tralised perspective. This is not to be misinterpreted by drawing parallel to some of the centralised mechanism in traditional
routing such as Designated Routers in OSPF, Route-Reflector in BGP, Root-Brige in Spanning Tree protocol or Next-hop Server
in DMVPN. In all the mentioned cases, the central node’s job is to collect and distribute information network information, the
ultimate computation is done on the nodes in a distributed fashion. SDWAN Routing on the other hand calculates routes on
an aggregates topology that is build by fusing information from individual edge nodes, and configure the routing tables to the
edge. This paper presents a centralised rapid-convergence routing algorithm (MRoute) for SD-WAN16 17 that proactively finds
all-possible paths for all pairs of nodes, rank them and updates rank over time and serve routes on-demand.Furthermore, a
multi-controller implementation MRoute is also presented. Runtime performance compared with OSPF and EIGRP emulating
them on a SDN testbed that comprises18 IaaS Cloud, Opendaylight19 as the controller, and Mininet20 as the forwarding plane.
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1.1 Contributions & Organization
In this research, we have further proposed a solution to some key issues of SD-WAN with CDN as a test case scenario.

1. A model of sharing routing information in a multi-controller SD-WAN.

2. A hybrid routing algorithm that proactively calculates all-possible paths between all pair of nodes and reactively server
them on demand.

3. An SD-WAN test-bed to implement, experiment and benchmark the proposed model.

The remainder of the paper is organised as follows, Section II gives an overview of the related works in this context, Section III
discusses the mathematical modeling and the convergence of the proposed algorithm. section IV devises the MRoute algorithm,
that calculates all-possible paths for all-pair of nodes, and proposes an space-efficient data-structure to maintain and allow
dynamic ranking of routes. Section V addresses the update mechanism among several controllers. We conclude by section VI
that covers experimental setup and results.

2 RELATED WORKS

In the recent past, several studies have shown their interest in the area of performance optimization of mobile networks within
the perimeter of SDN. Management and Orchestration (MANO) projects such as Cloud Band21 22, OpenMano23, etc. lack the
presence of distributed management24.On the other hand, The research on a route optimization has become versatile, e.g. a
Broker based routing on the SDN controller, a hierarchical controller design that can optimize the traffic up to 50% than a
non-hierarchical one.25.

Egilmez Et.al. in26, presents an Inter-Domain Routing algorithm over an open-flow networks using (i) topology aggregation
and Link summarization, (ii) flow-based end-to-end QOS provision over multi-domain networks. The authors uses optimization
based on Lagrange Relaxation Algorithm (LRA) to find the best n-level QoS route. The article27, introduces tenant isolation
and flows prioritization using spanning tree to generate routes. the author presents an improved version of LRA with a heuristic
technique called "Min-cost QoS routing algorithm (MCQRA)", the is limited to operate in a single controller environment. The
authors in28, proposed an intelligent CDN-SDN architecture, that uses an Intelligent Center (IC) on top of the SDN controller.
SDN controllers relay the topology, delay, and traffic information into the IC, which response to the SDN controllers with
selected path. The controller then writes it onto the forwarding devices. The centralized nature of this approach suffers from
the risk of Single-point-of-failure and can also face performance degradation while scaling the control plane.

A multi-controller flow scheduling scheme is also proposed in29 that uses a Flat-Tree architecture over a single/multi-
controller platform. It uses a fixed number of switches to create pods for intercommunication between the switches. Since the
controllers coordinate via the pods instead of having dedicated networks, with high hand-off probability, the inter- controller
communication traffic would share the switch-to-switch communication.

A multi-domain mobility management scheme30 is also proposed with a reactive controller co-ordination approach where
a controller only communicates with the neighbors when users migrate and results in increased traffic due to a frequent han-
dover scenario. In our previous work, an efficient resource provisioning scheme over MEC is proposed that avoids deadlock
condition31, an efficient content-caching algorithm is introduced that uses MEC collaboration. To minimize traffic load among
MEC instances and a Routing algorithm32 which makes use of Node and Link costs to find best-path over an SDN, we devised
STEN 33 for this purpose, which has also used to cater rapid-convergence in a network with high resource-variance, SDN-SIM34

Apart from the route optimization, security, and incorporation of machine learning also leverage the centralized-control model
of SDN. Qian et. al. proposed ReFeR35, a flow monitoring system for preventing Distributed Denial of Service (DDoS) attacks
in SDN. Zhang36 et.al. proposed a collaborative architecture in the Edge for performing AI-intensive tasks by offloading them
on-demand.
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3 SYSTEM ARCHITECTURE & MATHEMATICAL MODEL

3.1 Use-Case Architecture

FIGURE 1 A use-case model of CDN implemented over an SD-WAN

Figure 1 depicts a proposed system architecture of a CDN implementation over SD-WAN infrastructure. The Data plane
(Edge), constitutes two groups of servers, first, that originates the traffic, such as a Point-of-present (PoP) and a CDN infras-
tructure and second, that hosts the consumers. Controllers that managers the producer side optimizes the egress traffic, whereas
the same for consumer plane optimizes the ingress one. An overlay network logically segregates the producer and consumer
plane, maintaining connectivity with respective edge devices. The edge devices must manage any mobility management such
as handover. The consumer side data-plane segments its user-base into several zones to facilitate hierarchical routing. Inter-
zonal communication takes place via the controller. However, technology like Dynamic Multi-point VPN (DMVPN phase-3)
can provide site-to-site on-demand connectivity with summarised routes.

3.2 System Model
Each controller aggregates partial topology information from downstream edge routes in a link-state manner and generates a
topology graph. Each controller shares full topology information to its direct neighbors and summarises any topology informa-
tion while being a transit; this is a Distance Vector approach. The process limits the size of the all-pair shortest path three by
pruning those prefixes which are reachable via a neighbor. Generally, all routing protocols follow a 4 step process in execution.
First, neighbor discovery, next Topology synchronization, followed by shortest-path finding, and finally, when the routing table
converges, it stays idle in control-plane until a primary route fails and a re-convergence is needed. We assume the controller and
edge network topology is unvarying. The following steps describe the process in detail

3.2.1 Phase 1 : Neighbour Discovery
Controllers create end-to-end tunnels to form adjacencies. Although, in the production network, each edge server registers
themselves to a policy server and gets tunnel parameters for establishing a 2-way communication. However, for the sake of
simplicity, we opt for simple GRE tunnels between the controllers. In other words, our neighbourship is static, given, it can also
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provision dynamic too. Every controller maintains a neighbor-table to keep track of the neighbors’ activity. Figure 2 shows a
sample topology of a controller network with flow vectors after the neighbor discovery.

FIGURE 2 Flow vectors after the neighbor discovery

3.2.2 Phase 2: Initial Controlled Advertisement
In traditional routing protocols like RIPv237, OSPFv214, and EIGRP15 that exchanges control packets using multicast and
unicast methods, SD-WAN thoroughly depends on overlay networking, where point-to-point or Point-to-multipoint VPN tunnels
connects the Edge devices to the controllers. Each controller CONi generates a topology Gi(Vi, Ei) for its underlying edge
network, where Vi Ei are the edge routers and links set respectively. CONi computes the topology matrix Ci = [V 2

i ] ∋
{ci,j|i, j ∈ Vi}, member of which are set of possible costs between a pair of nodes. For static neighbourship, the neighbour
database populates entries with indefinite aging time, while adding neighbours. Whereas, for dynamic neighbour discovery, a
pair of neighbours connects on demand and removes any tunnel that ages above a limit (typically 2 hours). any CONi only
advertises its full Ci to its direct neighbours, ∀CONj ∈  (CONi) only. When a controller acts as a transit node i.e. forwarding
its neighbours cost matrix to another neighbour, it only sends list of reachable networks prefix.

3.2.3 Phase 3: Vertex set augmentation
After the neighbor discovery and initial advertisement, all controllers become aware of their neighbors’ topology and networks
accessible by non-neighbor controllers. TheVertex-Set Augmentation (VSA) process augments the producer side, that comprises
of origin servers from the consumer side, that hosts end-users. The segregation enables easy policy maintenance, especially for
QoS and PBR (Policy-Based Routing). Next, each controller also dynamically changes routes between networks based on the
load profile of intermediate routers. A load profile of an edge-routerLoad(Ri), measures its instantaneous processing load (CPU
and Memory) and communication load (Bandwidth Utilization and Congestion) parameters. A router which is heavily loaded,
maintains a longer service queue, this results delay in packet processing. In this phase the controller ranks routers based on their
load. We reuse the load calculation model from STEN33, one of our former work.
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FIGURE 3 Complete process of computing all-paths for all-pair of nodes. First MRoute generates Route Trees Ts,d for all pair of
vertices that results route forest RFi for every controller Ci. Next, FSM compresses RFi preserving the path information using
RouteID and Finally Full mesh graph ( , ) is generated that maps RouteIDs into Edge-set  .
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3.2.4 Phase 4: Route Calculation
A controller computes a full-mesh graph (V , ) from the topology underlying networks topology G(V ,E) to maintain the
database of all possible paths between all-pair of nodes. It tags the paths with an unique RouteID. The process starts with a
controllerCi computing aRoute ForestRFi, that comprises of severalRoute Tree Ts,d which constitutes all possible paths between
vs, vd ∈ V . RFi is a ternary tree data structure, thus having a high space complexity. Moreover, we assume the underlying
network topology is not dynamic, thus once computed, RFi serves no purpose of maintaining as no update is expected. An
efficient way to preserve RFi is by turning it into a Finite State Machine (FSM). RouterID all paths of all trees in RFi. Each
ID associates a binary cost vector V CB ∈ {0, 1}|E|, where V CB[i] = 1 if the path in Ts,d corresponding to the ID covers the
edge ei ∈ E. The record (routeID,V CB) represents each possible path uniquely, as V CB holds the relevant edges, it is used to
compute instantaneous cost when any metric parameters (Bandwidth, Delay, CPU load, etc.) changes.
The FSM is |V | states and |E| bidirectional transition functions �(i, j) and the RouteID is used as input symbols. All states

in the FSM is set as final and initial, this allows to start transition from any arbitrary state. With a given RouteID and an initial
state, the complete path can be realised by recursive transition on the SMF, keeping the ID same at each iteration.
Finally, the full-mesh graph (V , ) is generated by aggregating all RouteIDs of Ts,d and mapped as es,d ∈  . Thus, The FSM

stores the node-sequence for every path and G stores Route ID mapping. This brings the storage complexity to O(|V |

2) as both
the FSM and  are graphs of |V | nodes, and it’s trivial to represent graphs in their matrix form withO(n2) space. These matrices
are exchanged during database synchronisation between controllers, immediate neighbours exchange full matrix so each con-
troller can aggregate its topology to its neighbours. However while being as a transit controller, it suppresses majority of details
and only advertises Router IDs learnt from a remote controller. The primary reason being the efficient space management.
Figure 3 depicts the complete process of controllers generating full mesh graph from their underlying topology.

4 COMPUTING ALL-POSSIBLE PATHS

4.1 The MRoute Algorithm
Controllers run MRoute (Algorithm 1) for their underlying network topology to compute all-possible paths between all-pairs of
vertices. The algorithm takes a graph G(V ,E) ,a pair of vertices vs, vd ∈ V and returns a Route-Tree Ts,d . Every root-to-leaf
traversal of Ts,d is a possible path between vs and vd . Figure 4 depicts the generation of Route-Tree T1,3 with reference to the
topology shown in Figure 2.
Figure 4 shows route tree corresponding to R1,3. The algorithm uses backtracking principle to enumerate all possible routes

between source and destination vertices, in this context, (v1, v3).The following explains the working principle of MRoute.

• Initialization: The process initiates by crating an n-ary tree data structure, keeping vd as root

• Recursion: Every intermediate node vk ∉ {vs, vd} adds its adjacent nodes ADJ (vk) as its children, if they are not in its
ancestors ANSC(vk) i.e. Cℎildren(vk) = ADJ (vk) −ANSC(vk). In this case,if Cℎildren(vk) ≠ � the tree grows, thus
we refer it as The Growth-phase.

• Termination: The recursion terminates if any of the following condition hold.

1. Added child is the source vertex, This case we refer to as Successful Termination

2. All adjacent vertices appear as ancestor i.e. cℎildren(vk) = �, this case we refer to as Unsuccessful Termination

• Optimisation: All decedents leading to a leaf that it not the source vertex, is pruned to optimise the space of the tree. This
is referred to as The Shrink-Phase
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FIGURE 4 RouteTree generated by MRoute w.r.t. for r1,3

• Result: A traversal from all leaves to root, gives a set of all possible path between the source and destination vertices,
Equation 1.

ID1 ∶ n1 → n3
ID2 ∶ n1 → n2 → n3
ID3 ∶ n1 → n2 → n4 → n3
ID4 ∶ n1 → n2 → n4 → n5 → n3
ID5 ∶ n1 → n2 → n4 → n6 → n5 → n3

(1)

4.1.1 Route Tree
Let, Ts,d , is termed as RouteTree (RT) be an m-way search tree represents all possible paths between vs, vd ∈ V , that must hold
the following properties

1. The destination vertex vd is placed at the root

2. All the leaves are identical i.e. the source vertex vs

3. Every branch (vi, vj)in Ts,d has positive weight associated called Normalised Cost NCOST , and it is calculated from
Rank function. The Rank value varies over time, depending on the the instantaneous load on the CPU and memory.

4. For any intermediate vertex vk, the functions ANSC(Vk) and DESC(Vk) returns the respective ancestors and descen-
dants. The condition ANSC(Vk) ∩DESC(Vk) = � must satisfy during each recursion for preventing routing loops. The
recursion terminates when all adjacent vertices of vk move to the ANSC(vk).
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Algorithm 1 MRoute
Purpose: Finds all possible paths between (vs, vd) ∈ V 2

Local Input: vk, vs, vd ∈ V
Global Input: ADJ : The adjacency matrix,NCOST : Normalised cost matrix
Output: Ts,d : Route-Tree for vs, vd
Data Structure: n-ary tree
Implementation: Dynamic array, Implicit Stack
Strategy: Recursive, Backtracking
if root = � then 

// Successful termination

        root ← vk 
vk = vi 

      Return ST
// Unvisited children

Ck ← {ADJ (vk) − ANS(vk)} 

if Ck = � then   

// Non-Preceding Successors

// Unsuccessful Termination

Return UT
for vi ∈ Ck do 

Update_Ancestors()
MRoute(vi, vs, vd )   // Recurence

4.2 Cost Calculation and Ranking
MRoute returns a set of paths between vs, vd , which is then ordered by ranking the paths. The rank of the a path is determined
by its cumulative link load (L) that uses CPU and Memory utilization as parameter, and node cost (C) that is determined by the
Bandwidth and Delay . Equation 2 formally presents the Rank function.

Rank(pk ∈ rs,d) =wn

∑

i∈n(pk)
Ci +we

∑

(i,j)∈e(pk)
L(i,j)

Such That, rs,d ∶ All paths between vs and vd , from MRoute
n(pk) ∶ set of nodes at path pk
e(pk) ∶ set of edges ar path pk
Ci = wcUCi +wmUMi ∶ cost of node vi ∈ n(pk)
Li,j = wdDLYi,j∕wbBWi,j ∶ Load of the link ei,j ∈ e(pk)
UCi, UMi ∶ CPU and Memory utilization of vi ∈ Pk
BWi, DLYi ∶ Bandwidth and Delay ei,j ∈ Pk
wn, we, wc , wm, wd , wb ∶ weighing parameters
wn +we = 0.5
wc +wm = 0.5
wb +wd = 0.5

(2)

Node costs i.e. CPU, memory utilization and Link load i.e. Bandwidth, delay varies over time which alters the rank accordingly.
Route with lowest rank offers a path having higher cumulative bandwidth and lower delay with less utilised nodes. The route
selection is not only depending on the link’s condition but also the load of the underlying controller, also a heavily loaded
controller is given less priority despite being in a relatively light traffic route over a lightly loaded controller hence providing
Flexible load balancing.

if                 then 
// Initialization
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4.3 Complexity Analysis
Lemma 1. MRoute is Deterministic and Loop-Free

Proof. The proof is two part, we will first show that the algorithm is loop-free, which will lead us to prove it is deterministic.
Also, properties mentioned in Section III(A.5) is referred in this proof.
MRoute selects Children Ck of an non-leaf vertex vk by filtering them with ADJ (vk) − ANSC(vk). Therefore, any internal
vertex vi if visited by a branch, can’t be a part of the descendant. Hence it satisfies property 4, ANSC(vk) ∩DESC(Vk).
Since, the algorithm is loop free, thus maximum depth the tree can recur is the diameter (d) of G(V ,E). Since 1 ≤ d ≤ |V |,
the recursive process has a deterministic termination.

Lemma 2. MRoute is NP-hard and Traceable

Proof. We first prove the recurrence relation corresponding to the algorithm gives an exponential class, then reduce it into
Satisfiability problem to prove it is NP-hard and Traceable.
Let us assume the average branching factor for Ts,d be b̄which equal to the mean degree ofG(V ,E). The algorithm takesO(1)

time to fetch ADJ (vk) and O(logb|V |) for ANSC(Vk). With Memoization, these calls can be made fixed through the run-time.
Recursion is then invoked as many as b̄ therefore,

T (n) =

⎧

⎪

⎨

⎪

⎩

0 if n = 1,
1 if n = 2
b̄T (n − 1) + logb̄|V | otherwise

⎫

⎪

⎬

⎪

⎭

(3)

Using Master theorem38, it can be shown that T (n) = O(b̄nlogb̄|V |).
To prove the reduction, we’ll use an intuitive approach. Since |E| is finite, and G is connected, there exists a path Patℎ(i, j)
between all pair of vertices vi, vj . Therefore a path Patℎ(i, j) = {e ∈ E} ⊆ 2E .Every path can be encoded into a binary string of
length |E|, setting 1s to all member edges and 0s otherwise. Hence, it reduces to an n−SAT problem where n = |E|. Therefore
MRoute is NP-Hard.
Finally, Lemma 1 also proves the algorithm is deterministic, hence it is traceable.

5 SYNCHRONIZATION OF TOPOLOGY BETWEEN CONTROLLERS

The previous section discusses the working principal of MRoute that generates all possible pats between all pair of vertices.
The source and destination vertices belong to the producer and consumer class respectively. This calculation is done by an SDN
controller for its local network. Controllers, then share this information to it’s neighbours. In a large distributed SDN network,
this process may cause an overflow of controllers’ memory. However, routes learned from remote controllers is only significant
to routers with close proximity. Therefore, we propose that the advertisement of locally learned routes, is restricted to the
neighbouring controllers, and only the best path is advertised further. This results a limited flooding in the controller-network
and prevents overflow of controllers’ routing table.
Figure 5 depicts the controlled advertising of local routes across a distributed SDN. The user belongs to a consumer network

controller by C1, thus the full routing information is only advertised to C1’s neighbours i.e. C2, C3. based on proximity, the SDN
is therefore partitioned into adjacent Areas. In General, Areak advertises full routing information with Areak+1, Areak−1 and
Advertises only the best route learned from Areak−1 to Areak+1 and vice-versa.
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FIGURE 5 Controller network of distributed SDN

6 IMPLEMENTATION AND RESULTS

This section discusses the test-bed implementation followed by the methodology, used in for the experiments. A detailed
description which may be used for reconstruction of the test bed is made publicly available to Github, ShellMon Sock 39 is the
the monitoring agents that fetches realtime network parameters, MRRF 40 runs MRoute and SO-KDN 41 is the communication
protocol between the simulator and the custom management script.

6.1 Benchmarking
Figure 7 depicts the test-bed architecture and workflow. various open-source tools are used to develop the test-bed, Table 1 lists
them with their purpose and brief description of usage. The workflow of the test-bed is as follows.
The test-bed runs a Python script that uses Mininet API to interact and build topology in the Mininet-Server. A series of

test-cases of four topology configurations (i.e. Linear, Regular, Tree and Mesh) with increasing number of nodes [0 − 100] is
fed into the emulator. Mininet talks a controller-cluster with Openflow, and the cotrollers discover their downstream topology
and feed back openflow rules to the respective switches. Openflow rules are generated by translating the routes calculated by
the routing engine. The script then stat disconnecting random links [0 − 10000], from the topology which invokes network re-
convergence. Eventually, Switches contacts their upstream controller for a new rule. The controller contacts the routing-engine
for a new route. In case of the proposed model, routes are pre-computed and ranked. This diminishes the the need of entering
into the convergence process, rather it gives the next best route on demand. The rapid-convergence feature of MRoute give it an
edge over its competitors. During the process a number of parameters (listed in the next section) are collected which are further
used for comparison and benchmarking.
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FIGURE 6 Workflow of the proposed test-bed

Tool Purpose Description

Mininet Open-source SDN simulator Simulates SDN
Python API to automate network creation node and link state manipulation

Opendaylight Opensource SDN Controller Interfaces with SDN network, simulated with Mininet with Openflow 1.3
Provides topology and flow table information using RESTful API

MySQL Opensource Database Stores Node and link states varying over time

Python Main Programming Language Automation of SDN
Implementation of MRoute Algorithm and various interfaces with ODL and MySQL server

TABLE 1 Lists of open-source tools used to develop the test-bed

6.2 Comparative Parameters
The experiment aims to compare MRoute against OSPF and EIGRP considering their wide acceptance in the enterprise networks
with their respective classes classes i.e. Link-state and Advanced Distance Vector routing. The experiment simulates OSPF
and EIGRP at the control plane by using their underlying algorithms i.e. SPF and DUAL respectively and comparing with the
proposed algorithm. The comparison benchmarks MRoute in six parameters namely,

1. Discovery Time: How long on average the algorithm takes to calculate all-routes for all-pairs. Analytically MRoute is an
NP-Hard problem, therefore the time complexity is exponential, however for SPF and DUAL its O(n2).

2. Convergence Time: How long on average the algorithm take to calculate an alternative path if the primary path fails.
Since, MRoute proactively pre-calculates all possible routes and maintain their dynamic rank, it’s always guaranteed that
until there is at least one valid route, the controller will reinforce it to the network instantly. As a result the network will
converge in a constant order time.

3. Communication cost for Discovery: Routing protocols use distributed computingmodels, to discover andmonitor neigh-
bours they use "Hello" protocol over Multicast. The number of control packets in MRoute is always constant as all Edge
device sends their local information to the controller using a tunnel, therefore it is independent of the network diameter

4. Communication cost for Convergence: MRoute is free from re-routing, as any time a re-routing request comes, the
controller returns the next best active route. Thus, no control messaging is needed.

5. Space Consumption: The amount of memory needed to maintain the topology information including all the data
structures and look-up tables.



ghosh ET AL 13

FIGURE 7 Deployment diagram of the experiment

6. Route Tree size: The algorithm is inherently exponential yet deterministic. During the grow phase, the tree adds children
and removes the invalid paths during the shrink phase. The growth of tree size is also tested to examine the temporal space
complexity of the n-ary tree data structure.

6.3 Experiment Setup
Figure 7 depicts the detailed setup of experiment and implementation of the test-bed, the workflow is denoted by the numbered
events. The test-bed comprises of a number of virtual machines designated for the Minitet and OpenDaylight instances, they
share a common network segment provided by the hypervisor. A set of network topology configurations is listed in the test-
case database which are pushed into the Mininet instance. One Iteration comprises of five phases that terminates with a report
summarising parameters, listed in the previous section. Each topology configuration creates 3 OpenFlow LAN networks, each
represents an edge segment and designated to a specific controller from the Controller-Cluster. Opendaylight (ODL) controllers
listen to their respective TCP port 6633 with which the Open V-Switches (OVS) corresponding to their downstream topologies
establish an OpenFlow data-link. Each controller maintains its downstream topology map and flow-tables and exposes them
usingRESTConfAPI to the northbound using TCP port 8181. Topologies Flow-tables from individual Controller is accumulated
by the Data-Collector module in the application plane which is then fused into a global topology (as described in Figure 3).
The routing algorithm module executes SPF, DUAL and MRoute on the topology and returns benchmark information to the
Data-Analyser, which finally formats the comparison information in a CSV file and streames it to the Reporting module. For
the test purpose and due to recourse constrain we limit the benchmarking with 3-Controller (each with 4-vCPUs & 4GB RAM)
configuration; however, the same process is scalable to a larger configuration with adequate resource given. A clarification for
the readers’ comprehension on Controller-Cluster, The cluster configuration does not yield a controller aggregation (e.g. Akka
clustering) rather a collection of multiple autonomous controllers.
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FIGURE 8 Experimental Results and Comparison MRoute against SPF and DUAL using the following parameters (A)Time
Consumption to computing paths, (B) Time consumption to converge, (C) Control traffic for topology synchronization, (D)
Space consumption for topology maintenance (E) Control traffic for convergence, (F) Route-Tree size .

6.4 Analysis of Results
The comparative analysis betweenMRoute, DUAL and SPF (Figure 8 ) benchmarks algorithms using six parameters as discussed
in Section 6.2., In this section we present a comprehensive explanation to the results. Subplot 8(A) compares the time complexity
with respect to the size of the network, outcomes are plotted in log-scale therefore MRoute shows an exponential growth, as
shown in Lemma 2; in comparison, DUAL and SPF which are bounded above by O(n2). Due to the Diffusion-Computation
model and the presence of Feasible-Successor, DUAL goes less deep into the convergence state than of SPF. We tuned the SPF
to run on each down-stream topology in parallel, simulating a multi-area OSPF network. Although, it seems initially that DUAL
is the optimum than its competitors, however the way these algorithms work in SD-WAN, flips the perception. MRoute calculates
all possible paths in advance, therefore in the long run if the topology remains unaltered, it would never enter a re-convergence
process, which is not the case of the rest two. This situation is shown in the subplot 8(B), where the random link failure scenario
(Section 6.1) causes SPF to re-converge every time, DUAL shows a better result as in some of the cases feasible-successor exists
or a neighbour replies with route much before the query reaches the network boundary. However, MRoute shows a constant
reading here as it is a O(1) task that requires a fixed number of operation involving querying and getting reply for the next best
route. The process can be thought as a generalised case of DUAL where all backup routes are ranked and listed.
The communication complexity measures the number of packets exchanged between the nodes while discovering or converg-

ing into the network. In case of SPF andDUAL, the algorithms are inherently distributed, therefore the local routes are advertised,
Queried during re-convergence and polled for their liveliness using Reliable Updates and Hello protocols respectively. Since
OSPF uses Link-state model, the total packet exchanged is higher than that of Distance-vector based EIGRP. MRoute is designed
as a centralised routing algorithm, therefore it does not exchange any discovery or update messages with other nodes, rather it
updates only the controller which is logically one hop away, This justifies the subplot 8(C,E).
The State-Model representation of the Route-forest reduces the space consumption of MRoute drastically by tagging routes

as a fixed length binary vector of edges with RouteID. However, while generating the Route-Tree, it consumes memory in an
exponential rate, although the pruning phase releases some memory but the overall growth remains exponential. It is only after
the complete forest is generated the state model gets built which compresses them into tables and relinquishes the memory
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(subplot 8(F)). Space complexity of MRoute sits between SPF and DUAL as OSPF maintains identical link-state database for all
nodes and EIGRP topology tables lists the Successor and Feasible successors for each destination prefix depicted in subplot 8(F).

7 CONCLUSION

This paper proposes a routing algorithm MRoute for constrained SD-WAN, that converges in constant time. Also, it proposes an
advertisement model for inter-controller synchronization of locally routes . Using Branch-and-Bound scheme, MRoute computes
all possible paths between all pair of nodes, ranks them and feeds back with the optimal one on demand. Further, a finite-state
model is also proposed to reduce the space complexity and routing table formation. A multi-objective comparison with SPF and
DUAL algorithm is also given to verify the acclaimed mathematical models.
An extension to this algorithm, with self-learning capability using Deep Reinforcement Learning, for determining reliability

of routes is under development.
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