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Abstract – Analytic epidemiology is a transdisciplinary 

study on the cognitive, theoretical, and mathematical models of 

COVID-19 and other contagious diseases. It is recognized that 

analytic epidemiology may be better studied by big data 

explorations at the macro level rather than merely biological 

analyses at the micro level in order to not loss the forest for the 

trees. This paper presents a basic research on analytic 

epidemiology underpinned by sciences of cognition, computer, 

big data, information, AI, mathematics, epidemiology, and 

systems. It introduces a novel Causal Probability Theory (CPT) 

for explaining the Dynamic Pandemic Transmission Model 

(DPTM) of analytic epidemiology. It reveals how the 

fundamental reproductive rate (R0) may be rigorously calibrated 

based on big data of COVID-19. A theoretical framework of 

analytic epidemiology is developed to elaborating the insights 

of pandemic mechanisms in general and COVID-19 in 

particular. Robust and accurate predictions on key attributes of 

COVID-19, including R0(t), forecasted infectives/resources, and 

the expected date of pandemic termination, are derived via 

rigorous experiments on worldwide big data of epidemiology. 
 

Keywords – Analytic epidemiology, COVID-19, cognitive 

pandemic models, R0, infectious transmission models, cognitive 

informatics, cognitive algorithms, big data experiments  

 

 

I. INTRODUCTION 

 

The worldwide outbreaks of COVID-19 [22] and other 

contemporary contagious diseases [12, 14] have triggered a 

wide scope of transdisciplinary studies on epidemiology 

towards their systematical treatments, control, prediction, 

prevention, management, and decision optimization [5, 8, 22, 

24]. The multidisciplinary investigations into the COVID-19 

pandemic have led to the emergence of analytic epidemiology 

underpinned not only by epidemiology, biology, and medical 

sciences, but also by computer, big data, information, AI, 

system sciences as well as mathematics, sociology, and 

economics. 
 

A fundamental challenge to analytic epistemology in 

general and COVID-19 in particular is the lack of cognitive 

informatics and mathematical models for pandemic monitoring 

and prediction in order to support rational and optimal decision 

making at different levels of communities, nations, and the 

world. The traditional mathematical models of epidemiology 

have been mainly based on probability theory, statistics, 

Bayesian networks, and differential equations [3, 4, 7, 13, 14, 

20]. There are three classical models known as the Susceptible-

Infective-Susceptible (SIS) model, the Susceptible-Infective-

Recovery (SIR) model, and the Susceptible-Infective-

Recovery-Susceptible (SIRS) model [3, 9]. In which the 

populations in different epidemiological categories as variables 

over time are identified in the classes of susceptible (S, not yet 

infected), infective (I, infected and transmissive), and recovered 

(R, removed from both classes of S and I with immunity), 

respectively. However, big data of COVID-19 collected 

worldwide [22] do not fit the classic pandemic models very 

well.          
 

The second challenge to analytic epistemology is that 

current pandemic models for contagious disease predication and 

estimation were based on classic probability theories [6, 11, 18, 

19]. Hence, perceptions on the transmission mechanisms of 

epidemiology have been based on two biased assumption that 

the prior probabilities of contagious infections and 

transmissions are known and invariant [6, 22]. However, it is 

observed recently that, in general, the sample space of pandemic 

probability is not invariant as conventionally perceived [19, 20]. 

Therefore, both preconditional assumptions were untrue 

because none of them may be fulfilled due to the exponential 



 

growth of the sample spaces of the affected population in 

COVID-19.  

 

In epidemiology, the agents transmitting infectious diseases 

to the hosts (human and/or animals) may be categorized into 

four categories including virus, bacteria, protozoa, and 

helminths [14, 22]. The COVOD-19 agent is recognized as a 

kind of new corona virus that is highly infectious with a 

potentially high mortality rate among the infected hosts [22]. 

There is a lack of practically available and dedicated pandemic 

decision-making system. The popular COVID-19 Dashboard at 

Johns Hopkins University has no function for autonomous 

decision making, rapid prediction, and early alarms [10]. 

Further, this type of online systems is not a real-time system and 

therefore do not support rapid decision making. The third 

constraint is that the exiting pandemic information systems in 

other countries cannot be directly migrated to Canada because 

both policies and data collection formats are different.  

  

This paper presents a basic research on the cognitive and 

mathematical foundations of analytic epidemiology for 

explaining the insights of epidemiology and COVID-19 

underpinned by the causal probability theory, big data algebra 

[20], and causal inference algebra [17]. Section II explores the 

domain of analytic epidemiology and its cognitive models. 

Section III creates a set of mathematical models for enabling 

rigorous pandemic analyses and forecasts. A set of experiments 

on epidemiological predictions is demonstrated in Section IV 

based on the analytic epidemiology theory and cognitive 

algorithms for causal probability elicitation from worldwide 

pandemic big data. 

 

II. THE COGNITIVE FOUNDATIONS OF 

EPIDEMIOLOGY 

 

This section explores the domain of analytic epidemiology 

in order to understand its universe of discourse and essential 

control attributes. It leads to the cognitive models of COVID-19 

and the calibration of fundamental attributes of epidemiology 

via big data analytics.          

   

2.1  The Domain of Analytic Epidemiology and Control 

Attributes   

  

Definition 1. Analytic epidemiology is a transdisciplinary 

field for contagious diseases and outbreaks detection, treatment, 

prediction, and optimal decision making underpinned by 

sciences of epidemiology, computer, big data, information, 

cognition, AI, mathematics, sociology, and systems. 

The domain of analytic epidemiology encompasses a 

comprehensive set of pandemic attributes and variables, 

particularly those of COVID-19 epidemiology [1, 2, 9, 13, 22], 

which may be formally described as follows.            

 

 Definition 2. The universe of discourse U of analytic 

epistemology in a size N population is a relatively conservative 

(constrained) system encompassing five disjoint sets of 

susceptibles NS, infectives NI, immunized NM, recovered NR, 

dead ND, and hospitalized NH classes, as well as the numbers of 

normal birth NB and death ND’: 
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where 
'( ) ( )B DN t N t , in a relatively short period. Four statistical 

attributes are adopted as: a)  the average daily contact rate; b) 

 the average daily recovery (removal) rate; c)  the average 

death rate; and d)  the average number of adequate contacts 

by an infective per day. 

  

 The attributes of U in three sample countries, i.e., Canada, 

USA, and China, are listed in Table 1 with data collected from 

WHO [22, 24] up to July 11, 2020, which provide an overview 

of basic COVID-19 attributes. Data for other countries and 

regions may be found from the same source.    

 

2.2 The Formal Diagnosis Model of COVID-19 

 

 On the basis of real-world COVID-19 big data as presented 

in Table 1, a set of statistical results is derived for the three 

sample countries as shown in Table 2. In Table 2, s(t) and S(t) 

represent the average infective rate among the susceptible class 

or the whole population, while d(t) and D(t) denote the average 

mortality rate among the infective class or the whole population, 

respectively.  
 

 The decision model of COVID-19 diagnoses may be 

formally described by a Cartesian product of the sets of 

symptoms [23] and test results according to Definition 3. 

 

 

 
 

Table 1. Statistical Big Data of COVID-19 (partial) [23] 

   
Country #Infectives (Ninf)  #Recovered (Nr) #Deaths (Nd) #Hospitalized (Nh) #Tested (Nte= Nt) Population (N) 

Canada 107,347 71,266 8,773 27,308 3,183,516 37,751,539 

USA 3,355,646 1,490,446 137,403 1,727,797 41,770,226 331,060,504 

China 83,594 78, 634   4,634 326 90,410,000 1,439,323,776 

World 12,848,040 7,483,451 567,760 4,796,829 - - 
  

 



 

Table 2. Sample Statistical Parameters of COVID-19 Pandemic   
   

Country Reproductive rate  

(R0(t): mean | max | approx.) 

Average infective 

rate (s(t),  S(t)) 
Test rate  

(te) 

Mortality rate  

(d(t), D(t)) 

Population  

(N) 

Canada [1.0921, 2.0000, 2.3513] 3.3719%, 0.2844% 8.4328% 8.1726%, 0.0232%       37,751,539 

USA [1.1043, 1.8000, 3.8930] 8.0336%, 1.0136% 12.6171% 4.0947%, 0.0415%    331,060,504 

China [1.0582, 2.9351, 7.0940] 0.0925%, 0.0006% 6.2800% 5.5435%, 0.0003% 1,439,323,776 
 
 

 
 

 

 Definition 3. Let the set of symptoms of COVID-19 be S = 

{S1(Fever), S2(Cough), S3(BreathDifficulty), S4(Chills), 

S5(ChillShaking), S6(MusclePain), S7(HeadAche), 

S8(SoreThroat), S9(LossOfTaste/Smell)}, and the set of lab tests 

be L = {L1(NucleicAcid), L2(SoreSample), L3(LungImage)}. The 

diagnosis E of COVID-19 infectives is detected by the Cartesian 

product between the sets of detection symptoms ES and lab 

confirmations EL as follows: 
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where T|L and F|L denotes a Boolean logical variable for True 

or False, respectively. The diagnosing results are classified in 

the categories of symptomatic positive, none-symptomatic 

positive, negative, and susceptibly negative; and the big-R 

notation [15] represents an iterative series of recurrent structures 

or embedded functions.       
  

2.2  Fundamental Attributes of COVID-19 Pandemic and 

their Calibrations by Big Data Analytics   
 

 In epidemiology, the reproductive ratio R0 of a contagious 

disease is adopted to estimate how fast the disease spreads in a 

community. The role of R0 is formally introduced in a simplified 

model as a constant 
0R   in the following for approximate 

estimation. However, more rigorous analysis of R0(t) as a 

dynamic series will be developed in Sections III and IV.     
  

 Definition 4. The exponential series Ninf(t) of epidemical 

transmission on the 
0 tht k+  day is estimated by a product of 

initial infectives Ninf(to) and the average reproductive rate 
0R  

raised to the kth power:  
 

0 00 00( ) , 0( ) 1.0, )0, (inf i fn n

k

i fN k R N kRt t tN+       (3) 

 

 Theorem 1. The estimated average reproductive rate 
0R  of 

a pandemic transmission is the kth root of the average ratio 

between the number of infectives Ninf(t0+k) cumulatively 

infected at t0 + k by each initial infective Ninf(t0): 
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 Proof. According to Definition 4, Theorem 1 may be directly 

proven.                                                                                              

  

 It is noteworthy that 
0R = 1.0 when k = 0. 

 

      Corollary 1. The average reproductive rate 
0R  is an 

indicator  for the congruous severity classified in two 

categories by the threshold 
0R = 1.0: 
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                  (5) 

  

 The average value of 
0R  in COVID-19 has been estimated in 

a considerably inconsistent range according to different 

pandemic patterns and datasets in a certain period of the 

pandemic. For instance, WHO has empirically estimated 
0R of 

COVID-19 in the range of 2.24 to 4.00 recently, while its 

preliminary estimation was from 1.40 to 2.50 on January 23, 

2020 [23]. It will be explained in Section III why the WHO 

empirical estimations on 
0R  were considerably higher than 

those obtained in rigorous analyses with real-world big data in 

different periods of the COVID-19 lifecycle.      

 
 Investigating into the nature of pandemic dynamics for 

rigorously predict the pandemic trends, we find that in order to 

model more general and complex pandemic dynamics, the 

reproductive rate must be treated as a series of variables R0(t) 

over time. A formal analysis of this fundamental phenomenon 

of epidemiology will be elaborated in Sections III and IV based 

on the causal probability theory and big data analytics. It will 

describe how R0(t) is rigorously determined as a series of 

dynamic variables in epidemiology.  

 

III. MATHEMATICAL MODELS OF ANALYTIC 

EPIDEMIOLOGY 

 
The preceding section has indicated that the challenging 

problems in analytic epidemiology demand novel mathematical 

means and models. It is observed that the sample space of 

general probability is dynamically varying rather than static as 

traditionally perceived [20, 22]. This section analyzes the 

constraints of traditional approach to epidemiological dynamics 

modeling by classical probability theory. Then, a novel theory 

on causal probability is introduced towards rigorous 

epidemiological analytics. 

 
 



 

3.1  The Causal Probability Theory (CPT) for Modeling the 

Dynamics of Epidemiological Processes       
 

 In order to address the instability, sensitivity, and interlocked 

(dependent) solutions in the SIR model and classic exponential 

growing sample spaces of pandemic probability, we introduce 

the Causal Probability Theory (CPT) for analytic epidemiology. 

CPT models the dynamics of pandemic transmissions as a causal 

series. Each step in the causal probability series is determined 

by CPT where traditional probability is a special case of it when 

the sample space is assumed to be invariant.  
 

 Definition 5. The axiom of a series of causal probabilities in 

CPT is based on the fundamental concepts: a) The causal 

influential factor t determined by the difference between the 

sizes of events    ( ) and ( 1)e t e t − over the current sample space 

( )S t , where   ( -1)e t is called the cause and  ( )e t  the effect; and b) 

The elemental causal probability t of an event ( )te  on a 

variable sample space ( 1)S t −  in the recursive series of a 

pandemic, i.e.:      
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 On the basis of Definition 5, the causal probability of a series 

of causes and effects in CPT may be rigorously derived as 

follows.       
  

 Definition 6. The causal probability ( )t  of a series of n 

consecutively pairs of causal probabilities ( )
( 1) ( )

t
t te e
− ⎯⎯⎯→  in 

a dynamic sample space ( )S t , is: 
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 The causal probability model for analytic epidemiology 

reveals a special series of causal influences between each pair of 

the previous and the current events on a varying sample space

( ) /dS t dt . The traditional probability theory considers only a pair 

of conditional influence on a static sample space, which is a 

special case of the causal probability theory. 
 

 Theorem 2. The sample space ( )S t  of causal probability in 

a series is not a constant due to the causal influences in the 

recursive series: 
 

( )
0

dS t

dt
                                       (8) 

 

 Proof. According to Definition 6, Theorem 2 is proved as 

follows:  
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 Theorem 2 indicates that the causal probability is a general 

probability theory that extend classic conditional probability and 

the Bayesian law [4, 22] to a general setting where both the 

sample space and events are varying influenced by the past 

series as that in epidemical transmissions. 
  

       Based on Definition 6 and Theorem 2, the fundamental 

model for explaining the dynamic behaviors of epidemical 

transmission may be formally perceived as follows.  

 

 Definition 7. The number of infectives of a pandemic on day 

t may be rigorously predicated based the causal probability ( )t  

where its prior as the cause is the cumulative number of 

infectives ( -1)infN t :         
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 The physical meaning of ( -1)infN t  in Definition 7, is 
embodied by the cumulated historical priors as the cause, and 

( )infN t  the current event. The big-R calculus denotes the 
dynamics mechanisms of system updating in order to 
interchange roles of the effect and the cause in the recursive 
series of causal probability inferences.         

           
3.2 Fundamental Theories for CODIV-19 Forecast and 

Control 

 

 On the basis of CPT, a dynamic transmission model of 

analytic epidemiology may be rigorously derived for COVID-

19 prediction based on both the dynamic transmissive rates and 

the varying sample spaces over time.  

 

 Lemma 1. The series of dynamic reproductive rates 

 0
1

( 1)
n

t

R tR
=

−  of COVID-19 is recursively determined by its causal 

probabilities 
1 1(1 )t t t  − −= +  in each step of the iteration:         
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 Proof. Let 
0 ( )t R t =  be the dynamic causal probability of a 

pandemic series. According to Definition 7, Lemma 1 is proved 

by the recursive series when of the previous values Ninf(t-1) and 

Ninf(t-2) are known in the causal series. 
 

  

 It is noteworthy that, although the average value of R0(t), 0R

(Definition 4),  in empirical studies on COVID-19 is assumed as 

a constant, it is naturally a -shape series due to the cumulative 

infective dynamics as shown in Figure 3. R0(t) may be rigorously 

calibrated for each step of the transmission series
 0

1

( )
n

t

R tR
=

 based 

on Lemma 1 as follows.   



 

 Theorem 3. The Dynamic Pandemic Transmission Model 

(DPTM) of analytic epidemiology is a recursive series of causal 

probabilities driven by the reproductive rate R0(t) to determine 

the effect of future number of infectives ( )infN t  based on prior 

causes ( 1)infN t − : 
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 Proof. According to CPT and Lemma 1, a series of causal 

probabilities between adjacent events in a variant sample space 

S (t) of COVIC-19 are:  
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                                            
 

 According to Theorem 3, the infectives in a pandemic series 

may be rigorously predicated at any given time as follows. 

             

 Corollary 2. The forecasted number of infectives  ( )infN t k+  

of a period on days t + k is determined by the following sum of 

products of Ninf(k) and R0(k)k-t:         
 

0( ) ( ) ( 1)
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where if k = 0, Eq. 12 reduces to the simplest form 

0( ) ( ) ( 1)inf mean inf

tN t R N t− −  . 

 

 Proof. According to DPTM (Theorem 3), the cumulative 

infectives of a subseries in [t, t+k] is proven as follows:       
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 

   As indicated by Corollary 2, there are two criteria to forecast 

the termination of a pandemic based on if the trend of R0(t) is 

approaching to 1.0 or if the limitation of the infective rate 

dNinf(t)/dt is approaching to 0.          

  

 Definition 8. The forecasted endpoint Tmax of an epidemical 

lifecycle is determined at the point of te according to DPTM 

while the following conditions continuously meet for a period: 
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where the stabilization period may be set as a week or so until 

either or both conditions are continuously met. 

     

 As a result, the expected maximum infectives 
-max ( )infN t of a 

pandemic may be obtained according to Definition 8 given Tmax 

as follows  
 

 Definition 9. The maximum infectives Ninf-max towards the 

termination point Tmax of a pandemic is determined by an 

integration or approximately a weighted sum of the incremental 

infectives:      
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 Towards the termination point Tmax, all other attributes of a 

pandemic may also be rigorously predicated.  

 

 Definition 10. The maximum mortality Nd-max towards the 

termination point Tmax of a pandemic is determined by the 

product of the total infectives and the average death rate:      
 

-max max max max( ) ( ) ( )d d infN T T N T                   (15) 

 

 Applications and big-data-based experiments of CPT and 

DPTM will be presented in the following section. 

  
 

VI. APPLICATIONS OF CPT AND DPTM IN  

ANALYTIC EPIDEMIOLOGY 

 

 The theories of analytic epistemology and the Dynamic 

Pandemic Transmission Model (DPTM) as developed in the 

proceeding section have provided a rigorous foundation to 

reveal the insights of pandemic mechanisms. This section 

describes the design of a decision-making tool for analytic 

epidemiology. Then, a set of experimental results will be 

obtained to demonstrate the predictive power of the DPTM 

theory and the approach to rigorous forecasts of COVID-19 

trends based on real-world big data. 

 

4.1 The Architecture of the Analytic Epidemiology System   
 

The Analytic Epidemiology System (AES) encompasses six 

subsystems of solutions with 15 categories of 60+ functions. 

AES is shown in Figure 1 for elaborating an entire picture of 

analytic epidemiology. Within each of the subsystems, a number 

of COVID-19 analytic functions and algorithms are embodied to 

implement the system. Details of key functions and algorithms 

as well as their mathematical models are based on the analytic 

CPT and DPTM as developed in Sections II and III. 

 



 

AES provides a wide spectrum of rapid decision supports for 

multimodal big data gathering, analysis and visualization, event 

detection and alarms, situation awareness, predications, 

taskforce deployment, resources allocation, and machine-

learning-based causal inference algorithms. As shown in Figure 

1, the real-time analytic system of epidemiology encompasses 

the subsystems of: a) The real-time operating systems (RTOS) 

platform; b) The graphical user interface (GUI) of AES; c) The 

big data analytic engine (BDAE); d) The AI decision engine 

(AIDE); e) The pandemic decision making (DM) database 

(PDB); and f) The pandemic DM knowledge base (PKB). 
 

 The AES tool powered by the CPT and DPTM algorithms as 

developed in Section III is designed to address a set of key 

challenges to epidemiological analyses and predictions. This 

subsection illustrates the key functions and algorithms of the 

system including predictions for dynamic infectives and 

incrementals, maximum infectives and average reproductive 

rates, maximum death/average death rate, and epidemic life 

cycle (end time), as well as their rigorous estimations beyond 

those of traditional statistical methodologies. 

 A set of numerical and machine learning algorithms is 

designed for rigorously determining the important attributes of 

COVID-19 pandemics and their forecasts based on the 

mathematical models of analytic epidemiology supported by the 

AES tool. Rigorous requirement predications are enabled for 

expected infectives Ninf(t), recovered Nr(t), deaths Nd(t), hospital 

wards allocation Nh(t), and the expected termination day Ne(t) of 

the pandemic in any region. All the key attributes of pandemic 

are quantitatively analyzed and reported by the AES tool for the 

expected values, maximums, potentials, trends, ratios, and early 

alarms.           

 
4.2 Experiments on COVID-19 Trends Predication by AES 
  

 On the basis of DPTM supported by the AES tool, key 

attributes of analytic epidemiology, including R0(t), ( )infN t ,  

Tmax, and
-max ( )infN t , may be rigorously determined for COVID-

19 prediction and decision-making with high accuracy and 

confidence.   
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Fig. 1. The framework of pandemic decision-making (PDM) for the analytic epidemiology system (AES) 
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Fig. 2 Predictive analyses of COVID-19 trends 

 

 

 The analysis and forecast functions of the AES tool are based 

on a set of raw big data adopted from WHO databases [23] 

during January 20 to June 30, 2020 as shown in Table 3. Key 

pandemic attributes are rigorously derived and/or predicated by 

the tool based on the DPTM algorithms, particularly CPT-driven 

machine learning algorithms for calibrating the dynamic trends 

of R0(t) and forecasting the infectives through the lifecycle of the 

COVID-19 pandemic in the sample countries or anywhere else. 

 
Table 3. Sample Big Data of Incremental Infectives (Inf(t))  

of COVID-19 [WHO, 2020] 
   

Data

set 

Country Sample Duration Days 

1 Canada March 1 to June 30, 2020 122 

Inf1 
[4  3  6  1  14  4  8  6  12 19 21 40 42 60 81 101 156 129 146 216 242 141 527 820 582 
634 702 895 665 1128 1199 1140 1497 1265 1475 1258 970 1230 1393 1475 1383 1190 

1033 1300 1383 1309 2207 2187 1976 1715 1248 2027 2982 2150 2377 2007 2242 3804 
3553 1732 2384 1913 2344 3346 2101 2045 2225 2229 2263 2133 1844 2096 2065 2072 

2237 2122 2192 2118 2097 1989 2053 2185 2170 2250 2012 2009 2082 1962 2065 2007 
1941 1959 1963 1809 1895 1827 1888 1685 1706 1845 1767 1815 1828 1708 1854 1797 

1795 1756 1834 1582 706 735 667 702 701 741 805 659 770 729 1065 705 …] 

2 USA March 1 to June 30, 2020 122 

Inf2 
[20 16 23 32 72 108 116 122 174 294 286 438 534 739 744 1005 1674 3028 4838 5411 

7156 8930 10469 9071 13863 16772 18800 20034 19249 20631 24987 27089 29019 
32433 34110 25860 27667 32252 35143 33997 36886 29562 26716 26534 26485 30159 

34814 30943 28773 25478 28830 26334 28158 34827 37049 31204 27315 23734 25330 
28815 31462 34940 28358 30134 24059 25834 25334 29527 29204 25820 22122 18841 

22872 21362 27200 24496 24639 18907 22664 20177 23321 26174 24848 21275 20055 
19545 18998 19814 22748 24681 23705 19644 21531 22015 20383 22260 24176 22837 

16258 19448 18746 20944 23025 26994 25082 19210 20872 24871 26033 28065 33002 
32699 25932 32416 34978 34863 40170 47263 42373 38796 43449 46317 …] 

3 China January 20 to June 5, 2020 138 

Inf3 [77 149 131 259 444 688 769 1771 1459 1737 1982 2102 2590 2829 3235 3887 3694 
3143 3399 2656 3062 2478 2015 15152 5093 2644 2009 2053 1891 1751 825 892 399 

649 416 527 411 440 329 430 573 206 128 120 143 145 103 46 45 20 31 25 11 18 27 29 
39 35 84 65 46 82 102 147 99 114 118 135 128 106 98 86 93 78 19 55 75 66 86 92 56 64 

113 115 99 49 52 27 31 21 36 13 37 15 9 12 25 3  6  22  4  12  4  5  7  4  2  3  6  1  14 17 

1  7  6  5  10  5  7  6  5  2  13  0  3  11  7  1  3  0  4  5  18  9  7  1  11  6] 

 

  

 Case 1. The analysis and predictive results of Canada by the 

AES tool is shown in Figure 2(a) based on the daily sample 

dataset of incremental infectives Inf(t) during March 1 to June 

30, 2020 with the first 122 days of a partial COVID-19 lifecycle 

as presented in Table 3. The pandemic attributes derived by the 

AES tool including the reproductive rate R0(t), expected 

infectives 
expinf ( )N t , and real infectives 

inf ( )N t . Figure 2(a) 

demonstrates a fairly high accuracy in prediction and the insights 

of the dynamic R0(t) in COVID-19 pandemic. It is noteworthy 

that the maximums of the cumulated infectives
-max ( )infN t  and 

expected infectives ( )infN t  are upto 169,961 vs. 170,330, 

respectively, which are shown in logarithmic scale in order to 

highlight the other attributes of COVID-19 dynamics in Canada 

in the given period. 

   
 Cases 2 and 3. Analyses and predications for COVID-19 in 

USA and China are shown in Figures 2(b) and 2(c), respectively. 

The big data of the former [10] are sampled in the same period 

as that of Canada. While the dataset of the latter is obtained from 

January 20 to June 5, 2020 with 138 days for a complete 

pandemic lifecycle [23]. The pandemic systems of the three 

sample countries in Figure 2 show that although the absolute 

values of pandemic trends may be widely different in the world 

or local communities, the basic pandemic patterns across them 

are common, that may be rigorously predicted based on the 

DPTM theory for COVID-19. The analytic results and 

simulations provide empirical support for the theories of DPTM 

and CPT as the general pandemic model for any other countries, 

regions, cities, or communities. Rational decision models may 

be generated by the AES tool for supporting rapid reactions and 

rational policy making based on the theories proven in Section 

III. 

 
 Case 4. Extrapolative forecasts for the key dynamic trends 

of R0(t) and its average value have been derived as illustrated in 

Figure 3, where the sample countries are comparatively studied. 

Figure 3 indicates that the driving initial R0(t0) for triggering a 

pandemic is much greater than 1.0. However, R0(t0) is decreasing 

through the lifecycle of the pandemic until it reaches 1.0. In the 

visualized results of Figure 3, the CPT and DPTM models as 

obtained in Definition 6 and Theorem 3 have successfully 

applied to accurately predict the key attributes and expectations 

of COVID-19 trends. Comparative analyses and calibrations of 

R0(t) by the AES tool are summarized in Table 4 where the 

approximate 
0 ( )R t  is determined by Eq. 4.           

 

 



 

 

 

                    a) Canada                                                                          b) USA                                                                        c) China 
 

Fig. 3. Forecasts of R0(t) trends in the COVID-19 dynamics 

 
Table 4. COVID-19 R0(t) Calibrations   

   
Country Dynamic R0(t) Approximate 

0 ( )R t  

Mean  

  
0 ( )R t  

Max  

R0-max(t) 
Min 

R0-min(t)  

Mean  

0 ( )xR t  

Max  

R0x-max(t) 

Min  

R0x-max(t) 

Canada 1.0921 2.0000 1.0000 1.2638 2.3513 1.1038 

USA 1.1043 1.8000 1.0000 1.3953 3.8930 1.1290 

China 1.0582 2.9351 1.0000 1.4221 7.0940 1.0857 

 

 Figure 3 reveals that the continuous increments of infectives 

in a COVID-19 series is not caused by an increasingly higher 

transmission rate R0(t) in the sample countries as traditional 

empirical explanations suggested. However, big dada analyzing  

results derived from the DPTM theory indicate that the main 

factor of a COVID-19 pandemic is driven by the exponential 

magnitude of cumulatively growing base of total infectives 

1

( )
n

inf

t

N t
=


.  

 

 The experimental results as reported in Case Studies 1-4 as 

well as Figures 2 and 3 have demonstrated the strengths of the 

AES tool in real-world COVID-19 applications powered by the 

robust and rational CPT and DPTM theories. This basic research 

s a way to rigorously explain the myths of COVID-19 by an 

explainable and forecastable causal probability theory, the 

DPTM methodology, and the AES tool with associated 

cognitive and analytic algorithms.     

 
 

V. CONCLUSION 
 

This work has revealed a broader picture and deep insights 

of analytic epidemiology by the dynamic pandemic transmission 

model (DPTM). It has explored the cognitive, mathematical, and 

predicative foundations of analytic epidemiology. The causal 

probability theory (CPT) has been created for rigorously 

explaining how the fundamental reproductive rate R0(t) is 

rigorously defined and calibrated based on the big data of 

COVID-19. A theoretical framework of analytic epidemiology 

has been designed to elaborate the DPTM of epidemiology in 

general and COVID-19 in particular. Robust and accurate 

predictions on key attributes of COVID-19, including the 

calibrated transmissive rate R0(t), the predicated infectives at any 

day of the pandemic lifecycle, and the expected end of the 

pandemic, have been derived and demonstrated via four case 

studies with epidemical big data.  
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